
Chapter 16
An FE-BE Method for the Hydroelastic
Vibration Analysis of Plates and Shells Partially
in Contact with Fluid

I. Tugrul Ardic, M. Erden Yildizdag, and Ahmet Ergin

Abstract In this study, a combined finite element (FE)–boundary element (BE)
method is presented to investigate the dynamic characteristics of shell and plate
structures in contact with fluid. The numerical procedure consists of two parts. In
the first part, the dynamic characteristics of structures are obtained under in-vacuo
condition by using the finite element method. Then, in the second part, fluid-structure
interaction effects are computed in terms of generalized added mass coefficients by
using the boundary element method. In analyses, surrounding fluid is assumed ideal,
i.e. inviscid, incompressible and irrotational, in the context of linear hydroelasticity
theory. In order to show the applicability of the proposed method, the dynamic
characteristics of two different structures —a vertical rectangular plate in contact
with fluid on one side and a horizontal cylindrical shell partially filled with fluid—
are investigated and compared with the results obtained with a commercial software,
ANSYS.

16.1 Introduction

Vibration is one of the most important phenomena in engineering, and a broad
range of studies investigating different aspects of vibrating structures can be found
in literature (see, e.g., Alessandroni et al, 2005; Giorgio and Del Vescovo, 2019,
2018; Baroudi et al, 2019; Giorgio et al, 2017; Barchiesi et al, 2018; Abd-alla et al,
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2017; Cazzani et al, 2018; Bersani et al, 2016). Particularly, dynamic interaction
between structures and their surrounding fluid media is of great concern in numerous
engineering problems, e.g. vibration of water retaining structures (i.e. dam, storage
tank, etc.) under earthquake loading, design of internal structures of nuclear reactors,
structural designs in aerospace and shipbuilding industries. For a structure in contact
with a fluid of comparable density, the presence of the fluid strongly affects the
dynamic response behavior of the structure. This is one of the complex engineering
problems, involving the determination of reactive forces due to induced pressure
at fluid-structure interface as a result of transferring structural vibrations into fluid.
As a special engineering discipline, hydroelasticity is known as a branch of science
which is, as expressed in Bishop and Price (1979), concerned with the motion of
deformable bodies through liquids.

Shells and plates have a wide range of applications as structural components in
shipbuilding, aerospace and petrochemical industries. Therefore, accurate estimation
of induced fluid loading on vibrating plates and shells is of practical importance to
assess the reliability of these structural components under different circumstances.
For a freely vibrating plate or shell, effect of interaction forces on the dynamic
characteristics of the structure is relatively weak when the density of surrounding
fluid is low, such as air. However, when the vibrating structure is in contact with
a fluid of comparable density, such as water, fluid loading significantly alters the
dynamic characteristics of the structure from those in vacuo. Therefore, motion of
both the structure and fluid is strongly coupled.

Hydroelastic vibration of plates and shells has been extensively studied by many
researchers. One of the pioneering studies in this field was presented by Warburton
(1961). In his study, dynamic analysis of an infinitely long cylindrical shell sub-
merged into infinitely deep fluid medium and/or filled with liquid was carried out
analytically under the assumption that the mode shapes do not change both in air
and when in contact with water. A fundamental work on fluid-coupled thin plates
was performed experimentally by Lindholm et al (1965), with the aim of obtain-
ing the wet dynamic characteristics (wet natural frequencies and corresponding wet
mode shapes) of clamped rectangular plates submerged into fluid. In the study, the
experiments were conducted to determine the wet dynamic characteristics of rect-
angular plates for different aspect ratios and submergence depths. Meyerhoff (1970)
obtained the dynamic characteristics of a thin rectangular plate submerged in an
incompressible and inviscid fluid by using dipole singularities to model fluid effects.

A number of analytical and semi-analytical methods have been conducted to
predict elastic response of cylindrical shells in contact with fluid. For example,
Chiba et al (1984a,b) and Goncalves and Ramos (1996) investigated the dynamic
characteristics of partially liquid-filled, and clamped vertical cylindrical shells by
using the Galerkin method. In both studies, cylindrical shells are clamped at the rigid
bottom surface. Askari and Jeong (2010) studied a slightly different problem that a
vertical cylindrical shell is clamped at the upper end and free at the bottom edge, and
the dynamic characteristics of the fluid-coupled system was extracted by using the
Rayleigh-Ritz method. Jeong and Lee (1996) carried out an analytical study based
on Fourier series expansion to obtain natural frequencies of both partially liquid-
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filled and partially submerged circular cylindrical shells. Jeong (1999) applied the
same methodology to investigate the dynamic characteristics of cylindrical shells
concentrically or eccentrically submerged in a rigid fluid container. Implementation
of the wave propagation approach to solve acoustic wave equation was first applied
by Zhang (2002) to study the dynamic behavior of submerged cylindrical shells. In
this context, displacement fields of cylindrical shells are defined as traveling waves.
Recently, the same approach was adopted by Zhang et al (2017) to analyze the free
and forced vibration characteristics of fully-submerged elliptic cylindrical shells. In
these studies, fluid medium is assumed to be compressible, inviscid and irrotational,
and thus, the motion is governed by the Helmholtz equation, and shells are assumed to
be infinitely submerged into fluid to neglect the free surface effects. When cylindrical
shells are horizontally in contact with fluid, which is a typical configuration in many
engineering problems, mathematical model become rather complex due to the lack
of axial symmetry. This type of problem was first studied by Amabili and Dalpiaz
(1995) and Amabili et al (1996), using experimental and semi-analytical methods,
respectively. In the semi-analytical study, the solution of fluid problem was obtained
analytically by the method of separation of variables, applying the infinite frequency
limit boundary condition on the free surface. As done in the work of Jeong and Lee
(1996), the radial displacements of the shell was defined by Fourier series expansion.

On the other hand, a lot of attempts have been made to investigate the dynamic
characteristics of plates in contact with fluid using analytical approaches. In ear-
lier studies, substantial simplifications have been made for analyzing rectangular
and circular plates (see, e.g., De Espinosa and Gallego-Juarez, 1984; Kwak, 1991).
Robinson and Palmer (1990) performed the modal analysis of a rectangular plate
floating on the free surface of a stationary fluid under the assumptions of potential the-
ory. Amabili et al (1996) investigated the free vibration of both circular and annular
plates submerged into fluid, bounded with rigid walls and the free surface, including
sloshing effects. Kwak (1997) calculated NAVMI (Non-dimensional Added Virtual
Mass Incremental) factors for circular plates placed in an opening on the infinite
rigid wall and in contact with fluid on one side. Cho et al (2014) investigated the free
vibration characteristics of both bare and stiffened panels vertically in contact with
stationary fluid. In this study, the kinetic and potential energy functionals of the sys-
tem were obtained by superposing the energy components of the plate and stiffener,
and the displacements of the plates were represented by orthogonal polynomials with
Timoshenko beam function properties. The Rayleigh-Ritz method is often used to
solve plate vibration problems due to its inherent advantage of being based on very
general assumptions for obtaining optimal solutions with approximation properties
of the trial spaces (see Amabili et al, 1996; Meylan, 1997; Jeong, 2003; Jeong and
Kim, 2009; Liao and Ma, 2016; Datta and Jindal, 2019). For example, Kwak and
Yang (2013) obtained the virtual added mass matrix of a partially immersed vertical
rectangular plate in elliptical coordinates by using orthogonal Mathieu functions to-
gether with the Rayleigh-Ritz method. A theoretical model was developed by Askari
et al (2013) to investigate the hydroelastic vibration of circular plates immersed in
fluid by using the Rayleigh-Ritz method including the free surface effects. In the
study, the compatibility conditions were satisfied both at the plate-liquid interface
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and between the upper and lower liquid subdomains divided by plate. Then, the total
velocity potential was defined as superposition of velocity potentials induced by the
free surface and deformation of the plate, and the wet mode shapes were obtained
by superposition of a finite number of admissible functions selected as dry mode
shapes of the plate.

