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Abstract. We propose a pixel color amplification theory and family of
enhancement methods to facilitate segmentation tasks on retinal images.
Our novel re-interpretation of the image distortion model underlying
dehazing theory shows how three existing priors commonly used by the
dehazing community and a novel fourth prior are related. We utilize the
theory to develop a family of enhancement methods for retinal images,
including novel methods for whole image brightening and darkening. We
show a novel derivation of the Unsharp Masking algorithm. We evaluate
the enhancement methods as a pre-processing step to a challenging multi-
task segmentation problem and show large increases in performance on
all tasks, with Dice score increases over a no-enhancement baseline by
as much as 0.491. We provide evidence that our enhancement prepro-
cessing is useful for unbalanced and difficult data. We show that the
enhancements can perform class balancing by composing them together.

Keywords: Image enhancement · Medical image analysis · Dehazing ·
Segmentation · Multi-task learning

1 Introduction

Image enhancement is a process of removing noise from images in order to
improve performance on a future image processing task. We consider image-to-
image pre-processing methods intended to facilitate a downstream image pro-
cessing task such as Diabetic Retinopathy lesion segmentation, where the goal is
to identify which pixels in an image of a human retina are pathological. In this
setting, image enhancement does not in itself perform segmentation, but rather
it elucidates relevant features. Figure 1 shows an example enhancement with our
method, which transforms the color of individual pixels and enhances fine detail.

Our main contributions are to re-interpret the distortion model underlying
dehazing theory as a theory of pixel color amplification. Building on the widely
known Dark Channel Prior method [5], we show a novel relationship between
three previously known priors and a fourth novel prior. We then use these four
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Fig. 1. Comparing unmodified image (left) to our enhancement of it (right).

priors to develop a family of brightening and darkening methods. Next, we show
how the theory can derive the Unsharp Masking method for image sharpen-
ing. Finally, show that the pre-processing enhancement methods improve per-
formance of a deep network on five retinal fundus segmentation tasks. We also
open source our code for complete reproducibility [4].

2 Related Work

Natural images are distorted by refraction of light as it travels through the
transmission medium (such as air), causing modified pixel intensities in the color
channels of the image. A widely used physical theory for this distortion has
traditionally been used for single image dehazing [2,5,8,14]:

I(x) = J(x)t(x) + A(1 − t(x)), (1)

where each pixel location, x, in the distorted RGB image, I, can be constructed
as a function of the distortion-free radiance image J, a grayscale transmission
map image t quantifying the relative portion of the light ray coming from the
observed surface in I(x) that was not scattered (and where t(x) ∈ [0, 1] ∀ x),
and an atmosphere term, A, which is typically a RGB vector that approximates
the color of the uniform scattering of light. Distortion is simply a non-negative
airlight term A(1 − t(x)). We refer to [2] for a deeper treatment of the physics
behind the theory in a dehazing context. Obtaining a distortion free image J
via this theory is typically a three step process. Given I, define an atmosphere
term A, solve for the transmission map t, and then solve for J. We develop new
insights into this theory by demonstrating ways in which it can behave as a pixel
amplifier when t and A are allowed to be three channel images.

The well known Dark Channel Prior (DCP) method [5,7] addresses the dehaz-
ing task for Eq. (1) by imposing a prior assumption on RGB images. The assump-
tion differentiates the noisy (hazy) image, I, from its noise free (dehazed) image,
J. That is, in any haze-free multi-channel region of a RGB image, at least one
pixel has zero intensity in at least one channel ({(0, g, b), (r, 0, b), (r, g, 0)}), while
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Fig. 2. Left: Dark Channel Prior (DCP) method for dehazing. Given an (inverted)
image I and atmosphere A, obtain transmission map t and then recover J, the undis-
torted image. Top and Bottom Right: Two priors based on inversion of the Dark
Channel Prior.

a hazy region will have no pixels with zero intensity (r > 0, g > 0, b > 0). The
assumption is invalid if any channel of a distorted image is sparse or if all chan-
nels of the undistorted image are not sparse. To quantify distortion in an image,
the assumption justifies creating a fourth channel, known as the dark channel,
by applying a min operator convolutionally to each region of the images I and J.
Specifically, Ĩdark(x) = minc miny∈ΩI(x)

I(c)(y)
Ac , where c denotes the color chan-

nel (red, green or blue) and ΩI(x) is a set of pixels in I neighboring pixel x. The
min operator causes Ĩdark to lose fine detail, but an edge-preserving filter known
as the guided filter [6] restores detail Idark = g(Ĩdark, I). While Jdark(x) always
equals zero and therefore cancels out of the equations, Idark(x) is non-zero in
hazy regions. By observing that the distortion free image Jdark is entirely zero
while Idark is not entirely zero, solving Eq. (1) for t leads to Eq. (4) and then Eq.
(5) in Fig. 2. In practice, the denominator of (5) is max(t(x), ε) to avoid numeri-
cal instability or division by zero; this amounts to preserving a small amount of
distortion in heavily distorted pixels. Figure 2 summarizes the mathematics.

