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Non-Linear or Quasi-Linear Viscoelastic
Property of Blood for Hemodynamic Simulations
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Abstract Hemodynamic simulations with the complex rheology of blood is still a
challenge. They can be used to obtain an auxiliary clinical tool, as close as possible
to reality, with great potential for the development of preventive measures, diagnosis
and treatment of cardiovascular diseases. A wide range of models defining the
rheological behavior of blood, ranging from the Newtonian to the purely shear-
thinning non-Newtonian models have been used by many authors. However, in
vessels, such as carotid or coronary arteries, the validity of such simplified models for
blood is not completely clear, mainly in stenotic or aneurysm cases - regions of high
velocity gradients. It is well-known, from literature, that blood has complex rheology,
behaving as a viscoelastic non-Newtonian fluid due to the storage and release of
elastic energy from red blood cells aggregates. Therefore, authors of the present
work implemented the viscoelastic property of blood, in UDFs of Ansys® software,
in order to simulate the most accurate hemodynamics. Afterwards, the velocity
contours, in the middle plane of a 3D idealized coronary artery, were obtained
considering the purely shear-thinning model, Carreau model, and two viscoelastic
non-Newtonian models. Using the Generalized Oldroyd-B, a quasi-linear model,
the viscoelastic effects are not highlighted. Comparing results taking into account
the multi-mode Giesekus, a non-linear model, and Carreau model, differences are
significant and equal to 0.20 m/s under a maximum velocity of 1.40 m/s (14.3%).
Using the multi-mode Giesekus model, the viscoelastic effects are pronounced in
addition to the shear-thinning, mainly in regions with high velocity gradients as the
stenotic region.
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8.1 Introduction

Hemodynamic simulations have proven to be an auxiliary clinical tool with great
potential for the development of preventive measures, diagnosis and treatment of
cardiovascular diseases. However, the numerical tool should mimic physiological
conditions and blood properties as close as possible to reality. There are several
models in the literature that can simulate the behavior of blood. Auffray et al (2015)
formulated a description for second gradient continua in order to mimic capillary
fluids, i.e, fluids for which the deformation energy depends on the second gradient
of placement. A Lagrangian action was introduced in both the material and spatial
descriptions. The corresponding Euler-Lagrange equations and boundary conditions
were found. These conditions were formulated in terms of an objective deformation
energy. Eremeyev and Altenbach (2014) have discussed the equilibrium equations
and natural boundary conditions also for a second-gradient fluid interacting with a
nonlinear elastic solid under finite deformations. They have also taken into account
the surface stresses acting at the surface of the solid according to the model. They
applied the variational approach based on the energy functional. Rickert et al (2019)
have described the flow of fluids with internal rotational degrees of freedom, for
example a blood plasma carrying red blood cells (RBC). This blood behavior can be
described by the theory of Eringen. Eringen’s approach, also known as the microp-
olar theory of fluids, relies on a consistent use of the complete spin balance and the
concept of the conservation of microinertia. They studied such fluids not only from
the mechanical point of view, i.e., determining the linear and angular velocities, but
also from a thermodynamic one, such as studying the generation of a temperature
field during the flow due to internal dissipation. Thus, this requires the balance of
momentum, spin and internal energy in combination.

Many authors specialized, concretely, in cardiovascular engineering field have
used a wide range of models defining the rheological behavior of blood, ranging
from the Newtonian to the purely shear-thinning non-Newtonian models. The par-
ticles are oriented randomly in the minimum energy states and the RBC in plasma
undergo reversible aggregation, the rouleaux (Thanapong Chaichana, Zhonghua Sun,
2012; De Santis et al, 2013; Lee et al, 2008; Morbiducci et al, 2011; Van Canneyt
et al, 2013). However, in vessels, such as carotid or coronary arteries, the validity
of the Newtonian and the purely shear-thinning non-Newtonian hypotheses is not
completely clear, mainly in stenotic or aneurysm cases – regions of high velocity gra-
dients. It is well-known from literature that blood has a viscoelastic non-Newtonian
behavior (Baskurt and Meiselman, 2003; Bodnár et al, 2011; Campo-Deaño et al,
2013, 2015) due to the storage and release of elastic energy from RBC aggregates.
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Baskurt and Meiselman (2003) have described the way in which blood viscosity is
affected by hematocrit, shear rate and red blood cells aggregation. They also empha-
size the importance of red blood cell deformability and list factors which affect the
cellular mechanical property. Campo-Deaño et al (2013) achieved, experimentally,
several parameters, namely the mobility factor and the extensibility coefficient, for
viscoelastic non-Newtonian models of blood at 37◦C –the multi-mode Giesekus and
simplified Phan-Thien-Tanner (sPTT) models. Later, Campo-Deaño et al (2015) pre-
sented a state-of-the-art review of the different models used in the hemodynamics,
focusing on modeling blood as a viscoelastic non-Newtonian fluid, in order to un-
derstand the role of the complex rheology of blood upon the dynamics in aneurysms.

