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Preface

The ICoNSOM 2019, International Conference on Nonlinear Solid Mechanics, took
place at Palazzo Argiletum, Rome, Italy, from June 16 to June 19, 2019. Over 200
participation from the whole globe, the urge of this proceedings became clear. With
the aid of the organizers, Marco Amabili, Francesco dell’Isola, Ivan Giorgio, Nicola
Rizzi, and Luca Placidi, the scientific community did show a great interest allowing
us to bring together this proceedings collected in two volumes:

• Developments and Novel Approaches in Nonlinear Solid Body Mechanics
• Developments and Novel Approaches in Biomechanics and Metamaterials

ICoNSoM 2019 Conference has been intended to provide an international oppor-
tunity for communicating recent developments in various areas of nonlinear solid
mechanics. This monograph consists theory, experiments, and applications in me-
chanics, thermodynamics, and multiphysics simulation in many length scales.

As editors, we intend to thank all authors for their crucial contributions as well
as all reviewers for their invaluable time and effort. We delightedly acknowledge Dr.
Christoph Baumann (Springer Publisher) for initiating the book project. In addition,
we have to thank Dr. Mayra Castro (Senior Editor Applied Sciences; Materials Sci-
ence; Materials Engineering; Nanotechnology and Nanomedicine) and Mr. Ashok
Arumairaj (Production Administrator) giving their support in the process of publi-
cation.

Brussels, Rome Bilen Emek Abali
May 2020 Ivan Giorgio
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Chapter 1
International Conference on Nonlinear Solid
Mechanics 2019: General Topics and Review of
Plenary Lectures

Marco Laudato, Daria Scerrato, Chuong Anthony Tran, and Emilio Barchiesi

Abstract The International Conference on Nonlinear Solid Mechanics (ICoN-
SoM) 2019, held in Rome from June 16th through 19th of 2019, had as its main
goal to gather together researchers in the field of nonlinear Solid Mechanics in
a stimulating research environment. This work accounts for the plenary lectures
held during the conference. It is mainly aimed at providing interested researchers
with a track of the contents discussed during the conference and with the rele-
vant bibliography of the plenary lectures. Additional information, such as the ab-
stracts of all the talks, can be found on the official web-site of the conference:
http://www.memocsevents.eu/iconsom2019.

Keywords: Nonlinear mechanics · Surface elasticity · Digital volume correlation ·
Composite structures

1.1 Why Nonlinear Solid Mechanics Deserves an International
Conference?

Nonlinearity is one of the key-features shared by the majority of the fast-growing
sectors of Solid Mechanics. Thanks to the recent development of efficient numerical
methods and reliable fast-prototyping techniques, researchers and engineers are
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nowadays enabled to explore experimentally and mathematically new methods for the
analysis of nonlinear phenomena. One of the most relevant examples is provided by
mechanical metamaterials Barchiesi et al (2019b); Milton et al (2017a). Researchers
working in different areas of Mechanics worldwide are sharing efforts trying to
understand and control the behaviours of multi-scale systems, where nonlinearity
related to the intrinsic complexity of such systems can exhibit phenomena of notable
engineering interest Misra et al (2018); Milton et al (2017b).

When considering systems with a kinematics given – at so-called micro-scale – in
terms of extremely many degrees of freedom, one of the amenable approaches for an
efficient description is to devise an equivalent macroscopic continuum field theory
Steigmann and dell’Isola (2015); Steigmann (1996), for instance via homogenization
techniques Rahali et al (2015); Seppecher et al (2011); Boutin et al (2017); Man-
dadapu et al (2018). Owing to the complexity of the system in terms of mechanics
and topology of the microstructure, it might happen that the resulting continuous
description cannot be framed in the setting of standard Cauchy elasticity Alibert
et al (2003). Generalizations of Cauchy elasticity, often in non-linear regimes, have
to be considered in these cases, namely generalized continua dell’Isola et al (2015);
dell Isola et al (2015). A paradigmatic example of generalized continua – particu-
larly second gradient continua – is given by so-called pantographic metamaterials
dell’Isola et al (2019a,b); Placidi et al (2016a).