For structures with complex geometries such as mono- or multi-hull vessels, air-
crafts, multi-purpose offshore structures and space vehicles, it is not possible to deal
with the problem by using analytical approaches. Thus, alternative computational
methods have been developed for the dynamic response analysis of such complex
structures under the effect of fluid environment. In earlier studies, the finite ele-
ment method (FEM) was recognized as a powerful numerical tool for the solution
of fluid-structure interaction problems. In this direction, Zienkiewicz and Newton
(1969) developed a method to solve fluid-structure interaction problems in which
fluid and structure domains are both modeled with finite elements. In their method,
fluid environment is governed by the acoustic wave equation, and fluid pressure
acts as fundamental unknown in the matrix equations. The main drawback in this
formulation is that the matrices are not symmetric. An alternative FEM formulation,
in which the fluid displacement is main unknown instead of pressure, is developed
by Kalinowski (1974) to take the advantage of symmetric matrices. Following these
two seminal papers, FEM has been successfully applied in hydroelastic vibration
problems, dealing with various structures such as rectangular plates (Marcus, 1978;
Motley et al, 2013), spherical shells (Liang et al, 2001), steelworks in fluid-carrying
vessels (Volcy et al, 1980) and stiffened cylindrical shells (Hsu and Jen, 2010). One
of the major drawbacks in FEM approaches is that, when the structure vibrates in
an unbounded fluid environment, the entire geometry including surrounding fluid
region must be discretized with finite elements. Clearly, this situation leads to a
considerable increase in the number of elements and computation time. In order to
overcome this difficulty, Fu and Price (1987) developed a hybrid model in which the
structural problem is handled by FEM and the fluid problem by the boundary element
method (BEM). Dealing with the fluid problem by using BEM, as discretization is
only performed over the wetted surface of the structure, instead of the entire sur-
rounding fluid, the method provides a substantial advantage in terms of computation
time. In order to take the advantage of this approach, several researchers investigated
hydroelastic vibration problems of different geometries (see Junge et al, 2011; Zheng
et al, 2017). For example, Ergin and Temarel (2002) used a combined FE-BE method
to calculate the free vibration characteristics of thin circular cylindrical shells in con-
tact with internal and external liquid. In this study, it was pointed out that the mode
shapes of the cylindrical shell partially in contact with fluid differed significantly
from those obtained under in-vacuo condition. The same methodology adopted by
Ergin and Uğurlu (2003) to calculate natural frequencies and corresponding mode
shapes of clamped rectangular plates both in-vacuo and in contact with fluid. Re-
cently, Yildizdag et al (2019) examined the hydroelastic vibration characteristics of
the same plate immersed in fluid in vertical and horizontal positions, respectively,
by using an isogeometric FE-BE approach.
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The central theme of this study is to present a general numerical strategy for
investigating natural frequencies and corresponding mode shapes of plate and shell
structures partially in contact with fluid. The fluid environment is considered within
the context of potential theory, i.e., fluid is inviscid, incompressible, and its motion is
irrotational. By assuming that the structure vibrates with a relatively high frequency
and the corresponding fluid pressure is in phase with the structural acceleration,
the linearized fluid-structure interaction system is established, and generalized fluid-
structure interaction forces are derived from the linear form of the Bernoulli equation.
By using this linearized hydroelasticity theory, the fluid-structure interaction problem
may be divided into in-vacuo (dry) and wet parts, and each problem can be analyzed
separately. In the absence of any external force and structural damping, the in-
vacuo part of the analysis is performed by solving the equation of motion with
FEM. The surface normal velocity components of the fluid on the wetted part of
the structure are obtained by applying continuity condition, in other words, the
normal velocities on the wetted surface are expressed in terms of in-vacuo modal
displacements. In the wet part of the analysis, BEM is applied to obtain hydrodynamic
forces associated with each principle mode. The wetted surface is discretized with
boundary elements (hydrodynamic panels), with a point source of constant strength
placed at the geometric center of each panel. In the absence of axial flow, free surface
waves and viscous effects, the interaction between the structure and fluid takes place
only through the inertial effect of fluid (added mass coefficients). Therefore, the total
generalized mass matrix, which is formed by merging the generalized structural mass
and hydrodynamic added mass matrices, is used to solve the eigenvalue problem for
the fluid-structure system. The numerical framework presented here is applied to two
specific geometries: a rectangular plate and a horizontal cylindrical shell, partially
in contact with fluid. In order to assess the validity and accuracy of the method,
wet natural frequencies and corresponding mode shapes are compared with those
obtained by commercially available finite element program, ANSYS (2013).

16.2 Mathematical Model

16.2.1 In-Vacuo (Dry) Structural Analysis

In the absence of structural damping and external forces, motion of the structure can
be defined by

Mẍ(t) +Kx(t) = 0 (16.1)

where M is the structural mass matrix and K is the structural stiffness matrix. Here,
ẍ and x are the acceleration and displacement vectors of the structure, respectively.
By assuming the structure oscillates harmonically in time, a trial solution can be
express as follows
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x = ueiωt (16.2)

where u represents the amplitude vector of the displacements, and ω is the frequency
of oscillation. By using this expression, Eq. (16.1) takes the following form(−ω2M+K

)
u = 0. (16.3)

Eq. (16.3) defines an eigenvalue problem, and the non-trivial solutions of this system
can only be obtained when the following condition is satisfied,

det
[−ω2M+K

]
= 0. (16.4)

Here, Eq. (16.4) is called characteristic equation, or frequency equation. For a
structure having N degrees of freedom, the characteristic equation possesses N
distinct roots, ω2

1 , ω
2
2 , ..., ω

2
n, and the square roots of these quantities represent the

natural frequencies of the structure. For every frequency,ωr, there is a corresponding
vector of amplitudes, ur. The eigenvector ur corresponding to the natural frequency
ωr denotes the r-th principal modal vector.

