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Abstract. Fisher Discriminant Analysis (FDA) is a subspace learning
method which minimizes and maximizes the intra- and inter-class scat-
ters of data, respectively. Although, in FDA, all the pairs of classes are
treated the same way, some classes are closer than the others. Weighted
FDA assigns weights to the pairs of classes to address this shortcoming
of FDA. In this paper, we propose a cosine-weighted FDA as well as an
automatically weighted FDA in which weights are found automatically.
We also propose a weighted FDA in the feature space to establish a
weighted kernel FDA for both existing and newly proposed weights. Our
experiments on the ORL face recognition dataset show the effectiveness
of the proposed weighting schemes.

Keywords: Fisher Discriminant Analysis (FDA) · Kernel FDA ·
Cosine-weighted FDA · Automatically weighted FDA · Manually
weighted FDA

1 Introduction

Fisher Discriminant Analysis (FDA) [1], first proposed in [2], is a powerful sub-
space learning method which tries to minimize the intra-class scatter and max-
imize the inter-class scatter of data for better separation of classes. FDA treats
all pairs of the classes the same way; however, some classes might be much fur-
ther from one another compared to other classes. In other words, the distances
of classes are different. Treating closer classes need more attention because clas-
sifiers may more easily confuse them whereas classes far from each other are
generally easier to separate. The same problem exists in Kernel FDA (KFDA)
[3] and in most of subspace learning methods that are based on generalized
eigenvalue problem such as FDA and KFDA [4]; hence, a weighting procedure
might be more appropriate.

In this paper, we propose several weighting procedures for FDA and KFDA.
The contributions of this paper are three-fold: (1) proposing Cosine-Weighted
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FDA (CW-FDA) as a new modification of FDA, (2) proposing Automatically
Weighted FDA (AW-FDA) as a new version of FDA in which the weights are set
automatically, and (3) proposing Weighted KFDA (W-KFDA) to have weighting
procedures in the feature space, where both the existing and the newly proposed
weighting methods can be used in the feature space.

The paper is organized as follows: In Sect. 2, we briefly review the theory
of FDA and KFDA. In Sect. 3, we formulate the weighted FDA, review the
existing weighting methods, and then propose CW-FDA and AW-FDA. Section 4
proposes weighted KFDA in the feature space. In addition to using the existing
methods for weighted KFDA, two versions of CW-KFDA and also AW-KFDA
are proposed. Section 5 reports the experiments. Finally, Sect. 6 concludes the
paper.

2 Fisher and Kernel Discriminant Analysis

2.1 Fisher Discriminant Analysis

Let {x
(r)
i ∈ R

d}nr
i=1 denote the samples of the r-th class where nr is the class’s

sample size. Suppose μ(r) ∈ R
d, c, n, and U ∈ R

d×d denote the mean of r-th
class, the number of classes, the total sample size, and the projection matrix
in FDA, respectively. Although some methods solve FDA using least squares
problem [5,6], the regular FDA [2] maximizes the Fisher criterion [7]:

maximize
U

tr(U�SB U)
tr(U�SW U)

, (1)

where tr(·) is the trace of matrix. The Fisher criterion is a generalized Rayleigh-
Ritz Quotient [8]. We may recast the problem to [9]:

maximize
U

tr(U�SB U),

subject to U�SW U = I,
(2)

where the SW ∈ R
d×d and SB ∈ R

d×d are the intra- (within) and inter-class
(between) scatters, respectively [9]:

SW :=
c∑

r=1

nr∑

i=1

nr(x
(r)
i − μ(r))(x(r)

i − μ(r))� =
c∑

r=1

nr X̆r X̆
�
r , (3)

SB :=
c∑

r=1

c∑

�=1

nr n�(μ(r) − μ(�))(μ(r) − μ(�))� =
c∑

r=1

nk M r N M�
r , (4)

where R
d×nr � X̆r := [x(r)

