
Parallel Implementation of the DRLSE
Algorithm

Daniel Popp Coelho(B) and Sérgio Shiguemi Furuie

School of Engineering, University of São Paulo, São Paulo, Brazil
1danielcoelho@usp.br

Abstract. The Distance-Regularized Level Set Evolution (DRLSE)
algorithm solves many problems that plague the class of Level Set algo-
rithms, but has a significant computational cost and is sensitive to its
many parameters. Configuring these parameters is a time-intensive trial-
and-error task that limits the usability of the algorithm. This is especially
true in the field of Medical Imaging, where it would be otherwise highly
suitable. The aim of this work is to develop a parallel implementation of
the algorithm using the Compute-Unified Device Architecture (CUDA)
for Graphics Processing Units (GPU), which would reduce the compu-
tational cost of the algorithm, bringing it to the interactive regime. This
would lessen the burden of configuring its parameters and broaden its
application. Using consumer-grade, hardware, we observed performance
gains between roughly 800% and 1700% when comparing against a purely
serial C++ implementation we developed, and gains between roughly
180% and 500%, when comparing against the MATLAB reference imple-
mentation of DRLSE, both depending on input image resolution.

Keywords: CUDA · DRLSE · Level Sets

1 Introduction

The field of medical imaging possesses many different imaging modalities and
techniques. For this field, image segmentation allows delineating organs and
internal structures, information that is used for analysis, diagnosis, treatment
planning, monitoring of medical conditions and more. The quality of the seg-
mentation, then, directly affects the quality and effectiveness of these processes,
again highlighting the importance of the correct choice of segmentation algo-
rithm [1,2].

Level Set segmentation algorithms define a higher dimensional function on
the domain of the image, and starting from a user-input initial state of this
function, iterate it with some procedure, formulated in such a way that the set

The results published here are in part based upon data generated by the TCGA
Research Network: http://cancergenome.nih.gov/. This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil (CAPES)
- Finance Code 001.

c© Springer Nature Switzerland AG 2020
A. Campilho et al. (Eds.): ICIAR 2020, LNCS 12132, pp. 25–35, 2020.
https://doi.org/10.1007/978-3-030-50516-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50516-5_3&domain=pdf
http://orcid.org/0000-0003-1570-031X
http://orcid.org/0000-0002-1557-3018
http://cancergenome.nih.gov/
https://doi.org/10.1007/978-3-030-50516-5_3

26 D. P. Coelho and S. S. Furuie

of pixels for which the Level Set Function equals zero (called the zero-level set)
converges on a target region. After a set number of iterations, the zero-level
set represents the contour that is the result of the segmentation [3,4]. Those
algorithms are capable of segmenting images with soft and hard edges, and the
generated contour is also capable of splitting and merging during the iteration
process, which is ideal for segmenting biological structures with complex shapes
and varying intensity levels.

The Distance-Regularized Level-Set Evolution or DRLSE is an established
Level Sets algorithm that effectively solves some of the usual problems with that
class of algorithms, including the problem of reinitialization [4]. It has since been
applied in many different contexts since its inception. The elevated computa-
tional cost and sensitivity to input parameters are still significant disadvantages
of the class, however.

The configuration of DRLSE parameters is a manual task that usually
involves trial and error and specialized knowledge, and depends on the specific
image used and target object to segment. The situation is made worse by the
elevated computational cost of the algorithm itself, that implies in slow iteration
cycles. Fortunately, like most Level Sets algorithms, the DRLSE algorithm is
highly parallelizable.

Graphics Processing Units (GPUs) are pieces of hardware originally designed
for acceleration and parallelization of 3D rendering tasks. Through frameworks
like CUDA (Compute Unified Device Architecture) [5], it is now possible to use
GPUs for acceleration of General-Purpose algorithms (GPGPU) [5,6].

The specifics of GPU architecture vary greatly between manufacturers and
generations. For the purposes of this paper, suffice to say that a GPU is com-
posed of many streaming multiprocessors (SM), which are groups of individual
processor cores. When a programmer dispatches a CUDA kernel (small GPU
program) for execution on the GPU, he or she specifies how many blocks and
threads these kernels should execute on, which are abstractions of SM and proces-
sor cores, respectively [5,6]. The abstraction allows CUDA code to be relatively
independent of the exact GPU architecture it executes on. It also allows the hard-
ware to manage kernel execution more freely. For example, when more blocks
are requested at a time than are available on the hardware, they are placed in
a queue and dispatched to SM as they become free. Additionally, CUDA allows
multiple blocks to be executed concurrently on the same SM under some condi-
tions [5].

