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Abstract. In order to support and promote new ways of learning, educational
technology should be based on sophisticated theories and models of learning.
Many issues are raised in the current understanding of learning by the constant
evolution of educational technology and the burgeoning of educational contexts
using these technologies. By examining the relation between agency and
learning gains using a Serious Game for learning Physics, the present study
focuses on a main issue of technology use: whether actively playing the game or
watching someone play is beneficial for learning. Thirty-seven dyads partici-
pated in the study. Randomly assigned, one participant played a Serious Edu-
cational Game for learning Physics, Mecanika (Boucher-Genesse et al. 2011),
for 120 min, while the other participant watched the player’s gameplay in real-
time on a separate screen. As pretest and posttest, the Force Concept Inventory
(FCI; Hestenes et al. 1992) was administered to measure learning gains in
Physics. Analyses of answers on the FCI demonstrate that a Serious Game, such
as Mecanika, is beneficial to learning, regardless if learning is conceived as
relatively coarse shifts from wrong to good answers (scientific conceptions) or
as more nuanced shifts from fillers/misconceptions to scientific conceptions.
Also, individual differences in learning gains across dyads were found, which
can be explained by the gameplay of a dyad created by the active player.
Furthermore, the effect of agency is systematic and not modulated by individual
differences: watchers learn more than players. These results need to be further
explained by modeling the learning process.
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1 Introduction

According to Stephanidis, Salvendy and their group of experts (2019), how technology
can be used to its full potential to foster learning is still vastly an open question after
decades of research and technological evolution. Technology use for learning
encompasses old as well as new issues including privacy and ethics, learning theories
and models, and pedagogical aspects. These issues translate into current challenges for
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With respect to learning theories and models, educational technology should strive
to support and promote new ways of learning, creative learning and lifelong learning
for all learners, avoiding to focus on tech-savvy generations. The field should aim to
design technologies focusing on the needs of learners and educators that are gracefully
embedded in the educational process and do not disrupt learners and teachers, and to
design serious games featuring the appropriate balance between seriousness and fun,
and be driven by tangible educational needs and not by new technological capabilities.
The field should address unprecedented challenges related to privacy and ethics, such
as the extensive monitoring of students (potentially under-age) by data-gathering
software, sensors and algorithms, such as the parent issues of data ownership, and such
as management as well as human rights concerns (e.g. potential for excessive control
restricting the freedom of the individual). In terms of pedagogical aspects, key aspects
still in need of improvement include the involvement of educators in the design of
learning technologies, a serious and multi-faceted assessment of long-term impact of
learning technologies, support for personalized creativity and for the amplification of
human creative skills, for the entire spectrum of creative activities including in smart
environments, blending digital and physical artifacts.

Despite more or less direct ramifications regarding the previous issues, the present
work focuses on learning theories and models. In particular, the study presented
examines the accepted notion that active learning fosters learning gains.

In learning about real-world phenomena from observations without having acquired
scientific conceptions, one develops misconceptions which wrongly predict phenomena
that do not correspond to current scientific knowledge. Such misconceptions are
constructed through interactions with the environment, which do not provide all the
information necessary to construct scientifically-valid explanations. In this context,
Clark’s (2013) prediction-action model posits that learning occurs when these mis-
conceptions are surmounted by input that make prediction errors manifest. In this view,
teaching and fostering learning involve providing input that will ultimately lead a
learner to formulate predictions adequately representing the state of the world.

An interactive learning environment providing simulations of Physics phenomena
should help learners test their worldview against scientific conceptions embedded in the
simulations. In this context, agency should also be beneficial to learning because the
possibility to control the simulations should optimize the testing of predictions. To the
contrary, it was shown elsewhere that agency was detrimental to learning (Mercier,
Avaca, Whissell-Turner, Paradis and Mikropoulos, this volume, submitted). The
objective of this study is to refine the previous results by examining if a computer-
based interactive learning environment is beneficial to learning, and to verify if the
effect of agency on learning is modulated by individual differences.

2 Theoretical Framework

2.1 A Prediction-Action View of Learning and Agency

In the context of a prediction-action framework, Lupyan and Clark (2015) provide a
pivotal question for the design of serious games for learning by suggesting what one
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knows ought to change what one sees. Globally, a prediction-action framework
explains learning as the production of representations at multiple levels of abstraction,
so that a given level predicts the activity in the level below it. Also, reducing prediction
error in the present enable better predictions in the future.