1 − μ(r), . . . ,x
(r)
nr − μ(r)], R

d×c � M r := [μ(r) −
μ(1), . . . ,μ(r) − μ(c)], and R

c×c � N := diag([n1, . . . , nc]�). The mean of the
r-th class is R

d � μ(r) := (1/nr)
∑nr

i=1 x
(r)
i . The Lagrange relaxation [10] of the

optimization problem is: L = tr(U�SB U)−tr
(
Λ�(U�SW U −I)

)
, where Λ is



Weighted Fisher Discriminant Analysis in the Input and Feature Spaces 5

a diagonal matrix which includes the Lagrange multipliers. Setting the derivative
of Lagrangian to zero gives:

∂L
∂U

= 2SBU − 2SW UΛ
set= 0 =⇒ SB U = SW UΛ, (5)

which is the generalized eigenvalue problem (SB ,SW ) where the columns of U
and the diagonal of Λ are the eigenvectors and eigenvalues, respectively [11]. The
p leading columns of U (so to have U ∈ R

d×p) are the FDA projection directions
where p is the dimensionality of the subspace. Note that p ≤ min(d, n − 1, c − 1)
because of the ranks of the inter- and intra-class scatter matrices [9].

2.2 Kernel Fisher Discriminant Analysis

Let the scalar and matrix kernels be denoted by k(xi,xj) := φ(xi)�φ(xj) and
K(X1,X2) := Φ(X1)�Φ(X2), respectively, where φ(.) and Φ(.) are the pulling
functions. According to the representation theory [12], any solution must lie in
the span of all the training vectors, hence, Φ(U) = Φ(X)Y where Y ∈ R

n×d

contains the coefficients. The optimization of kernel FDA is [3,9]:

maximize
Y

tr(Y �ΔB Y ),

subject to Y �ΔW Y = I,
(6)

where ΔW ∈ R
n×n and ΔB ∈ R

n×n are the intra- and inter-class scatters in
the feature space, respectively [3,9]:

ΔW :=
c∑

r=1

nr Kr Hr K�
r , (7)

ΔB :=
c∑

r=1

c∑

�=1

nr n�(ξ(r) − ξ(�))(ξ(r) − ξ(�))� =
c∑

r=1

nr Ξr N Ξ�
r , (8)

where R
nr×nr � Hr := I − (1/nr)11� is the centering matrix, the (i, j)-th

entry of Kr ∈ R
n×nr is Kr(i, j) := k(xi,x

(r)
j ), the i-th entry of ξ(r) ∈ R

n is

ξ(r)(i) := (1/nr)
∑nr

j=1 k(xi,x
(r)
j ), and R

n×c � Ξr := [ξ(r)−ξ(1), . . . , ξ(r)−ξ(c)].
The p leading columns of Y (so to have Y ∈ R

n×p) are the KFDA projection
directions which span the subspace. Note that p ≤ min(n, c − 1) because of the
ranks of the inter- and intra-class scatter matrices in the feature space [9].

3 Weighted Fisher Discriminant Analysis

The optimization of Weighted FDA (W-FDA) is as follows:

maximize
U

tr(U�ŜB U),

subject to U�SW U = I,
(9)
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where the weighted inter-class scatter, ŜB ∈ R
d×d, is defined as:

ŜB :=
c∑

r=1

c∑

�=1

αr� nr n�(μ(r) − μ(�))(μ(r) − μ(�))� =
c∑

r=1

nr M r Ar N M�
r ,

(10)

where R � αr� ≥ 0 is the weight for the pair of the r-th and �-th classes,
R

c×c � Ar := diag([αr1, . . . , αrc]). In FDA, we have αr� = 1, ∀r, � ∈ {1, . . . , c}.
However, it is better for the weights to be decreasing with the distances of
classes to concentrate more on the nearby classes. We denote the distances of
the r-th and �-th classes by dr� := ||μ(r) − μ(�)||2. The solution to Eq. (9) is the
generalized eigenvalue problem (ŜB ,SW ) and the p leading columns of U span
the subspace.

3.1 Existing Manual Methods

In the following, we review some of the existing weights for W-FDA.

