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Abstract. Oral cancer incidence is rapidly increasing worldwide. The
most important determinant factor in cancer survival is early diagno-
sis. To facilitate large scale screening, we propose a fully automated
pipeline for oral cancer detection on whole slide cytology images. The
pipeline consists of fully convolutional regression-based nucleus detec-
tion, followed by per-cell focus selection, and CNN based classification.
Our novel focus selection step provides fast per-cell focus decisions at
human-level accuracy. We demonstrate that the pipeline provides effi-
cient cancer classification of whole slide cytology images, improving over
previous results both in terms of accuracy and feasibility. The com-
plete source code is made available as open source (https://github.com/
MIDA-group/OralScreen).

Keywords: CNN · Whole slide imaging · Big data · Cytology ·
Detection · Focus selection · Classification

1 Introduction

Cancers in the oral cavity or the oropharynx are among the most common malig-
nancies in the world [27,30]. Similar as for cervical cancer, visual inspection of
brush collected samples has shown to be a practical and effective approach for
early diagnosis and reduced mortality [25]. We, therefore, work towards intro-
ducing screening of high risk patients in General Dental Practice by dentists
and dental hygienists. Computer assisted cytological examination is essential for
feasibility of this project, due to large data and high involved costs [26].
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Whole slide imaging (WSI) refers to scanning of conventional microscopy
glass slides to produce digital slides. WSI is gaining popularity among pathol-
ogists worldwide, due to its potential to improve diagnostic accuracy, increase
workflow efficiency, and improve integration of images into information systems
[5]. Due to the very large amount of data produced by WSI, typically generating
images of around 100,000 × 100,000 pixels with up to 100,000 cells, manipu-
lation and analysis are challenging and require special techniques. In spite of
these challenges, the advantage to reproduce the traditional light microscopy
experience in digital format makes WSI a very appealing choice.

Deep learning (DL) has shown to perform very well in cancer classifica-
tion. An important advantage, compared to (classic) model-based approaches, is
absence of need for nucleus segmentation, a difficult task typically required for
otherwise subsequent feature extraction. At the same time, the large amount of
data provided by WSI makes DL a natural and favorable choice. In this paper
we present a complete fully automated DL based segmentation-free pipeline for
oral cancer screening on WSI.

2 Background and Related Work

A number of studies suggest to use DL for classification of histology WSI samples,
[1,2,18,28]. A common approach is to split tissue WSIs into smaller patches and
perform analysis on the patch level. Cytological samples are, however, rather
different from tissue. For tissue analysis the larger scale arrangement of cells
is important and region segmentation and processing is natural. For cytology,
though, the extra-cellular morphology is lost and cells are essentially individual
(especially for liquid based samples); the natural unit of examination is the cell.

Cytology generally has slightly higher resolution requirements than histology;
texture is very important and accurate focus is therefore essential. On the other
hand, auto-focus of slide scanners works much better for tissue samples being
more or less flat surfaces. In cytology, cells are partly overlapping and at dif-
ferent z-levels. Tools for tissue analysis rarely allow z-stacks (focus level stacks)
or provide tools for handling such. In this work we present a carefully designed
complete chain of processing steps for handling cytology WSIs acquired at multi-
ple focus levels, including cell detection, per-cell focus selection, and CNN based
classification.

Malignancy-associated changes (MACs) are subtle morphological changes
that occur in histologically normal cells due to their proximity to a tumor. MACs
have been shown to be reproducibly measured via image cytometry for numer-
ous cancer types [29], making them potentially useful as diagnostic biomarkers.
Using a random forest classifier [15] reliably detected MACs in histologically nor-
mal (normal-appearing) oropharyngeal epithelial cells located in tissue samples
adjacent to a tumor and suggests to use the approach as a noninvasive means
of detecting early-stage oropharyngeal tumors. Reliance on MAC enables using
patient-level diagnosis for training of a cell-level classifier, where all cells of a
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patient are assigned the same label (either cancer or healthy)[32]. This hugely
reduces the burden of otherwise very difficult and laborious manual annotation
on a cell level.