The DCP method permits various kinds of inversions. The bright channel
prior [15] solves for a transmission map by swapping the min operator for a
max operator in Eq. (4). This prior was shown useful for exposure correction.
Figure 2 shows our variation of the bright channel prior based more directly
on DCP mathematics and with an incorporated guided filter. Another simple
modification of the DCP method is to invert the input image I to perform
illumination correction [3,12,13]. The central idea is to invert the image, apply
the dehazing equations, and then invert the dehazed result. We demonstrate the
mathematics of this inverted DCP method in Fig. 2. Color illumination literature
requires the assumption that A = (1, 1, 1), meaning the image is white-balanced.
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In the dehazing context, this assumption would mean the distorted pixels are
too bright, but in the color illumination context, distorted pixels are too dark.
In the Methods section, we expand on the concept of brightness and darkness
as pixel color amplification, show the theory supports other values of A, and we
also expand on the concept of inversion of Eqs. (4) and (5) for a wider variety
of image enhancements.

3 Methods

The distortion theory Eq. (1) is useful for image enhancement. In Sect. 3.1, we
show how the theory is a pixel color amplifier. In Sect. 3.2, we show ways in
which the theory is invertible. We apply these properties to derive a novel prior
and present a unified view of amplification under four distinct priors. Sections 3.2
and 3.2 apply the amplification theory to three specific enhancement methods:
whole image brightening, whole image darkening and sharpening.

3.1 The Distortion Theory Amplifies Pixel Intensities

We assume that A, I and J share the same space of pixel intensities, so that
in any given channel c and pixel location x, the intensities Ac, Ic(x) and Jc(x)
can all have the same maximum or minimum value. We can derive the simple
equation t(x) = I(c)(x)−A(c)

J(c)(x)−A(c) ∈ [0, 1] from Eq. (1) by noting that the distor-
tion theory presents a linear system containing three channels. The range of t
implies the numerator and denominator must have the same sign. For example,
if A(c) ≥ I(c)(x), then the numerator and denominator are non-positive and
J (c)(x) ≤ I(c)(x) ≤ A(c). Likewise, when A(c) ≤ I(c)(x), the order is reversed
J (c)(x) ≥ I(c)(x) ≥ A(c). These two ordering properties show the distortion the-
ory amplifies pixel intensities. The key insight is that the choice of A determines
how the color of each pixel in the recovered image J changes. Models that recover
J using Eq. (1) will simply amplify color values for each pixel x in the direction
I(x) − A.

Atmosphere Controls the Direction of Amplification in Color Space.
The atmosphere term A is traditionally a single RGB color vector with three
scalar values, A = (r, g, b), but it can also be an RGB image matrix. As a RGB
vector, A does not provide precise pixel level control over the amplification
direction. For instance, two pixels with the same intensity are guaranteed to
change color in the same direction, even though it may be desirable for these
pixels to change color in opposite directions. Fortunately, considering A as a
three channel RGB image enables precise pixel level control of the amplification
direction. It is physically valid to consider A as an image since the atmospheric
light may shift color across the image, for instance due to a change in light source.
As an image, A can be chosen to define the direction of color amplification
Ic(x) − Ac(x) for each pixel and each color channel independently.
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Transmission Map and Atmosphere Both Control the Rate of Ampli-
fication. Both the transmission map t and the magnitude of the atmosphere
term A determine the amount or rate of pixel color amplification. The effect on
amplification is shown in the equation J = I−A

t +A, where the difference I−A
controls the direction and magnitude of amplification and t affects the amount of
difference to amplify. The transmission map itself is typically a grayscale image
matrix, but it can also be a scalar constant or a three channel color image. Each
value t(x) ∈ [0, 1] is a mixing coefficient specifying what proportion of the signal
is not distorted. When t(x) = 1, there is no distortion; the distorted pixel I(x)
and corresponding undistorted pixel J(x) are the same since I(x) = J(x) + 0.
As t(x) approaches zero, the distortion caused by the difference between the
distorted image I and the atmosphere increases.