Approximate Pairwise Accuracy Criterion: The Approximate Pairwise
Accuracy Criterion (APAC) method [13] has the weight function:

αr� :=
1

2 d2r�

erf
( dr�

2
√

2

)
, (11)

where erf(x) is the error function:

[−1, 1] � erf(x) :=
2√
π

∫ x

0

e−t2dt. (12)

This method approximates the Bayes error for class pairs.

Powered Distance Weighting: The powered distance (POW) method [14]
uses the following weight function:

αr� :=
1

dm
r�

, (13)

where m > 0 is an integer. As αr� is supposed to drop faster than the increase
of dk�, we should have m ≥ 3 (we use m = 3 in the experiments).

Confused Distance Maximization: The Confused Distance Maximization
(CDM) [15] method uses the confusion probability among the classes as the
weight function:

αr� :=
{ n�|r

nr
if k 	= �,

0 if r = �,
(14)

where n�|r is the number of points of class r classified as class � by a classifier such
as quadratic discriminant analysis [15,16]. One problem of the CDM method is



Weighted Fisher Discriminant Analysis in the Input and Feature Spaces 7

that if the classes are classified perfectly, all weights become zero. Conditioning
the performance of a classifier is also another flaw of this method.

k-Nearest Neighbors Weighting: The k-Nearest Neighbor (kNN) method
[17] tries to put every class away from its k-nearest neighbor classes by defining
the weight function as

αr� :=
{

1 if μ(�) ∈ kNN(μ(r)),
0 otherwise.

(15)

The kNN and CDM methods are sparse to make use of the betting on sparsity
principle [1,18]. However, these methods have some shortcomings. For example,
if two classes are far from one another in the input space, they are not considered
in kNN or CDM, but in the obtained subspace, they may fall close to each other,
which is not desirable. Another flaw of kNN method is the assignment of 1 to
all kNN pairs, but in the kNN, some pairs might be comparably closer.

3.2 Cosine Weighted Fisher Discriminant Analysis

Literature has shown that cosine similarity works very well with the FDA, espe-
cially for face recognition [19,20]. Moreover, according to the opposition-based
learning [21], capturing similarity and dissimilarity of data points can improve
the performance of learning. A promising operator for capturing similarity and
dissimilarity (opposition) is cosine. Hence, we propose CW-FDA, as a manually
weighted method, with cosine to be the weight defined as

αr� := 0.5 × [
1 + cos

(
�(μ(r),μ(�))

)]
= 0.5 × [

1 +
μ(r)�μ(�)

||μ(r)||2||μ(�)||2
]
, (16)

to have αr� ∈ [0, 1]. Hence, the r-th weight matrix is Ar := diag(αr�,∀�), which
is used in Eq. (10). Note that as we do not care about αr,r, because inter-class
scatter for r = � is zero, we can set αrr = 0.

3.3 Automatically Weighted Fisher Discriminant Analysis

In AW-FDA, there are c + 1 matrix optimization variables which are V and
Ak ∈ R

c×c,∀k ∈ {1, . . . , c} because at the same time where we want to maximize
the Fisher criterion, the optimal weights are found. Moreover, to use the betting
on sparsity principle [1,18], we can make the weight matrix sparse, so we use
“�0” norm for the weights to be sparse. The optimization problem is as follows

maximize
U , Ar

tr(U�ŜB U),

subject to U�SW U = I,
||Ar||0 ≤ k, ∀r ∈ {1, . . . , c}.

(17)
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We use alternating optimization [22] to solve this problem:

U (τ+1) := arg max
U

(
tr(U�Ŝ

(τ)

B U)
∣∣ U�SW U = I

)
, (18)

A(τ+1)
r := arg min

Ar

(
− tr(U (τ+1)�ŜB U (τ+1))

∣∣ ||Ar||0 ≤ k
)
,∀r, (19)

where τ denotes the iteration.
Since we use an iterative solution for the optimization, it is better to nor-

malize the weights in the weighted inter-class scatter; otherwise, the weights
gradually explode to maximize the objective function. We use �2 (or Frobenius)
norm for normalization for ease of taking derivatives. Hence, for OW-FDA, we
slightly modify the weighted inter-class scatter as