In Solid Mechanics, nonlinearity can arise also in the study of systems where the
mechanical behaviour is coupled with other physical interactions, as electromagnetic
ones Andreaus et al (2004); Alessandroni et al (2004); Giorgio et al (2009); Los-
souarn et al (2016), and also when the considered system is composite and made up
of different (and interacting) materials Lekszycki and dell’Isola (2012); Madeo et al
(2012); Giorgio et al (2017a); Abali et al (2019). Clearly, nonlinearities arise nat-
urally when a material undergoes large deformations dell’Isola et al (2016). There
are many phenomena which are intrinsically nonlinear, both in a statics Giorgio
et al (2016, 2017b); Abali et al (2015) and dynamics Baroudi et al (2019); Laudato
and Barchiesi (2019). The message that emerges clearly from the above-reported
evidence is that mathematical descriptions needed to obtain wholesome forecasts
should not be limited by linearity.

In addition to developments in mathematical Placidi et al (2016b); Giorgio et al
(2017c) and numerical Turco et al (2016a,b); Niiranen et al (2016); Khakalo and
Niiranen (2017); Abali et al (2017, 2015) aspects, the fast growth of nonlinear Solid
Mechanics is undoubtedly due to the improvements in fast-prototyping and experi-
mental methods: 3D-printing techniques, for instance, allow to reach the accuracy
needed to fabricate complex microstructures at engineering scales Golaszewski et al
(2019); dell’Isola et al (2019c). Furthermore, the time required for specimens fabri-
cation, thanks to improvements in many of the involved technologies Spagnuolo et al
(2019), has been reduced as to make a trial-and-error approach feasible. Neverthe-
less, complex microstructures designed to undergo large deformations still require
new and more advanced experimental techniques to obtain reliable and wholesome
data. This has pushed researchers to enhance existing experimental and data acquisi-
tion techniques, and even to invent new ones. One of the most successful examples is
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given by Digital Image Correlation techniques Barchiesi et al (2019a); Hild and Roux
(2006), where a panoply of enhancements and new concepts have been introduced
for taking into account heterogeneous materials and extremely large deformations.

It is therefore concluded that Nonlinear Solid Mechanics represents the ideal
meeting point for researchers working within all the different areas of Mechanics
to share points of view and know-how. This has been the main motivation behind
the establishment of the International Conference of Nonlinear Solid Mechanics
(ICoNSoM) 2019, held in Rome from June 16th through 19th of 2019. ICoNSoM
has been purposely conceived to provide a stimulating opportunity of discussion
in the community of nonlinear Solid Mechanics. Following the path established by
the Canadian Conference on Nonlinear Solid Mechanics held in 2013 at McGill
University, the International Research Centre on Mathematics and Mechanics of
Complex System (M&MoCS) and the McGill University have started this series of
international conferences on the topic. The conference was organized in collabora-
tion with the Laboratoire International Associé Coss&Vita and the Department of
Architecture of the University ROMA TRE. ICoNSoM 2019 has been an occasion
to foster an effective exchange of knowledge and ideas between scientists from dif-
ferent expertise areas. A series of plenary lectures has been held by acknowledged
experts in the various fields related to nonlinear Solid Mechanics. The content of
these lectures, that are discussed in detail successively, has been designed to give a
smooth introduction to the relevant topics of the conference and, at the same time,
to provide a reliable idea of the state of the art progresses.