Based on orthogonality of modal vectors, a vector space consisting of modal
vectors can be formed and the response of the system can be defined by superposition
of the displacements in the principal modes

U =

N∑
r=1

Drpr(t) = Dp(t) (16.5)

where D and p are N × N modal matrix consisting of modal vectors and N × 1
column vector representing the principal modes, respectively. Substituting Eq. (16.5)
into Eq. (16.3) and multiplying by DT , the equation of motion is obtained in terms
of the principal coordinates of the structure(−ω2a+ c

)
p = 0. (16.6)

Here, a and c denote the generalized mass and stiffness matrices, respectively, and
they are a = DTMD and c = DTKD, respectively.

One of the useful and important features of modal vectors is that they are orthog-
onal. This is to say that:

uT
s Kur = 0 if r �= s,

uT
s Kur = ω2

rarr if r = s,

and

uT
s Mur = 0 if r �= s,

uT
s Mur = arr if r = s.
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16.2.2 Wet Analysis

16.2.2.1 Formulation of the Fluid Problem

By assuming the fluid is ideal, i.e. inviscid and incompressible, and its motion is
irrotational, there exists a fluid velocity vector, v(x, y, z), defined as the gradient of
the velocity potential function, φ(x, y, z), satisfies the Laplace’s equation,

∇2φ(x, y, z) = 0. (16.7)

For a system under fluid-structure interaction effects, the Laplace equation defines a
boundary value problem. Therefore, boundary conditions must be defined over the
entire wetted surface of the elastic body and also on the free surface. There is no fluid
transfer in the direction perpendicular to the wetted surface of the elastic structure.
As a result, the normal fluid velocity must be equal to the normal velocity on the
structure and this condition for the r-th modal vibration of the elastic structure in
contact with a quiescent fluid can be expressed as

∂φr

∂n
= ur · n on Sw. (16.8)

Here, n is the unit normal vector on the wetted surface, Sw, and ur is the r-th
modal displacement vector of the median surface of the structure. Furthermore, it
is assumed that the structure vibrates at relatively high frequencies; thus, the effect
of free surface waves due to the modal distortions of the structure is neglected in
the mathematical model. Thus, the free surface boundary condition is simplified and
expressed as follows

φr = 0, on the free surface. (16.9)

In this study, the free surface boundary condition given in Eq. (16.9) is satisfied
by using the image method (Kito, 1970). For this purpose, an imaginary surface is
introduced by mirroring the wetted part of the structure by taking the free surface as
mirror plane, and the modal displacements over the wetted surface are also mirrored,
as described in Fig. 16.1. Hence, by utilizing the image method, the fluid-structure
interaction problem is reduced to classical Neumann problem.

16.2.2.2 Numerical Evaluation of Perturbation Potential

The boundary integral equation formulation for a three-dimensional inviscid flow,
due to time-harmonic oscillating structure, can be expressed by unknown source
strength, φ∗, over the wetted and image surfaces.

cφ(P ) =
�

Sw+Si

q(Q)φ∗(P,Q) ds−
�

Sw+Si

φ(Q) q∗(P,Q) ds (16.10)
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Fig. 16.1 Wetted surface and
its image.

where φ∗ is the fundamental solution for the velocity potential. Here, c is a space-
angle constant and it is 0.5 for constant-strength source panels. The integral equation,
Eq. (16.10), allows us to calculate unknown velocity potential φ(Q) both over the
wetted boundary and inside the fluid domain when the flux q(Q) is known. In this
equation, Q and P represent the field and load points on the wetted and imaginary
surfaces, respectively, and Sw +Si denotes the total wetted and imaginary surfaces.
The fundamental solution of the Laplace operator, φ∗, and the cartesian components
of its gradient, q∗, are given for 3-D case, respectively, as

φ∗(P,Q) =
1

4πr
, (16.11)

q∗x = − r,x
4πr2

, q∗y = − r,y
4πr2

, q∗z = − r,z
4πr2

(16.12)

where r is the Euclidean distance,

r =
√
(xQ − xP )2 + (yQ − yP )2 + (zQ − zP )2, (16.13)

between the source and field points. Here, r,x , r,y and r,z are the projections of the
Euclidean distance, r, on the x, y and z axes, respectively, and expressed as follows

r,x =
xQ − xP

r
, r,y =

yQ − yP
r

, r,z =
zQ − zP

r
. (16.14)

The integral equation in Eq. (16.10) is a Fredholm equation of the second kind, and
it must be satisfied over the wetted and imaginary surfaces of the elastic body. This
equation can be numerically solved by dividing the wetted and imaginary surfaces of
the structure into hydrodynamic panels, and the flux and unknown velocity potential
are taken as constant over each panel. In this framework, the numerical solution
of Eq. (16.10) is satisfied only at the geometric center of each panel. Therefore,
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the surface integrals in Eq. (16.10) may be written as the sum of integrals over N
constant-strength quadrilateral panels

1

2
φi = −

N∑
j=1

q∗ φj +

N∑
j=1

φ∗ qj . (16.15)

In Eq. (16.15), it is assumed that all qj values are obtained from the in-vacuo (dry)
analysis (each column of the matrix D is defined in Eq. (16.5)), and therefore, the
corresponding unknown source strengths at each panel, φj , are calculated from the
solution of Eq. (16.15) for each principal mode shape.

16.2.2.3 Generalized Fluid-Structure Interaction Forces

Generalized fluid-structure interaction forces are calculated by using the pressure
distribution on the wetted surface, obtained by solving the potential flow problem.
The r-th component of the generalized fluid-structure interaction force due to k-th
modal vibration can be obtained by using the following equation

Zrk =
�

Sw

Pkur · n ds. (16.16)

The fluid pressure acting on the wetted surface of the structure due to the k-th modal
vibration can be calculated using the linearized form of the Bernoulli equation,

Pk = ω2ρφk. (16.17)

Thus, the r-th component of the generalized fluid-structure interaction force ampli-
tude due to the k-th modal vibration takes the following form

Zrk =
�

Sw

(ω2ρφk)ur · n ds, (16.18)

and then the generalized added mass term, Ark, can be expressed as follows

Ark =
ρ

ω2

�

Sw

ω2φkur · n ds. (16.19)

If the k-th principal coordinate is in the form of pk(t) = pke
iωt, then the r-th

component of the generalized fluid-structure interaction force can be written as

Zrk = Arkω
2pke

iωt = −Arkp̈k. (16.20)
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16.2.2.4 Calculation of Wet Frequencies and Mode Shapes

Fluid-structure interaction forces acting on a freely vibrating structure in the vicinity
of a free surface vary with frequency. In this study, it is assumed that the structure
vibrates with a relatively high frequency, thus the generalized added mass is constant
and independent of vibration frequency. The generalized equation of motion may
therefore be written as [−ω2(a+A) + c

]
p0 = 0 (16.21)

where c and a denote the generalized structural stiffness and generalized mass
matrices, respectively. The M ×M matrix A represents the frequency-independent
generalized added mass matrix. By solving the eigenvalue problem expressed in
Eq. (16.21), one can obtain each wet natural frequency, ωk, and corresponding
eigenvector p0k = {pk1

, pk2
, ...,pkM

}. The wet mode shapes of the structure can be
defined as superposition of the dry modes, where the contribution of the j-th mode
is represented by pkj ,

qk(x, y, z) =

M∑
j=1

uj(x, y, z)pkj
(16.22)

where M denotes the number of modes considered in the analysis. It should be
noted that the fluid-structure interaction forces associated with the inertial effect of
the fluid do not have the same spatial distribution as those of the in-vacuo modal
forms. As a consequence, this produces hydrodynamic coupling between in-vacuo
modes.