Cell Detection: State-of-the-art object detection methods, such as the R-CNN
family [7,8,23] and YOLO [20–22], have shown satisfactory performance for nat-
ural images. However, being designed for computer vision, where perspective
changes the size of objects, we find them not ideal for cell detection in microscopy
images. Although appealing to learn end-to-end the classification directly from
the input images, s.t. the network jointly learns region of interest (RoI) selection
and classification, for cytology WSIs this is rather impractical. The classifica-
tion task is very difficult and requires tens of thousands of cells to reach top
performance, while a per-cell RoI detection is much easier to train (much fewer
annotated cell locations are needed), requires less detail and can be performed
at lower resolution (thus faster). To jointly train localization and classification
would require the (manual) localization of the full tens of thousands of cells. Our
proposal, relying on patient-level annotations for the difficult classification task,
reaches good performance using only around 1000 manually marked cell loca-
tions. Methods for detecting objects with various size and the bounding boxes
also cost unnecessary computation, since all cell nuclei are of similar size and
bounding box is not of interest in diagnosis. Further, these methods tend to not
handle very large numbers of small and clustered objects very well [36].

Many DL-based methods specifically designed for the task of nucleus detec-
tion are similar to the framework summarized in [12]: first generate a probability
map by sliding a binary patch classifier over the whole image, then find nuclei
positions as local maxima. However, considering that WSIs are as large as 10
giga-pixels, this approach is prohibitively slow. U-Net models avoid the sliding
window and reduce computation time. Detection is performed as segmentation
where each nucleus is marked as a binary disk [4]. However, when images are
noisy and with densely packed nuclei, the binary output mask is not ideal for fur-
ther processing. We find the regression approach [16,33,34], where the network
is trained to reproduce fuzzy nuclei markers, to be more appropriate.

Focus Selection: In cytological analysis, the focus level has to be selected for
each nucleus individually, since different cells are at different depth. Standard
tools (e.g., the microscope auto-focus) fail since they only provide a large field-
of-view optimum, and often focus on clumps or other artifacts. Building on the
approaches of Just Noticeable Blur (JNB) [6] and Cumulative Probability of
Blur Detection (CPBD) [19], the Edge Model based Blur Metric (EMBM) [9]
provides a no-reference blur metric by using a parametric edge model to detect
and describe edges with both contrast and width information. It claims to achieve
comparable results to the former while being faster.

Classification: Deep learning has successfully been used for different types cell
classification [10] and for cervical cancer screening in particular [35]. Convolu-
tional Neural Networks (CNNs) have shown ability to differentiate healthy and
malignant cell samples [32]. Whereas the approach in [32] relies on manually
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selected free lying cells, our study proposes to use automatic cell detection. This
allows improved performance by scaling up the available data to all free lying
cells in each sample.

3 Materials and Methods

3.1 Data

Three sets of images of oral brush samples are used in this study. Dataset
1 is a relatively small Pap smear dataset imaged with a standard microscope.
Dataset 2 consist of WSIs of the same glass slides as Dataset 1. Dataset 3
consist of WSIs of liquid-based (LBC) prepared slides. All samples are collected
at Dept. of Orofacial Medicine, Folktandvȧrden Stockholms län AB. From each
patient, samples were collected with a brush scraped at areas of interest in the
oral cavity. Each scrape was either smeared onto a glass (Datasets 1 and 2)
or placed in a liquid vial (Dataset 3). All samples were stained with standard
Papanicolau stain. Dataset 3 was prepared with Hologic T5 ThinPrep Equipment
and standard non-gynecologic protocol. Dataset 1 was imaged with an Olympus
BX51 bright-field microscope with a 20×, 0.75 NA lens giving a pixel size of
0.32 µm. From 10 Pap smears (10 patients), free lying cells (same as in “Oral
Dataset 1” in [32]) are manually selected and 80 × 80 × 1 grayscale patches are
extracted, each with one centered in-focus cell nucleus. Dataset 2: The same 10
slides as in Dataset 1 were imaged using a NanoZoomer S60 Digital slide scanner,
40×, 0.75 NA objective, at 11 z-offsets (±2 µm, step-size 0.4 µm) providing RGB
WSIs of size 103936 × 107520 × 3, 0.23 µm/pixel. Dataset 3 was obtained in
the same way as Dataset 2, but from 12 LBC slides from 12 other patients.

Slide level annotation and reliance on MAC appears as a useful way to avoid
need for large scale very difficult manual cell level annotations. Both [15] and
[32] demonstrate promising results for MAC detection in histology and cytology.
In our work we therefore aim to classify cells based on the patient diagnosis, i.e.,
all cells from a patient with diagnosed oral cancer are labeled as cancer.

3.2 Nucleus Detection

The nucleus detection step aims to efficiently detect each individual cell nucleus
in WSIs. The detection is inspired by the Fully Convolutional Regression Net-
works (FCRNs) approach proposed in [33] for cell counting. The main steps
of the method are described below, and illustrated on an example image from
Dataset 3, Fig. 1.