The talks and the keynote lectures have been organized in a series of thematic mini
symposia. The following list of symposia can be therefore considered as a reliable
overview of the main topics analyzed during the conference:

• Nonlinear dynamics and wave motion
• Micro and nano systems
• Nonlinear vibrations of continuous systems
• Nonlinear mechanics with singularities
• Dynamics and control of MEMS and NEMS
• Nonlinear phenomena in granular solid: modeling and experiments
• Nonlinear dynamics and control of advanced materials and structures
• Mathematical models and numerical methods for hysteretic mechanical systems

and materials
• Unusual dynamics and active control
• Asymptotic approaches in nonlinear of mechanics of solids
• Novel computational methods with applications in continuum mechanics
• Ten years of global digital volume correlations: what has been achieved?
• Nonlinear fluid-structure interactions
• Buckling and post-buckling of laminated structures
• Contact mechanics of interfaces
• Topology optimization and structures
• Advanced experimental solid mechanics and optical field measurement
• Computational fracture mechanics
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• Nonlinear mechanics of lattice metamaterials
• Acoustic metamaterials: recent developments and challenges
• Structural models with high continuity: theoretical and numerical aspects
• Nonlinear biomechanics of soft tissue
• Complex structures and microarchitectures of metamaterials
• Advanced modeling in mechanobiology
• Generalized models of solids including surface-related phenomena
• Perspectives in generalized continua
• Multiscale modeling of plasticity, viscoelasticity, viscoplasticity of heteroge-

neous materials
• New frontiers in regularized damage modeling
• Multiscale and multi-physics modeling for complex materials
• Additive manufacturing and characterization of metamaterials
• Numerical methods for stochastic mechanics and dynamical systems
• Recent advances in the mechanical modeling of architected materials and peri-

odic structures
• Modeling natural and engineered materials with internal microstructure
• Nonlinear static and dynamic instability of thin-walled structures
• Mechanical friction, wear, lubrication and condition monitoring
• Mathematical physics, theory of capillarity and composite materials
• Advanced mechanical modeling of composite materials and structures
• Multiscale modeling of polymers and elastomers
• Nonlinear behavior of vaulted masonry structures
• Modeling and computational strategies for masonry structures

Since a complete report of such a populated list of symposia is not suitable within
a single paper, in the following we will discuss in details the content (with a list
of relevant bibliographic references) of all the plenary lectures. We are planning to
produce similar reports for other relevant symposia of the ICoNSoM conference in
a close future. For further details, the interested reader can visit the official web-site
of the conference.

1.2 Plenary Lectures

In this section, the topic of the plenary lectures held during the conference will be
reviewed, aimed at giving a rapid link with the relevant bibliography.

1.2.1 Nonlinear Mechanics of Drilling – B. Balachandran

Balakumar Balachandran, is Minta Martin Professor of Engineering at the Univer-
sity of Maryland since 1993. Nonlinear phenomena, control, vibration and dynamics
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have been the main topic explored during his research career. He is the author of
the successful Wiley textbook Applied Nonlinear Mechanics: Analytical, Compu-
tational, and Experimental Methods, a Cambridge University Press textbook titled
Vibrations, and he was the editor of the Springer book Delay Differential Equations,
Recent Advances and New Directions. Prof. Balachandran holds five different patents
on atomic force microscopy and fiber optics.

In his lecture titled Nonlinear mechanics of drilling, he discussed the nonlinearity
sources when modeling drilling operations, with special focus on the petro-chemical
sector. Prof. Balachandran provided technical background supporting that these
nonlinearities are often the reason of harmful vibrations in drill-strings and are
mainly related to the contact between the drill string and bore hole, to coupling
between axial, torsional and lateral motions, and to drag-bit cutting mechanics Liao
et al (2011); Liu et al (2013, 2014). The role of delay effects in cutting action
operations such as milling, and their relation to nonlinear behavior of this kind of
systems, was one of the key concepts of his talk. During the lecture, some of the
consequent phenomena such as forward and backward whirling motions and stick-
slip dynamics have been discussed and a combination of analytical, numerical, and
experimental results on drill-string dynamics have been presented.