16.3 Numerical Examples

In this section, the presented FE-BE procedure is applied to two different structures
(rectangular plate and cylindrical shell) in contact with fluid, in order to demonstrate
the applicability of the method. In the numerical examples, flat shell elements are
adopted to conduct the in-vacuo analyses. The FEM formulation of flat shell elements
used in this study can be found in Appendix.

16.3.1 Vertical Rectangular Plate in Contact with Fluid on One
Side

The proposed mathematical model is first applied to a rectangular plate partially in
contact with fluid on one side and clamped along its all edges (see Fig. 16.2). The
rectangular plate has the length � = 2.0 m, height h = 1.4 m and thickness t = 10
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mm. The plate is made of steel with the following material properties: Young’s
Modulus, E = 206 GPa, Poisson’s Ratio, ν = 0.3, and density, ρs = 7850 kg/m3.
The density of surrounding fluid is ρf = 1025 kg/m3, and d denotes the submerging
depth.

Fig. 16.2 Vertical cantilever plate in contact with fluid on one side.

In the first part of the analysis (i.e. dry analysis), natural frequencies and corre-
sponding mode shapes under in-vacuo condition are obtained by solving the equation
of motion. The results obtained by the present method are compared with those cal-
culated using a commercial finite element software, ANSYS. In order to show the
convergence of the first six natural frequency values, the structure was discretized
by 300, 588, and 972 elements, respectively. The calculated frequency values are
shown in Table 16.1 for the first six dry modes. The presented results clearly show
that the differences between the calculated values in the 2nd and 3rd idealizations
are negligible.

Moreover, the first six in-vacuo mode shapes of the rectangular plate are shown
in Fig. 16.3. As expected, the complexity of the modal configurations increases with
increasing frequency. These mode shapes may be classified into two groups, as sym-
metric and antisymmetric with respect to the axis passing through the longitudinal
center of the plate. With this respect, the 1st, 3rd, 4th and 6th modes are symmetric,
and the 2nd and 5th modes are antisymmetric. In Table 16.2, S and A stand for
symmetry and antisymmetry, respectively.
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Table 16.1 Convergence of dry natural frequencies (Hz).

Mode This study ANSYS
300 El. 588 El. 972 El. 7500 El.

1 (S) 34.69 34.74 34.76 34.78
2 (S) 55.27 55.43 55.49 55.56
3 (A) 83.65 83.77 83.83 83.83
4 (S) 89.77 90.04 90.16 90.25
5 (A) 102.21 102.68 102.87 103.06
6 (S) 133.96 124.01 135.72 135.72

Fig. 16.3 In-vacuo mode shapes of rectangular plate: (a) 1st mode (34.76 Hz); (b) 2nd mode (55.49
Hz); (c) 3rd mode (83.83 Hz); (d) 4th mode (90.16 Hz); (e) 5th mode (102.87 Hz); (f) 6th mode
(135.29 Hz).

In the second part of the analysis (i.e. wet analysis), wet natural frequencies and
corresponding mode shapes of the rectangular plate are obtained for four different
submerging ratios, namely d/h = 0.25, 0.50, 0.75, 1.00. The results obtained by
the proposed FE-BE procedure are compared with those obtained by ANSYS. In
ANSYS, the rectangular plate is discretized with four-node quadrilateral SHELL181
elements, and the surrounding fluid domain is modeled by FLUID30 elements.
The density and sonic velocity are 1025 kg/m3 and 1507 m/s, respectively. As the
structure vibrates in high-frequency region, the infinite frequency limit condition is
imposed on the free surface of fluid (φ = 0).

In Table 16.2, a convergence study is presented for the wet frequencies obtained by
using the proposed FE-BE procedure. In this study, for each submerging depth ratio
(d/h), three different panel idealizations are adopted, and the results are compared
with those obtained using ANSYS. The number of hydrodynamic panels adopted
over the wetted surface, respectively, is 145, 344 and 580 for d/h = 0.25; 290,
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Fig. 16.4 ANSYS model of
vertical plate in contact with
fluid (d/h = 0.5).

645 and 1160 for d/h = 0.50; 435, 990 and 1740 for d/h = 0.75; 580, 1290 and
2320 for d/h = 1.00. As expected, the wet natural frequencies are lower than the
corresponding in-vacuo frequencies. Difference between in-vacuo and wet natural
frequencies is significant for the submerging depth ratio d/h = 1.00. As it is
observed from Table 16.2, differences between the 2nd and 3rd idealizations for all
submerging depth ratios are negligible. In addition, the converged values compare
perfectly well with those of ANSYS. The maximum differences between the 3rd
idealization and ANSYS which correspond to the first modes are 2.4%, 1.6% and
3.7% for submerging depth ratios d/h = 0.25, 0.50 and 1.00, respectively, while,

Table 16.2 Convergence of wet natural frequencies (Hz) for submerging depth ratios d/h = 0.25,
0.50, 0.75 and 1.00.

Mode This study ANSYS
145 El. 344 El. 580 El. 881000 El.

1 (S) 33.17 33.19 33.19 33.99
2 (S) 54.19 54.21 54.22 54.18
3 (A) 76.23 76.29 76.30 76.33
4 (S) 87.70 87.71 87.71 87.71
5 (A) 94.05 94.06 94.06 93.94
6 (S) 124.09 124.01 123.96 123.67

(a) d/h = 0.25

Mode This study ANSYS
290 El. 645 El. 1160 El. 938000 El.

1 (S) 22.66 22.65 22.63 22.99
2 (S) 37.98 37.91 37.87 37.79
3 (A) 61.07 60.92 60.86 60.51
4 (S) 63.91 63.73 63.65 63.66
5 (A) 80.37 80.22 80.16 80.09
6 (S) 97.75 97.22 96.99 96.80

(b) d/h = 0.50

Mode This study ANSYS
435 El. 990 El. 1740 El. 968000 El.

1 (S) 15.46 15.43 15.41 15.39
2 (S) 28.46 28.37 28.33 28.21
3 (A) 49.18 49.01 48.93 48.11
4 (S) 64.64 64.38 64.26 64.14
5 (A) 0.000 0.000 0.516 0.000
6 (S) 83.20 82.69 82.48 82.38

(c) d/h = 0.75

Mode This study ANSYS
580 El. 1290 El. 2320 El. 1616500 El.

1 (S) 13.28 13.24 13.22 12.73
2 (S) 26.02 25.88 25.82 25.52
3 (A) 42.86 42.53 42.40 41.56
4 (S) 47.73 47.32 47.15 46.59
5 (A) 56.56 56.02 55.80 55.41
6 (S) 79.71 78.73 78.33 77.61

(d) d/h = 1.00
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for submerging depth ratio d/h = 0.75, the maximum difference (1.7%) is obtained
for the 3rd mode.

