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Abstract. Gold prices, in general, act counter to the market and are thus pre-
dictable to a certain degree based upon the fluctuations of other market enti-
ties. Neural networks have been applied to significant effect to difficult predic-
tion problems and have achieved success in making predictions beyond tradi-
tional regression-based statistical models. Generally, such networks are hyper-
specialized, and thus have effectiveness in a small subset of problems. This paper
endeavors to take two models: RNN and CNN and hybridize them, creating a new
model founded on their underlying logical theories and architectures. The primary
goal in this paper is to show the effectiveness of the hybrid model in achieving
a better gold price prediction that produces higher quality results at the cost of
slightly increased complexity. Challenges and limitations of the proposed hybrid
model are also addressed.
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1 Introduction

While most financial assets are valued for their intrinsic properties combined with their
relation to similar assets, gold tends to operatemore extrinsicallywith no factors inherent
to itself [1]. When investors lose trust in the market or centralized currencies, gold is
often seen by the individual investor to be a viable option to purchase as a hedge [2].
When predicting gold prices, the data collection focuses on readily available market
conditions, as opposed to having to input a company’s specific financial statements
and monitor its actions [3]. The performance of a predictive algorithm in forecasting
gold prices comes down to the strength of the algorithm itself [4]. In this paper, we
cover leading models in deep learning as applied with great success to the problem of
predicting gold prices. The paper endeavors to show how the qualities that lead to success
in different architectures can be combined to create new networks. Meaningful results
can be accomplished through creating new networks in such a fashion, beyond creating
ensembles through taking the output of one model and feeding it to another. We explore
the underlying logical theories and architecture in combing both Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) in a hybrid model to achieve
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successful prediction results. Experimental results on market data show improvement
in predicting gold price two days in advance using the hybrid deep learning model.
In Sect. 2, a brief discussion on CNN, RNN, and Autoregressive Integrated Moving
Average (ARIMA) is given. Section 3 presents the hybrid model. Experimental results
are presented and discussed in Sect. 4. Finally, derived conclusions and future directions
are presented in Sect. 5.

2 Related Work and Background

Deep learning concerns itself with networks that achieve complexity through multi-
layer interaction. Various models, activation functions and cost functions have been put
forward and refined throughout the years [9]. It has been found that certain types of
network architecture tend towards success in certain problem applications as CNN and
RNN, especially for stock market prediction [17] and time-series analytics [5, 18]. In
the following, a brief discussion on the convolutional neural networks, recurrent neural
networks, and ARIMA predication model is presented.

2.1 Convolutional Neural Networks (CNN)

The CNN operate by reacting to input, passing that reaction forward to further neurons,
and training a receptive field to interpret the response and begin to make predictions [5].
A CNN is implemented in a series of alternating layers; these layers are ordered such
that convolutional layers alternating with pooling layers [6]. Convolutional layers apply
an operation to the input but are not a trainable part of the network [6]. Pooling layers
reduce the number of independent variables at the end of the process that is passed on
to the receptive field [7]. Pooling layers can be either global or local; if the depth of the
problem is shrunk between convolutional layers, it can be considered as a local pooling
layer [8]. If the pooling happens at the end of the convolutions it is called global [8].
The more convolutional layers in the network the “deeper” it is considered. CNN are
used to process images or visual data because of their ability to interpret spatially linked
data [9]. The process begins with a 2-dimensional matrix of data that is tied together by
proximity. Pooling allows for approximate answers for an area to be reached between
steps to increase efficiency and to decrease the number of weights to be calculated down
the line [7]. It is an effective way to take a data source with many variables, commonly
pixels, and distill it into a smaller set of variables to use to predict with [5, 9].

2.2 Recurrent Neural Networks (RNN)

The RNN are networks where information is passed forward from node to node along a
chain. Each node can process data from its memory. Long Short-TermMemory (LSTM)
is a type of Recurrent Neural Network that can “forget” based on its predictions, using a
“forget gate” [10]. A LSTM unit handles multiple operations while training. First, each
unit decides how much of the factor to keep when bringing it into the unit (i.e. a weight)
[11]. Then, it updates its future internal state. Finally, it determines the output to the
next unit along the graph, and what to forget for later [11]. These “units” can be stacked,
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which creates an approximation of factors in time [12]. As CNNs are generally used
in spatial data and images, RNNs are typically used in predicting the meaning behind
historical data and speech [6]. Natural language processing can be applied through such
RNN networks as nodes will remember things like names, genders, and plurality. Then
nodes will make predictions as to what a sentence is saying using such factors because it
encounters an ambiguous pronoun like a “they” or “she” [13]. It also retains the necessary
information to make such decisions and forgets information as it no longer applies.