Nevertheless, few authors have considered the viscoelastic property of blood in
numerical simulations. Bodnár et al (2011) demonstrated and quantified the most
relevant non-Newtonian characteristics of blood flow in vessels, namely its shear-
thinning and viscoelastic behavior. Numerical simulations, through a finite-volume
method, were performed in a 3D idealized stenosed vessel, with nominal vessel
diameter equal to 6.2 mm. Four models for blood were taken into account: the
Newtonian (NS) and the Generalized Newtonian (GNS) models; and the Oldroyd-B
(OB) and the Generalized Oldroyd-B (GOB) models. The NS model assumes con-
stant viscosity of blood at infinite shear rate, the GNS considers fluid with variable
shear-thinning viscosity, OB takes into account the elastic property of blood and
constant viscosity at infinite shear rate and GOB assumes the elastic property of
blood with variable shear-thinning viscosity. At constant flow rate, the impact of
non-Newtonian effects was observed and viscoelasticity of blood was highlighted.
Therefore, simulations considering the complex rheology of blood, viscoelasticity,
are of great interest since the most accurate hemodynamic is essential for clinical
practice. There is a need for the use of models depicting this behavior.

Thus, authors of the present paper want to take a step forward in the numerical
hemodynamic simulations through the implementation and validation of a more ac-
curate rheological model for blood in User-Defined Functions (UDF) associated to
the Ansys® software package. Ansys® software was chosen since it is a user-friendly
software, widely used by other authors. So that, the UDFs implemented by authors
of the present paper can be, in the future, easily used by other authors.

In the present work, a 3D idealized geometry of a stenosed bifurcation, mimicking
a right coronary artery (RCA) bifurcation, was chosen to show the accuracy of us-
ing the implemented viscoelastic models. Two different viscoelastic non-Newtonian
models also able to predict shear-thinning behavior - a Generalized Oldroyd-B
model, a quasi-linear model (Bird et al, 1987), and a multi-mode Giesekus model,
a non-linear model (Larson, 1988) - were compared with a simpler Generalized
Newtonian model – Carreau Model. For all models, time-dependent velocity and
pressure profiles of pulsatile flow and pressure waveforms, characteristics of a right
coronary artery, were imposed as boundary conditions for numerical simulations.
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8.2 Materials and Methods

8.2.1 Mathematical Models for Blood Rheology

The governing equations, taking into account the principles of mass conservation
and linear momentum conservation for an incompressible fluid, used in blood flow
dynamics, can be defined by:

∇ · u = 0

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+∇ · τττ (8.1)

where u is the velocity vector, ρ the blood density, p the pressure, t the instant time
and τττ the extra stress tensor. These governing equations can also describe fluids with
viscoelastic non-Newtonian behavior using a constitutive equation defining τττ .

Generally, the total stress τττ is expressed by the sum of the solvent part τττ s and the
elastic part τττ e:

τττ = τττ s + τττe (8.2)

where τττ s is equal to:

τττ s = 2μsD (8.3)

depending on the viscosity of the solvent part (μs) and the strain rate tensor (D).

The elastic stress, τττe, satisfies the following equations:

f(τττ e)τττ e + λ
�
τττ e + α

λ

μe
(τττ e · τττe) = 2μeD

f(τττ e) = 1 +
λε

μe
tr(τττ e)

(8.4)

where μe is the viscosity related to the elastic part of the fluid, α is the mobility
factor, ε the extensibility coefficient and

�
τττ e is the upper-convected derivative in the

elastic contribution of the extra stress tensor.