That is, higher-level predictions currently used are informed by priors (prior beliefs,
usually taking the form of nonconscious predictions or expectations) concerning the
environment. Prior beliefs or lower-level neural expectations are statistically optimal in
the sense that they represent the overall best method for inferring the state of the
environment from the ambient conceptual and sensory evidence. A prediction-action
framework seems to articulate perception and attention as optimal (Bayesian) ways of
combining sensory evidence with prior knowledge in the process of learning. Predictive-
processing models are based on an asymmetry between the forward and backward flow
of information: The forward flow computes residual errors between predictions and the
information from the environment, while the backward flow delivers predictions to the
appropriate level. The forward flow also escalates high-information contents upward by
pushing unexplained elements of the lower-level sensory signal upward so that the
appropriate level selects new top-down hypotheses that are better able to accommodate
the present sensory signal. One can sometimes become aware of them when they are
violated (Lupyan and Clark 2015). This long-term error-reduction mechanism can be
thought of as responsible for academic learning.

In sum, Lupyan and Clark (2015) propose that the learning of a symbolic language
(verbal or mathematical) may modulate the recruitment of prior knowledge and the
artificial manipulation, at any level of processing, of the relative influence of different
top-down expectations and bottom-up sensory signals. These manipulations, which can
be communicated to others, could selectively enhance or mute the influence of any
aspect, however subtle or complex, of our own or another agent’s world model.
Exposure to and the acquisition or learning of a symbolic language (whether shared or
self-produced) leverages the exploration and exploitation of our own knowledge as
well as the knowledge of others. In the context of designer learning environments, the
possibility to manipulate their features by directly interacting with them should opti-
mize the prediction-action by improving the fit between the predictions formulated and
the predictions tested by the learner. In contrast, without this possibility of agency, the
fit between the predictions tested and the current predictions of a learner is necessarily
lessened.

2.2 Learning Analytics and the Design of Serious Games for Learning

Learning Analytics and their Potential Uses. Serious Games have already showed
their advantages in different educational environments (Stephanidis, Salvendy et al.
2019). Game Learning Analytics can further improve serious games, by facilitating
their development and improving their impact and adoption (Alonzo-Fernandez et al.
2019).

Game Learning Analytics (hereafter GLA) is an evidence-based methodology
based on in-game user interaction data, and can provide insight about the game-based
educational experience and outcomes, like validating the adequation of the game
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design to the educational goals. Besides providing a visual in-game follow-up, GLA
can verify if the game in question is accessible to the target population as expected.
Another great advantage of GTA that could redefine educational assessment is its
capability to predict in-game learning gains.

Alonzo-Fernandez and her colleagues (2019) used GTA for serious games in order
to evaluate game design and deployment processes. Alonzo-Fernandez et al. (2019)
asserts that the design of games should be based on clear goals, and specify how the
attainment of these goals are to be measured with interaction data adequately collected.
Additionally, the use of learning analytics is greatly facilitated if, from the very
beginning, games are designed so that data can be extracted from them and provide the
information required to validate the games and assess the process and outcomes of
learning with students using them. Early uses of GTA in designing Serious Games are
also possible. Effectively GTA allows to remotely collect and analyze data and feed-
backs during a beta testing on target users. This way, potential problems could be
quickly solved and the game can be largely deployed. In addition, improvements for
subsequent versions of an already deployed game could be leveraged by players’
interaction data.

Optimal Serious Games’ criteria emerged from Alonzo-Fernandez and her col-
leagues (2019) observations regarding assessment. A main recommendation is to keep
in mind that Serious Games are not only created to play and learn, but ultimately to
collect data on evidence-based learning assessment. To do so, conception of Serious
Games need to take into account the types of data wished to be collected and the
standard format of GLA data.

The work of Alonzo-Fernandez et al. (2019) showcases the importance of game
learning analytics in different contexts, even when being used as the sole means to
obtain players feedback. While his experiments of GLA were conducted in various
reals contexts pursuing diverse goals, Alonzo-Fernandez et al. (2019) suggest the
exploitation of GLA in the context of Serious Educational Games.

