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Abstract. The automated analysis of Computed Tomography scans of
the lung holds great potential to enhance current clinical workflows for
the screening of lung cancer. Among the tasks of interest in such analysis
this paper is concerned with the segmentation of lung nodules and their
characterization in terms of texture. This paper describes our solution for
these two problems in the context of the LNdB challenge, held jointly
with ICIAR 2020. We propose a) the optimization of a standard 2D
Residual Network, but with a regularization technique adapted for the
particular problem of texture classification, and b) a 3D U-Net architec-
ture endowed with residual connections within each block and also con-
necting the downsampling and the upsampling paths. Cross-validation
results indicate that our approach is specially effective for the task of
texture classification. In the test set withheld by the organization, the
presented method ranked 4th in texture classification and 3rd in the nod-
ule segmentation tasks. Code to reproduce our results is made available
at http://www.github.com/agaldran/lndb.
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1 Introduction

Pulmonary cancer is known to be among the most lethal types of cancer world-
wide [14]. Early detection of lung cancer may have a great impact in mortality
rates, and Computed Tomography (CT) is recognized as a promising screening
test for this purpose [1]. Large-scale screening programs are susceptible of becom-
ing more effective and efficient by the deployment of Computer-Aided Diagnosis
(CAD) tools. Such tools might bring standardization to a problem that suffers
from great interobserver variability, and they also have the potential of reducing
the workload of specialists by assisting them with complementary decisions.

The main task related with CAD in the processing of pulmonary CT scans is
the automated analysis of lung nodules. This comprises several sub-tasks, namely
lung nodule detection (localization of lesions within the scan), nodule segmen-
tation (delineation of lesion borders), and lung nodule characterization (classifi-
cation of each nodule into different categories, e.g. malignancy or texture). This
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(a) (b)

Fig. 1. (a) 3-D visualization of a lung nodule from the LNdB dataset (b) Three 2-D
orthogonal views of (a), used here to train a model for texture classification.

array of problems has attracted considerable attention from the medical image
analysis community in the last years [16]. In particular since the advent of Deep
Learning techniques, a wide range of approaches based on Convolutional Neu-
ral Networks has been proposed for lung nodule detection [3], segmentation [4],
characterization [5,7], or direct end-to-end screening [2] with remarkable success.

This paper describes a solution to the LNdB challenge, held jointly with
ICIAR 2020. This challenge is built around the release of a new database of lung
CT scans (termed itself LNdB), accompanied with manual ground-truth related
to lung nodule localization, segmentation, texture categorization, and follow-up
recommendation based on 2017 Fleischner society guidelines [12]. A sample of
one of the nodules from the LNdB database is shown in Fig. 1.

Our solution is solely concerned with the tasks of lung nodule segmenta-
tion and texture characterization. In the remaining of this paper, we describe
our approach to each of these tasks, which is based on the effective training
of two residual networks. For the texture categorization scenario, we adopt a
regularization scheme based on a custom manipulation of manual labels that
better optimizes the κ score in this kind of problems. For the nodule segmen-
tation problem, we construct a modified UNet architecture by adding residual
connections inside each of its blocks, and also from the downsampling path to
the upsampling path. The reported cross-validation results are promising, spe-
cially in the texture classification task, where our approach seems to be able to
successfully overcome the difficulties associated to a highly imbalanced dataset.



398 A. Galdran and H. Bouchachia

2 Lung Nodule Texture Characterization

In the context of the LNdB challenge, sub-challenge C corresponded to the clas-
sification of lung nodule’s texture into three distinct categories, namely Solid,
Sub-Solid, and Ground-Glass Opaque (GGO).

The solution proposed in this paper was based on four main components: 1)
input pre-processing, 2) a standard Residual Neural Network, 2) a specialized
label smoothing technique, and 3) application of oversampling on the minority
classes.

2.1 Input Pre-processing

Initially, for each provided nodule center a cubic volume of size 64× 64× 64 was
extracted and stored separately to facilitate model training. In addition, instead
of attempting to process the input data by means of three-dimensional convolu-
tions, we simplified the input volumes by first extracting three orthogonal planes
of dimension 64 × 64 centered around each nodule, and then stacking them into
a single 3-channel image. This turned the inputs into tensors amenable to stan-
dard 2D-Convolutional Neural Networks, and resulted in a 95% dimensionality
reduction. A representation of this process is displayed in Fig. 1.