1.2.2 Surface Elasticity with Applications to Material Modeling at
the Nano- and Micro-Scales – V. A. Eremeyev

Victor A. Eremeyev is professor at Gdańsk University of Technology. His main
research interests are related to the theory of elastic and inelastic shells. Moreover,
he has studied the behavior of continuum media with microstructure and generalized
media such as Cosserat continua. Finally, he is involved in the analysis of surface
stresses, nonlinear elasticity nano- and micro-mechanics, and phase transformations.
His research had a remarkable impact in these topics and he has been author of more
than 160 publications and 13 edited or written books.

He presented a lecture titled Surface elasticity with applications to material
modeling at the nano- and micro-scales. The main aim of the lecture was to present
material modeling strategies within the framework of surface elasticity models. The
first part of his lecture was focused on the formulation of surface elasticity models.
The strategy is to model body boundaries as elastic membranes or shells. From
the mathematical point of view, this assumption corresponds to define a dynamical
generalization of the Laplace-Young equation from capillarity theory. Following
this scheme, the influence of the surface stresses on the parametrization of layered
plates and shallow shells was discussed. However, the essential effect on the surface
properties is related to the propagation of anti-plane surface waves Eremeyev and
Sharma (2019); Eremeyev et al (2019); Eremeyev (2019). Finally, in the last part
of the talk a new class of surface metamaterials, called metasurface and based
on coatings, has been presented. In particular, strategies for the definition of a
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homogenized continuum model obtained by replacing thin coating with an effective
material surface have been outlined.

1.2.3 Ten Years of Global Digital Volume Correlation: What Has
Been Achieved? – F. Hild

François Hild is CNRS research professor at the Laboratoire de Mécanique et Tech-
nologie, ENS Paris-Saclay. His research interests have been initially related to brittle
fracture, where he gave fundamental contributions in renewing the then-classical
approach. After that, he focused on the application of image processing techniques
to experimental mechanics as full-field measuring tool, i.e. digital image correlation.
He was one of the pioneers in this field, whose output has been diffusely transferred –
also thanks to his continuous efforts in collaborative projects with industrial partners
– into commercial solutions. The impact of his work onto the scientific community
granted him the CNRS 2017 silver medal.

In the lecture Ten years of global digital volume correlation: What has been
achieved?, François Hild reviewed the major developments in global digital volume
correlation over the past ten years. So-called global approaches to digital volume
correlation were carefully described, underlying particularly how they can be tailored
to exploit the utilization of kinematic fields obtained from finite element simulations
Hild et al (2019); Mendoza et al (2019); Hild and Roux (2006): one of the break-
through of François Hild’s research is the introduction of model-based mechanical
content into the optical measurement of displacement fields to enhance the quality
of results. In the final part of his presentation several case-studies were presented,
highlighting how the various features of global digital volume correlation were tai-
lored to overtake some of the most challenging problems in today’s experimental
mechanics.

1.2.4 Granular Micromechanics: Bridging Grain Interactions and
Continuum Descriptions – A. Misra

Anil Misra is professor in the Civil, Environmental and Architectural Engineering
Department of the University of Kansas. His research interests span a wide range,
from fundamental topics in generalized mechanics to applications in geo-materials
and bio-materials, passing through computational and experimental aspects in gran-
ular mechanics. His scientific production of more than 300 papers in journals, edited
books and conference proceedings, has a vast recognition. For the impact of his
research he was awarded in 2017 the Eugenio Beltrami Senior Scientist Prize.