3.2 Amplification Under Inversion

The distortion theory supports several kinds of inversion. The Eqs. (4) and (5)
are invertible. The input image I can also undergo invertible transformations.
We prove these inversion properties and show why they are useful.

Inverting Eq. (4) Results in a Novel DCP-Based Prior. We discussed in
Related Work three distinct priors that provide a transmission map: the tradi-
tional DCP approach with Eq. (4); the bright channel prior in Eq. (10); and color
illumination via Eq. (8). Bright channel prior and color illumination respectively
perform two types of inversion; the former changes the min operator to a max
operator while the latter inverts the image 1− I. Combining these two inversion
techniques results in a novel fourth prior. In Table 1, we show the four transmis-
sion maps. We show that each prior has a solution using either the min or max
operator, which is apparent by the following two identities:

solve t(I,A) = 1 − min
c

min
y∈ΩI(x)

Ic(y)
Ac

≡ max
c

max
y∈ΩI(x)

1 − Ic(y)
Ac

(12)

solve t(I,A) = 1 − max
c

max
y∈ΩI(x)

Ic(y)
Ac

≡ min
c

min
y∈ΩI(x)

1 − Ic(y)
Ac

(13)

The unified view of these four priors in Table 1 provides a novel insight into
how they are related. In particular, the table provides proof that the Color
Illumination Prior and Bright Channel Prior are inversely equivalent and utilize
statistics of the maximum pixel values across channels. Similarly, DCP and our
prior are also inversely equivalent and utilize statistics of the minimum pixel
values across channels. This unified view distinguishes between weak and strong
amplification, and amplification of bright and dark pixel neighborhoods.

In Fig. 3, we visualize these four transmission maps to demonstrate how they
collectively perform strong or weak amplification of bright or dark regions of
the input image. In this paper, we set A = 1 when solving for t. Any choice of
Ac ∈ (0, 1] is valid, and when all Ac are equal, smaller values of A are guaranteed
to amplify the differences between these properties further.
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Table 1. Four transmission maps derived from variations of Eq. (4). For clear notation,
we used the vectorized functions t = solveMin t(I,A) = 1 − minc miny∈ΩI(x)

Ic(y)
Ac and

t = solveMax t(I,A) = 1 − maxc maxy∈ΩI(x)
Ic(y)

Ac .

Amplify dark areas Amplify bright areas

Weak amplification solveMin t(1− I,A = 1)

1−solveMax t(I,A = 1)

Color Illumination Prior

solveMin t(I,A = 1)

1−solveMax t(1− I,A = 1)

Standard Dark Channel Prior

Strong amplification 1−solveMin t(I,A = 1)

solveMax t(1− I,A = 1)

Our novel prior

1−solveMin t(1− I,A = 1)

solveMax t(I,A = 1)

Bright Channel Prior

Fig. 3. The transmission maps (right) obtained from source image (left) selectively
amplify bright or dark regions. Dark pixels correspond to a larger amount of ampli-
fication. We randomly sample a retinal fundus image from the IDRiD dataset (see
Sect. 4.1). We set the blue channel to all ones when computing the transmission map
for the top right and bottom left maps because the min values of the blue channel in
retinal fundus images are noisy. (Color figure online)

Inverting Eq. (5) Motivates Brightening and Darkening. Given an image
I, transmission map t and an atmosphere A, solving for the recovered image J
with Eq. (5) can be computed two equivalent ways, as we demonstrate by the
following identity:

J = solve J(I, t,A) ≡ 1 − solve J(1 − I, t, 1 − A) (14)

The proof is by simplification of I−A
t + A = 1 −

(
(1−I)−(1−A)

t + (1 − A)
)
.

It implies the space of possible atmospheric light values, which is bounded in
[0, 1], is symmetric under inversion.

We next prove that solving for J via the color illumination method [3,12,13]
is equivalent to direct attenuation J = I

t , a fact that was not clear in prior work.
As we noted in Eq. (8), color illumination solves J = 1− (1−I)−A

t +A under the
required assumption that A = 1. We can also write the atmosphere as A = 1−0.
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Then, the right hand side of (14) leads to J = 1−solve J(1− I, t,A = 1−0) =
I−0
t +0. Therefore, color illumination actually performs whole image brightening

with the atmosphere A = (0, 0, 0) even though the transmission map uses a
white-balanced image assumption that A = (1, 1, 1). Both this proof and the
invertibility property Eq. (14) motivate Sect. 3.2 where we perform brightening
and darkening with all priors in Table 1.

