
Chapter 11
Modelling of Two-dimensional Timoshenko
Beams in Hencky Fashion

Emilio Turco

Abstract We describe a novel mechanical model of planar Timoshenko beam for
large displacements analysis in elastic regime following Hencky beam model guide-
lines. More precisely, we model the strain energy of the beam in a discrete form by
considering, besides the bending contribution, both the stretching and the sliding
contributions. In this way a discrete model of Timoshenko beam is generated. This
model, besides to be interesting di per sé has strong applications in the study of
metamaterials based on beam lattices where, sometimes, the approximations intro-
duced by the use of Euler–Bernoulli beam model are too rough for capturing some
desired details. In addition, this is an intermediate step toward the construction of
discrete three-dimensional Timoshenko beam models.

Keywords: Two-dimensional Timoshenko beam · Large displacements in elastic
regime · Buckling of beams

11.1 Introduction

The Timoshenko beam model is the object of several scientific studies of historical
kind (see, e.g., Elishakoff, 2020), of mathematical kind (see, e.g., Della Corte et al,
2019), both for static (Balobanov and Niiranen, 2018; Kiendl et al, 2015; Turco et al,
2020) and dynamic problems (Luu et al, 2015; Cazzani et al, 2016b,c,a). All these
studies prove the great interest about this model both di per sé and also from the
point of view of the technical applications.This interest is increased in last years
for the large use of this model in the analysis of metamaterials when their internal
structure requires beam models richer than the so-called Euler–Bernoulli beam (see,
e.g., Meza et al, 2017, 2014; Gross et al, 2019; Vangelatos et al, 2019a,b).
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By considering, for instance, pantographic metamaterials as described in the
recent papers (dell’Isola et al, 2019b,a), the beams forming the pantographic sheet
might have dimensions which suggest to consider the shear deformability instead
of neglecting it a priori choosing the Euler–Bernoulli model. The Timoshenko
beam model is obviously more expensive than Euler–Bernoulli model since the
former requires to describe the rotations which are independent from displacements.
However, this extra computational cost could balance, at least partially, a richer –
therefore more accurate in principle – model.

The discrete form used for modelling the Timoshenko beam which will be de-
scribed in this work is largely inspired by the work of Hencky (1921), although here
both the stretching and the sliding terms of the strain are considered. Starting from
the guidelines reported in Eremeyev and Altenbach (2017); Turco (2018); Eremeyev
(2019) for describing the bending strain for three-dimensional beams, here, limiting
ourselves to two-dimensional beams, we introduce in a simple way the stretching and
the sliding strain measures. Since the discrete model presented here uses, besides La-
grangian parameters for describing the rotation field, also the nodal displacements,
it makes simpler the treatment of systems of beams when the kinematical constraints
on the nodes have to be imposed, as is necessary for pantographic structures.

After this brief Introduction, it will be presented the discrete model of a two-
dimensional Timoshenko beam in the framework of Hencky approach, Section 11.2,
defining completely the strain energy and, therefore, both the structural reaction
and the stiffness matrix which are the main tools used in a path-following strategy
such as proposed by Riks (1972), Section 11.3. Some numerical results showing the
influence of the shear deformability are presented and discussed in Sec. 11.4. Finally,
some concluding remarks along with a list of forthcoming issues are presented in
Section 11.5.

11.2 Modelling of Two-Dimensional Timoshenko Beams

We consider a planar rectilinear beam1 discretized by means of a series of links of
equal length � (for the sake of simplicity) connected by joints, see Fig. 11.1 sketched
as black circles.

The position of j-th joint in the reference and in the current configuration is Pj

and pj , respectively. In the spirit of Cosserat brothers for one-dimensional continuum
and of the Timoshenko beam model, each joint is also equipped, in the reference
configuration, with a unit vectorDj which is transformed in the current configuration
in the unit vector dj = QjDj being Qj a proper orthogonal tensor which represents
a rotation. Reference and current configurations are described by the sets {Pj ,Dj}
and {pj ,dj}, respectively. We remark that using the immediately above hypotheses
the Lagrangian parameters used for describing the motion is the displacement of

1 The rectilinear hypothesis can easily be removed to represent broken lines approximating curves.
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Fig. 11.1 Reference and current configuration of a segment of planar Timoshenko beam discretized
à la Hencky.

j-th joint wj = pj − Pj and the rotation associated with the j-th proper orthogonal
tensor Qj .