In his lecture Granular micromechanics: bridging grain interactions and contin-
uum descriptions, Prof. Misra analyzed relations between continuum and discrete
descriptions for granular materials. Kinematic measurements of disk assemblies,
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with and without controlled grain interactions Misra and Jiang (1997), were pre-
sented as phenomenological basis to introduce the micromechanics approach, i.e. a
modeling strategy based on the interplay between a discrete micro-scale description
and a suitable macro-scale continuum description Misra and Poorsolhjouy (2017);
Nejadsadeghi and Misra (2019); Misra and Nejadsadeghi (2019). Since interactions
between grains play a fundamental role on the overall behavior of granular systems,
any modeling scheme should strongly rely on the specification of these interactions.
Within the approach devised by Prof. Misra, the mechanical properties of the target
micromorphic continuum model can be derived without needing full knowledge
of mechano-morphological properties at micro-scale, which current measurement
techniques cannot provide satisfactorily. During the lecture, the main advantages of
this approach were shown by means of examples and computations. In particular,
promising results in the study of damage and failure in cementitious materials Poor-
solhjouy and Misra (2017), wave dispersions and frequency band gaps Misra and
Poorsolhjouy (2016); Nejadsadeghi et al (2019), and in the design of granular meta-
materials Jia et al (2017); Misra and Nejadsadeghi (2019) have been outlined. Finally,
some specific applications of continuum models based on granular micromechanics
were discussed Yang and Misra (2012); Misra et al (2017); Misra and Poorsolhjouy
(2015).

1.2.5 On Seven- and Twelve-Parameter Shell Finite Elements and
Non-Local Theories for Composite Structures – J. N. Reddy

Junuthula N. Reddy is a Distinguished Professor, Regents’ Professor, and inaugural
holder of the Oscar S. Wyatt Endowed Chain in Mechanical Engineering at Texas
A&M University in College Station. He authored pioneering works on the theory and
finite element analysis of shear-deformable plates and shells, with special focus on
the analysis of interlaminar stresses in composite structures. During his successful
career he received several honors and awards. He is an elected member of the US
National Academy of Engineering, a Foreign Fellow of the Canadian Academy of
Engineering, a member of the Indian National Academy of Engineering, and of the
Brazilian National Academy of Engineering.

In the first part of his lecture On seven- and twelve-parameter shell finite elements
and non-local theories for composite structures, finite element methods for large
deformation analyses of composite shell structures were discussed. In particular, the
differences between the seven parameters and twelve parameters finite elements were
analyzed Payette and Reddy (2014); Rivera et al (2016); Rivera and Reddy (2016).
The seven-parameter shell elements are defined as a generalization of the first-order
shell theory by means of a seven-parameter expansion of the displacement field.
On the other hand, the twelve-parameter shell elements are obtained by means of a
third-order thickness stretch kinematics. In the second part of the lecture, some recent
results in non-local elasticity – especially on the role of couple-stresses in the mod-
eling of functionally graded beams and plates – were analyzed Reddy and Srinivasa
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(2014). Two modeling schemes were discussed, the first being based on the modified
couple-stress theory by Mindlin, taking into account geometric nonlinearities, and
the second being based on the Srinivasa-Reddy gradient elasticity theory Srinivasa
and Reddy (2013), which takes into account microstructure-dependent size effects.
In the final part of his presentation, Prof. Reddy presented the finite element scheme
GraFEA, aimed at studying damage and fracture in brittle materials Khodabakhshi
et al (2016).

1.2.6 Exploiting Global Dynamics to Unveil the Nonlinear
Response and Actual Safety of Systems and Structures – G.
Rega

Giuseppe Rega is Professor Emeritus at the Sapienza University of Rome. During
his career, he gave fundamental contributions to several fields of Mechanics such as
nonlinear oscillations, cable dynamics, macro-to-micro scale analysis of structural
mechanics, chaos and bifurcation phenomena in applied mechanics, exploitation of
global dynamics for engineering safety and many others. He was awarded the ASME
Lyapunov Award 2017 and he has been honored with the Birthday anniversary
Special Issue of Nonlinear Dynamics and of International Journal of Nonlinear
Mechanics.