Fig. 4. Whole image brightening (left) and darkening (right) using the corresponding
four transmission maps in Fig. 3. Note that A = 1 when solving for t, but A = 0 or
A = 1, respectively, for brightening or darkening. (Color figure online)

Application to Whole Image Brightening and Darkening. Brightening
versus darkening of colors is a matter of choosing an amplification direction.
Extremal choices of the atmosphere term A result in brightening or darkening of
all pixels in the image. For instance, A = (1, 1, 1) guarantees for each pixel x that
the recovered color J(x) is darker than the distorted color I(x) since J ≤ I ≤ A,
while A = (0, 0, 0) guarantees image brightening J ≥ I ≥ A. More generally, any
A satisfying 1 ≥ Ac ≥ maxx Ic(x) performs whole image brightening and any
A satisfying 0 ≤ Ac ≤ minx Ic(x) performs whole image darkening. We utilize
the four distinct transmission maps from Table 1 to perform brightening A = 0
or darkening A = 1, resulting in eight kinds of amplification. We visualize these
maps and corresponding brightening and darkening techniques applied to retinal
fundus images in Fig. 4. Our application of the Bright Channel Prior and Color
Illumination Prior for whole image darkening is novel. Utilizing our prior for
brightening and darkening is also novel.

Application to Image Sharpening. We show a novel connection between
dehazing theory and unsharp masking, a deblurring method and standard image
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sharpening technique that amplifies fine detail [9]. Consider A as a three channel
image obtained by applying a non-linear blur operator to I, A = blurry(I).
Solving Eq. (1) for J gives J = 1

t I− (1−t)
t A. Since each scalar value t(x) is in [0, 1],

we can represent the fraction t(x) = 1
u(x) . Substituting, we have the simplified

matrix form J = u◦I− (u−1)◦blurry(I) where the ◦ operator denotes element-
wise multiplication with broadcasting across channels. This form is precisely
unsharp masking, where u is either a constant, or u is a 1-channel image matrix
determining how much to sharpen each pixel. The matrix form of u is known as
locally adaptive unsharp masking. Thus, we show the distortion theory in Eq.
(1) is equivalent to image sharpening by choosing A to be a blurred version of
the original input image.

We present two sharpening algorithms, Algorithm 1 and 2, and show their
respective outputs in Fig. 5. Sharpening amplifies differences between an image
and a blurry version of itself. In unevenly illuminated images, the dark or bright
regions may saturate to zero or one respectively. Therefore, the use of a scalar
transmission map (Algorithm 1), where all pixels are amplified, implies that the
input image should ideally have even illumination. The optional guided filter in
the last step provides edge preserving smoothing and helps to minimize speckle
noise, but can cause too much blurring on small images, hence the if condition.

Algorithm 2 selectively amplifies only the regions that have an edge. Edges
are found by deriving a three channel transmission map from a Laplacian filter
applied to a morphologically smoothed fundus image. We enhance edges by
recursively sharpening the Laplace transmission map under the theory. Figure 6
shows the results of sharpening each image in Fig. 4 with Algorithm 2.

4 Experiments

Our primary hypothesis is that enhancement facilitates a model’s ability to learn
retinal image segmentation tasks. We introduce a multi-task dataset and describe
our deep network implementation.

4.1 Datasets

The Indian Diabetic Retinopathy Dataset (IDRiD) [11] contains 81 reti-
nal fundus images for segmentation, with a train-test split of 54:27 images.
Each image is 4288 × 2848 pixels. Each pixel has five binary labels for pres-
ence of: Microaneurysms (MA), Hemorrhages (HE), Hard Exudates (EX), Soft
Exudates (SE) and Optic Disc (OD). Only 53:27 and 26:14 images present HE
and SE, respectively. Table 2 shows the fraction of positive pixels per category
is unbalanced both across categories (left columns) and within categories (right
columns).
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Fig. 5. Sharpening a retinal fundus image with Algorithm 1 (middle) and 2 (right).
Image randomly sampled from IDRiD training dataset (described in Sec. 4.1). (Color
figure online)