Looking again at Fig. 11.1, we can define as strain measures the vector Δwj+1

Δwj+1 = (pj+1 − pj)− �QjDj , (11.1)

and the tensor ΔPj+1

ΔPj+1 = QT
j Qj+1 . (11.2)

Fig. 11.2 Strain measures for a planar Timoshenko beam discretized à la Hencky.
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The vector Δwj+1, i.e. the difference between pj+1 − pj (the vector which
connects the j-th and (j + 1)-th current positions) and �QjDj (that is the vector
having � norm obtained rotating Dj by Qj). The just defined strain vector Δwj+1,
can be decomposed in two parts:

Δwa,j+1 = (pj+i − pj)

(
1− �

‖pj+i − pj‖
)

, (11.3)

Δwc,j+1 = Δwj+1 −Δwa,j+1 , (11.4)

being the graphic representation of each one sketched in Fig. 11.2.
The norms of these two vectors describe the stretching and the sliding, respec-

tively, of the link in-between j and j + 1 joints.
The proper orthogonal tensor ΔPj+1 describes the bending that is the relative

rotation between the two considered links. In details, as reported in Turco (2018) for
the case of three-dimensional inextensible Euler–Benoulli beams, from Rodrigues’
formula, see Rodrigues (1840), the relation between a rotation of amplitude ϕ about
the rotation axis depicted by the unit vector e is represented by the proper orthogonal
tensor Q expressed by2

Q = cosϕI+ (1− cosϕ)e⊗ e+ sinϕE , (11.5)

being I and E the identity tensor and the skew tensor defined by the equivalence
Eu = e× u, respectively.

Equation (11.5) define the rotation tensor as function of the rotation angle ϕ and
the rotation axis e. If we are interested to the rotation angle and to the rotation axis
starting from the rotation tensor, taking into account that E is skew so tr(E) = 0
and ET = −E, we can simply evaluate the trace of Q:

tr(Q) = 2 cosϕ+ 1 , (11.6)

and the difference
Q−QT = 2 sinϕE , (11.7)

from which we can compute the vectorial invariant Q× of Q, in formula:

Q× = sinϕe . (11.8)

From Eqs. (11.6) and (11.8) we have

sinϕe

1 + cosϕ
=

2Q×
1 + tr(Q)

, (11.9)

and finally, by using the bisection formula, we obtain

2 It is better to treat the problem in 3D and successively simplify the results to the considered
two-dimensional case, i.e. e = e3.
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2 tan
ϕ

2
e =

4Q×
1 + tr(Q)

. (11.10)

Formula (11.10) suggest the use of variable 2 tan
ϕ

2
, instead of ϕ, to describe the

rotation angle. With this change of variable, Rodrigues formula can be written as

Q =
1

4 + ϑ2

(
(4− ϑ2)I+ 2θθθ ⊗ θθθ + 4ϑE

)
, (11.11)

where θθθ = ϑe and ϑ2 = θθθ · θθθ.
For two-dimensional Timoshenko beams, the kinematics is simpler since the

rotation axis is always directed along the unit vector e3. For example, the skew
tensor E and the rotation tensor Q become

E =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ , (11.12)

and

Q =

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦ or Q =
1

4 + ϑ2

⎡⎣ 4− ϑ2 −4ϑ 0
4ϑ 4− ϑ2 0
0 0 4 + ϑ2

⎤⎦ ,

(11.13)
respectively.