ŜB :=
c∑

r=1

c∑

�=1

αr�∑c
�′=1 α2

r�′
nr n�(μ(r) − μ(�))(μ(r) − μ(�))� (20)

=
c∑

r=1

nr M r Ăr N M�
r , (21)

where Ăr := Ar/||Ar||2F because Ak is diagonal, and ||.||F is Frobenius norm.
As discussed before, the solution to Eq. (18) is the generalized eigenvalue

problem (Ŝ
(τ)

B ,SW ). We use a step of gradient descent [23] to solve Eq. (19)
followed by satisfying the “�0” norm constraint [22]. The gradient is calculated
as follows. Let R � f(U ,Ak) := −tr(U�ŜB U). Using the chain rule, we have:

R
c×c � ∂f

∂Ar
= vec−1

c×c

[
(
∂Ăr

∂Ar
)�(

∂ŜB

∂Ăr

)�vec(
∂f

∂ŜB

)
]
, (22)

where we use the Magnus-Neudecker convention in which matrices are vectorized,
vec(.) vectorizes the matrix, and vec−1

c×c is de-vectorization to c × c matrix. We
have R

d×d � ∂f/∂ŜB = −UU� whose vectorization has dimensionality d2. For
the second derivative, we have:

R
d2×c2 � ∂ŜB

∂Ăr

= nr (M r N�) ⊗ M r, (23)

where ⊗ denotes the Kronecker product. The third derivative is:

R
c2×c2 � ∂Ăr

∂Ar
=

1
||Ar||2F

( −2
||Ar||2F

(Ar ⊗ Ar) + Ic2

)
. (24)

The learning rate of gradient descent is calculated using line search [23].
After the gradient descent step, to satisfy the condition ||Ar||0 ≤ k, the solu-

tion is projected onto the set of this condition. Because −f should be maximized,
this projection is to set the (c−k) smallest diagonal entries of Ar to zero [22]. In
case k = c, the projection of the solution is itself, and all the weights are kept.

After solving the optimization, the p leading columns of U are the OW-FDA
projection directions that span the subspace.
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4 Weighted Kernel Fisher Discriminant Analysis

We define the optimization for Weighted Kernel FDA (W-KFDA) as:

maximize
Y

tr(Y �Δ̂B Y ),

subject to Y �ΔW Y = I,
(25)

where the weighted inter-class scatter in the feature space, Δ̂B ∈ R
n×n, is

defined as:

Δ̂B :=
c∑

r=1

c∑

�=1

αr� nr n�(ξ(r) − ξ(�))(ξ(r) − ξ(�))� =
c∑

r=1

nr Ξr Ar N Ξ�
r . (26)

The solution to Eq. (25) is the generalized eigenvalue problem (Δ̂B ,ΔW ) and
the p leading columns of Y span the subspace.

4.1 Manually Weighted Methods in the Feature Space

All the existing weighting methods in the literature for W-FDA can be used
as weights in W-KFDA to have W-FDA in the feature space. Therefore, Eqs.
(11), (13), (14), and (15) can be used as weights in Eq. (26) to have W-KFDA
with APAC, POW, CDM, and kNN weights, respectively. To the best of our
knowledge, W-KFDA is novel and has not appeared in the literature. Note that
there is a weighted KFDA in the literature [24], but that is for data integration,
which is for another purpose and has an entirely different approach.

The CW-FDA can be used in the feature space to have CW-KFDA. For
this, we propose two versions of CW-KFDA: (I) In the first version, we use
Eq. (16) or Ar := diag(αr�,∀�) in the Eq. (26). (II) In the second ver-
sion, we notice that cosine is based on inner product so the normalized ker-
nel matrix between the means of classes can be used instead to use the sim-
ilarity/dissimilarity in the feature space rather than in the input space. Let
R

d×c � M := [μ1, . . . ,μc]. Let K̂i,j := Ki,j/
√

Ki,iKj,j be the normalized
kernel matrix [25] where Ki,j denotes the (i, j)-th element of the kernel matrix
R

c×c � K(M ,M) = Φ(M)�Φ(M). The weights are [0, 1] � αr� := K̂r,� or
Ar := diag(K̂r,�,∀�). We set αr,r = 0.