Training: Input is a set of RGB images Ii, i = 1 . . . K, and corresponding binary
annotation masks Bi, where each individual nucleus is indicated by one centrally
located pixel.

Each ground truth mask is dilated by a disk of radius r [4], followed by
convolution with a 2D Gaussian filter of width σ. By this, a fuzzy ground truth
is generated. A fully convolutional network is trained to learn a mapping between
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the original image I (Fig. 1a) and the corresponding “fuzzy ground truth”, D
(Fig. 1b). The network follows the architecture of U-Net [24] but with the final
softmax replaced by a linear activation function.

Inference: A corresponding density map D′ (Fig. 1c) is generated (predicted)
for any given test image I. The density map D′ is thresholded at a level T and
centroids of the resulting blobs indicate detected nuclei locations (Fig. 1d).

(a) Original image, I (b) Fuzzy ground truth, D

(c) Predicted density map D′

(in pseudo color)
(d) Detected (blue ×) and true
(green +) nuclei locations

Fig. 1. A sample image at different stages of nucleus detection (Color figure online)

3.3 Focus Selection

Slide scanners do not provide sufficiently good focus for cytological samples
and a focus selection step is needed. Our proposed method utilizes N equidis-
tant z-levels acquired of the same specimen. Traversing the z-levels, the change
between consecutive images shows the largest variance at the point where the
specimen moves in/out of focus. This novel focus selection approach provides a
clear improvement over the Edge Model based Blur Metric (EMBM) proposed
in [9].

Following the Nucleus detection step (which is performed at the central focus
level, z = 0) we cut out a square region for each detected nucleus at all acquired
focus levels. Each such cutout image is filtered with a small median filter of size
m×m on each color channel to reduce noise. This gives us a set of images Pi,
i = 1, . . . , N , of an individual nucleus at the N consecutive z-levels. We compute
the difference of neighboring focus levels, P ′

i = Pi+1 − Pi, i = 1, . . . , N −1. The
variance, σ2

i , is computed for each difference image P ′
i :

σ2
i = 1

M

∑M
j=1

(
p′
ij − μi

)2
, where μi = 1

M

∑M
j=1 p′

ij ,



254 J. Lu et al.

M is the number of pixels in P ′
i , and p′

ij is the value of pixel j in P ′
i . Finally the

level l corresponding to the largest σ2
i is selected,

l = arg max
i=1,...,N−1

σ2
i .

To determine which of the two images in the pair P ′
l is in best focus, we use the

EMBM method [9] as a post selection step to choose which of images Pl and
Pl+1 to use.

Fig. 2. Example of focus sequences for experts to annotate

3.4 Classification

The final module of the pipeline is classification of the generated nucleus patches
into two classes – cancer and healthy. Following recommendation from [32],
we evaluate ResNet50 [11] as a classifier. We also include the more recent
DenseNet201 [13] architecture. In addition to random (Glorot-uniform) weight
initialization, we also evaluate the two architectures using weights pre-trained
on ImageNet.

Considering that texture information is a key feature for classification [15,31],
the data is augmented without interpolation. During training, each sample is
reflected with 50% probability and rotated by a random integer multiple of 90◦.

4 Experimental Setup

4.1 Nucleus Detection

The WSIs at the middle z-level (z = 0) are used for nucleus detection. Each WSI
is split into an array of 6496×3360×3 sub-images using the Open Source tool
ndpisplit [3]. The model is trained on 12 and tested on 2 sub-images (1014
resp. 119 nuclei) from Dataset 3. The manually marked ground truth is dilated
by a disk of radius r=15. All images, including ground truth masks, are resized
to 1024×512 pixels, using area weighted interpolation. A Gaussian filter, σ=1,
is applied to each ground truth mask providing the fuzzy ground truth D.
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Each image is normalized by subtracting the mean and dividing by the stan-
dard deviation of the training set. Images are augmented by random rotation
in the range ±30◦, random horizontal and vertical shift within 30% of the total
scale, random zoom within the range of 30% of the total size, and random hor-
izontal and vertical flips. Nucleus detection does not need the texture details,
so interpolation does not harm. To improve stability of training, batch normal-
ization [14] is added before each activation layer. Training is performed using
RMSprop with mean squared error as loss function, learning rate α = 0.001 and
decay rate ρ = 0.9. The model is trained with mini-batch size 1 for 100 epochs,
the checkpoint with minimum training loss is used for testing.