In the foregoing we have described the relationships between Lagrangian param-
eters used to describe the motion, i.e. the displacements of joints and the rotations
of the links which, following the Timoshenko guidelines have to be independent,
and the chosen strain measures Δwa,j , Δwc,j and ΔPj+1. Correspondingly, we
can write the strain energy of the beam just summing the following elementary
contributions:

2Ea = a‖Δwa,j+1‖2 , (11.14)
2Eb = b‖Δφφφj+1‖2 , (11.15)
2Ec = c‖Δwc,j+1‖2 , (11.16)

where, besides the quantities already defined, we use Δφφφj+1 which is the finite
relative rotation vector associated to ΔPj+1 by using the link defined by Eq. (11.10)
and a, b and c are the stiffness parameters related to stretching, bending and sliding.
We remark that in the considered case Δφφφj+1 has only one component different
from zero, i.e. the third.

Finally we observe that in the case of dj directed as the segment in-between j
and j +1 there is not sliding and we come back to the Hencky approximation of the
Euler–Bernoulli model as described, e.g., in Turco et al (2016).
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11.3 Numerically Driven Drawing of the Equilibrium Path

displacements vectoru, the nonlinear system of equilibrium equations can be written
as

s[u]− p[λ] = 0 , (11.17)

being the vector s the structural reaction, depending upon nodal displacement vector
u, and p[λ] the external load vector ruled by the dimensionless load parameter λ.
The structural reaction s can be computed starting from the total strain energy E of
the system, i.e. adding the contributions deriving from (11.14), (11.15) and (11.16),
as

s =
dE

du
, (11.18)

while, the external load is expressed in the form

p[λ] = p0 + λp̂ , (11.19)

able to represent both external loads λp̂ which increase with the dimensionless
parameter λ and external loads independent from λ, i.e. p0. This load representation
is useful to model the so-called load imperfections.

The solution of the nonlinear system of equations (11.17) could be obtained by
using a stepwise procedure which uses the Newton’s method. Starting from the
pair (ui, λi) which represents the i-th equilibrium point, the next one, and nearby,
(ui +Δu, λi +Δλ) can be computed, by linearizing Eq. (11.17)

s[ui] +KΔu− (p0 + (λi +Δλ)p̂) ≈ 0 , (11.20)

which uses the stiffness matrix K defined as

K =
ds

du
, (11.21)

computed in ui. Newton’s method, starting from the linearization (11.20), gives the
recurrent formula to compute Δu when the value of Δλ is fixed in advance:

Δu = −ΔλK−1p̂ . (11.22)

As is well documented in technical literature, Newton’s method does not converge
when K is singular or nearly-singular. In order to bypass this limitation, Riks Riks
(1972) proposed the parametrization of the equilibrium path by means its arc-length
instead of the dimensionless load parameter λ. The consequent integration scheme
is not affected by the convergence problems intrinsic in the Newton’s method, but it
has to be completed by an additional equation.

In some detail, Riks’ arc-length scheme proposes a correction on the extrapolation
obtained from Newton formula (11.22). If the pair (ui, λi) is an equilibrium point
and (Δu, Δλ) is a Newton extrapolation, the Riks correction (u̇, λ̇) can be evaluated

Enforcing the stationarity condition for the potential energy with respect to nodal
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from the linearization (11.17) in the point (ui +Δu, λi +Δλ)

s [ui +Δu] +Ku̇− (p0 + (λi +Δλ+ λ̇)p̂) ≈ 0 , (11.23)

where the stiffness matrix K is now computed in ui +Δu. From (11.23) u̇ can be
computed from

u̇ = −K−1
(
s[ui +Δu]− (p0 + (λi +Δλ+ λ̇)p̂)

)
, (11.24)

The additional equation required to compensate the unknown λ̇ can be chosen in
several different ways. One producing a very simple formula, also computationally
convenient, is

Δu ·Ku̇ = 0 , (11.25)

which enforces the K-orthogonality between the Newton extrapolation Δu and
the Riks correction u̇. Substituting (11.24) in (11.25) and taking also into account
(11.22), simple calculations give the straightforward expression

λ̇ =
û · r
û · p̂ , (11.26)

being r = s[ui + Δu] − (p0 + (λi + Δλ)p̂) the rest of equilibrium equations
and û = K−1p̂ (from (11.22)). Finally, from (11.24), the Riks correction u̇ can be
computed making use of Newton extrapolation Δu.