4.2 Automatically Weighted Kernel Fisher Discriminant Analysis

Similar to before, the optimization in AW-KFDA is:

maximize
Y , Ar

tr(Y �Δ̂B Y ),

subject to Y �ΔW Y = I,
||Ar||0 ≤ k, ∀r ∈ {1, . . . , c},

(27)
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where Δ̂B :=
∑c

r=1 nr Ξr Ăr N Ξ�
r . This optimization is solved similar to how

Eq. (17) was solved where we have Y ∈ R
n×d rather than U ∈ R

d×d. Here,

the solution to Eq. (18) is the generalized eigenvalue problem (Δ̂
(τ)

B ,ΔW ). Let
f(Y ,Ak) := −tr(Y �Δ̂B Y ). The Eq. (19) is solved similarly but we use Rn×n �
∂f/∂Δ̂B = −Y Y � and

R
c×c � ∂f

∂Ar
= vec−1

c×c

[
(
∂Ăr

∂Ar
)�(

∂Δ̂B

∂Ăr

)�vec(
∂f

∂Δ̂B

)
]
, (28)

R
d2×c2 � ∂Δ̂B

∂Ăr

= nr (Ξr N�) ⊗ Ξr. (29)

After solving the optimization, the p leading columns of Y span the OW-KFDA
subspace. Recall Φ(U) = Φ(X)Y . The projection of some data Xt ∈ R

d×nt is
R

p×nt � X̃t = Φ(U)�Φ(Xt) = Y �Φ(X)�Φ(Xt) = Y �K(X,Xt).

5 Experiments

5.1 Dataset

For experiments, we used the public ORL face recognition dataset [26] because
face recognition has been a challenging task and FDA has numerously been used
for face recognition (e.g., see [19,20,27]). This dataset includes 40 classes, each
having ten different poses of the facial picture of a subject, resulting in 400 total
images. For computational reasons, we selected the first 20 classes and resampled
the images to 44×36 pixels. Please note that massive datasets are not feasible for
the KFDA/FDA because of having a generalized eigenvalue problem in it. Some
samples of this dataset are shown in Fig. 1. The data were split into training and
test sets with 66%/33% portions and were standardized to have mean zero and
variance one.

Fig. 1. Sample images of the classes in the ORL face dataset. Numbers are the class
indices.
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5.2 Evaluation of the Embedding Subspaces

For the evaluation of the embedded subspaces, we used the 1-Nearest Neighbor
(1NN) classifier because it is useful to evaluate the subspace by the closeness of the
projected data samples. The training and out-of-sample (test) accuracy of classi-
fications are reported in Table 1. In the input space, kNN with k = 1, 3 have the
best results but in k = c − 1, AW-FDA outperforms it in generalization (test)
result. The performances of CW-FDA and AW-FDA with k = 1, 3 are promising,
although not the best. For instance, AW-FDA with k = 1 outperforms weighted
FDA with APAC, POW, and CDM methods in the training embedding, while has
the same performance as kNN. In most cases, AW-FDA with all k values has better
performance than the FDA, which shows the effectiveness of the obtained weights
compared to equal weights in FDA. Also, the sparse k in AWF-FDA outperform-
ing FDA (with dense weights equal to one) validates the betting on sparsity.

Table 1. Accuracy of 1 NN classification for different obtained subspaces. In each cell
of input or feature spaces, the first and second rows correspond to the classification
accuracy of training and test data, respectively.

FDA APAC POW CDM kNN

(k = 1)

kNN

(k = 3)

kNN

(k = c − 1)

CW-

FDA

version 1

CW-

FDA

version 2

AW-

FDA

(k = 1)

AW-

FDA

(k = 3)

AW-FDA

(k =

c − 1)

Input 97.01%97.01%97.01%74.62%97.76% 97.76% 97.01% 97.01% – 97.76% 97.01% 96.26%

space 92.42%93.93%96.96%45.45%96.96% 98.48% 92.42% 92.42% – 87.87% 93.93% 93.93%

Feature97.01%97.01%97.01%91.79%95.52% 97.76% 97.01% 97.01% 97.01% 100% 100% 100%

space 83.33%86.36%89.39%77.27%80.30% 83.33% 83.33% 84.84% 87.87% 100% 100% 100%

Fig. 2. The leading Fisherfaces in (a) FDA, (b) APAC, (c) POW, (d) CDM, (e) kNN,
(f) CW-FDA, and (g) AW-FDA.