Westera (2018) presents a computational model for simulating how people learn
from serious games based on simulation studies across a wide range of game instances
and player profiles for demonstrating model stability and empirical admissibility. While
avoiding the combinatorial explosion of a game micro-states, the model offers a meso-
level pathfinding approach, which is guided by extant research from the learning
sciences. The model can be used to assess learning from (or with) the serious game and
for investigating quantitative dependences between relevant game variables, gain
deeper understanding of how people learn from games, and develop approaches to
improving serious game design. With this in mind, simulation models can also be used
as an alternative to using test players as the only source of information, to improve
game design. To reduce overall complexity and to avoid model overfitting and the
combinatorial explosion of game states and player states, the model focuses on meso-
level aggregates that constitute meaningful activities. It accounts for discrete-time
evolution, failure, drop-out, revisit of activities, efforts made and time spent on tasks.

According to Westera (2018), advances in learner data analytics, stealth assess-
ment, machine learning and physiological sensors for capturing such data represent
new additional ways to enrich the constituents of the model. Ultimately, the compu-
tational modelling approach would help to design serious games that are more effective
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for learning. So far, however, conditions for empirical validation with real players are
only partially met, since some of the learner model’s variables are still hard to record
without the appropriate interdisciplinary work in cognitive science merging psychol-
ogy, neuroscience and education, such as the real-time progression of motivation and
flow.

Real-world, authentic experiments should be based on discrete events at longer
time scales and aggregates of finer-grained events constituting an approximation of the
model rather than the full discrete-time evolution version (Westera 2018). At a given,
typically longer, temporal grainsize, self-report instruments and performance measures
can be used to capture additional data.

Modeling for Assessing Learning Gains. The main interlinked constituents of the
model are the knowledge model, the player model and the game model. The productive
outcomes of a serious game need to be expressed as knowledge gains Westera (2018).
As such, they are the easiest aspect to model, requiring only the knowledge model. The
knowledge model is generally expressed as a knowledge tree of operationalized
learning goals or learning outcomes (e.g. skills, facts, competences) while child nodes
in the tree have a precedence relationship with their parent nodes. While the game is
represented as a network of meso-level activity nodes, each activity in the game is
allowed to address one or more nodes from the knowledge tree. Each activity in the
game is characterized by prior knowledge requirements and by an inherent complexity.

To explain learning gains, the player model accounts for the player’s mental states,
preferences and behaviors. Only few primary player factors will be taken into account:
overall intelligence, knowledge state, and motivation. While both intelligence and prior
knowledge refer to the player’s learning capability, motivation is linked to personal
attitudes, emotions and ambitions. Westera (2018) purports that these are exactly the
key dimensions that reflect the potential of serious games: learning new knowledge
from serious games, while benefitting from their motivational power. These elements
can be further detailed to reflect the state of the art in the learning sciences.

Then, after updating the player’s knowledge states, the whole cycle is repeated for
the next time step, while the player progresses in the game. In each time step (Ar) the
player’s knowledge state must be updated to account for the knowledge gained during
that period of time.

Following the classic approach in intelligent tutoring systems research, a node in
the knowledge tree, as a parent, combines, integrates and extends all child nodes, the
process of mastering a parent node inherently contributes to the further mastery of all
subordinate nodes in the parent tree. Hence, the updating process should also be
applied for updating the respective child node states and deeper subordinate levels. As
a consequence, mastering a parent node in the game, be it partially, will directly
contribute to knowledge gains in all conditional nodes in the knowledge tree.

Each activity is supposed to somehow contribute to the mastery of learning goals,
which means that a mapping of knowledge nodes to game activities is needed. Such
mapping is not always straightforward, depending on the type of serious game (edu-
cational simulations, Serious Games, Serious Educational Games). Educational simu-
lations as interactive representations of real-world phenomena used to practice tasks to
be eventually performed in the real world and may be the least easy to map. Serious
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Games are designed to develop skills in performing tasks using realistic situations and
may contain by design a mapping of the knowledge. Serious Educational Games may
be easiest to map in that they are similar to Serious Games but incorporate specific a
priori pedagogical approaches to not only develop skills but teach specific learning
content as well (Lamb et al. 2018). In all cases, various methodologies are available for
defining the mapping, for instance Evidence-Based Design and Bayesian nets for
stealth assessment (Shute 2011).

Modeling for Improving Game Design. To bolster efficiency, serious game design
should be paired with instructional design, to optimize the use of game mechanics from
entertainment and instructional principles. Appropriate modeling is essential to grasp
the complexity of learning from and with serious games, in order to construct the
required research base so that game design and instructional design cease to be viewed
as ill-structured, artistic domains.