Formulae (11.26), (11.24) and (11.22) fully define the Riks-based algorithm once
the first extrapolation is defined:

Δλ = μ(λi − λi−1) , (11.27)
Δu = μ(ui − ui−1) , (11.28)

here, μ is an adaptive coefficient used to vary the arc-length during the stepwise pro-
cedure and the pairs (λi,ui) and (λi−1,ui−1) the last and the second last computed
point of the equilibrium path, respectively. Synthetically, the adaptive coefficient μ
drives the step-length of each step on the nonlinearity of the equilibrium path. A
straightforward expression for computing μ, is suggested in Wriggers (2008); Clarke
and Hancock (1990):

μ = 1− rl − nl

rl + nl
, (11.29)

it uses the number of required loops rl to reach the convergence in the current step
and the number of needed loops nl (the usual choiche is nl = 5). At the beginning
of the analysis process μ = 1 is assumed, whereas the value of Δλ is estimated
by some auxiliary analysis. The initial settings of Δλ and of Δu fix, implicitly, the
curve arc-length.
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11.4 Quantitative Analysis of the Influence of the Shear Stiffness
Parameter

The quantitative difference between the discrete form of the Euler–Bernoulli and
Timoshenko beam models can be estimated in a simple way by referring to a can-
tilever beam � long loaded with a transversal force F on the free end. If we compute,
in the case of linear elasticity and for small displacements, the transversal displace-
ment of the free end, neglecting the deformation due to the shear, we have F�3/3EI
beingE and I the Young modulus of the material and the inertia of the cross-section,
respectively. Therefore, the bending stiffness is 3EI/�3. Conversely, the contribution
related to the shear deformability is F�/GA∗ being G and A∗ the shear modulus of
the material and the reduced area of the cross-section, respectively. The correspond-
ing shear stiffness is GA∗/�. If we compute the ratio between the displacement of
the free end due to the shear and to the bending contributions we have

ws

wb
=

3EI

�3

GA∗

�

, (11.30)

from which we deduce that this ratio is inversely proportional to the square of the
beam length. If we consider a beam with rectangular cross-section b depth and h
height, the ratio becomes

ws

wb
∝

(
h

�

)2

, (11.31)

besides to be dependent from the Poisson’s ratio. For example, for h/� = 0.5 the
shear term is equal to the 25% of bending term and so surely not negligible.

Fig. 11.3 Deformation
modes: stretching (on the
top), sliding (on the middle)
and bending (on the bottom).

Starting from this simple analysis, we can compute numerically the values of
the energy related to stretching, bending and sliding following Eqs. (11.14), (11.15)
and (11.16). Therefore, for large displacements, we consider the three representative
deformation modes sketched in Fig. 11.3:
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1. the first one considers the pointsPj andPj+1 and the deformation corresponding
to pj+1 = Pj+1 + ue1 keeping pj = Pj ;

2. the second one, always for the points Pj and Pj+1, considers the deformation
corresponding to pj+1 = Pj+1 + ve2 keeping pj = Pj ;

3. the third one considers for the links in-between three consecutive points Pj−1,
Pj and Pj+1 the rotations θj keeping θj−1 = 0.

Figure 11.4 reports the dimensionless strain energy split in stretching, bending
and sliding contributions as function of the parameters u, v and θj . We remark that
the parameter u influences only the stretching energy, v stretching and sliding and,
finally, θj stretching, bending and sliding. Figure 11.5 reports the sliding-stretching
strain energy ratio versus the dimensionless displacement vj/� varying the c/a ratio
from 0.1 to 10 keeping unchanged b. Figure 11.6 shows as the sliding-bending strain
energy ratio varies when the non-dimensional stiffness ratio c�2/b increases from
0.1 to 10 keeping unchanged a.

The last two plots show, also quantitatively, the influence of the sliding part of the
energy, respect to the stretching and the bending part, when the stiffness parameter
c increases. In addition, we notice that the sliding part of the strain energy decreases
when the displacement parameter of the considered deformation mode increases.