The CUDA framework will be used in this paper to develop kernels for a par-
allel implementation of the DRLSE algorithm, allowing not only for faster usage,
but faster iteration cycles when choosing the optimal segmentation parameters.

2 Materials

The program was developed and tested exclusively on a computer with an AMD
Ryzen 7 2700X 3.70 GHz processor, 32 GB of DDR4 RAM, Windows 10 Enter-
prise N (64 bit) and an NVIDIA GTX 1060 6 GB GPU (Pascal architecture) [7].

Parallel Implementation of the DRLSE Algorithm 27

The program was always executed out of a WD Blue 1 TB 7200 RPM SATA
6 Gb/s 3.5 in. hard disk drive.

The algorithm was developed and built for CUDA 9.1, using CMake 3.10.1
and Microsoft Visual C++ Compiler 14 (2015, v140). We also developed a purely
serial implementation of DRLSE for C++ to be used as a point of reference for
the performance comparisons. Additionally, the reference MATLAB implemen-
tation of DRLSE [8] was used for performance comparisons.

All of the medical images used in this work were retrieved from [9,10].
NVIDIA’s official profiler, nvprof was used for timing execution of all CUDA

programs analyzed in this work. It is available bundled with the CUDA 9.1 SDK.

3 Methods

Special care was taken to guarantee the operations performed were as similar
as possible between all implementations, as a way to isolate the performance
impacts of parallelization. With that in mind, gradients were calculated via cen-
tral differences, and second derivatives were implemented using discrete laplacian
kernels, so as to mirror MATLAB’s grad and del2 functions, respectively. Tests
were then performed on large datasets to guarantee the results agreed for these
isolated operations, between all three implementations.

We then implemented the DRLSE algorithm according to [4] and the MAT-
LAB reference [8]. For more details and the derivation of the following equations,
the reader is directed to the original DRLSE work at [4]. For the purposes of
this work, suffice to describe the main iteration equation and its components.

Assuming that Ω describes the domain of an input image I, the Level Set
function can be defined as Φ : Ω → IR. The final zero-level set of Φ, the result of
the segmentation, is then a contour given by a set S of image pixels, described
by S = {x, y ∈ Ω | Φx,y = 0}.

For the bidimensional case (2D images, where Ω = IR2), (1) describes the
main iteration equation for the DRLSE algorithm. In (1), Φk

x,y describes the
value of Φ for pixel [x, y] at iteration number k.

Φk+1
x,y = Φk

x,y + τ · [μ · div(
p′(|∇Φk

x,y|)
|∇Φk

k,y| · ∇Φk
x,y)

+λ · δε(Φk
x,y) · div(g(x, y) · ∇Φk

x,y

|∇Φk
x,y|)

+α · g(x, y) · δε(Φk
x,y)]

(1)

At each time step and for every pixel, Φk
x,y is incremented by a term weighted

by a time constant τ . The value incremented (enveloped in brackets in (1)) is
a combination of the regularization term (weighted by the constant μ > 0), the
length term (weighted by the constant λ > 0), and the area term (weighted
by the constant α ∈ IR). These three terms are formulated in terms of p(s),

28 D. P. Coelho and S. S. Furuie

a double-well energy potential function, and its derivative, p′(s), both described
respectively in (2) and (3).

p(s) =

{
1

(2π)2 (1 − cos (2π · s)) s ≤ 1
1
2 (s − 1)2 s ≥ 1

(2)

p′(s) =

{
1
2π sin(2π · s) s ≤ 1
s − 1 s ≥ 1

(3)

The indicator image g(x, y) : Ω → IR, used in (1) and described in (4), is
constructed in such a way as to have low values near the contours of interest.
In our implementation and in [8], (4) uses the magnitude of the gradient of the
input image I convolved with a gaussian kernel Gσ. The constant σ describes
the standard deviation of Gσ, and is used as an additional paramater for this
implementation. The reasoning behind this is that its optimal value depends on
the hardness of the borders of the target object to segment.

g(x, y) =
1

1 + |∇Gσ · I(x, y)|2 (4)

Finally, δε(s) describes a simple approximation of Dirac’s delta function,
described by (5).