In the feature space, where we used the radial basis kernel, AW-KFDA has the
best performance with entirely accurate recognition. Both versions of CW-KFDA
outperform regular KFDA and KFDA with CDM, and kNN (with k = 1, c − 1)
weighting. They also have better generalization than APAC, kNN with all k
values. Overall, the results show the effectiveness of the proposed weights in the
input and feature spaces. Moreover, the existing weighting methods, which were
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for the input space, have outstanding performance when used in our proposed
weighted KFDA (in feature space). This shows the validness of the proposed
weighted KFDA even for the existing weighting methods.

5.3 Comparison of Fisherfaces

Figure 2 depicts the four leading eigenvectors obtained from the different meth-
ods, including the FDA itself. These ghost faces, or so-called Fisherfaces [27],

Fig. 3. The weights in (a) APAC, (b) POW, (c) CDM, (d) kNN with k = 1, (e) kNN
with k = 3, (f) kNN with k = c − 1, (g) CW-FDA, (h) AW-FDA with k = 1, (i)
AW-FDA with k = 3, (j) AW-FDA with k = c − 1, (k) CW-KFDA, (l) AW-KFDA
with k = 1, (m) AW-KFDA with k = 3, (n) AW-KFDA with k = c − 1. The rows and
columns index the classes.
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capture the critical discriminating facial features to discriminant the classes in
subspace. Note that Fisherfaces cannot be shown in kernel FDA as its projec-
tion directions are n dimensional. CDM has captured some pixels as features
because its all weights have become zero for its explained flaw (see Sect. 3.1 and
Fig. 3). The Fisherfaces, in most of the methods including CW-FDA, capture
information of facial organs such as hair, forehead, eyes, chin, and mouth.

The features of AW-FDA are more akin to the Haar wavelet features, which
are useful for facial feature detection [28].

5.4 Comparison of the Weights

We show the obtained weights in different methods in Fig. 3. The weights of
APAC and POW are too small, while the range of weights in the other methods is
more reasonable. The weights of CDM have become all zero because the samples
were purely classified (recall the flaw of CDM). The weights of kNN method
are only zero and one, which is a flaw of this method because, amongst the
neighbors, some classes are closer. This issue does not exist in AW-FDA with
different k values. Moreover, although not all the obtained weights are visually
interpretable, some non-zero weights in AW-FDA or AW-KFDA, with e.g. k = 1,
show the meaningfulness of the obtained weights (noticing Fig. 1). For example,
the non-zero pairs (2, 20), (4, 14), (13, 6), (19, 20), (17, 6) in AW-FDA and the
pairs (2, 20), (4, 14), (19, 20), (17, 14) in AW-KFDA make sense visually because
of having glasses so their classes are close to one another.

6 Conclusion

In this paper, we discussed that FDA and KFDA have a fundamental flaw, and
that is treating all pairs of classes in the same way while some classes are closer
to each other and should be processed with more care for a better discrimina-
tion. We proposed CW-FDA with cosine weights and also AW-FDA in which
the weights are found automatically. We also proposed a weighted KFDA to
weight FDA in the feature space. We proposed AW-KFDA and two versions
of CW-KFDA as well as utilizing the existing weighting methods for weighted
KFDA. The experiments in which we evaluated the embedding subspaces, the
Fisherfaces, and the weights, showed the effectiveness of the proposed methods.
The proposed weighted FDA methods outperformed regular FDA and many of
the existing weighting methods for FDA. For example, AW-FDA with k = 1 out-
performed weighted FDA with APAC, POW, and CDM methods in the training
embedding. In feature space, AW-KFDA obtained perfect discrimination.
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