11.4.1 Tip Deflection of a Cantilever Beam

By referring to the cantilever beam reported in Fig. 11.7 loaded with a transversal
force on the tip, Figure 11.8 shows as the cantilever beam tip displacement varies
when the load parameter λ increases varying the stiffness ratio c/b. As can be noticed
from the plots, for large displacements the influence of the parameter c is relevant
and surely it can not be neglected.

Figure 11.9 reports two deformations corresponding to the end of the loading
path. They correspond to the values c/b = 0.005, on the left, and c/b = 5, on the
right, respectively. Colors red and blue distinguish the current positions of nodes
and of rotations, respectively. It can be noticed that the two deformations are very
different. In the first one, see Fig. 11.9(a), the effect of sliding is clearly visible and it
is described by the blue segments sharply distinct from the red line which describes
the displacements. In the second one, see Fig. 11.9(b), blue segments and red line
are overlapped showing that for the used c/b ratio the sliding is practically negligible
and the Euler–Bernoulli beam model could be profitably used.

Figure 11.10 shows the strain energy evolution, when λ increases, for two limit
cases, c/b = 0.005 on the left and c/b = 5 on the right. Small values of the sliding
stiffness c, respect to bending stiffness b, give non-negligible values of the sliding
strain energy, respect to the bending strain energy, whereas for higher values of c the
relative contribution Ec is negligible, respect to the bending strain energy.
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Fig. 11.4 Dimensionless
strain energy, split in stretch-
ing, bending and sliding
contributions, corresponding
to deformation modes as-
sociated to uj/�, vj/� and
θj .
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Fig. 11.5 Sliding-stretching
strain energy ratio correspond-
ing to the deformation modes
associated to vj/� varying the
c/a ratio from 0.1 to 10.

Fig. 11.6 Sliding-bending
strain energy ratio corre-
sponding to the deformation
modes associated to θj vary-
ing the c�2/b ratio.

Fig. 11.7 Cantilever beam
under a shear force on the tip.

11.4.2 Buckling of a Simply Supported Beam

By referring to the simply-supported beam depicted in Fig. 11.11 loaded with a
compression force ruled by the load parameter λ and a transversal force on the beam
midpoint mimicking an imperfection load, Figure 11.12 shows as the dimensionless
transversal displacement t/L of the midpoint varies when the load parameter λ
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Fig. 11.8 Dimensionless can-
tilever beam tip displacement
t/L loaded by a transversal
force on the tip (L is the
length of the beam) vs. the
load parameter λ varying c/b
ratio.

Fig. 11.9 Deformation for c/ = 0.005, on the left, and c/b = 5, on the right, (red color is used for
current positions of nodes blue color for rotations.

Fig. 11.10 Strain energy (total and split in stretching Ea, bending Eb and sliding Ec parts) for
c/b = 0.005 (on the left) and c/b = 5 (on the right).
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Fig. 11.11 Simply supported
beam under compression load
and transversal imperfection.

increases varying the stiffness ratio c/b. From the plots, we can guess, at least
approximatively, the strong influence of c/b ratio on the buckling loads and on the
first part of the secondary branches while last parts of the equilibrium paths are
practically indistinguishable.

Fig. 11.12 Buckling of a
simply supported beam: di-
mensionless midpoint dis-
placement t/L (L is the
length of the beam) vs. load
parameter λ varying c/b ratio.

Figure 11.13 reports two deformations corresponding to the end of the loading
path.3 They correspond to the values c/b = 0.005, on the left, and c/b = 5, on
the right, respectively. As in the foregoing, red and blue colors distinguish current
positions of nodes and rotations, respectively. It can be noticed that the two de-
formations are very different. In the first one, see Fig. 11.13(a), the sliding effect,
described by the blue segments sharply distinct from the red line which describes the
displacements, is clearly visible. In the second one, see Fig. 11.13(b), blue segments
and red line are overlapped showing that the used c/b ratio the sliding is practically
negligible and the Euler–Bernoulli beam model could be profitably used.