In Table 16.3, the generalized added mass coefficients, for submerging depth ratios
d/h = 0.25, 0.50, 0.75 and 1.00, are presented for the first 8 distortional mode shapes
(five symmetric and three antisymmetric). The generalized added mass coefficients
are scaled to a generalized mass of 1kg m2. The off-diagonal terms given in the
table represent the hydrodynamic coupling between in-vacuo modes. It is clear that
all the coefficients increase with increasing submerging depth ratio, due to increase
in wetted surface area. It can also be observed that the hydrodynamic coupling is
strong between symmetric modes itselves as well as antisymmetric modes. However,
the coupling between these two mode groups are negligible. In particular, strong
coupling can be observed between 1st and 3rd symmetric as well as 2nd and 5th
antisymmetric modes for submerging depth ratio d/h = 0.50. The diagonal terms
are dominant compared to the off-diagonal terms, especially for submerging depth
ratios 0.75 and 1.00.

Fig. 16.5 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.25.

Figs. 16.5-16.8 show the calculated wet mode shapes and wet frequencies for
d/h = 0.25, 0.50.0.75 and 1.00, respectively. In order to obtain the wet mode
shapes, the generalized added mass matrix is first formed by solving Eq. (16.19).
Then, the eigenvalue problem expressed in Eq. (16.21) is solved for obtaining wet
natural frequencies and corresponding mode shapes. A maximum number ofM = 24
in-vacuo modes was adopted in computations.

It is clear that the differences between in-vacuo and wet mode shapes are notice-
able, especially for higher submerging depth ratios (0.5 and higher). It can also be



16 An FE-BE Method for the Hydroelastic Vibration Analysis of Plates and Shells 281

Table 16.3 Generalized added mass coefficients (kg m2) for rectangular plate partially submerged
in fluid.
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Fig. 16.6 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.50.

Fig. 16.7 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.75.
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Fig. 16.8 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 1.00.

said that the maximum difference, compared to those in vacuo, occurs for submerg-
ing depth ratios d/h = 0.5 and 0.75. For all the depth ratios, changes in the first and
second wet modes are insignificant, compared to the higher ones. In general these
two fundamental mode shapes do not show a significant difference, compared to the
corresponding dry ones, but the location of maximum displacement shift slightly in
the vertical direction. It must also be realized that for all the depth ratios, the wet
mode shapes preserve their symmetry or antisymmetry with respect to the vertical
axis passing through the longitudinal center of the plate.

16.3.2 Horizontal Cylindrical Shell Partially Filled with Fluid

In the second numerical example, the hydroelastic vibration analysis of a horizontal
cylindrical shell partially filled with fluid is considered (see Fig. 16.9). The me-
chanical and geometrical properties of the cylindrical shell are: Young’s modulus,
E = 206 GPa, Poisson’s ratio, ν = 0.3, mass density, ρs = 7680 kg/m3, thickness,
t = 1 mm, length, l = 0.664 m, radius, r = 0.175 m. d denotes the filling depth of
fluid, which has a density of ρf = 1025 kg/m3.

The cylindrical shell is sealed with thin circular caps at both ends. These caps
are resistant to radial loads, allowing for forces acting on their normal planes. Zhang
et al (2001) has emphasized that the effect of these end caps on the hydroelastic
vibration of circular shells is negligible. Therefore, in the numerical analysis, it is
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Fig. 16.9 Horizontal cylindri-
cal shell partially filled with
fluid.

assumed that the cylindrical shell is simply supported at both ends, instead of having
caps at the ends.

Firstly, the in-vacuo dynamic response analysis of the cylindrical shell is carried
out to obtain the in-vacuo natural frequencies and corresponding mode shapes, using
the FEM formulation given in Appendix. To assess the accuracy of the obtained
natural frequencies, a convergence study is carried out, and the results are compared
with those obtained by ANSYS. In Table 16.4, the convergence of the first eight
dry natural frequencies are presented for three different idealizations; 1900, 3470
and 7500 elements, respectively. As the number of elements increases, a monotonic
convergence is observed, and the differences between the 3rd discretization and
ANSYS become negligibly small. In Table 16.4,m denotes the number of half waves
in the axial direction while n denotes the number of waves around the circumference.

Table 16.4 Convergence of dry natural frequencies (Hz).

Mode This study ANSYS
(m-n) 1900 El. 3470 El. 7500 El. 7500 El.

1-4 228.37 226.39 225.30 224.42
1-4 228.37 226.39 225.30 224.42
1-5 240.12 236.45 234.06 232.15
1-5 240.12 236.45 234.06 232.15
1-6 316.93 308.52 303.78 299.25
1-6 316.93 308.52 303.78 299.25
1-3 323.71 322.91 322.31 321.86
1-3 323.71 322.91 322.31 321.86
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The calculated mode shapes for the first eight dry natural frequencies are shown in
Fig. 16.10. As in Table 16.4 and Fig. 16.10, for each dry natural frequency, the mode
shapes are obtained in pairs, satisfying the orthogonality condition. It must also be
realized that the fundamental in-vacuo natural frequency does not correspond to the
mode shape with the lowest number of waves around the circumference (n = 2). The
order of modes depends on the internal strain energy and geometrical characteristics
of the cylindrical shell under study.

Fig. 16.10 First eight dry mode shapes of cylindrical shell.

In the second part of the analysis, the hydroelastic vibration characteristics of
the cylindrical shell are investigated for three different filling depth-to-diameter
ratios, d/2r = 0.2, 0.5 and 0.8. In ANSYS, the cylindrical shell is discretized with
four-node quadrilateral SHELL181 elements, and fluid is modeled with FLUID30
elements (see Fig. 16.11).

Fig. 16.11 ANSYS model of
horizontal cylindrical shell
partially filled with fluid
(d/2r = 0.50).
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Table 16.5 Convergence of wet natural frequencies (Hz) for filling ratios d/2r = 0.20, 0.50 and
0.80.

Mode This study ANSYS
1350 El. 2195 El. 3190 El. 536400 El.

1 112.23 111.05 110.68 114.23
2 113.41 111.98 111.54 114.59
3 175.87 173.43 172.77 180.85
4 185.55 183.95 182.94 191.19
5 241.21 241.13 241.05 239.42
6 242.65 242.31 242.07 240.18

(a) d/2r = 0.20

Mode This study ANSYS
952 El. 1710 El. 3752 El. 673400 El.

1 101.04 99.33 98.80 97.85
2 101.76 100.07 99.45 98.99
3 134.73 132.32 131.65 127.89
4 135.23 133.03 131.78 130.92
5 185.41 181.39 180.53 180.08
6 187.12 184.18 183.64 181.68

(b) d/2r = 0.50

Mode This study ANSYS
1360 El. 2430 El. 1740 El. 968000 El.