Improving game design through modeling is much more complex than modeling
for assessing learning gains, requiring all three main interlinked constituents of the
model (the knowledge model, the player model and the game model). The model
Westera (2018) provides a proof of principle of a computational modelling method-
ology for serious games involving the three constituents that provides stable, repro-
ducible and plausible results. Leveraging this approach however will require more
detailed game states and player states, and careful tradeoffs to contain the combinatorial
explosion of possible states.

Within the player model, players are characterized by intelligence, prior knowledge
and susceptibility to flow, while their motivation and learning progress is evaluated and
continually updated during their progression in the game. One limitation identified by
Westera (2018) is that the model does not include cognitive models of human learning,
but instead just relies on the phenomenology of the process of play. Connecting with
existing models of human cognition would allow for including a multitude of psy-
chological constructs, be it at the expense of simplicity.

Finally, the game model requires a knowledge tree indicating the learning objec-
tives, and a set of game activities, possibly annotated with complexity and attrac-
tiveness indices. One limitation identified by Westera (2018) is that the model bypasses
the complexities of instructional content and didactics by postulating that engagement
in a game activity entails a productive learning experience. Second, although “game
activities” are a key concept in the model, the meso-level indication does not say much
about their grainsize. In fact, the model is ignorant and indifferent about the grainsize.

2.3 Hypotheses and Research Questions

In light of the previous considerations, this study investigates three hypotheses and two
research questions:

Hypothesis 1: A serious game is beneficial to learning when learning is conceived
of as shifts to scientific conceptions.

Hypothesis 2: A serious game is beneficial to learning when learning is conceived
of as shifts among misconceptions, fillers and scientific conceptions.

Hypothesis 3: There are individual differences in learning across dyads.
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Is the effect of agency on learning modulated by individual differences when
learning is conceived of as shifts to scientific conceptions?

Is the effect of agency on learning modulated by individual differences when
learning is conceived of as shifts among misconceptions, fillers and scientific
conceptions?

3 Method

3.1 Sample

For this study, 82 paid volunteers (60$) were recruited in undergraduate programs
(primary education, special education, philosophy, and sociology) at University of
Quebec at Montreal by the research coordinator who presented the research project in
numerous classes. Only one participant is studying in another French-language uni-
versity, University of Montreal, and was recruited by word of mouth. Since participants
could volunteered individually or with a teammate, some participants were also
recruited by snowball effect with respect of all including criteria. Participants volun-
teering in pairs formed a dyad for the experimentations, while individual volunteers
were matched based on lab schedule and their respective availabilities. Students who
attended a Physics class after high school, had severe skin allergies, had a pacemaker or
had epilepsy were not included in the study. Moreover, the exclusion criteria included
being under 18 years old or graduate students. Hence, 41 dyads of undergraduate
students with novice background in Physics participated in the study.

The mean age of the remaining sample was 25.7 years old (ages ranged from 18 to
45 years old). There was 43 (58.10%) females and 31 males (41.89%). Most of the
participants were right-handed (87.8%). Even though few players were left-handed,
they reported using their right hand while using the computer mouse. A total of 22
players (29.73%) and 23 watchers (31.08%) declared a 10™ grade knowledge level in
Physics, and 13 players (17.57%) and 13 watchers (17.57%) in 11" grade. It was
decided to kept the participant (player) who took a basic physic class at college in the
sample, as well as the two participants (1 player and 1 watcher) who were previously
educated in another school system because those two reported that they did not attend
any Physics class after high school.

3.2 Task and Settings

Mecanika is a serious computer game developed by Boucher-Genesse et al. (2011).
The game addresses 58 widespread misconceptions in Newtonian Physics (see
Hestenes et al. 1992). Each of the 50 levels involves making an object move according
to a given trajectory by applying different types of force to it. This involves choosing
the right type(s) of force, the quantity of sources, and their appropriate positioning. The
level is completed when the requested trajectory is entirely respected. In the view
presented earlier, Mecanika is a tool to command a generative model of Newtonian
mechanics and to test predictions about how physical objects behave.
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In our paradigm, participants either played Mecanika or watched the player on a
separate screen in real time. Their respective roles were randomly assigned. Participants
progressed through the levels by achieving them or by being instructed to skip them
after 20 min of play. This stop rule was apply in rare cases, in average, dyads skipped a
level 4.3% of the total number of levels played. The task length was 2 h precisely
(120 min); participants were stopped from playing without notice and research assis-
tants entered the room, immediately talking to the participants and beginning their
uninstallation. In average, each dyad played through 28.7 levels.

