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Abstract. After the tremendous development of neural networks trained
by backpropagation, it is a good time to develop other algorithms for train-
ing neural networks to gain more insights into networks. In this paper, we
propose a new algorithm for training feedforward neural networks which is
fairly faster than backpropagation. This method is based on projection and
reconstruction where, at every layer, the projected data and reconstructed
labels are forced to be similar and the weights are tuned accordingly layer
by layer. The proposed algorithm can be used for both input and feature
spaces, named as backprojection and kernel backprojection, respectively.
This algorithm gives an insight to networks with a projection-based per-
spective. The experiments on synthetic datasets show the effectiveness of
the proposed method.
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1 Introduction

In one of his recent seminars, Geoffrey Hinton mentioned that after all of the
developments of neural networks [1] and deep learning [2], perhaps it is time
to move on from backpropagation [3] to newer algorithms for training neural
networks. Especially, now that we know why shallow [4] and deep [5] networks
work very well and why local optima are fairly good in networks [6], other train-
ing algorithms can help improve the insights into neural nets. Different training
methods have been proposed for neural networks, some of which are backpropa-
gation [3], genetic algorithms [7,8], and belief propagation as in restricted Boltz-
mann machines [9].

A neural network can be viewed from a manifold learning perspective [10].
Most of the spectral manifold learning methods can be reduced to kernel princi-
pal component analysis [11] which is a projection-based method [12]. Moreover,
at its initialization, every layer of a network can be seen as a random projection
[13]. Hence, a promising direction could be a projection view of training neural
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networks. In this paper, we propose a new training algorithm for feedforward
neural networks based on projection and backprojection (or so-called reconstruc-
tion). In the backprojection algorithm, we update the weights layer by layer.
For updating a layer m, we project the data from the input, until the layer m.
We also backproject the labels of data from the last layer to the layer m. The
projected data and backprojected labels at layer m should be equal because in
a perfectly trained network, projection of data by the entire layers should result
in the corresponding labels. Thus, minimizing a loss function over the projected
data and backprojected labels would correctly tune the layer’s weights. This
algorithm is proposed for both the input and feature spaces where in the latter,
the kernel of data is fed to the network.

2 Backprojection Algorithm

2.1 Projection and Backprojection in Network

In a neural network, every layer without its activation function acts as a linear
projection. Without the nonlinear activation functions, a network/autoencoder
is reduced to a linear projection/principal component analysis [12]. If U denotes
the projection matrix (i.e., the weight matrix of a layer), U�x projects x onto the
column space of U . The reverse operation of projection is called reconstruction
or backprojection and is formulated as UU�x which shows the projected data
in the input space dimensionality (note that it is Uf−1(f(U�x)) if we have a
nonlinear function f(.) after the linear projection). At the initialization, a layer
acts as a random projection [13] which is a promising feature extractor according
to the Johnson-Lindenstrauss lemma [14]. Fine tuning the weights using labels
makes the features more useful for discrimination of classes.

2.2 Definitions

Let us have a training set X := {xi ∈ R
d}n

i=1 and their one-hot encoded labels
Y := {yi ∈ R

p}n
i=1 where n, d, and p are the sample size, dimensionality of

data, and dimensionality of labels, respectively. We denote the dimensionality
or the number of neurons in layer m by dm. By convention, we have d0 := d
and dn�

= p where n� is the number of layers and p is the dimensionality of
the output layer. Let the data after the activation function of the m-th layer
be denoted by x(m) ∈ R

dm . Let the projected data in the m-th layer be R
dm �

z(m) := U�
m x(m−1) where Um ∈ R

dm−1×dm is the weight matrix of the m-th
layer. Note that x(m) = fm(z(m)) where fm(.) is the activation function in the
m-th layer. By convention, x(0) := x. The data are projected and passed through
the activation functions layer by layer; hence, x(m) is calculated as:

R
dm � x(m) := fm(U�

m fm−1(U
�
m−1 · · · f1(U

�
1 x))) = fm(U�

m x(m−1)). (1)

In a mini-batch gradient descent set-up, let {xi}b
i=1 be a batch of size b. For

a batch, we denote the outputs of activation functions at the m-th layer by
R

dm×b � X(m) := [x(m)
1 , . . . ,x

(m)
b ].
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Now, consider the one-hot encoded labels of batch, denoted by y ∈ R
p.