2.3 ARIMA (Autoregressive Integrated Moving Average)

ARIMA is a statistical model in which a series of coefficients are found and multiplied
with some number of lagged values. This is combined with the linear combination of its
margins of error over time to get a regression-based model with a combined margin of
error [14]. This is covered as a standard normal statistical performance, as it is a widely
accepted as a non-neural network method of forming predictions. Regression in some
sense is useful to the structure of the model, as a gradient regression is applied to find
the best possible weights and exponents for the series of nodes [15].

3 Hybrid CNN-RNN

The CNN have successfully modeled spatially related data, and RNN have effectively
modeled temporally related data [9, 11, 13]. The ensemble approach endeavors to create
a mixed model that has success modeling temporally related data, with a spatial aspect,
or spatially related data with a temporal aspect. The hybrid model takes the concept of
directed graphing and weighing from RNN, and pooling and convolution from CNN to
form a more comprehensive model. This model is capable of solving either a problem
meant for CNN or RNN or joint problems. Data is inputted into a matrix where every
square in the matrix contains the root of a tree. Every tree starts with a node that contains
a vector of one variable’s values throughout time, a coefficient and an exponent, as well
as whatever dummy nodes are required to maintain consistency in the shape of the tree
as it evolves. This matrix, full of roots of trees, is then convoluted by passing a filter
over the matrix. The filter takes an n × n square of the matrix and creates a new tree of
these nodes, which then occupies a space in that matrix.

⎡
⎣
x1 x2 x3
x4 x5 x6
x7 x8 x9

⎤
⎦ =

[
x1 x2
x3 x4

]
,

[
x2 x3
x5 x6

]
,

[
x4 x5
x7 x8

]
,

[
x5 x6
x8 x9

]
(1)

The sub-matrix Xsub from filtering is defined as:

Xsub =
[
x1 x2
x3 x4

]
(2)

The sub-matrix Xsub is represented as a tree, as shown in Fig. 1. The tree represents the
values in the convolutionmatrix, with the final multiplication operation returning just the
left side of the equation. This process continues until thematrix is 1× 1, and the resulting
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values calculated from that node are the final predictions. This can be interpreted as a
shrinking matrix, a growing tree, or an equation builder. The hybrid model uses trees
to represent predictions on behalf of one section of the matrix and uses those trees to
generate a future tree that could describe another scenario. The advantage of the hybrid
model is that there is no need to know the best approach, as the model can find not only
the optimumway to weight the factors within the nodes but also the ideal way to arrange
data within the matrix to form a tree that can yield a good solution.

Fig. 1. Tree representation of the convolution matrix

3.1 The Hybrid Model

The input to our hybrid model is a 2D array as layers of sub-arrays, where the outside
layer array is a container for sub-arrays, each contains a single variable’s values through
all trials and each index represents a one-time step. The output is another 2D array, where
there is one sub-array which is the predicted values, with the last x being not a part of
the training set when predicting. The hybrid CNN-RNN model constitutes of five main
steps, the convolution step, the filtering step, the pooling step, Gradient Regression, and
finally the verification step.

3.1.1 The Convolution Step

Starting with a matrix filled with trees of one useful node, a square is passed to the
matrix, such that this square along with the internal nodes within this square form the
new subtree. Trees are formed on the basis of the interaction between new nodes and
old nodes to simulate an equation. This resolves the problem of scaling complexity in
equation building. For example, if given three variables, 7 different terms are required.

(x) = xyz + xy + xz + zy + x + y + z (3)
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Using a tree system is an attempt to come up with close enough approximations of pre-
diction answers while maintaining the directed graph-like structure of an RNN. Answers
are passed upward through to make further predictions. The basic theory is such that
not every combination need be checked, an answer can be made sufficiently acceptable
and actionable given one possible combination and calibrated to be the best it can be.
Enough combinations can be attempted and optimized to find a solution that is accept-
able without having the computational cost of attempting close to every permutation.
The algorithm operates the worst case of O (r × k × n) in the model used to gather
results in this study, this equation would be of the form:

f (x) = x ∗ (y ∗ (z + z) + y) + x (4)

This example is just one appropriate way to achieve a linear chain for initial testing
as it is able to represent new information being brought in and yielding a polynomial
answer instead of a linear combination. The program used to run this model could also
be adapted to try different forms of combining nodes, at a cost of higher time complexity.