3.3 Measures

The Force Concept Inventory (FCI; Hestenes et al. 1992) is a widely used question-
naire designed to measure Newtonian’s physic knowledge through six main concepts
which are the three laws (first, second, and third), superposition principle, kinematics,
and kinds of forces (see Fig. 1 for an example). Hestenes et al. (1992) has shown its
equivalence to its predecessor, the Mecanics Diagnostic, and argued for its use as a
diagnostic tool to identify misconceptions and for evaluating instruction, both in
practical settings as well as research. The French adaptation of the FCI was adminis-
tered immediately pre and post gameplay to establish learning gains attributable to the
intervention.

8. Which of the paths below would the puck most closely follow after receiving the kick?
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Fig. 1. Example of question from the Force Concept Inventory (FCI; Hestenes et al. 1992)

The FCI comprises 30 multiple-choice questions in which the choices reflect either
the scientific conception underlying the question, documented misconceptions
regarding the target knowledge, or fills that are wrong but not related to documented
misconceptions. As can be seen in Figs. 2 and 3, the knowledge model of the game
corresponds exactly to the structure of the FCI. It should be noted that each of the levels
in Mecanika are specifically designed to address at least one conception/misconception
within the FCL
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3.4 Data Preparation and Plan of Analysis

For each question in the FCI, transitions between the pretest and posttest were coded.
Learning is operationalized in two manners in the present study, because both ways
provide complementary evidence by either insisting on learning gains or on the nature
of conceptual change.
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In the first coding, the nine possible transitions from pretest to posttest were: Fill to
Fill, Misconception to Fill, Scientific to Fill, Fill to Misconception, Misconception to
Misconception, Scientific to Misconception, Scientific to Scientific, Fill to Scientific,
and Misconception to Scientific.

Then, in the second coding, Fills and Misconceptions were collapsed as wrong
answers (Error), leaving only the following 4 transitions: Error to Error, Error to
Scientific, Scientific to Error, Scientific to Scientific.

Statistical tests according to the hypotheses and research questions were con-
structed using the loglinear approach since the data are categorical. The SAS CAT-
MOD procedure was used (SAS Institute 2013), which provides a test of the influence
of each factor, much like a usual factorial analysis of variance, but without an indi-
cation of effect size.

4 Results

The analysis shows that hypothesis 1 is accepted. A serious game is beneficial to
learning when learning is conceived of as shifts to scientific conceptions.
(x_% = 1558.02, p < .0001). In addition to the 16.44% of answers already correct at
pretest, combined for players and watchers, 12.04% of wrong answers at pretest
transitioned to good answers at posttest.

Hypothesis 2 is also accepted. A serious game is beneficial to learning when
learning is conceived of as shifts among misconceptions, fillers and scientific con-
ceptions (y3 = 2808.86, p < .0001). In addition to the 16.44% of answers already
correct at pretest, wrong answers transitioned from fillers (1.36%) and misconceptions
(10.69%) to good answers.

Finally, hypothesis 3 is accepted. There are individual differences in learning
(x3, = 149.22, p < .0001). Dyads did not perform equally, and this is attributable to
the unique experience created by the gameplay of the player of a given dyad.

The results for the question “Is the effect of agency on learning modulated by
individual differences when learning is conceived of as shifts to scientific concep-
tions?” show that the effect of agency is not modulated by individual differences in
learning (33, = 77.90, p = .58). Systematically, watchers learn more than players (see
Table 1).

Finally, the question “Is the effect of agency on learning modulated by individual
differences when learning is conceived of as shifts among misconceptions, fillers and
scientific conceptions?” could not be tested because of empty cells. Some of the nine
possible transitions from pretest to posttest were too few or nonexistent.
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Table 1. Transitions between pretest and posttest on the Force Concept Inventory (collapsing
fills and misconceptions as wrong answers) by agency (player or watcher).