Performance of nucleus detection is evaluated on Dataset 3. A detection is
considered correct if its closest ground truth nucleus is within the cropped patch
and that ground truth nucleus has no closer detections (s.t. one true nucleus is
paired with at most one detection).
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Fig. 3. Results of nucleus detection

4.2 Focus Selection

100 detected nuclei are randomly chosen from the two test sub-images
(Dataset 3). Every nucleus is cut to an 80×80×3 patch for each of the 11
z-levels. For EMBM method the contrast threshold of a salient edge is set to
cT = 8, following [9].

To evaluate the focus selection, 8 experts are asked to choose the best of the
11 focus-levels for each of the 100 nuclei (Fig. 2). The median of the 8 assigned
labels is used as true best focus, lGT . A predicted focus level l is considered
accurate enough if l ∈ [lGT − 2, lGT + 2].

4.3 Classification

The classification model is evaluated on Dataset 1 as a benchmark, and then on
Dataset 2, to evaluate effectiveness of the nucleus detection and focus selection
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modules in comparison with the performance on Dataset 1. The model is also
run on Dataset 3 to validate generality of the pipeline. Datasets are split on a
patient level; no cell from the same patient exists in both training and test sets.
On Dataset 1 and 2, three-fold validation is used, following [32]. On Dataset 3,
two-fold validation is used. Our trained nucleus detector with threshold T = 0.59
(best-performing in Sect. 5.1) is used for Dataset 2 and 3 to generate nucleus
patches. Some cells in Dataset 2 and 3 lie outside the ±2µm imaged z-levels,
and the best focus is still rather blurred. We use the EMBM to exclude the most
blurred ones. Cell patches with an EMBM score < 0.03 are removed, leaving
68509 cells for Dataset 2 and 130521 for Dataset 3.

We use Adam optimizer, cross-entropy loss and parameters as suggested in
[17], i.e., initial learning rate α = 0.001, β1 = 0.9, β2 = 0.999. 10% of the training
set is randomly chosen as validation set.

When using models pre-trained on ImageNet, since the weights require three
input channels, the grayscale images from Dataset 1 are duplicated into each
channel. Pre-trained models are trained (fine-tuned) for 5 epochs. The learning
rate is scaled by 0.4 every time the validation loss does not decrease compared
to the previous epoch. The checkpoint with minimum validation loss is saved for
testing.
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Fig. 4. Accuracy of focus selection

A slightly different training strategy is used when training from scratch.
ResNet50 models are trained with mini-batch size 512 for 50 epochs on Dataset
2 and 3, and with mini-batch size 128 for 30 epochs on Dataset 1, since it contains
fewer samples. Because DenseNet201 takes larger GPU memory, mini-batch sizes
are set to 256 on Dataset 2 and 3. To mitigate overfitting, DenseNet201 models
are trained for only 30 epochs on Dataset 2 and 3, and 20 epochs on Dataset
1. When the validation loss has not decreased for 5 epochs, the learning rate
is scaled by 0.1. Training is stopped after 15 epochs of no improvement. The
checkpoint with minimum validation loss is saved for testing.
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5 Results and Discussion

5.1 Nucleus Detection

Results of nucleus detection are presented in Fig. 3. Figure 3a shows Preci-
sion, Recall, and F1-score as the detection threshold T varies in [0.51, 0.69].
At T = 0.59, F1-score reaches 0.92, with Precision and Recall being 0.90 and
0.94 respectively. Using T = 0.59, 94,685 free lying nuclei are detected in Dataset
2 and 138,196 in Dataset 3.

The inference takes 0.17 s to generate a density map D′ of size 1024×512 on
an NVIDIA GeForce GTX 1060 Max-Q. To generate a density map of the same
size based on the sliding window approach (Table 4 of [12]), takes 504 s.