3.1.2 Filtering Step

Filter size was something of an arbitrary decision to test through this paper, we erred on
the side of the highest precisionmanageable. Thismeantmaking asmany sub predictions
as possible and thus we went with subgroups of four elements. This was thought to have
themost possible information to draw from. This would come into play in a larger degree
if nodes were to “lock” meaning no longer recalculate as the sub predictions would have
a higher degree of impact. Now the filter size only comes into play because of the actual
geometric layout of the tree. This matters as two factors that have an effect on each other
may not be able to interact as they may be 3 squares from each other and not 2. If given
enough attempts to form different matrix layouts this would be minimized, but we may
be able to see that larger filter size has a positive effect in tree building. The other issue
with filtering is the overlap. To what degree does the next square to build a tree from
overlap with the last square. In this model, the overlap is maximized, as time complexity
was not overly concerning with 732 trials.

3.1.3 The Pooling Step

When each tree is formed, it becomes an element of the next matrix which takes more
trees as input. In the CNN sense, pooling as the matrix gets reduced to a smaller operat-
ing size, data is retained throughout the process and the problem goes from being a very
wide problem to very deep. Calibrating such a tree has the same complexity. The study
beganwith the idea that in such a case the trees would at a certain point stop recalculating
to save execution time, and they would become fixed positions. This would limit poten-
tial solutions to problems but would save enough time that solutions could be reached
given very large problems. In the model analyzed for results, all nodes remained active
throughout the problem solving as it was a small sample of data.
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3.1.4 Gradient Regression of Weights and Exponents

In a typical CNN, as data is added, weights would be adjusted, given enough trials
weights would find their way to an optimal solution that best classifies problems [5].
In our scenario, all data is transferred to the nodes. Upon calibration, coefficients and
exponents of the network are altered and then tested against the knowledge of inputs and
solutions. With low size of inputs, this would lead to difficulty in reaching a meaningful
solution if the precision with which we increment is too high. However, if the data
sources became large, doing so in such a process would become too computationally
expensive. This would require either transitioning to a model in which the values were
not recalculated and instead weights were organized on an ongoing basis or potentially
through taking slices. This could lead to greater error as potentially some outliers within
the graph may not get captured accurately in the slices.

3.1.5 Verification Step

Upon updating nodes, we must know whether or not the solution has become closer to
an optimal solution. Calculating the mean squared error was tested as a valid option,
being slightly more computationally expensive than calculating the mean error andmore
punishing on extremely incorrect cases. When calibrating on a mean squared error basis,
the hybrid model tended to find solutions that were more moderate. Instead of modeling
large swings and being correct on some large variations and incorrect on others, the
hybrid mode predicted results that were equally incorrect for all trials but resulted in a
lower level of error overall. Calculating the number of predictions that are correct, or
within a desirable range would be effective as it is accurately expressing the types of
solutions. However; this type of solution leads to less accuracy when calibrating as it
outputs what is essentially a step function. When calibrating a node by incrementing a
coefficient by one thousandth, it may make the solution better, but not cause an increase
of one more correct trial instantly, and thus the program would interpret it as no change.
Therefore, further experimentation needs to go into a verification method that outputs a
metric by the number of successes, possibly could yield stronger results.

3.2 Challenges in the Hybrid Model

In the hybrid model for this problem instance there are three main challenges: (1) the
occurrence of a prime numbered quantity of free variables, (2) data gathered in business
days, and (3) the inability to use growth vectors due to the shortcomings of the data.

3.2.1 Prime Numbered Variables

In the case of odd-numbered variables, data needs to be filled into the matrix such that
proper filtering can occur. This means that for every subsection of the matrix, that area
of the matrix is populated. Originally, the solution was that when filling a matrix if
the data had run out but there were still areas to populate, those areas should be filled
in with variable number one. This variable acts as an arbitrary number that would be
automatically factored out if irrelevant. Later in testing, it was seen that while filling
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the matrix, a simple solution would be to take the index to the mod of the number of
variables, so it was not always the origin being used as a filler.

3.2.2 Data Challenges

Inherent limits to financial data are that there is only data for weekdays. The markets are
only open Monday to Friday. The data used was additionally weak as it was collected
once per day. This means per week there is only 5 data points per variable. For the model
to be able to produce results with significance for the future, themodel uses data two days
out to make predictions. A prediction on Monday using Thursday’s data would follow
a different decision-making pattern than a prediction for Wednesday using Monday’s
data. Thus, the decision was made to keep all decisions within the week. This limits the
effective data, as per week now there are only three predictions and thus there is 3/5 of
an already small data pool. This means to get enough data to train a model, it must be
trained over many years. Previous studies have shown financial models train better on
a tighter timescale and stretching past a number of years leads to decreased accuracy
in results [16]. Future work on using data across different time zones to reduce the gap
between Friday and Monday is recommended.