1 97.47 96.01 95.58 94.02
2 97.96 96.45 96.02 94.92
3 115.21 113.13 112.47 110.04
4 116.96 115.09 114.34 113.08
5 141.30 139.21 138.46 136.38
6 148.16 145.20 144.77 143.53

(c) d/2r = 0.80

In order to check the convergence of the wet natural frequencies of cylindrical
shell, for each filling ratio, three different idealizations are adopted, and the results
are compared with those obtained by ANSYS. The number of hydrodynamic panels
(boundary elements) over the wetted surface is 1350, 2195 and 3190 for d/2r = 0.20;
952, 1710 and 3752 for d/2r = 0.50; and 1360, 2430 and 5360 for d/2r = 0.80,
respectively. As can be seen from Table 16.5, for all the filling ratios, results exhibit
monotonic convergence, and the differences between the results of the 2nd and 3rd
idealizations are negligibly small. Moreover, the predicted natural frequencies for the
3rd idealization compare very well with those obtained by ANSYS, and differences
are in the range of 0.1% and 4.7%. As expected, the wet natural frequencies are
lower than their in-vacuo counterparts, due to increasing inertia of the system, and
the differences become significant with increasing filling ratio.

In Table 16.6, the generalized added mass coefficients for the first twelve dis-
tortional mode shapes are presented for filling ratios d/2r = 0.20, 0.50 and 0.80,
respectively. These values are normalized to a generalized structural mass of 1 kgm2.
It is observed that the diagonal terms of the added mass matrices are considerably
larger than the off-diagonal terms, which represent the hydrodynamic coupling be-
tween in-vacuo modes. Furthermore, the generalized added mass coefficients become
larger for higher filling ratios due to increasing wetted surface area of the structure.
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Table 16.6 Generalized added mass coefficients (kg m2) for the horizontal cylindrical shell
partially in contact with fluid.

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 1.40 0.03 -0.32 1.11 0.13 -0.70 -1.33 0.10 -0.21 0.02 -0.12 -0.01
1-4 0.03 1.46 -1.03 -0.32 0.61 0.13 0.10 1.38 0.02 -0.20 0.01 -0.12
1-5 -0.32 -1.03 1.20 0.01 -0.90 -0.01 0.03 -0.82 0.03 0.53 -0.01 -0.21
1-5 1.11 -0.32 0.01 1.26 0.01 -0.94 -0.79 -0.03 -0.51 0.02 0.20 -0.01
1-6 0.13 0.61 -0.90 0.01 0.97 0.00 -0.01 0.28 -0.02 -0.90 0.02 0.49
1-6 -0.70 0.13 -0.01 -0.94 0.00 0.96 0.31 0.01 0.87 -0.03 -0.45 0.02
1-3 -1.33 0.10 0.03 -0.79 -0.01 0.31 1.84 -0.02 -0.11 -0.03 0.24 0.00
1-3 0.10 1.38 -0.82 -0.03 0.28 0.01 -0.02 1.93 0.03 0.20 0.00 -0.30
1-7 -0.21 0.02 0.03 -0.51 -0.02 0.87 -0.11 0.03 0.81 0.01 -0.65 -0.03
1-7 0.02 -0.20 0.53 0.02 -0.90 -0.03 -0.03 0.20 0.01 0.85 0.03 -0.67
1-8 -0.12 0.01 -0.01 0.20 0.02 -0.45 0.24 0.00 -0.65 0.03 0.72 -0.01
1-8 -0.01 -0.12 -0.21 -0.01 0.49 0.02 0.00 -0.30 -0.03 -0.67 -0.01 0.69

(a) d/2r = 0.20

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 2.36 -0.05 -1.57 0.41 -0.20 0.01 -0.11 1.73 0.39 0.03 0.05 0.00
1-4 -0.05 2.50 -0.43 -1.55 -0.01 0.17 1.66 0.11 -0.03 0.36 0.00 -0.04
1-5 -1.57 -0.43 2.04 -0.03 -0.99 -0.33 -0.03 -0.23 0.08 0.01 -0.24 0.15
1-5 0.41 -1.55 -0.03 1.95 -0.35 -0.93 -0.25 0.03 -0.01 0.09 -0.17 -0.23
1-6 -0.20 -0.01 0.99 -0.35 1.64 0.04 -0.12 -0.36 1.06 -0.04 0.03 -0.09
1-6 0.01 0.17 -0.33 -0.93 0.04 1.68 -0.45 -0.09 -0.04 -0.99 -0.08 0.03
1-3 -0.11 1.66 -0.03 -0.25 -0.12 -0.45 2.85 0.03 -0.03 0.14 -0.28 -0.12
1-3 1.73 0.11 -0.23 0.03 0.36 -0.09 0.03 2.93 -0.09 0.03 -0.11 0.32
1-7 0.39 -0.03 0.08 -0.01 1.06 -0.04 -0.03 -0.09 1.41 0.03 0.17 -0.86
1-7 0.03 0.36 0.01 0.09 -0.04 -0.99 0.14 0.03 0.03 1.36 0.84 0.19
1-8 0.05 0.00 -0.24 -0.17 0.03 -0.08 -0.28 -0.11 0.17 0.84 1.20 0.03
1-8 0.00 -0.04 0.15 -0.23 -0.09 0.03 -0.12 0.32 -0.86 0.19 0.03 1.18

(b) d/2r = 0.50

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 3.55 0.00 -1.23 -0.03 -0.02 -0.70 -1.51 -0.03 0.00 -0.14 -0.23 -0.01
1-4 0.00 3.40 0.03 -1.22 -0.67 0.02 0.03 -1.60 -0.14 0.00 -0.01 0.24
1-5 -1.23 0.03 2.75 0.00 -0.02 -1.01 -0.71 -0.01 -0.01 -0.51 0.09 0.01
1-5 -0.03 -1.22 0.00 2.90 -0.96 0.02 0.01 -0.74 -0.51 0.01 0.01 -0.11
1-6 -0.02 -0.58 -0.02 -0.96 2.37 0.00 0.00 -0.09 -0.83 0.00 0.02 -0.47
1-6 -0.70 0.02 -1.01 0.02 0.00 2.37 -0.11 0.00 0.00 -0.78 0.44 0.02
1-3 -1.51 0.07 -0.71 0.01 0.00 -0.11 4.50 0.01 0.00 0.22 -0.28 -0.01
1-3 -0.03 -1.61 -0.01 -0.74 -0.09 0.00 0.01 4.25 0.26 0.00 -0.01 0.31
1-7 0.00 -0.04 -0.01 -0.51 -0.83 0.00 0.00 0.26 1.96 0.00 0.03 -0.70
1-7 -0.14 0.00 -0.51 0.01 0.00 -0.78 0.22 0.00 0.00 2.03 0.67 0.03
1-8 -0.23 -0.02 0.09 0.01 0.02 0.44 -0.28 -0.01 0.03 0.67 1.69 0.00
1-8 -0.01 0.24 0.01 -0.11 -0.47 0.02 -0.01 0.31 -0.70 0.03 0.00 1.72

(c) d/2r = 0.80
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Fig. 16.12 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.20.