δε(s) =

{
1
3 (1 + cos πs

1.5) |s| ≤ 1.5
0 |s| > 1.5

(5)

The main parameters of this DRLSE implementation, that need to be con-
figured before each segmentation, are α, μ, λ, and σ. The DRLSE algorithm is
sensitive to these parameters, and whereas we determined experimentally that a
sensible range of potential values for α, μ, λ would be [−15, 15] (respecting the
fact that μ > 0 and λ > 0), it is common to find scenarios where a change of 0.1
in any of these parameters drastically alters the final segmentation result.

The edge indicator image g(x, y) can be constructed with Algorithm 1,
executed on the CPU. Step 3 of Algorithm 1 involves dispatching the kernel
EdgeIndicatorKernel to the GPU, which is described on Algorithm 2. For brevity,
gaussian convolution and the gradient calculation kernel are omitted here.

Note that edge grad image has the dimensions of input image, however it
possesses two channels, x and y, describing the gradient in the x and y directions,
respectively. The gradient kernel described on step 4 of Algorithm 1 fills both
channels of this image based on the values of edge image.

After the construction of the edge indicator image, the main DRLSE iteration
procedure is executed on the CPU. That procedure, for an iteration process with
1000 iterations, is described on Algorithm 3.

The laplace kernel used at line 4 of Algorithm 3 is omitted for brevity, but
involves a simple convolution with a 3 × 3 laplacian kernel.

It is worth noting that phi grad image has the dimensions of input image,
however it possesses four channels, unlike edge grad image. The first two chan-
nels describe the gradient of phi image in the x and y directions, respectively.

Parallel Implementation of the DRLSE Algorithm 29

Channels 3 and 4 of phi grad image contain the normalized gradient in the
x and y direction, respectively, so that the magnitude of the gradient equals
one. In the same manner as before, the normalized gradient kernel fills in all
four channels of phi grad image with the gradient and normalized gradient of
phi image.

Algorithm 1: Edge Indicator Image g(x, y) (CPU)
input : gaussian kernel15x15, input image
output: edge image, edge grad image

1 Execute convolution kernel with gaussian kernel15x15 and input image
generating temp image;

2 Define edge image and edge grad image, both with same dimensions as
input image;

3 Execute EdgeIndicatorKernel with temp image and edge image,
modifying edge image;

4 Execute gradient kernel with edge image and edge grad image,
modifying edge grad image;

5 Return edge image and edge grad image;

Algorithm 2: EdgeIndicatorKernel (GPU)
input : temp image, edge image
output: Nothing

1 Acquire position [x, y] of the current pixel;
2 Define plusX = temp image[x + 1, y];
3 Define minX = temp image[x − 1, y];
4 Define plusY = temp image[x, y + 1];
5 Define minY = temp image[x, y − 1];
6 Define gradX = plusX − minX;
7 Define gradY = plusY − minY ;
8 Define g = 1.0f/(1.0f + 0.25f ∗ (gradX ∗ gradX + gradY ∗ gradY));
9 Write edge image[x, y] = g;

Step 5 of Algorithm 3 involves dispatching the LevelSetKernel, which is
described on Algorithm 4. This is the main kernel of this implementation, and is
larger than usual so as to minimize the overhead of dispatching multiple kernel
calls. The main DRLSE iteration equation described in (1) is implemented in
step 12 of Algorithm 4.

The procedures DistRegPre and DiracDelta used in steps 11 and 12 of Algo-
rithm 4, respectively, are identical to the ones used in [8], so are omitted for
brevity. It is worth noting however that DistRegPre receives a 4-component

30 D. P. Coelho and S. S. Furuie

value from phi grad image and returns a value with two components, x, and y.
These x and y members of the returned results are accessed directly in step 11,
for brevity.

