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Abstract. In this work we present a method for lung nodules segmentation, their
texture classification and subsequent follow-up recommendation from the CT
image of lung. Our method consists of neural network model based on popu-
lar U-Net architecture family but modified for the joint nodule segmentation and
its texture classification tasks and an ensemble-based model for the follow-up
recommendation. This solution was evaluated within the LNDb 2020 medical
imaging challenge and produced the best nodule segmentation result on the final
leaderboard.
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1 Introduction

Lung cancer is an important disease which can lead to death. Fortunately, nowadays we
have early screening procedures for a timely diagnosis of this disease. Early screening
with low-dose CT (computed tomography) can reduce mortality by 20% [1]. Unfortu-
nately, global screening of the population would lead to a medical personnel overload.
Because of the high patients’ flow, doctors lose the ability of steadfast investigation of CT
results which can lead to errors in the diagnosis. Nowadays, when artificial intelligence
has proven its applicability in many areas of life, shifting routine medical tasks from
humans to AI looks like a very desirable option. One of such tasks can be the detection
of nodules in the lungs from CT images for follow-up procedures recommendation.

The LNDb 2020 challenge [1] consisted of 4 tracks:

• The detection of nodules in lungs from CT images. All nodules from an entire human
lung image should be localized.

• The segmentation of the nodules from CT images. Provided with the potential center
of the nodule, one should provide accurate voxel-wise binary segmentation of the
nodule (if it exists).

• The classification of the texture of found nodules. Provided with the center of the
potential nodule, one should classify one of the three types of texture: ground glass
opacities, part-solid or solid.

• The main challenge track consisted of making a follow-up recommendation based on
aCT image according to the 2017 Fleischner society pulmonary nodule guidelines [2].
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We participated in all the tracks, except the nodule detection track. The next section
describes our approach.

2 Method Overview

2.1 Nodule Segmentation

We started our experiments with the SSCN [3] U-Net [4] which established itself in a
number of 3D segmentation tasks. The advantage of this family of architectures is that
it allows the usage of larger batches because of exploiting the sparse nature of the data.
Unfortunately, 3D sparse U-Net had a low prediction performance in our setup and our
choice was to fall back to the plain 3D convolutions. An analogous setup with 4-stage
(i.e. 4 poolings in the encoder part followed by 4 upsamplings in the decoder part) U-Net
showed its supremacy over the SSCN counterpart, which determined the direction of
further experiments.

The next thing we did was the implementation of residual connections [5], which
established itself in many computer vision tasks. Following [6], we replaced the standard
ReLU activation with ELU [7] and then the batch normalization [8] with the group nor-
malization [9], which, in combination, gave us a sufficient increase in the segmentation
quality. Our final encoder/ decoder block is depicted in Fig. 1.

Fig. 1. Comparison of the simple U-Net block (right) and our residual block with GroupNorm
and ELU (left).

We followed the standard procedure of encoder construction: twice reducing the
spatial dimension after every next block while twice increasing the feature dimension
(and vice-versa for the decoder). Later we added an additional 5th block to the encoder
and removed the pooling layer after the first block to match the encoder and decoder
dimensions, as in [10].
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We used the popular attention mechanism CBAM [11] in both the encoder and
decoder of our U-Net but adapted it for the 3-dimensional nature of LNDb data. Our
experiments show that CBAM leads to a slightly better segmentation quality, which is
to be expected, while sacrificing an extra amount of the training time. Here again we
see that ELU [7] activation (inside the attention module) provides better results than its
ReLU counterpart.

2.2 Nodule Texture Classification

As well as for the segmentation track, we started from the SSCN-based recognizer fol-
lowing VGG [12] architecture, but in this case, sparse convolutions failed again. We
continued our experiments with the same U-Net encoder which we used for the segmen-
tation but attached a classification head instead of a decoder. The benefit of this approach
is that we can start from the already pre-trained for the nodule segmentation weights,
which, by our observations, is crucial for training such a classifier. Our classification
head starts from the global average pooling followed by two fully connected layers with
ELU activation and ends upwith the final classification layer with the softmax activation.

Unfortunately, this approach still gave us a low classification accuracy. So, we came
up with the idea of training a joint segmentation and texture classification network,
which is the main contribution of this work. This approach gave us a sufficient boost of
the classification accuracy and also increased our nodule segmentation quality because
of exploiting so-called multi-task learning.

It is also worth noting that apart from the joint nodule segmentation and texture
classification network, we have tried a simple ensemble-based model (namely, Random
Forest) upon encoder features from the pre-trained nodule segmentation model. This
is a working option but still less accurate than the joint end-to-end model. Also, using
a second-stage predictor negatively impacts the performance of the final solution and
overcomplicates it.

2.3 Joint Nodule Segmentation and Texture Classification

We did some experiments with the texture classification head configuration. Upon our
observations, usage of convolutions instead of fully connected layers gives no advantage,
neither in terms of classification accuracy nor nodule segmentation quality while the
model becomes slightly less robust to the overfitting. For the train/val submission we
used a dropout rate 0.6 while for the test set submission a dropout of 0.4 was preferable.