The first six wet natural frequencies and associated mode shapes are shown in
Figs. 16.12, 16.13 and 16.14, for d/2r = 0.20, 0.50 and 0.80, respectively. All the
wet modes shown have one longitudinal half wave (m = 1) along the longitudinal
axis, and only the circumferential mode shapes are presented. In contrast to mode
shapes under in-vacuo condition, the wet mode shapes do not occur in pairs, and they
are simply numbered with increasing frequency. For all the filling ratios, mode shapes
are either symmetric or antisymmetric, with respect to the axis passing through the
center of the cylinder and perpendicular to the free surface. In general, the predicted
mode shapes compare very well with those obtained by ANSYS.

16.4 Conclusions

In this study, a FE-BE method is presented for the hydroelastic vibration analysis of
plates and shells partially contact with fluid. In order to show the applicability of
the method, two different numerical examples-a vertical rectangular plate in contact
with fluid on one side and a horizontal cylindrical shell partially filled with fluid-are
studied. The predicted results by the present method are also compared with those
obtained by ANSYS-a commercial software. It can be concluded that the presented
numerical procedure is suitable to investigate relatively high-frequency vibrations
of elastic structures partially in contact with fluid.
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Fig. 16.13 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.50.

Fig. 16.14 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.80.
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In the numerical examples, idealizations in both in-vacuo and wet analyses are
independent from each other, and both depend on the complexity of the structure and
the convergence. For both the rectangular plate and the horizontal cylindrical shell,
the convergence studies (see Tables 16.1, 16.2, 16.4 and 16.5) show that differences
are in an acceptable range. Also, the predicted frequencies compare very well with
the results obtained by ANSYS.

The present work demonstrates the versatility of the proposed method by studying
two different structures partially in contact with fluid. Moreover, the numerical
framework can be adopted to analyze more complex structures such as materials
exhibiting higher-gradient effects (for example, see those presented in dell’Isola and
Seppecher, 1995; Alibert et al, 2003; dell’Isola et al, 2012; Cuomo et al, 2016; Abali
et al, 2017; Barchiesi et al, 2019; Vangelatos et al, 2019c,b,a; dell’Isola et al, 2019a,b;
Eremeyev et al, 2018; Rahali et al, 2020; Eremeyev and Turco, 2020; Chróścielewski
et al, 2020). Application of the presented framework for such complex materials is
currently under investigation by the authors. Also, the free surface effects should be
taken into account to have a better understanding of the phenomenon.

Appendix

In this study, flat shell elements are used to conduct the in-vacuo analyses. In
the formulation of this shell element, it is assumed that bending and in-plane force
resultants are independent from each other. Therefore, the problem is considered as a
combination of 2-D plane stress and plate bending problems. Then, element stiffness
and mass matrices of each problem are combined in a suitable manner to define
total element stiffness and mass matrices. In this study, the plane stress problem is
formulated with bilinear displacement rectangular elements, and the plate bending
problem is modeled with MZC (Melosh-Zienkiewicz-Cheung) rectangular element
formulation (see Fig. 16.15).

Plane Stress Formulation

There is a wide number of elements developed based upon the assumptions of two-
dimensional elasticity. Among the formulations available, the bilinear displacement
rectangle element, developed by Melosh (1963) is preferred in this study to model
plane stress field of flat shell elements. A geometric configuration of this type of
element with a thickness t is given in Fig. 16.15. The dimensionless centroidal
coordinates are defined as follows

ξ =
x

a
, η =

y

b
(16.23)

where 2a and 2b are width and height, respectively. For plane stress elements, the
displacement field is defined with translations in the plane, formed by local x and y



16 An FE-BE Method for the Hydroelastic Vibration Analysis of Plates and Shells 291

Fig. 16.15 Flat shell element.

coordinates. The first node is placed lower left corner, and the consecutive nodes are
designated in counterclockwise direction. The nodal displacement vector is written
as

q = {q1, q2, ..., q7, q8} = {u1, v1, ..., u4, v4}. (16.24)

For the displacement field, which is bilinear in ξ and η, the displacements are defined
as

u = c1 + c2ξ + c3η + c4ξη, (16.25)
v = c5 + c6ξ + c7η + c8ξη. (16.26)

By using these displacement functions, the geometric matrix, G, is introduced as
follows:

G =

[
1 ξ η ξη 0 0 0 0

0 0 0 0 1 ξ η ξη

]
(16.27)

The geometric matrix is evaluated at each node to obtain the following matrix:
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H =

⎡⎢⎢⎢⎢⎣
g1

g2

g3

g4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16.28)

where gi is a 2 × 8 matrix evaluated at ith node (i = 1, 2, 3, 4). Then, the matrix
formed by displacement shape functions, N = GH−1, is written as:

N =

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
(16.29)

where

N1 =
1

4
(1− ξ)(1− η), N2 =

1

4
(1 + ξ)(1− η),

N3 =
1

4
(1 + ξ)(1 + η), N4 =

1

4
(1− ξ)(1 + η).

Next, in order to define the linear differential operator formed by the derivatives with
respect to cartesian coordinates, chain rule is applied as follows:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

1

a

∂

∂ξ
,

∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
=

1

b

∂

∂η
.

Then, the differential operator, Dp, is written as:

Dp =

⎡⎢⎣
∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤⎥⎦ =

⎡⎢⎣
1
a

∂
∂ξ 0

0 1
b

∂
∂η

1
b

∂
∂η

1
a

∂
∂ξ

⎤⎥⎦ . (16.30)

For isotropic materials, the stress-strain operator is defined as follows:

E =
E

(1− ν2)

⎡⎢⎣1 ν 0

ν 1 0

0 0 1−ν
2

⎤⎥⎦ (16.31)

where E and ν represent Young’s modulus and Poisson’s ratio, respectively. Finally,
element stiffness matrix, K, and mass matrix, M, are calculated as follows:
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Kp = abt

+1∫
−1

+1∫
−1

BTEB dξdη (16.32)

Mp = ρabt

+1∫
−1

+1∫
−1

GTG dξdη (16.33)

In the expressions given in Eqs. 16.32 and 16.33, the matrix B is defined as

B = DG =
1

ab

⎡⎢⎣0 b 0 bη 0 0 0 0

0 0 0 0 0 0 a aξ

0 0 a aξ 0 b 0 bη

⎤⎥⎦ . (16.34)

The element stiffness and mass matrices given in Eqs. 16.32 and 16.33 have a
dimension of 8 × 8. To combine these matrices with those of the plate bending
problem, it is convenient to divide these matrices as follows:

Kp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Kp

11

]
[
Kp

21

] [
Kp

22

]
Sym.[

Kp
31

] [
Kp

32

] [
Kp

33

]
[
Kp

41

] [
Kp

42

] [
Kp

43

] [
Kp

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×8

, (16.35)

Mp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Mp

11

]
[
Mp

21

] [
Mp

22

]
Sym.[

Mp
31

] [
Mp

32

] [
Mp

33

]
[
Mp

41

] [
Mp

42

] [
Mp

43

] [
Mp

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×8

, (16.36)

where
[
Kp

ij

]
and

[
Mp

ij

]
are 2 × 2 sub-matrices of the element stiffness and mass

matrices, respectively (i, j = 1, 2, 3, 4). The superscript p denotes the in-plane
effects.