Algorithm 3: Iterate DRLSE (CPU)
input : input image, phi image, edge image, edge grad image, mu,

lambda, alpha
output: phi image

1 Define phi grad image and laplace image, both with same dimensions
as input image;

2 for i = 1 to 1000 do
3 Execute the normalized gradient kernel with phi image and

phi grad image, modifying phi grad image;
4 Execute laplace kernel with phi image and laplace image,

modifying laplace image;
5 Execute LevelSetKernel with mu, lambda, alpha, phi image,

edge image, edge grad image, phi grad image, laplace image,
modifying phi image;

6 end
7 Return final phi image;

Algorithm 4: LevelSetKernel (GPU)
input : mu, lambda, alpha, tau, phi image, edge image,

edge grad image, phi grad image, laplace image
output: Nothing

1 Acquire position [x,y] of the current pixel;
2 Define phi = phi image[x,y] ;
3 Define phi grad = phi grad image[x,y] ;
4 Define edge = edge image[x,y] ;
5 Define edge grad = edge grad image[x,y] ;
6 Define plusX = phi grad image[x + 1, y];
7 Define minX = phi grad image[x − 1, y];
8 Define plusY = phi grad image[x, y + 1];
9 Define minY = phi grad image[x, y − 1];

10 Define curvature = 0.5f ∗ (plusX.xnorm − minX.xnorm + plusY.ynorm −
minY.ynorm);

11 Define delta=DiracDelta(phi);
12 Define increment = tau * (mu * dist reg + lambda * delta * (edge grad.x

* phi grad.xnorm + edge grad.y * phi grad.ynorm + edge * curvature)
+ alpha * delta * edge);

13 Write phi[x,y] = phi + increment ;

Parallel Implementation of the DRLSE Algorithm 31

4 Results and Discussion

4.1 LevelSetKernel’s Occupancy

Occupancy is a common performance metric for CUDA programs, and it roughly
measures how many of the GPU’s cores are used when the kernel is dispatched [6].
50% occupancy means that half of the processors were idle during execution. Ide-
ally the programmer aims for 100% occupancy, as it usually means the hardware
is being used to its full capacity.

We determined experimentally that the optimal number of threads per block
for the LevelSetKernel on the NVIDIA GTX 1060 6GB is 64. In normal situations
the GPU’s block scheduler would have been able to just run more concurrent
blocks on the same SM, which would still allow for 100% occupancy.

The LevelSetKernel, however, obtains a theoretical occupancy of 62.5%, and
observed occupancy of 59%, according to nvprof. This is explained by the fact
that the LevelSetKernel is bottlenecked by its usage of 48 registers per thread.
With 64 threads per block, the kernel uses a total of 3072 registers per block.
Given the hardware limit of 65536 threads per SM, the scheduler is restricted
to dispatching a maximum of 20 concurrent blocks per SM. Those 20 blocks,
each with 64 threads, lead to a maximum theoretical number of 1280 concurrent
threads per SM, compared to the device maximum of 2048 threads per multipro-
cessor. The ratio of 1280 to 2048 corresponds to the 62.5% theoretical occupancy
limit.

The standard recommendation for optimizing scenarios where register usage
is preventing 100% occupancy is to limit the number of registers that the com-
piler may allocate to each thread. Restricting the number of registers used per
thread would allow the dispatching of more concurrent blocks to each SM. It
would also, on the other hand, lead to the occasional eviction of some of kernel’s
used data from fast registers into higher-latency memory (L1 cache). Whether
the trade-off is worth it in terms of performance varies greatly with application.
To investigate this experimentally, we performed test segmentations on a 512 ×
512 pixel input image, where the maximum number of registers per thread were
varied from the ideal 48 to 32. Three kernels dispatched from Algorithm 3 were
timed, as well as the total time after 1000 complete iterations. The results are
displayed on Table 1.

Note that for all trials performed in this work that record execution time, the
time required to allocate the required memory, and the time required to transfer
data to and from the GPU, when appropriate, has been ignored. Additionally, all
data describing execution time of CUDA programs has been collected only after
a proper period of “warm-up”, where the CUDA driver performs just-in-time
compilation of the kernels and any additional one-time setup procedures.