Besides group normalization, we experimented with the switchable normalization
[13] and the resultwas dubious.With the same training procedure, themodelwith switch-
able normalization behaves noisier in terms of segmentation and texture classification
metrics, slightly worse on average but with few high peaks (see Fig. 2) and it is also
more prone to overfit. Such behavior, along with the fact that training with SwitchNorm
increases the optimization time, made us fall back to the GroupNorm. We found that the
optimal number of groups is 8.

Usage of attention in the encoder and decoder of the joint nodule segmentation and
texture classification model has led to the earlier overfeat of the classification head:
better segmentation results can be obtained only by sacrificing the texture classification
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Fig. 2. Training curves of two joint nodule segmentation and texture classification networks: one
with group normalization and one with switchable normalization.

quality. We attempted to overcome this by incorporating some attention mechanism also
within the classification head. We tried an approach from [14], again, adapted to the 3D
nature of the data, but unfortunately, this approach only decreased the overall quality of
the model. So, for the joint model we didn’t use any attention mechanism.

The maximum feature size in the first encoder block (see Sect. 2.1) which fits our
hardware (2× Nvidia GTX 1080 Ti) was 40. Unfortunately, the training time of such a
model was too high for the limited time budget of the challenge and we decided to use
the feature size 32 which still gives us a high enough segmentation quality (see Fig. 3)
to provide us with the necessary performance.

Fig. 3. Training curves of normal and width joint nodule segmentation and texture classification
networks.

By the nature of the challenge data, participants were able to choose whether to train
their models on 5 classes (6 with non-nodule class) or 3 classes (4 with non-nodule
class). In our experiments, we clearly observed that the fewer classes to train on – the
better final accuracy, so we used a 3-class model in our approach.

2.4 Fleischner Classification

As for themain target [2] prediction, we used a relatively simple idea. From the challenge
guidelines, we know that the follow-up recommendation can be estimated directly from
the nodule annotation considering:
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• the number of nodules for the patient (single or multiple),
• their volumes,
• their textures.

This means that information about the number of found nodules, their volumes and
textures is enough for a radiologist to make a recommendation. Knowing this, we just
encoded this information in a 6-element feature vector as follow:

• The first 3 elements encode the number of nodules of each of the 3 sizes (less than
100 mm3, between 100 and 250 mm3 and more than 250 mm3),

• The last 3 elements encode the number of nodules of each texture type (ground glass
opacities, part-solid and solid).

From the predictions of the joint nodule segmentation and texture classification model,
we directly know the texture type of the nodule and from the segmentation mask we can
compute the nodule size (every nodule has a common spatial resolution).

We first evaluated the prediction capability of such an approach on the ground truth
data, using the Random Forest model as a predictor and it showed a remarkable perfor-
mance – over 90% balanced accuracy. For the leaderboard submissions we just replaced
the ground truth segmentation and texture with our own predictions. To overcome the
effect of cascade error, we also tried to predict Fleischner target based only on the nodules
size (without information of its texture) and surprisingly it had a quite similar prediction
capability. Based on these observations, it becomes quite clear that the crucial factor of
the follow-up recommendation is the number of nodules in the lung, which is achieved
by the accurate nodule detection or segmentation algorithm.

The test set of the challenge was extremely noisy due to the false positive nodules
in order not to invalidate other tracks targets. Since our team didn’t participate in the
detection track and the non-nodule filtration is crucial for the main target prediction
(because it heavily relies on the information about the number of found nodules in the
patient), a strong need arose for somenon-nodule filtrationmechanism.While submitting
the train/val results, this task was assigned to the nodule segmentation network, i.e. a
candidate was considered as a non-nodule (false positive) if his volume, based on the
predicted nodule segmentation, was nearly zero. We measured the precision of such an
approach to non-nodule recognition and it was around 0.64, which, as it turned out, was
enough for the slightly noisy train/val data. Looking at the test data, we correctly decided
that it would not be sufficient for the highly noisy test data. To solve this problem, we
forced to train another auxiliary model, i.e. a separate non-nodule recognizer. For this
purpose, we took our joint network without its decoder part, initialized with the best
checkpoint, and trained it for the 2-class (nodule/ non-nodule) classification problem.
Precision of such a model was much higher – 0.78. Incidentally, it was even higher than
for a joint model trained for 4 (3 actual classes and 1 non-nodule class) instead of 3
classes. Unfortunately, it turned out that this is still not enough for accurate non-nodule
filtration in the test set data which led to the great metrics decrease in the test submission
compared to the train/val one (see Sect. 3 for the details).
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2.5 Model Optimization

Dice loss is default choice nowadays for the training of segmentation models. It worked
well in our case too. We experimented with the Generalized Dice overlap loss [15]
but it did not give us an improvement. For the classification head we used plain Cross
Entropy. We used inversely proportional class weights for Cross Entropy, and it boosted
the accuracy, while weighting of the Dice loss didn’t provide us with any improvements.
Our final loss was an average of the Dice and Cross Entropy, where Cross Entropy was
multiplied by 0.2.