We take the inverse activation function of the labels and then reconstruct or
backproject them to the previous layer to obtain y(n�−1). We do similarly until
the layer m. Let y(m) ∈ R

dm denote the backprojected data at the m-th layer,
calculated as:

y(m) := U m+1 f −1
m+1(U m+2 f −1

m+2(· · ·U n� f −1
n�

(y))) = U m+1 f −1
m+1(y

(m+1)). (2)

By convention, y(n�) := y. The backprojected batch at the m-th layer is Rdm×b �
Y (m) := [y(m)

1 , . . . ,y
(m)
b ]. We use X ∈ R

d×b and Y ∈ R
p×b to denote the

column-wise batch matrix and its one-hot encoded labels.

2.3 Optimization

In the backprojection algorithm, we optimize the layers’ weights one by one.
Consider the m-th layer whose loss we denote by Lm:

minimize
U m

Lm :=
b∑

i=1

�(x(m)
i − y

(m)
i ) =

b∑

i=1

�
(
fm(U�

m x
(m−1)
i ) − y

(m)
i

)
, (3)

where �(.) is a loss function such as the squared �2 norm (or Mean Squared Error
(MSE)), cross-entropy, etc. The loss Lm tries to make the projected data x

(m)
i

as similar as possible to the backprojected data y
(m)
i by tuning the weights Um.

This is because the output of the network is supposed to be equal to the labels,
i.e., x(n�) ≈ y. In order to tune the weights for Eq. (3), we use a step of gradient
descent. Using chain rule, the gradient is:

R
dm−1×dm � ∂Lm

∂Um
=

b∑

i=1

vec−1
dm−1×dm

[(∂z
(m)
i

∂Um

)�(∂fm(z(m)
i )

∂z
(m)
i

)� ∂�(fm(z(m)
i ))

∂fm(z(m)
i )

]
,

(4)

where we use the Magnus-Neudecker convention in which matrices are vectorized
and vec−1

dm−1×dm
is de-vectorization to dm−1 × dm matrix. If the loss function is

MSE or cross-entropy for example, the derivatives of the loss function w.r.t. the
activation function, respectively, are:

R
dm � ∂�(fm(z(m)

i ))

∂fm(z(m)
i )

= 2
(
fm(z(m)

i ) − y
(m)
i

)
, and (5)

R
dm � ∂�(fm(z(m)

i ))

∂fm(z(m)
i )

= −
[ y

(m)
i,j

fm(z(m)
i,j )

,∀j ∈ {1, . . . , dm}
]�

, (6)

where y
(m)
i,j and z

(m)
i,j are the j-th dimension of y

(m)
i and z

(m)
i = U�

m x
(m−1)
i ,

respectively.
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1 Procedure: UpdateLayerWeights(U , X , Y , m)

2 Input: weights: U := {U r}n�
r=1, batch data: X ∈ R

d×b, batch labels:

Y ∈ R
p×b, layer: m ∈ [1, n�]

3 X (0) := X
4 for layer r from 1 to (m − 1) do

5 Z(r) := U�
r X (r−1)

6 X (r) := f r(Z
(r))

7 Y (n�) := Y
8 for layer r from (n� − 1) to m do

9 Y (r+1) := Π(Y (r+1))

10 Y (r) := U r+1 f−1
r+1(Y

(r+1))

11 Um := Um − η (∂Lm/∂Um)
12 Return Um

Algorithm 1: Updating the weights of a layer in backprojection

For the activation functions in which the nodes are independent, such as
linear, sigmoid, and hyperbolic tangent, the derivative of the activation function
w.r.t. its input is a diagonal matrix:

R
dm×dm � ∂fm(z(m)

i )

∂z
(m)
i

= diag
(∂fm(z(m)

i,j )

∂z
(m)
i,j

,∀j ∈ {1, . . . , dm}
)
, (7)

where diag(.) makes a matrix with its input as diagonal.
The derivative of the projected data before the activation function (i.e., the

input of the activation function) w.r.t. the weights of the layer is:

R
dm×(dmdm−1) � ∂z

(m)
i

∂Um
=

∂ U�
m x

(m−1)
i

∂Um
= Idm

⊗ x
(m−1)�
i , (8)

where ⊗ denotes the Kronecker product and Idm
is the dm ×dm identity matrix.