3.2.3 Growth Vectors

Instead of holding absolute values in each node, it is recommended to use a growth
vectors. Themodel can find the best combination of all growth vectors, then the estimated
growth of the output variable from one trial to another would increase the ability to bring
unlike data sources together. The growing of two factors, and the shrinking of another
factor may lead the output to grow at an exponential rate, and the model then would not
generate an absolute number. For financial data, multiplying the trading volume by the
share price to get an answer in dollars of gold price. This does not make inherent sense
and would not be in appropriate units. The model will still output a good prediction,
but the prediction would make more sense as how much the gold price would grow,
given the growth rate of the trading volume and share price of another asset. This would
potentially solve problems in data sets such as this one where outputs vary from in
the range of 80 to the range of 20. The model needs to only predict the drop and then
predict it stagnates, as opposed to predicting its exact position. The issue is that to get
growth numbers, numbers from −1 days are needed. However, we have daily data, and
2-day lead time, thus we only have predictions for Thursday and Friday, and we would
have 2/5 of the sample size. The main purpose of switching this model specifically to a
growth-based algorithm would be the ability to include things like sentiment analysis of
news sources and Google Trends data into predictions. This will not give an output of
trading volume only but increase in gold searches and a decrease in the gold price, thus
this could have a meaning in terms of an increase in trading volume.

4 Experimental Results

In this section, we test the performance of the hybrid model to that of ARIMA, CNN
and LSTM as benchmark [4]. The dataset used Yahoo Finance data, future datasets will
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be considered. The given time period used in the contrasting study was used. Data was
gathered on the performance of the S&P 500 index and the Barrick Gold price, which
included their daily highs and lows, trading volume, open, close and adjusted close.
The data, other than the output variable of daily high for gold price, was shifted back 2
days so the model gave actionable information. The variables were not duplicated and
shifted back since there is only data on weekdays, which makes shifting it a challenge.
The output predictions are for the same entity (GOLD), and the data gathered is also at
intervals of one day [4]. Figures 2, 3 and 4 show the prediction results of the ARIMA,
CNN, and LSTM, respectively. We can observe that ARIMA has the worst performance
and the LSTM achieves significant forecasting results as compared to the ARIMA and
CNN. To increase comparability, we will show results of the hybrid model up to the
same point in time as the other models. The analysis of the Mean Squared Errors (MSE)
in Table 1 shows that the hybrid model outperforming the CNN, LSTM and ARIMA.

Table 1. Mean squared errors (MSE) comparison

Model Mean squared error

ARIMA 1.90E+07

CNN 8.65E+00

LSTM 7.12E+00

Hybrid CNN-RNN 6.00E+00

Fig. 2. ARIMA prediction results
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Fig. 3. CNN prediction results

Fig. 4. LSTM prediction results

Figures 5.a and 5.b show the performance of the Hybrid Model, with one series
representing predictions and the other represents the actual prices up until the end of the
comparable data for data collected in 2017 and 2016, respectively.
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(a) Predicted Vs. Actual prices up until the end of the comparable data (2017)

(b) Predicted Vs. Actual prices up until the end of the comparable data (2016) 

Fig. 5. Hybrid CNN-RNN prediction results

Looking at the graphed results in Figs. 4 and 5, we can see that the LSTM and
hybrid model perform to similar degrees of accuracy, and these mean squared errors
represent deviations away from the standard pattern. Two large drops in the price cause
a series of large mispredictions (Fig. 5.b). This was covered in the verification section, as
switching to verifying solution quality by mean squared error ended up making the same
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predictions to a lesser degree: in essence, squashing the graph. Potential solutions to this
would be to have a working buffer, so calibration forgets data at an arbitrary date cutoff,
or the introduction of a formal forget gate into the tree structure which would require
some logical reworking butmay be necessary to fully emulate the LSTM structure within
the hybrid model. The Hybrid model also has a speed up improvement up to 20% faster
than both CNN and LSTM.

5 Conclusion and Future Directions

It seems a natural leap to combine algorithms (or models) with proficiency to achieve
better prediction. This paper shows that higher quality connections can be made using
limited data with a more comprehensive ensemble model. In this paper, we proposed a
hybrid deep learning model that combines both CNN and RNN in an ensemble learn-
ing strategy. The model works significantly better with fewer data and data breadth.
The Hybrid CNN-RNN model can outperform some of the existing statistical learning
models. Future research directions include analyzing the effects of various filter sizes,
quantities of filler data, amount to overlap filter, slicing of data, and depth cutoffs. An
extended refinement to the verification phase using a better analyzing tree geometry is
also of future investigation. Lastly, whether the calibration should occur while building
the tree or at the end from the top down is a future research direction. The model needs
further optimization by adding data from more market variables as well as adding sen-
timent analysis or Google Trends data. In addition, obtaining better quality data with
more sources to bypass the one entry per day restraints and experimenting with growth
vectors would be an extension to the work in this paper.
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