The data in Table 1 shows that even though occupancy does increase as
predicted, the restriction of register count leads to an overall loss of performance,
meaning it is not an effective method of optimizing this CUDA program. Also
note the fact that the normalized gradient average execution time (NG time)
and laplace gradient execution time (Laplace time) are not as affected from the

32 D. P. Coelho and S. S. Furuie

Table 1. Occupancy and performance as a function of register usage

mag rega used reg LSKa Theor. Occ. Real Occ. LSK timeb NG timeb Laplace timeb 1000 iter. total

(%) (%) (µs) (µs) (µs) (ms)

48 48 62.5 59.2 89.081 37.029 25.772 180.27

46 46 62.5 59.2 96.633 40.095 27.240 179.71

44 40 75.0 70.3 102.96 38.621 23.661 181.52

42 40 75.0 70.5 104.75 38.026 26.425 183.60

40 40 75.0 70.3 111.40 39.729 24.736 189.69

38 38 75.0 70.7 110.43 40.055 26.626 191.60

36 32 100.0 90.4 130.84 39.842 26.606 206.55

34 32 100.0 90.9 128.31 40.649 26.801 208.94

32 32 100.0 91.5 129.60 40.557 26.607 204.58
a max reg describes the hard limit set on how many registers a thread could use, and used reg LSK indicates

how many registers the LevelSetKernel actually used.
b LSK time indicates the average “wall clock” execution time for the LevelSetKernel after 1585000 exe-

cutions. Data was retrieved from nvprov so standard deviation was inaccessible. NG time describes the

analogue for the normalized gradient kernel, and Laplace time describes the analogue for the laplace

kernel.

register count restriction as the LevelSetKernel average execution time (LSK
time). This is due to the fact that the normalized gradient kernel and the laplace
kernel use 22 and 20 registers per thread, respectively.

4.2 Implementation Verification

With the aim of ensuring that the overall DRLSE implementations in C++
and CUDA matched the reference in [8], a 512 × 512 pixel medical image was
segmented with the exact same parameters and initial Level Set contour, and
the results were compared. The final zero-level set segmentations after 1000
iterations each are shown in Fig. 1. Visual inspection suggests a near perfect
match between the results obtained from all three implementations, shown in
Fig. 1.

This mismatch can be explained by two discrepancies between the implemen-
tations. The first and greater discrepancy arises from how the three programs
behave on calculations that depend on neighboring pixels (such as gradients
and convolution results) at the extreme borders of the images. Given that the
DRLSE algorithm uses many of such operations, the influence from this discrep-
ancy spreads from the border pixels inwards as the Level Set is iterated.

The second, and lesser source of discrepancies between the results obtained by
the three implementations is that the C++ and CUDA versions exclusively use
32-bit floating point numbers, while MATLAB exclusively uses 64-bit floating-
point numbers. Despite of this drawback, we intentionally chose this approach for
the CUDA implementation due to smaller memory usage and memory transfer
time, and the difference in performance: The NVIDIA GTX 1060 GPU provides a
theoretical performance of 4.375 TFLOPS (trillion floating point operations per
second) on 32-bit floating point numbers, while it provides only 0.137 TFLOPS
on 64-bit floating point numbers. This difference in performance alone can lead
to a theoretical performance gain of nearly 32 times.

Parallel Implementation of the DRLSE Algorithm 33

Fig. 1. Final zero-level set contours produced from the different implementations. Solid
green: CUDA; Dashed red: MATLAB reference; Dotted blue: C++; Solid white: Initial
Level Set function for all three scenarios (Color figure online)

4.3 Total Memory Usage

Given that the input data is also converted to 32-bit floating point numbers,
and the fact that cudaSurfaceObject t memory (main data structure we used to
store image data) is aligned to 512 bytes on the NVIDIA GTX 1060 6 GB, the
total memory consumption of the algorithm, in bytes, can be described by (6).

Total = 11 · max(width · 4, 512) · height (6)

This means that for a 512 × 512 pixel image, the total memory consumption
of the algorithm is roughly 11.5 MB, which corresponds to approximately 0.2%
of the total global memory capacity of the NVIDIA GTX 1060 6 GB.

4.4 Performance and Time Complexity

For all performance tests, 10 segmentations of 1000 iterations each were per-
formed for each DRLSE implementation, for images of varying sizes. The result-
ing “wall clock” execution times are displayed in Table 2.