Algorithm 1: Image Sharpen-
ing, simple
Input: I (input fundus image)
Result: J (sharpened image)
A = blur(I, blur radius);
t = 0.15;
if min(img width, img height) >
1500 then

J = guidedFilter(guide =
I, src = I−A

t
+ A);

else
J = I−A

t
+ A;

end

Algorithm 2: Image Sharpening,
complex
Input: I (input fundus image)
Result: J (sharpened image)
˜t = Algo 1(

morphological laplace(I, (2, 2, 1)));

˜t = 1 − ˜t−min(˜t)

max(˜t)−min(˜t)
;

ε = max(10−8, min(˜t)
2

);

t = elementwise max(˜t, ε);
J = Algo 1(I, t = t);

Fig. 6. The result of sharpening each image in Fig. 4 using Algorithm 2. (Color figure
online)
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Table 2. IDRiD Dataset, an unbal-
anced class distribution.

Category Pos/
∑

Pos Pos/(Pos+ Neg)
Train Test Train Test

MA 0.027 0.024 0.0007 0.0003

HE 0.253 0.256 0.0066 0.0036

EX 0.207 0.261 0.0054 0.0036

SE 0.049 0.043 0.0013 0.0006

OD 0.464 0.416 0.0120 0.0058

Table 3. Competing method results,
best per category of A, B, D, or X.

Task Method Dice (delta)

EX A 0.496 (0.175)

HE A 0.102 (0.102)

MA A 0.122 (0.122)

OD A 0.849 (0.332)

SE A 0.423 (0.264)

Table 4. Main results, pre-processing
yields large improvements.

Task Method Dice (delta)

EX avg4:sA + sC + sX + sZ 0.728 (0.407)
avg2:sA + sZ 0.615 (0.295)

HE avg3:sA + sC + sX 0.491 (0.491)
avg3:sB + sC + sX 0.368 (0.368)

MA avg4:A + B + C + X 0.251 (0.251)
avg2:sB + sX 0.219 (0.219)

OD avg4:sA + sC + sX + sZ 0.876 (0.359)
avg2:sA + sZ 0.860 (0.343)

SE avg4:sA + sC + sX + sZ 0.491 (0.332)
avg3:B + C + X 0.481 (0.322)

Blackbox Evaluation: Does an Enhancement Method Improve Perfor-
mance? We implement and train a standard U-Net model [10] and evaluate
change in performance via the Dice coefficient. We apply this model simul-
taneously to five segmentation tasks (MA, HE, SE, EX, OD) on the IDRiD
dataset; the model has five corresponding output channels. We use a binary
cross entropy loss summed over all pixels and output channels. We apply task
balancing weights to ensure equal contribution of positive pixels to the loss. The
weights are computed via maxi wi

w , where the vector w contains counts of positive
pixels across all training images for each of the 5 task categories (see left column
of Table 2). Without the weighting, the model did not learn to segment MA,
HE, and EX even with our enhancements. For the purpose of our experiment,
we show in the results that this weighting is suboptimal as it does not balance
bright and dark categories. The Adam Optimizer has a learning rate 0.001 and
weight decay 0.0001. We also applied the following pre-processing: center crop
the fundus to minimize background, resize to (512 × 512) pixels, apply the pre-
processing enhancement method (independent variable), clip pixel values into
[0, 1], randomly rotate and flip. Rotations and flipping were only applied on the
training set; we excluded them from validation and test sets. We randomly hold
out two training images as the validation set in order to apply early stopping
with a patience of 30 epochs. We evaluate test set segmentation performance
with the Sørensen-Dice coefficient, which is commonly used for medical image
segmentation.
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4.2 Pre-processing Enhancement Methods for Retinal Fundus
Images

We combine the brightening, darkening and sharpening methods together and
perform an ablation study. We assign the eight methods in Fig. 4 a letter. The
brightening methods, from top left to bottom right are A, B, C, D. The cor-
responding darkening methods are W, X, Y, Z. We also apply sharpening via
Algorithm 2. Combined methods assume the following notation: A + X is the
average of A and X, which is then sharpened; sA + sX is the average of sharp-
ened A with sharpened X. A standalone letter X is a sharpened X. All methods
have the same hyperparameters, which we chose using a subset of IDRiD training
images. When solving for t, the size of the neighborhood Ω is (5 × 5); the guided
filter for t has radius = 100, ε = 1e−8. When solving for J , the max operator in
the denominator is max〈min(t)/2, 1e−8〉. For sharpening, we blur using a guided
filter (radius = 30, ε = 1e−8), and we do not use a guided filter to denoise as the
images are previously resized to (512 × 512).