Agency | Transitions between pretest and

posttest

EtoE | EtoS |StoE | StoS | Total
Frequency | Players | 786 |134 |95 197 1212
Percent 32.31(5.51 [3.90 [8.10 [49.82
Row % 64.85|11.06 |7.84 |16.25
Col % 50.51|45.73 |51.63 | 49.25
Frequency | Watchers | 770 | 159 | 89 203 1221
Percent 31.65|6.54 |3.66 |8.34 |50.18
Row % 63.06|13.02|7.29 |16.63
Col % 49.49 | 54.27 | 48.37 | 50.75
Frequency | Total 1556 [293 | 184 400 |2433
Row % 63.95|12.04 |7.56 |16.44 |100.00
E = Error

S = Scientific conception

5 Discussion

The hypotheses and questions examined in this study jointly reveal that a serious game
is beneficial to learning when learning is conceived of as shifts to scientific conceptions
or as shifts among misconceptions, fillers and scientific conceptions. There are indi-
vidual differences in learning in the sense that dyads did not perform equally, and this is
attributable at least in part to the unique experience created by the gameplay of the
player of a given dyad. Systematically, watchers learn more than players.

The findings regarding learning are in line with the theory and previous work.
Because the impact of Serious Games may be highly dependent on the educational
environments I which they are used (Stephanidis, Salvendy et al. 2019), it is interesting
to note that the present learning gains attribution to a single, short gameplay episode
complements a previous study by another team about the effectiveness of Mecanika
(Boucher-Genesse et al. 2011), involving the same population used in this study but
repeated play over weeks, which showed that playing the game was associated with a
30% gain in good answers on corresponding items of the same knowledge test, the
Force Concept Inventory.

This clear and repeated empirical demonstration of the efficiency of the game is
certainly facilitated by the clear relationship between game design and measures of
knowledge gains in the form of the same knowledge model and supports Alonzo-
Fernandez et al. (2019) assertion that the design of games should be based on clear
learning goals.

By also stressing a need to specify how the attainment of the learning goals
embedded in a Serious Game are to be measured, especially with interaction data,
Alonzo-Fernandez and her colleagues (2019) corroborates the key elements required to
further explain the patterns of results reported in the present study. This explanation is
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especially required in the case of the present observation that active players system-
atically learn less than the passive watchers, which goes against prevalent intuitions in
education as well as a major psychophysiological and cognitive theory of human
functioning and learning that is highly relevant to the study of Serious Games, namely
a prediction-action framework as recently discussed by Lupyan and Clark (2015).

Since some dyads did significantly better than others in terms of individual
learning, and thus that this learning is influenced by the common experience provided
by the gameplay of the dyad’s player, is it possible to pinpoint the influence of the
gameplay on the individuals’ learning by using a fine-grained record of affective and
cognitive processes of the players and watchers, constructed from continuous psy-
chophysiological measures of cognition and affect?

It was shown elsewhere (Mercier et al., in press) that comparing means of around
7200 data points per participant representing second by second variations in cognitive
load and cognitive engagement between groups (players and watchers) using traditional
analysis of variance methods was hampered by a lack of statistical power. This real-
ization, along with the present results showing individual differences in learning and
the commonalities of this learning within dyads sharing a common gameplay experi-
ence, points to the need for within-subject analytic approaches linking aspects of
performance (number of trials, time on task, etc.) with psychophysiological indexes
such as cognitive load and cognitive engagement measured during a Mecanika level
that ultimately led to a shift to a scientific conception. These analytic approaches could
lead to a better understanding of the gaming experience that, in turn, could lead to a
deeper understanding of relevant issues about the design of serious games. Extending
the model developed by Westera (2018) is key in this endeavor. Now that a compu-
tationally tractable model has become available, the next research steps involve
strengthening the construct validity and ecological validity of the model by including
theoretically-sound concepts from extent research from the learning sciences. Then,
additional studies are needed for the empirical validation of the model across a wide
range of serious games, along with serious game theory development and ultimately the
development of predictive systems and tools.

Extensions of the present work should contribute to the aims identified by Alonzo-
Fernandez et al. (2019) by thickening the information that can be collected online
during gameplay. The use of self-administered questions measuring knowledge gains
attributable to gameplay could be an additional source of precious data. In addition, the
manipulation of the context of use (agency), there is also a need to improve upon data
sources used in learning analytics. Gains in information about the learner and the
learning process are generally accompanied by efforts in gathering, preparing, trans-
forming and interpreting data. Following Westera (2018), the present study should be
finally extended by explorations of the relationships between the available knowledge
model, the player model currently under development and the game model, which
remains underdeveloped at this time.
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