Since blood has complex rheology, three models were considered in order to
observe the importance of considering the viscoelasticity of blood in the hemo-
dynamics. The simplest model chosen is a Generalized Newtonian Model, purely
shear-thinning model (without viscoelasticity), through Carreau Model:

μs(γ̇) = μ∞ + (μ0 − μ∞)× [1 + (λγ̇)2]
n−1
2 (8.5)
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In this model, τττ is equal to τττ s and τττe is equal to 0. μs is the viscosity of the solvent
part and γ̇ the shear rate. For blood at 37◦C, the viscosity at infinite shear rate (μ∞)
is equal to 0.00345 Pa s, the viscosity at zero shear rate (μ0) equal to 0.056 Pa s, the
relaxation time (λ) is 3.313 s and the power index (n) equal to 0.3568 (Johnston et al,
2004).

Two different viscoelastic non-Newtonian models were used to also predict the
shear-thinning behavior of blood: the Generalized Oldroyd-B model and the multi-
mode Giesekus model.

The Generalized Oldroyd-B considers both the mobility factor (α) and the exten-
sibility coefficient (ε) of Equation (8.4) equal to 0 – a quasi-linear model (Bird et al,
1987). Thus, the constitutive equation becomes:

τττ e + λ
�
τττ e = 2μeD (8.6)

The viscosity related to the elastic part (μe) is equal to 4.0 × 10−6 Pa s and the
relaxation time (λ) is 0.06 s, for blood (Bodnár et al, 2011). The shear-thinning
viscosity (μs) was defined through Carreau Model represented by Equation (9.8)
and parameters for blood are the same as defined previously (Johnston et al, 2004).

The Giesekus model, defining viscoelasticity and shear-thinning, was used in
multi-mode form. Each mode number is defined by k. The viscoelastic multi-mode
Giesekus model does not take into account the extensibility coefficient (ε) of Equation
(8.4) (ε = 0). However, the model considers the mobility factor (α). Therefore,
the viscoelastic multi-mode Giesekus model is a non-linear model (Larson, 1988)
represented by:

τττek + λk
�
τττ ek +

αkλk

μek

(τττ ek · τττek) = 2μekD (8.7)

The total elastic stress (τττ e) is the sum of the elastic stress of each k mode (τττek )
in the total of m modes.

τττe =

m∑
k=1

τττ ek (8.8)

Parameters of the multi-mode Giesekus for whole human blood were obtained
experimentally by Campo-Deaño et al (2013) and can be shown in Table 9.1.

In addition to the shear-thinning and viscoelastic property of blood, blood was
also considered as isotropic, incompressible and homogeneous fluid with constant
density (ρ = 1060 kg/m3).
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Table 8.1 Parameters of the multi-mode Giesekus model for human blood (Campo-Deaño et al,
2013)

Mode μek [Pa · s] λk [s] αk

1 0.05 7 0.06

2 0.001 0.4 0.001
3 0.001 0.04 0.001

4 0.0016 0.006 0.001

Solvent μs = 0.0012 Pa s

8.2.2 Implementation of the Viscoelastic Models

The previous viscoelastic models are not included in Ansys® Fluent package. How-
ever, they can be implemented through user-defined-functions (UDFs). UDFs are
functions or subroutines programmed in a modified C language which are loaded
in Ansys® Fluent. This software was used in the present work, to implement the
viscoelastic models for blood and further hemodynamic simulations, since it is a
user-friendly software widely used by other authors. Therefore, the UDFs imple-
mented by authors of the present paper can be, in the future, easily manipulated by
other authors.

The Einstein notation was used in order to compact extensive equations. Einstein
notation implies the sum of a set of indexed terms in a formula. In the current case,
the subscript n must be replaced for a sum of the different Cartesian components,
i.e, x, y and z. Thus, the upper-convected derivative equation becomes:

�
τ ijk =

∂τijk
∂t

+ un
∂τijk
∂xn

− τnjk
∂ui

∂xn
− τink

∂uj

∂xn
(8.9)

Adding Eq. (8.9) to Eq. (9.6), the equation with the upper convected derivative
terms on the left side was obtained:

∂τijk
∂t

+ un
∂τijk
∂xn

− τnjk
∂ui

∂xn
− τink

∂uj

∂xn
=

2μekDij

λk
−

1

λk
f(τijk)τijk − αk

μek

(τink
· τnjk)

(8.10)

Eq. (8.10) can be simplified as:

∂τijk
∂t

+ un
∂τijk
∂xn

= Sτijk
(8.11)

where Sτijk
are the source terms for each stress component, and for each mode,

defined as:
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Sτijk
=

2μekDij

λk
− 1

λk
f(τijk)τijk−

αk

μek

(τink
· τnjk) + τnjk

∂ui

∂xn
+ τink

∂uj

∂xn

(8.12)

The last step of the implementation was the analysis of the Navier–Stokes equa-
tions. The basic conversion of the moment equation must be modified in order to
include the decomposition of the stress tensor (Eq. (8.10)). As such, there is a need
to take into account the elastic parts of the stress, which are calculated as scalars.
This was achieved through the addition of the divergence of the extra stress tensor,
τττ e, as sources to the momentum equations, known in Ansys® Fluent as momentum
sources.

SMx
=

m∑
k=1

∂τxnk

∂xn

SMy =

m∑
k=1

∂τynk

∂xn

SMz
=

m∑
k=1

∂τznk

∂xn

(8.13)

8.2.3 3D Geometry and Computational Mesh

A 3D idealized geometry representing a bifurcation of a RCA was constructed in
Solidworks® (Fig. 9.1a). The main branch representing a RCA starts with 3 mm
diameter and after bifurcation decreases to 2.5 mm. The side-branch, with much
lower diameter than the main branch, was considered to have a 1.5 mm diameter. A
40% lumen stenosis in the main branch just after the bifurcation was also designed
in order to observe the viscoelastic effects in these regions of flow acceleration and
recirculation.

The 3D idealized geometry with the inlet and outlet boundaries perpendicular to
the blood flow, and the axis defined at the inlet, was imported to Meshing Ansys® to
construct the computational mesh.

A tetrahedral mesh was defined in all the domain of the artery (Fig. 9.1b). The
Path Independent Method of Meshing Ansys® was selected in order to uniform the
elements and to obtain an accurate mesh (Ansys, 2013). So, the statistical parameter
Skewness was used to verify the precision of the mesh. A Maximum Skewness of 0
indicates the best case scenario, equilateral cells, while a Maximum Skewness equal
of 1 indicates the worst case scenario, completely degenerated cells. Following the
tutorial guide of Ansys®, the mesh is accurate when the Maximum Skewness is lower
than 0.95 (Ansys, 2013). The computational mesh of this work has a Maximum
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Fig. 8.1 (a) 3D geometry of the idealized RCA constructed in SolidWorks®; (b) 3D computational
mesh obtained through Meshing Ansys® software.

Skewness equal to 0.58 with 182909 elements, which is considered accurate for
numerical simulations.

8.2.4 Boundary Conditions

Boundary conditions must be imposed. At the inlet of the idealized geometry, a
Womersley velocity profile was taken into account. This profile depends on the
instant time of the cardiac cycle, the radial position at the inlet and the Womersley
number:

Wo = R

√
ρω

μ
(8.14)

The Womersley number (Wo) is defined by the radius of the artery (R), the
blood density (ρ), the viscosity of blood (μ) at infinite shear rate and the cardiac
frequency (ω). For the present geometry, Wo is equal to 2.40 corresponding to an
inlet diameter of the artery equal to 3 mm. At the outlet branches, pressure profiles
were imposed. These profiles are dependent on the instant time of the cardiac cycle
but radius-independent.

The boundary conditions, defined previously, for RCAs, were also implemented in
UDFs in Ansys® software by some authors of the present paper (Pinho et al, 2019a,b).
Fig. 9.2 shows the mean velocity profile imposed at the inlet of the idealized artery
and the pressure profile at the outlet branches.
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Fig. 8.2 Mean velocity profile
imposed at the inlet of the
idealized RCA (blue line) and
pressure profile imposed at the
outlet branches (orange line).

8.2.5 Numerical Method

Ansys® Fluent software was used to perform computational fluid dynamic (CFD)
simulations of unsteady blood flow. Navier–Stokes equations were solved in a laminar
regime, since Reynolds number in the systolic peak does not exceed the value of 1000.
The velocity-pressure coupled equations were solved by the SIMPLE algorithm. The
momentum equations with the implemented source terms were discretized by the
second-order upwind scheme. The analysis was performed considering a total time
of the cardiac cycle equal to 0.74 s, using 148 times steps, each one equal to 0.05 s;
the number of iterations for each time step was equal to 20. The simulation process
was completed according the convergence criteria of 1× 10−4.