As for optimizers,we used very popularAdamoptimizer.We also tried recently intro-
duced diffGrad [16] and Adamod [17] but they didn’t provide us with any improvements
(we didn’t perform a hyper-parameter tuning). Comparison of optimizers depicted on
Fig. 4. We didn’t start optimization of texture classification head (by multiplying Cross
Entropy loss by 0) until nodule segmentation achieves 0.45 IoU (intersection over union).

Fig. 4. Training curves of the nodule segmentation model for different optimizers.

2.6 Data Augmentations

In our work, we used some quite standard augmentations set: random flipping, random
rotations by 90°, elastic deformation and noise. We couldn’t use rotation for arbitrary
angle because it could break the structure of the scan and has padding uncertainty. Our
experiments show that augmentations can boost nodule segmentation IoU by 0.05 in
average (see Fig. 5).

Fig. 5. Training curves for two identical nodule segmentation networks: with and without data
augmentation.
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3 Results

3.1 Train/Val Leaderboard

The organizers provided us with train/val set with 4 predefined folds. Results for the
public train/val leaderboard must be submitted using a 4-fold procedure, so we trained
4 joint nodule segmentation and texture classification models. Its predictions were used
for the segmentation and texture classification tracks in a straightforward way while
for the main target prediction, we first collected the features (volumes and textures) for
every nodule, then trained the corresponding predictor for the Fleischner classification
(see Sect. 2.4).

Table 1 summarizes our nodule segmentation result on the train/val leaderboard.
Here, J stands for Jaccard index,MAD stands for mean average distance, HD stands for
Hausdorff distance, C stands for the Pearson correlation coefficient, Bias stands for the
mean absolute difference, Std stands for the standard deviation, symbol * stands for the
inversion of the metric, e.g. J * means 1 − J . The final score in the leaderboard was
calculated as an average of all six metrics, which were preliminarily normalized by the
maximum value over all the submissions in the leaderboard, for each metric separately.
See the LNDb challenge evaluation page [18] for a detailed description of the evaluation
metrics.

Table 1. Top-5 segmentation results in the train/val leaderboard. Our result highlighted in bold.

J* MAD HD C* Bias Std

0.0865 0.0827 0.4123 0.0017 16.2162 86.1182

0.4178 0.4122 2.136 0.0671 92.7103 472.6242

0.433 0.3888 2.0493 0.0791 75.536 507.3688

0.4892 0.5668 2.4819 0.0781 103.3177 486.8666

0.3694 0.3484 1.8991 0.1116 111.4641 719.5786

Our Fleischner classification score is 0.5281 Fleiss-Cohen weighted kappa [19],
which is the third best result in the leaderboard (after 0.603 and 0.5323 kappa).

3.2 Test Leaderboard

We used 70% of the train/val data for training our joint nodule segmentation and texture
classification model while the remaining 30% were used for validation and also for the
training of our main target predictor.

Nodule segmentation and its texture classification procedures were the same as for
the train/val submission – results were obtained in a straightforward way from the joint
model.

Additionally, for every sample, we predicted whether or not it is a nodule using our
non-nodule recognition model (see Sect. 2.4) and saved this information to make a later
prediction of the main target. Then we took the remaining 30% of the train/val set, which
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was not used for training the joint model, and collected the segmentation, texture classifi-
cation and non-nodule recognition results for this data. From this prediction we formed a
sampling for training aRandomForest predictor of themain target (see Sect. 2.4). Finally,
this model was used for the prediction of the main target of the test set.

Table 2 summarizes our nodule segmentation results on the test leaderboard. See
the LNDb challenge evaluation page [18] for a detailed description of the evaluation
metrics.

Table 2. Top-3 segmentation results in the test leaderboard. Our result highlighted in bold.

J* MAD HD C* Bias Std

0.4779 0.4203 2.0275 0.055 44.2826 86.3227

0.468 0.4686 2.1371 0.081 40.701 98.741

0.4447 0.4115 2.0618 0.1452 41.4341 129.47

Our Fleischner classification score is −0.0229 Fleiss-Cohen weighted kappa [19].
We explained the reasons of such a poor result and the significant difference with the
train/val submission in Sect. 2.4 in detail.

4 Conclusions

In this paper we described a solution for lung nodules segmentation, their texture clas-
sification and a consequent follow-up recommendation for the patient. Our approach
consists of a joint nodule segmentation and texture classification neural network, which
is essentially a deep residual U-Net [4] with batch normalization [8] replaced by a
group normalization [9] and ReLU replaced by ELU [7]. For the patient’s follow-up
recommendation [2], we used an ensemble-based model. We evaluated our approach by
participating in the LNDb challenge [1] and took the first place in the segmentation track
with a result of 0.5221 IoU. Our approach is simple yet effective and can potentially
be used in real diagnostic systems reducing the routine workload on medical personnel,
which clearly defines the direction of our future work.
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Savchenko for his assistance in preparation of this paper.
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