2.2 Convolutional Neural Network

We experimented with Residual Networks of different depths (18-layers, 50-
layers, and 101-layers depth networks). Several modifications were also tested,
namely the size of the filters in the very first layer was reduced from 7×7 to 3×3,
and an initial Batch-Normalization/Instance Normalization layer was inserted
in each architecture. In addition, initialization with weights pre-trained on the
ImageNet database was also tested. Eventually, our best configuration based on
cross-validation analysis was a 50-layer Residual Network, trained from random
weights and with no initial normalization layer.

2.3 Gaussian Label Smoothing

A simple but powerful approach to regularization in CNNs consists of performing
Label Smoothing (LS) [15]. LS is often applied for multi-class classification tasks,
where the Cross-Entropy loss function is employed, and annotations are available
in the form of one-hot encoding. The idea of LS consists of replacing these
original one-hot encoded labels by a smoothed version of them, where part of
their value is redistributed uniformly among the rest of the categories. LS has
been proven useful to prevent neural networks from becoming over-confident and
avoid overfitting in a wide range of problems [11].

Recently, a modified version of LS has been introduced in the context of
Diabetic Retinopathy Grading from retinal fundus images [8], termed Gaussian
Label Smoothing (GLS). The main assumption of GLS is that in a scenario
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Fig. 2. Gaussian Label Smoothing technique (GLS) applied to the texture characteri-
zation problem. Light-blue bars represent the original one-hot encoded labels for each
category, whereas the mean of the Gaussian curves represented in blue, orange, and
green represent the corresponding smoothed labels. (Color figure online)

where labels are not independent, but reflect some underlying “ordering”, it
can be better to replace the uniform smoothing process in LS by a weighted
smoothing, where neighboring categories receive more weight than further away
ones. It was shown in [8] that, for ordinal classification of Diabetic Retinopathy
grades, GLS outperformed standard LS.

For the problem of texture classification, we use the standard cross-entropy
loss and we adapt the GLS technique to three classes:

L(y, gls(ŷ)) =
3∑

k=1

y(k) log(gls(ŷ(k))), (1)

where y is the output of the CNN followed by a soft-max mapping, ŷ is the
original one-hot encoded label, and gls(ŷ) = G ◦ ŷ is the transformation of ŷ
by a GLS mapping. As an example, a nodule belonging to the solid category
is no longer represented by a one-hot encoded vector of the form (1, 0, 0) but
rather by a vector close to (0.80, 0.18, 0.02), as shown in Fig. 2. As opposed to
this strategy, the LS technique would encode the label as a vector of the form
(0.80, 0.10, 0.10). The effect of GLS is to induce a larger penalization when the
prediction of the network is far away from the true class, promoting decisions
closer to the actual label. This is particularly useful for the LNdB challenge,
where the evaluation metric is the Quadratic-Weighted Kappa score.

2.4 Minority Class Oversampling

Given the relatively low amount of examples and high ratios of class imbalance
(a proportion of approximately 5%/7%/88% for each class respectively), special
care was taken when considering the sampling of the training set during model
training. Our experiments revealed that the optimal strategy in this setting was
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(a) (b)

Fig. 3. (a) Three-dimensional visualization of a lung nodule from the training set, and
(b) same nodule as in (a) with an overlayed manual segmentation.

to perform oversampling on the two minority classes, which is consistent with
previous works [6]. Solid nodules were oversampled by a factor of 9 and sub-solid
by a factor of 6, which resulted in a class ratio of 25%/25%/50% during training.
It must be noticed that this approach lends itself to easily overfitting minority
examples, which are shown to the model much more frequently. However, we
observed that the application of Test-Augmentation Techniques mitigated this
effect considerably, as explained in Sect. 4.