Figure 11.14 shows the strain energy evolution, when λ increases, for two limit
cases, c/b = 0.005 on the left and c/b = 5 on the right. Small values of the sliding
stiffness c, respect to bending stiffness b, give non-negligible values of the sliding

3 The Author is aware that these solutions are admissible only if the overlapping of the beam is
allowed.
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Fig. 11.13 Buckling of a simply supported beam: deformation for c/b = 0.005, on the left, and
c/b = 5, on the right, (red color is used for current positions of nodes whereas in blue color for
rotations.

strain energy, respect to the bending strain energy, whereas for higher values of c the
relative contribution Ec is negligible, respect to the bending strain energy.

Fig. 11.14 Buckling of a simply supported beam: strain energy (total and split in stretching Ea,
bending Eb and sliding Ec parts) for c/b = 0.005 (on the left) and c/b = 5 (on the right).

11.5 Concluding Remarks and Future Challenges

This work has presented and discussed a novel discrete mechanical model, largely
inspired by the Hencky work, devoted to study two-dimensional Timoshenko beam.
After the model presentation and a brief sketch of the algorithm used for recon-
structing the equilibrium path, the results of some numerical simulations are used
for evaluating the sensitivity of results respect to the shear stiffness parameter. In
some detail, numerical simulations have shown that neglecting the shear deformation
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can produce results almost far from those produced taking into account the shear
contribution. This result is confirmed also when buckling problems for simple beams
are considered.

After this preliminary work, there are several open problems to tackle, in partic-
ular: i) it is necessary a further careful analysis on the stiffness parameters used to
model the elastic response of the discrete beam; these parameters should be linked
to the usual constitutive parameters of the material, for instance the Young and the
tangential stiffness moduli, and to the geometric parameters of the beam, for instance
the transversal cross-section area, the inertia and the shear correction factor; in addi-
tion, the stiffness parameters of the discrete beam might be considered as variables
along the beam (functionally graded materials); an extended campaign of numerical
simulations might be discover new and exotic mechanical behaviors (see, e.g., Al-
ibert et al, 2003; Seppecher et al, 2011; Misra et al, 2018; De Angelo et al, 2019;
Turco et al, 2019; Scerrato and Giorgio, 2019); ii) it is intriguing the development of
continuum models4, such as reported, e.g., in Boutin et al (2017); Giorgio et al (2018,
2019); Barchiesi et al (2019b); Placidi et al (2020); Barchiesi et al (2019a); Abdoul-
Anziz and Seppecher (2018); Abdoul-Anziz et al (2019); Andreaus et al (2018);
Abali et al (2015); Spagnuolo and Andreaus (2019) based on the discrete model and
on the results presented here; their use could help to identify the stiffness parameter
of the discrete model besides to be useful for developing continuum models devoted
to the analysis of plane or curved structures moulded as, e.g., shells and tubes (see
Greco et al, 2018, 2019a,b; Greco and Cuomo, 2015; Greco, 2020; Abali et al, 2016;
Yang et al, 2018); iii) it is promising the extension of elastic stability theory for
micromorphic, strain-gradient media and granular materials, likewise the nonlinear
elasticity theory (see, e.g. Ogden, 1997; Fu and Ogden, 1999), and to Cosserat me-
dia (see, e.g., Eremeev and Zubov, 1994; Sheydakov and Altenbach, 2016; Lakes,
2018; Solyaev et al, 2020; Balobanov and Niiranen, 2018; Misra and Poorsolhjouy,
2015; Pideri and Seppecher, 1997; dell’Isola et al, 2015; Niiranen et al, 2019); iv)
it should be considered the extension to problems where dynamics effects have to
necessarily be considered (see, e.g., Giorgio, 2020; Giorgio and Del Vescovo, 2019,
2018; Giorgio et al, 2017; Laudato and Barchiesi, 2019) or technical problems which
consider the active control of vibrations (see Chróścielewski et al, 2019) and therein
references.
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