Plate Bending Formulation

In this study, MZC rectangular element, originally developed by Melosh Melosh
(1963), is used to model plate bending contributions of flat shell elements. As seen
from Fig. 16.15, this element has only one generic displacement, w, and rotations,
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θxi
and θyi

, with respect to the local axes x and y. For this type of plate element, the
following nodal displacement vector is introduced

q = {q1, q2, ..., q12} = {w1, θx1
, θy1

, ..., w4, θx4
, θy4

} (16.37)

and the displacement function is expressed as

w = c1 + c2ξ + c3η + c4ξ
2 + c5ξη + c6η

2

+ c7ξ
3 + c8ξ

2η + c9ξη
2 + c10η

3 + c11ξ
3η + c12ξη

3. (16.38)

The matrix formed by displacement shape functions is derived as

Ni = [Ni1Ni2Ni3 ]

where

Ni1 =
1

8
(1 + ξ0)(1 + η0)(2 + ξ0 + η0 − ξ2 − η2)

Ni2 =
−1

8
ηi(1 + ξ0)(1− η0)(1 + η0)

2

Ni3 =
1

8
ξi(1− ξ0)(1 + η0)(1 + ξ0)

2

and

ξ0 = ξiξ, η0 = ηiη, (i = 1, 2, 3, 4)

The differential operator (curvature matrix) for the plate bending problem is defined
as follows:

Db = { ∂2

∂x2
,
∂2

∂y2
,
2∂2

∂x∂y
}. (16.39)

By utilizing the curvature matrix and shape functions, one can obtain strain-
displacement matrix as follows

Bb
i = DbNi =

⎡⎢⎣ Ni1,xx Ni2,xx Ni3,xx

Ni1,yy Ni2,yy Ni3,yy

2Ni1,xy 2Ni2,xy 2Ni3,xy

⎤⎥⎦ (i = 1, 2, 3, 4), (16.40)

The local strain-displacement matrix is a 3× 12 matrix, and it is formed as

Bb =
[
Bb

1 Bb
2 Bb

3 Bb
4

]
3×12

(16.41)

In particular, Bb
1 is calculated as
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Bb
1 =

1

4a2b2

⎡⎢⎣ 3ξ(1− η)b2 0 (1− 3ξ)(1− η)ab2

3(1− ξ)ηa2 −(1− ξ)(1− 3η)a2b 0

(4− 3ξ2 − 3η2)ab (1− η)(1 + 3η)ab2 −(1− ξ)(1 + 3ξ)a2b

⎤⎥⎦
(16.42)

For an isotropic and homogeneous material, the generalized bending constitutive
matrix is given as

Eb =
Et3

12(1− ν2)

⎡⎢⎣1 ν 0

ν 1 0

0 0 1
2 (1− ν)

⎤⎥⎦ . (16.43)

Finally, the element sitffness matrix, Kb, and the mass matrix, Mb, for plate bending
elements are calculated as follows

Kb = ab

1∫
−1

1∫
−1

BbTEbBb dξ dη, (16.44)

Mb = ρtab

1∫
−1

1∫
−1

NTN dξ dη. (16.45)

The element stiffness and mass matrices of bending element given in Eqs. 16.44
and 16.45 have dimensions of 12 × 12. Again, for convenience, these matrices are
divided into sub-matrices to show the contributions to each degree of freedom as
follows

Kb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Kb

11

]
[
Kb

21

] [
Kb

22

]
Sym.[

Kb
31

] [
Kb

32

] [
Kb

33

]
[
Kb

41

] [
Kb

42

] [
Kb

43

] [
Kb

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×12

(16.46)

Mb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Mb

11

]
[
Mb

21

] [
Mb

22

]
Sym.[

Mb
31

] [
Mb

32

] [
Mb

33

]
[
Mb

41

] [
Mb

42

] [
Mb

43

] [
Mb

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×12

(16.47)
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where
[
Kb

ij

]
and

[
Mb

ij

]
are 2 × 2 sub-matrices of the element stiffness and mass

matrices, respectively (i, j = 1, 2, 3, 4). The superscript b denotes the bending
effects.

Derivation of Combined Stiffness and Mass Matrices of Flat Shell Element

As mentioned before, in-plane and bending counterparts of the mass and stiffness
matrices are combined to get the total stiffness and mass matrices in local coordinate
system. The total stiffness matrix is given as follows

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kp
11

0 0

0 0

0 0

Kb
11

0 0 0 0 0 0

Kp
21

0 0 0

0 0 0

0

0
Kp

22 SYM

0 0

0 0

0 0

Kb
21

0

0

0

0 0

0 0

0 0

Kb
22

0 0 0 0 0 0 0 0 0 0 0 0

Kp
31

0 0 0

0 0 0

0

0
Kp

32

0 0 0

0 0 0

0

0
Kp

33

0 0

0 0

0 0

Kb
31

0

0

0

0 0

0 0

0 0

Kb
32

0

0

0

0 0

0 0

0 0

Kp
33

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kp
41

0 0 0

0 0 0

0

0
Kp

42

0 0 0

0 0 0

0

0
Kp

43

0 0 0

0 0 0

0

0
Kp

44

0 0

0 0

0 0

Kb
41

0

0

0

0 0

0 0

0 0

Kb
42

0

0

0

0 0

0 0

0 0

Kp
43

0

0

0

0 0

0 0

0 0

Kb
44

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
24×24

(16.48)

In a similar manner, the mass matrix, M can be obtained. There are two important
points to emphasize here. First, as can be seen from Eq. (16.48), the displacements
resulting from in-plane forces have no effect on bending deformations, and vice
versa. Second, the rotational deformation, θzi is not included in the problem.
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The derived mass and stiffness matrices in the local coordinates must be trans-
formed into an identified reference coordinate system. All the transformations are
accomplished by a simple process. The displacements of a node are transformed
from global to local coordinates by the following transformation matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ 0 0 0 0 0

0 Λ 0 0 0 0

0 0 Λ 0 0 0

0 0 0 Λ 0 0

0 0 0 0 Λ 0

0 0 0 0 0 Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16.49)

with Λ being a 3× 3 matrix of direction cosines between the two sets of axes given
by

Λ =

⎡⎢⎢⎣
cos(ξ, x) cos(ξ, η) cos(ξ, z)

cos(η, x) cos(η, η) cos(η, z)

cos(ζ, x) cos(ζ, η) cos(ζ, z)

⎤⎥⎥⎦ (16.50)

where cos(ξ, x) is the cosine of the angle between ξ andx axes. Thus, the stiffness and
mass matrices of an element in global coordinates are computed with the following
transformation

K̄ = TTKT, (16.51)
M̄ = TTMT (16.52)

where K̄ and M̄ are the global stiffness and mass matrices. Once the stiffness
matrices of all the elements have been determined in a common global coordinate
system, the assembly of the elements follow the standard solution pattern.
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