The procedure for updating weights in the m-the layer is shown in Algorithm1.
Until the layer m, data is projected and passed through activation functions layer
by layer. Also, the label is backprojected and passed through inverse activation
functions until the layer m. A step of gradient descent is used to update the layer’s
weights where η > 0 is the learning rate. Note that the backprojected label at a
layer may not be in the feasible domain of its inverse activation function. Hence,
at every layer, we should project the backprojected label onto the feasible domain
[15]. We denote projection onto the feasible set by Π(.).

2.4 Different Procedures

So far, we explained how to update the weights of a layer. Here, we detail updat-
ing the entire network layers. In terms of the order of updating layers, we can
have three different procedures for a backprojection algorithm. One possible pro-
cedure is to update the first layer first and move to next layers one by one until
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1 Procedure: Backprojection(X , Y, b, e)
2 Input: training data: X , training labels: Y, batch size: b, number of epochs:

e
3 Initialize U = {U r}n�

r=1

4 for epoch from 1 to e do
5 for batch from 1 to �n/b� do
6 X , Y ← take batch from X and Y
7 if procedure is forward then
8 for layer m from 1 to n� do
9 Um ← UpdateLayerWeights({U r}n�

r=1, X , Y , m)

10 else if procedure is backward then
11 for layer m from n� to 1 do
12 Um ← UpdateLayerWeights({U r}n�

r=1, X , Y , m)

13 else if procedure is forward-backward then
14 if batch index is odd then
15 for layer m from 1 to n� do
16 Um ← UpdateLayerWeights({U r}n�

r=1, X , Y , m)

17 else
18 for layer m from n� to 1 do
19 Um ← UpdateLayerWeights({U r}n�

r=1, X , Y , m)

Algorithm 2: Backprojection

we reach the last layer. Repeating this procedure for the batches results in the
forward procedure. In an opposite direction, we can have the backward procedure
where, for each batch, we update the layers from the last layer to the first layer
one by one. If we have both directions of updating, i.e., forward update for a
batch and backward update for the next batch, we call it the forward-backward
procedure. Algorithm 2 shows how to update the layers in different procedures
of the backprojection algorithm. Note that in this algorithm, an updated layer
impacts the update of next/previous layer. One alternative approach is to make
updating of layers dependent only on the weights tuned by previous mini-batch.
In that approach, the training of layers can be parallelized within mini-batch.

3 Kernel Backprojection Algorithm

Suppose φ : X → H is the pulling function to the feature space. Let t denote the
dimensionality of the feature space, i.e., φ(x) ∈ R

t. Let the matrix-form of X
and Y be denoted by R

d×n � X̆ := [x1, . . . ,xn] and R
p×n � Y̆ := [y1, . . . ,yn].

The kernel matrix [16] for the training data X̆ is defined as R
n×n � K̆ :=

Φ(X̆)�Φ(X̆) where R
t×n � Φ(X̆) := [φ(x1), . . . ,φ(xn)]. We normalize the ker-

nel matrix [17] as K̆(i, j) := K̆(i, j)/
[
K̆(i, i)K̆(j, j)

]1/2 where K̆(i, j) denotes
the (i, j)-th element of the kernel matrix.



Backprojection for Training Feedforward Neural Networks 21

According to representation theory [18], the projection matrix U1 ∈ R
d×d1

can be expressed as a linear combination of the projected training data. Hence,
we have R

t×d1 � Φ(U1) = Φ(X̆)Θ where every column of Θ := [θ1, . . . ,θd1 ] ∈
R

n×d1 is the vector of coefficients for expressing a projection direction as a
linear combination of projected training data. The projection of the pulled data
is R

d1×n � Φ(U1)�Φ(X̆) = Θ�Φ(X̆)�Φ(X̆) = Θ�K̆.
In the kernel backprojection algorithm, in the first network layer, we project

the pulled data from the feature space with dimensionality t to another feature
space with dimensionality d1. The projections of the next layers are the same as
in backprojection. In other words, kernel backprojection applies backprojection in
the feature space rather than the input space. In a mini-batch set-up, we use the
columns of the normalized kernel corresponding to the batch samples, denoted
by {ki ∈ R

n}b
i=1. Therefore, the projection of the i-th data point in the batch is

R
d1 � Θ�ki. In kernel backprojection, the dimensionality of the input is n and

the kernel vector ki is fed to the network as input. If we replace the xi by ki,
Algorithms 1 and 2 are applicable for kernel backprojection.