5.2 Focus Selection

Performance of the focus selection is presented in Fig. 4. The “human” perfor-
mance is the average of the experts, using a leave-one-out approach. We plot
performance when using EMBM to select among the 2(k + 1) levels closest to
our selected pair l; for increasing k the method approaches EMBM.
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(b) Dataset 2, fully
automatic pipeline, 68509
cells, ResNet50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12

Pe
rc

en
ta

ge
 o

f c
el

ls 
cl

as
sifi

ed
 a

s t
um

or
 c

el
ls

fold 1 fold 2

(c) Dataset 3 (LBC), fully
automatic, 130521 cells,
ResNet50
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(d) Dataset 1,
DenseNet201(pre-trained)
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(e) Dataset 2,
DenseNet201(pre-trained)
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Fig. 5. Cell classification results per microscope slide; green samples (bars to the left)
are healthy, red samples (bars to the right) are from cancer patients. ResNet50 is used
for (a)–(c) and DenseNet201 pre-trained on ImageNet is used for (d)–(f). (Color figure
online)
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It can be seen that EMBM alone does not achieve satisfying performance on
this task. Applying a median filter improves the performance somewhat. Our
proposed method performs very well on the data and is essentially at the level of
a human expert (accuracy 84% vs. 85.5%, respectively) using k = 0 and a 3×3
median filter.

5.3 Classification

Classification performance is presented in Table 1 and Fig. 5. The two archi-
tectures (ResNet50 and DenseNet201) perform more or less equally well. Pre-
training seems to help a bit for the smaller Dataset 1, whereas for the larger
Datasets 2 and 3 no essential difference is observed. Results on Dataset 2 are
consistently better than on Dataset 1. This confirms effectiveness of the nucleus
detection and focus selection modules; by using more nuclei (from the same
samples) than those manually selected, improved performance is achieved. The
results on Dataset 3 indicate that the pipeline generalizes well to liquid-based
images. We also observe that our proposed pipeline is robust w.r.t. network
architectures and training strategies of the classification.

In Fig. 6 we plot how classification performance decreases when nuclei are
intentionally selected n focus levels away from the detected best focus. The drop
in performance as we move away from the detected focus confirms the usefulness
of the focus selection step.

If aggregating the cell classifications over whole microscopy slides, as show in
Fig. 5, comparing Fig. 5a–5b and Fig. 5d–5e, we observe that the non-separable
slides 1, 2, 5, and 6 in Dataset 1 become separable in Dataset 2. Global thresh-
olds can be found which accurately separate the two classes of patients in both
datasets processed by our pipeline.
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Fig. 6. The impact of defocused testset on Dataset 2, fold 1 (ResNet50)
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Table 1. Classification performance. The best F1-score for each dataset is presented
in bold.

Dataset Network Accuracy Precision Recall F1-score

1 ResNet50 70.5 ± 0.5 63.1 ± 1.2 34.8 ± 1.4 44.8 ± 1.3

ResNet50 (pre-trained) 72.0 ± 0.9 66.4 ± 2.0 37.5 ± 2.0 48.0 ± 2.1

DenseNet201 70.4 ± 0.5 63.1 ± 1.8 33.8 ± 0.9 44.0 ± 0.7

DenseNet201 (pre-trained) 70.6 ± 0.7 63.4 ± 1.6 34.3 ± 1.7 44.5 ± 1.8

2 ResNet50 74.4 ± 1.9 83.3 ± 2.9 46.3 ± 3.8 59.5 ± 3.8

ResNet50 (pre-trained) 74.0 ± 0.1 83.9 ± 0.5 44.6 ± 0.7 58.2 ± 0.5

DenseNet201 75.4 ± 0.8 84.3 ± 1.5 48.3 ± 1.1 61.4 ± 1.3

DenseNet201 (pre-trained) 73.3 ± 0.7 81.7 ± 2.8 44.4 ± 0.3 57.5 ± 0.6

3 ResNet50 81.6 ± 0.7 71.7 ± 1.2 73.8 ± 0.9 72.8 ± 1.0

ResNet50 (pre-trained) 81.3 ± 1.5 72.1 ± 3.0 71.6 ± 0.6 71.8 ± 1.8

DenseNet201 81.3 ± 0.5 71.4 ± 0.7 73.0 ± 0.8 72.2 ± 0.7

DenseNet201 (pre-trained) 81.5 ± 1.3 71.2 ± 2.4 74.5 ± 2.4 72.8 ± 1.9

6 Conclusion

This work presents a complete fully automated pipeline for oral cancer screening
on whole slide images; source code (utilizing TensorFlow 1.14) is shared as open
source. The proposed focus selection method performs at the level of a human
expert and significantly outperforms EMBM. The pipeline can provide fully
automatic inference for WSIs within reasonable computation time. It performs
well for smears as well as liquid-based slides.

Comparing the performance on Dataset 1, using human selected nuclei and
Dataset 2, using computer selected nuclei from the same microscopy slides, we
conclude that the presented pipeline can reduce human workload while at the
same time make the classification easier and more reliable.
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