8.3 Results and Discussion

Fig. 9.3 represents the velocity contours, in the systolic peak (maximum velocity of
the cardiac cycle), along the middle plane of the 3D idealized coronary geometry, for
three different rheological models: a Generalized Newtonian model, purely shear-
thinning model, through Carreau model; and two viscoelastic non-Newtonian models
as the Generalized Oldroyd-B and the multi-mode Giesekus.

For the three cases, there is an acceleration of blood flow in the stenotic region,
where the maximum velocity is 1.40 m/s, and there are also recirculation regions
just after the stenosis. However, Fig. 9.3 shows that the effect of the viscoelastic
components of stress decreases the velocity of blood flow in the stenosis and increases
the velocity in the recirculation regions. This effect is highlighted considering the
multi-mode Giesekus model.

The Generalized Oldroyd-B model assumes that both mobility factor and exten-
sibility coefficient are equal to 0 and only one mode. It is considered a quasi-linear
model (Bird et al, 1987). The multi-mode Giesekus model takes into account four
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Fig. 8.3 Velocity contours, in the systolic peak, along the middle plane of the 3D idealized
coronary geometry for the different rheological models.

Fig. 8.4 Velocity difference between the Viscoelastic models (Generalized Oldroyd-B and
multi-mode Giesekus) and the Generalized Newtonian model (Carreau), in the systolic peak.
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modes with four different mobility factors (only the extensibility coefficient equal to
0). This model is a non-linear model (Larson, 1988). Therefore, Fig. 9.4 shows that
velocity differences considering the Generalized Oldroyd-B model (quasi-linear vis-
coelastic model) and Carreau model are almost null (grey region), which means that
viscoelastic effects using Generalized Oldroyd-B for blood are not so pronounced.
These conclusions are in concordance with those of Bodnár et al (2011). Bodnár
et al (2011) consider a different geometry and different boundary conditions (con-
stant flow rate); however, they also concluded that for a higher flow rate, equal to 2
cm3/s, velocities almost overlap considering these two models. In the present paper,
the velocities are also almost coincident for a maximum flow rate, in the systolic
peak, equal to 3.9 cm3/s.

Differences in velocity between using the multi-mode Giesekus and Carreau mod-
el are highlighted in Fig.9.4, where the viscoelasticity effects are well evident. The
green regions, velocity differences around -0.20 m/s, mean that resulted velocities
from simulations taking into account Carreau model are 0.20 m/s higher than using
multi-mode Giesekus. In the recirculation regions, the opposite happens. In Fig.9.4,
a velocity difference of 0.20 m/s (red regions) can be observed, meaning that ve-
locity field using multi-mode Giesekus is higher than using Carreau model, in the
recirculation region. These differences are significant, mainly in regions with high
velocity gradients as stenotic regions, in a scale with maximum value of 1.40 m/s.
Such results are not surprising since multi-mode Giesekus model is a non-linear
model and well-known as one of the best to characterize viscoelastic fluids (Bird
et al, 1987).

8.4 Conclusion

The viscoelastic non-Newtonian models, the Generalized Oldroyd-B and multi-mode
Giesekus, characterizing the complex rheology of blood for accurate hemodynamic
simulations, were implemented in UDFs in Ansys® software. The velocity contours,
in the middle plane of a 3D idealized right coronary artery, were plotted con-
sidering the purely shear-thinning model, Carreau model, and the two viscoelastic
non-Newtonian models. Using the Generalized Oldroyd-B and Carreau model, differ-
ences are almost null, meaning that the viscoelastic effects in Generalized Oldroyd-B
are not pronounced. This model is a quasi-linear model. These results are in concor-
dance with those obtained in literature. Comparing results considering multi-mode
Giesekus and Carreau model, differences are significant and equal to 0.20 m/s under
a maximum velocity of 1.40 m/s (14.3%). Using the multi-mode Giesekus model,
the viscoelastic effects are highlighted in addition to the shear-thinning, mainly in
regions with high velocity gradients as the stenotic region. Whether the viscoelastic
models are emphasized in idealized geometry bifurcations, where the velocity gra-
dients of flow are high, the same viscoelastic models will certainly be accurate in
real models of arteries.
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