In the test phase, we normalize the kernel over the matrix [X̆,xt] where
xt ∈ R

d is the test data point. Then, we take the portion of normalized kernel
which correspond to the kernel over the training versus test data, denoted by
R

n � kt := Φ(X̆)�Φ(xt). The projection at the first layer is then R
d1 � Θ�kt.

4 Experiments

Datasets: For experiments, we created two synthetic datasets with 300 data
points each, one for binary-class and one for three-class classification (see Figs. 1
and 2). For more difficulty, we set different variances for the classes. The data
were standardized as a preprocessing. For this conference short-paper, we limit
ourselves to introduction of this new approach and small synthetic experiments.
Validation on larger real-world datasets is ongoing for future publication.

Neural Network Settings: We implemented a neural network with three layers
whose number of neurons are {15, 20, p} where p = 1 and p = 3 for the binary
and ternary classification, respectively. In different experiments, we used MSE
loss for the middle layers and MSE or cross-entropy losses for the last layer.
Moreover, we used Exponential Linear Unit (ELU) [19] or linear functions for
activation functions of the middle layers while sigmoid or hyperbolic tangent
(tanh) were used for the last layer. The derivative and inverse of these activation
functions are as the following:

ELU: f(z) =
{

ez − 1, z ≤ 0
z, z > 0 , f ′(z) =

{
ez, z ≤ 0
1, z > 0 , f−1(y) =

{
ln(y + 1), y ≤ 0
y, y > 0 ,

Linear: f(z) = z, f ′(z) = 1, f−1(y) = y,

Sigmoid: f(z) =
1

1 + e−z
, f ′(z) = f(1 − f), f−1(y) = ln(

y

1 − y
),
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Fig. 1. Discrimination of two classes by different training algorithms with various acti-
vation functions and loss functions. The label for each row indicates the activation
functions and the loss functions for the middle then the last layers. (Color figure online)

Tanh: f(z) =
ez − e−z

ez + e−z
, f ′(z) = 1 − f2, f−1(y) = 0.5 ln(

1 + y

1 − y
),

where in the inverse functions, we bound the output values for computational
reasons in computer. Mostly, a learning rate of η = 10−4 was used for backpro-
jection and backpropagation and η = 10−5 was used for kernel backprojection.

Comparison of Procedures: The performance of different forward, backward,
and forward-backward procedures in backprojection and kernel backprojection
are illustrated in Fig. 1. In these experiments, the Radial Basis Function (RBF)
kernel was used in kernel backprojection. Although the performance of these pro-
cedures are not identical but all of them are promising discrimination of classes.
This shows that all three proposed procedures work well for backprojection in
the input and feature spaces. In other words, the algorithm is fairly robust to
the order of updating layers.

Comparison to Backpropagation: The performances of backprojection, ker-
nel backprojection, and backpropagation are compared in the binary and ternary
classification, shown in Figs. 1 and 2, respectively. In Fig. 2, the linear kernel
was used. In Fig. 1, most often, kernel backprojection considers a spherical class
around the blue (or even red) class which is because of the choice of RBF kernel.
Comparison to backpropagation in the two figures shows that backprojection’s
performance nearly matches that of backpropagation.
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Fig. 2. Discrimination of three classes by different training algorithms with various
activation functions and loss functions.

In the different experiments, the mean time of every epoch was often 0.08,
0.11, and 0.2 s for backprojection, kernel backprojection, and backpropagation,
respectively, where the number of epochs were fairly similar in the experiments.
This shows that backprojection is faster than backpropagation. This is because
backpropagation updates the weights one by one while backprojection updates
layer by layer.

5 Conclusion and Future Direction

In this paper, we proposed a new training algorithm for feedforward neural net-
work named backprojection. The proposed algorithm, which can be used for
both the input and feature spaces, tries to force the projected data to be similar
to the backprojected labels by tuning the weights layer by layer. This train-
ing algorithm, which is moderately faster than backpropagation in our initial
experiments, can be used with either forward, backward, or forward-backward
procedures. It is noteworthy that adding a penalty term for weight decay [20]
to Eq. (3) can regularize the weights in backprojection [21]. Moreover, batch
normalization can be used in backprojection by standardizing the batch at the
layers [22]. This paper concentrated on feedforward neural networks. As a future
direction, we can develop backprojection for other network structures such as
convolutional networks [23] and carry more expensive validation experiments on
real-world data.
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