Observing the results in Table 2, the performance advantage of the CUDA
implementation over both C++ and MATLAB implementations is immediately
apparent. For the larger image size of 1024 × 1024 pixels, the C++ program
takes 1700 times as much time as the CUDA program takes to complete, while
the MATLAB code takes over 500 times as long as the CUDA program. It should

34 D. P. Coelho and S. S. Furuie

Table 2. Performance comparisons

Image size MATLAB time C++ time CUDA time MATLAB time/ C++ time/

(square) (s) (s) (s) CUDA time CUDA time

128 3.313± 0.048 14.465± 0.058 0.018± 0.001 184.1 803.6

256 8.655± 0.052 57.739± 0.274 0.044± 0.005 197.7 1312.3

512 70.540± 0.396 228.892± 2.254 0.147± 0.001 479.9 1557.1

1024 274.390± 0.0487 924.158± 5.376 0.547± 0.001 501.6 1690.0

be noted however, that these results are not strict performance benchmarks, as
the MATLAB code has not necessarily been written with performance in mind.

It is also possible to note how the C++ program is almost perfectly linear in
time complexity with respect to the number of pixels, meaning time complexity
O(width ∗ height), as one would expect of a purely single-threaded serial imple-
mentation. The same cannot be observed from the data collected from MATLAB,
as it likely internally uses parallelization mechanisms such as Single-Instruction,
Multiple Data (SIMD).

The data referring to the CUDA implementation suggests a time complexity
close to linear. This can also be observed on the execution time ratio when
compared to the purely linear C++ implementation, as image size increases.
This behavior is due to how even though the SM execute the kernel purely in
parallel at first (conferring some level of independence to the dimensions of the
input data), the behavior changes once the hardware is saturated. Once all SM
are occupied, the remaining kernel blocks to execute are placed in a queue, and
executed once SM become free at a constant rate. As the image size increases, the
initial independence to the dimensions of the input data becomes progressively
less significant, and the time complexity approaches linearity.

5 Conclusions and Further Work

The CUDA implementation developed presents significant performance advan-
tages over a purely single-threaded C++ implementation, and the reference
MATLAB implementation [8]. Additionally, the CUDA program developed is
capable of performing 1000 iterations in under a second, enough to segment
even 1024 × 1024 pixel images. This fact allows the segmentation of medical
images with in an interactive regime, which is critical for the trial and error
procedure involved in configuring the parameters of the DRLSE algorithm.

References

1. Nuruozi, A., et al.: Medical image segmentation methods, algorithms and applica-
tions. IETE Techn. Rev. 31(3), 199–213 (2014)

2. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool. BMC Med. Imaging 15(1), 29 (2015)

Parallel Implementation of the DRLSE Algorithm 35

3. Zhang, K., Zhang, L., Song, H., Zhang, D.: Reinitialization-free level set evolution
via reaction diffusion. IEEE Trans. Image Process. 22(1), 258–271 (2013)

4. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its
application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254
(2010)

5. NVIDIA: NVIDIA CUDA programming guide. Version: 10.1.2.243 (2019). https://
docs.nvidia.com/cuda/cuda-c-programming-guide/. Accessed 26 Jan 2020

6. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming.
Wiley, Indianapolis (2014)

7. NVIDIA: NVIDIA Tesla P100 the most advanced datacenter accelerator ever
built featuring Pascal GP100, the world’s fastest GPU. Version: 01.1 (2014).
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf. Accessed 26 Jan 2020

8. Li, C.: Reference implementation for the distance regularized level set evolution
(DRLSE) algorithm. http://www.imagecomputing.org/∼cmli/DRLSE/. Accessed
26 Jan 2020

9. Erickson, B.J., et al.: Radiology data from the cancer genome atlas liver hepato-
cellular carcinoma [TCGA-LIHC] collection. The Cancer Imaging Archive (2016).
https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ. Accessed 26 Jan 2020

10. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating
a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.imagecomputing.org/~cmli/DRLSE/
https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ

	Parallel Implementation of the DRLSE Algorithm
	1 Introduction
	2 Materials
	3 Methods
	4 Results and Discussion
	4.1 LevelSetKernel's Occupancy
	4.2 Implementation Verification
	4.3 Total Memory Usage
	4.4 Performance and Time Complexity

	5 Conclusions and Further Work
	References