3 Lung Nodule Segmentation

Sub-challenge C corresponded to the task of segmenting lung nodules from a CT
scan, given the location of their centroids. An example of a nodule and the asso-
ciated manual segmentation is shown in Fig. 3. For this task, we implemented
a standard U-Net taking as input three-dimensional volumes of 80 × 80 × 80
resolution. We introduced several modifications to the architecture presented in
[13]: 1) All 2-dimensional learnable filters were replaced by 3 dimensional fil-
ters 2) Batch-normalization layers were inserted in between every convolutional
block, and also prior to the first layer in the architecture, 3) Skip connections
were added to every convolutional blocks, and 4) Convolutional layers connect-
ing the downsampling path in the architecture with the upsampling path were
also added. Note that some of these modifications have been explored in previ-
ous works developing enhancements of the standard U-Net architecture [18]. A
representation of the resulting architecture is provided in Fig. 4.
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Fig. 4. A description of the 3d-unet used for this project.

The loss function we minimized in this case was the channel-wise Dice soft
function, as suggested in [10]:

L(y, ŷ) =
2
∑n

i=1 yi · ŷi∑n
i=1 y2

i + ŷ2
i + ε,

(2)

where yi is the output of the CNN at each location i, ŷi is the binary label
associated to each voxel, and ε is a small constant to prevent division by zero.

4 Training Details

The training of the CNN, both for texture classification and nodule segmenta-
tion, followed similar stages. In both cases, an initial learning rate of 0.01 was
set, and the weights were updated by means of the Adam optimizer so that the
corresponding loss was minimized. In the nodule segmentation problem, the opti-
mizer was wrapped by the look-ahead algorithm [17], since severe instabilities
were observed when using the original Adam optimizer. Regarding batch sizes,
for the texture classification task a batch size of 8 samples was applied, whereas
for the segmentation problem a reduced batch size of 4 had to be employed
due to computational constraints Both models were trained for 500 epochs, but
training was stopped after no performance improvement was observed in the
validation set during 25 epochs. In addition, after no improvement in 15 epochs,
the learning rate was decreased by a factor of 10.

As for data augmentation techniques, we performed random reflection along
each of the three axis of a given volume, as well as random small offsets, scal-
ings and rotation. It is important to note that, even if the texture classification
model was trained on two-dimensional images with three intensity channels (the
three orthogonal views depicted in Fig. 1), in this case we also performed data
augmentation on three dimensional volumes before sampling the three planes
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Table 1. Cross-validation performance analysis on nodule texture classification.

Vl. Fold 1 Vl. Fold 2 Vl. Fold 3 Vl. Fold 4 Avg± Std

Quad. kappa score 0.542 0.607 0.475 0.617 0.560 ± 0.057

Balanced accuracy 0.518 0.621 0.449 0.543 0.533 ± 0.061

Mean AUC 0.849 0.885 0.852 0.803 0.847 ± 0.029

of the input image. It is also worth noting that for the texture classification
scenario, the metric that dictated if there was an improvement in the validation
set was initially set to be the quadratic kappa score between predictions and
actual labels. However, we observed the kappa score to be too noisy during the
training process. For this reason, we replaced it by a metric aggregating the
average Area Under the Curve for three classes and the kappa score itself. For
the segmentation case, the validation metric was the dice score computed over
each scan after thresholding the network output by means of the Otsu algorithm
(this was done due to the high variability of results depending on the threshold
selection), computed per volume and averaged afterwards.

To reduce overfitting and improve the performance of both networks at
inference time, we also implemented a straightforward Test-Time Augmentation
strategy. Besides considering the prediction on a given volume, such volume also
went through a reflection over each axis from the set {x, y, z, xy, xz, yz, xyz},
predictions were computed on the modified volume and the same reflection was
applied again on the predictions in the segmentation case. We observed a consid-
erable benefit when applying this strategy, specially in mitigating the overfitting
that arised from the heavy oversampling of minority classes in the texture clas-
sification scenario, as described in Sect. 2.4.

5 Results

In this section we report numerical results for cross-validation performance as
well as performance in the final test set.