5 Results

5.1 Our Pre-processing Enhancement Methods Significantly
Improve Performance on All Tasks

We show the top two models with highest test performance in each category in
Table 4. The delta values show the pre-processing enhancement methods signif-
icantly improve performance over the no-enhancement (identity function) base-
line for all tasks, underscoring the value of our theory and methods.

Enhancement Improves Detection of Rare Classes. The smallest delta
improvement in Table 4 is 0.219 for MA, the rarest category across and within
categories (as shown in Table 2). Our smallest improvement is a large increase
considering the largest possible Dice score is one.

Enhancement can be Class Balancing. The IDRiD results support the pri-
mary hypothesis that enhancement makes the segmentation task easier. The
delta values show the baseline identity model did not learn to segment MA
or HE. Indeed, during the implementation, we initially found that the model
learned to segment only the optic disc (OD). Of the categories, OD has the
most extremal intensities (brightest) and is typically the largest feature by pixel
count in a fundus image. In our multi-task setting, the gradients from other
tasks were therefore overshadowed by OD gradients. After we implemented a
category balancing weight, the no-enhancement baseline model was still unable
to learn MA and HE. As an explanation for this phenomenon, we observe that
EX, SE and OD are bright features while MA and HE are dark features. Con-
sidering the class balancing weights, the bright features outnumber the dark
features three to two. This need to carefully weigh the loss function suggests
differences in color intensity values cause differences in performance. It is there-
fore particularly interesting that the enhancement methods were able to learn
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Fig. 7. Visualization of our enhancement methods. Each row is an image. Each column
is an enhancement method. Last two rows compare our Algorithm 1 with CLAHE.
(Color figure online)

despite also being subject to these issues. In fact, we can observe that the best
enhancements in the table incorporate the Z method, which performs a strong
darkening of bright regions. We interpret this result as strong evidence that our
enhancement methods make the segmentation task easier, and in fact, that they
can be used as a form of class balancing by image color augmentation.
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5.2 Comparison to Existing Work

The methods A,D,X and arguably B correspond to existing work and were
visualized (with sharpening) in Fig. 6. The A method outperforms B, D and X
on all tasks. Its values, reported in Table 3, are substantially lower than the values
in Table 4. We attribute the low scores to our intentional category imbalance.

Contrast Limited Adaptive Histogram Equalization (CLAHE) applied to the
luminance channel of LAB colorspace is useful for retinal fundus enhancement
[1]. We compare it to Algorithm 1 in bottom rows of Fig. 7, using the LAB
conversion for both methods. We observe that CLAHE preserves less detail, and
both methods overemphasize uneven illumination. CLAHE is faster to compute
and could serve as a simple drop-in replacement, with clip limit as a proxy for
the scalar t.

5.3 Qualitative Analysis

We visualize a subset of our image enhancement methods in the top three rows of
Fig. 7. Each row presents a different fundus image from a private collection. We
observe that the input images are difficult to see and appear to have little detail,
while the enhanced images are quite colorful and very detailed. The halo effect
around the fundus is caused by the guided filter (with ε = 1e−8) rather than
the theory. The differences in bright and dark regions across each row provide
intuitive sense of how averaging the models (Fig. 4 and 6) can yield a variety of
different colorings.

6 Conclusion

In this paper, we re-interpret a theory of image distortion as pixel color ampli-
fication and utilize the theory to develop a family of enhancement methods for
retinal fundus images. We expose a relationship between three existing priors
commonly used for image dehazing with a fourth novel prior. We apply our
theory to whole image brightening and darkening, resulting in eight enhance-
ment methods, five of which are also novel (methods B, C, W, Y, and Z). We
also show a derivation of the Unsharp Masking algorithm for image sharpen-
ing and develop a sharpening algorithm for retinal fundus images. Finally, we
evaluate our enhancement methods as pre-processing steps for multi-task deep
network retinal fundus image segmentation. We show the enhancement meth-
ods give strong improvements and can perform class balancing. Our pixel color
amplification theory applied to retinal fundus images yields a variety of rich and
colorful enhancements, as shown by our compositions of methods A-D and W-Z,
and the theory shows great promise for wider adoption by the community.
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