5.1 Lung Nodule Texture Classification

The organization of this challenge provided an official split of all the training
scans. This represented a set of 768 nodules, that were split in four subsets of
200, 194, 186 and 192 respectively. Each of this subset was used for validation
purposes once, while a model would be trained in the union of the remain-
ing three subsets, which resulted in four different models being trained. Table 1
reports the quadratic weighted kappa score, and other metrics of interest, for
each of this folds. We also display confusion matrices for each fold in Fig. 5.

For testing purposes, each nodule in the test set was run through each of the
above four models, and the resulting probabilities were averaged to build our
final submission. This produced a quadratic-weighted kappa score of κ = 0.6134,
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Fig. 5. (a)–(d): Confusion matrices corresponding to each of the validation folds.

Table 2. Validation (top) and test (bottom) results as provided by the organization

J∗ MAD HD Inv. Pearson CC Bias Std. Dev.

Validation 0.4321 0.4576 2.2364 0.1216 125.4638 706.6704

Test 0.4447 0.4115 2.0618 0.1452 41.4341 129.47

which ranked fourth in this competition. The greater performance in the test set
can likely be attributed to differences in class proportions between this and the
several validation sets used in Table 1.

5.2 Lung Nodule Segmentation

In sub-challenge B, the nodule segmentation task was evaluated under a num-
ber of different metrics, including Modified Jaccard index (J*), Mean average
distance (MAD), Mean Hausdorff distance (HD), Inverted Pearson correlation
coefficient, Bias, and Standard deviation1. In addition, the organization consid-
ered the largest interconnected object as the final segmentation in each case.

Since the functionalities to compute the above metrics were not provided
by the organizers, we were unable to perform an analysis similar to the one
in the previous section for our cross-validation analysis. For this reason, we
report in the first row of Table 2 results obtained by predicting each nodule with
the corresponding model trained on the appropriate split of the training set,
aggregating those predictions, and computing an overall score over the entire
training set this way.

Our final submission was again built by averaging the predictions of each of
our four models trained in different folds of the training set. The numerical anal-
ysis corresponding to our segmentations in the test set is shown in the bottom
row of Table 2. Our approach ranked third in the official challenge leaderboard.

6 Discussion and Conclusion

From the results presented above, it can be concluded that both the texture
classification and the nodule segmentation tasks were solved to a reasonable level.
1 The challenge website at https://lndb.grand-challenge.org/Evaluation/ contains rig-

orous definitions of each of these quantities.

https://lndb.grand-challenge.org/Evaluation/
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In particular, results in Table 1 are well-aligned with inter-observer variability
in this dataset among radiologists, as reported in [12].

Another interesting conclusion to be extracted from Table 1 is the observation
that the quadratic-weighted κ score captures different properties of a solution
when compared with the averaged AUC metric (this was computed adjusting
for the support of each class). For instance, the worst results in terms of κ score
were obtained in fold 3, but this fold also had the second best average AUC.
In our opinion, the inclusion of the average AUC together with the κ score
as the monitoring metric based on which we early-stopped the training of the
network was greatly beneficial to avoid falling in a sharp local minima during
the optimization process.

Despite an overall better ranking, results for nodule segmentation were
slightly poorer when compared with texture classification. A reason for this may
have been our approach based on directly segmenting the 3D volume, instead
of sampling 2D planes and learning from these. While a 3D model had far less
learnable parameters in this case, it was much more computationally intensive
in terms of number of operations performed by the network, which led to a slow
hyperparameter tuning process.

In addition, we observed that the selection of the binarizing approach once
the network had been trained had a great impact in the resulting segmentation,
as confirmed by the large standard deviation in Table 2. In our experiments,
we observed that if an optimal threshold was selected for each prediction (as
opposed to a single threshold for all predictions, or even the adaptive threshold
selection algorithm based on Otsu’s technique we ended up using), results were
much better. In other words, a reasonable binarizing threshold for a particular
probabilistic prediction turned out to be very poor when applied to another
prediction. We believe future work may focus on a better strategy to select a
thresholding value in a per-volume basis, as has been suggested in other medical
image segmentation problems [9].
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9. Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A.M., Campilho, A.: A
no-reference quality metric for retinal vessel tree segmentation. In: Frangi, A.F.,
Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI
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