In his lecture Exploiting global dynamics to unveil the nonlinear response and
actual safety of systems and structures he carefully discussed the role played by
global dynamics in unveiling the nonlinear response and actual safety of engineer-
ing structures in different environments Lenci and Rega (2019). A first successful
example of the use of this approach is the modeling of thermo-mechanical laminated
plates with von Kármán nonlinearities in presence of mechanical excitations and
body and boundary thermal sources Saetta and Rega (2017). Indeed, the comple-
mentary information given by local bifurcation analyses and the study of the global
dynamics allow to detect particular conditions under which the thermal transient
strongly influences the steady (buckled and unbuckled) responses of the system. In
such situations, it is observed a different dynamical behavior of the system with
respect to the case when the mechanical system is directly subjected to steady ther-
mal excitations Settimi et al (2018). Other interesting examples were discussed, as a
minimal order model of atomic force micro-cantilever for the non-contact detection
of sample surface properties Settimi and Rega (2016b,a). Finally, the great potential
of global dynamics analyses in the evaluation of dynamical integrity and its conse-
quences on an aware, safe, and less-conservative design of systems and structures
were discussed.
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1.2.7 Vibrations of Nonlinear Continua Subject to Combined
Harmonic and Stochastic Forces: Linearization
Approximations and Monte Carlo Simulations – P. D. Spanos

Pol D. Spanos is L.B. Ryon Endowed Chair in Engineering at Rice University in
Houston, Texas. His research interests focus on the dynamics and vibrations analysis
of structural and mechanical nonlinear systems under different loads in hazard/risk
inducing conditions. Moreover, he has given seminal contributions in fatigue and
fracture mechanics for composite materials, and developed algorithms for the study
of dynamic phenomena in biomedical applications. His research efforts have enabled
major improvements in these subjects and, for this reason, he has received several
honors and awards.

He presented a lecture titled Vibrations of Nonlinear continua subject to combined
harmonic and stochastic forces: linearization approximations and Monte Carlo sim-
ulations. The main aim of the lecture was to present an efficient modeling scheme
to estimate the second order statistics of the response of a continuum system under-
going a combination of random and harmonics loads. The main advantage of this
scheme is that it can successfully describe systems in which the harmonic load is
affected by a significant noise that cannot be neglected when computing the response
statistics. The systems considered during the talk were beams and plates endowed
with fractional derivative elements undergoing nonlinear vibrations. In the modeling
approach the system response is represented by linear modes of vibrations, obtaining
in this way a system of nonlinear fractional ordinary differential equations for the
time dependent variation of the modes amplitude. The stochastic ordinary differen-
tial equations which arise in the description are analyzed by combining the harmonic
balance and statistical linearization techniques in order to derive the coupled non-
linear algebraic equations which describe the second-order statistical behavior of
the response. In the final part of the lecture, some relevant Monte Carlo simula-
tions were shown to highlight the reliability of the presented modeling approach
Kougioumtzoglou and Spanos (2009, 2012, 2013).

1.3 Conclusions

ICoNSoM 2019 has been a valuable opportunity for researchers from different back-
grounds to share ideas and establish new collaborations. The relaxing atmosphere
provided by the venue, Palazzo Argiletum in Rome, and the proposed social events
have contributed to build a stimulating research environment. Moreover, the excellent
work made by the chairmen of the several mini symposia, has facilitated spontaneous
debates during the talks. From the discussions generated during and after all the ple-
nary lectures it is evident that the nonlinear Solid Mechanics framework has a true
prospective future. Several crucial problems are still open and will require the shared
efforts of all the community. In the the opinion of the authors, it is worth to be noted
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that ICoNSoM 2019 has also given to several young researchers the opportunity to
present their own research projects during a populated poster session, and to attend
the presentations of eminent scientists in their fields. The hope of the organizers is
that new scientific collaborations will start following the interesting discussions orig-
inated during the conference and, most importantly, that the exposure to variegated
ideas provided by the conference will inspire scientists to develop new approaches
progressing the whole field of nonlinear Solid Mechanics.
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Chapter 2
Asymptotic Construction of Solutions of
Ordinary Differential Equations with
Holomorphic Coefficients in the Neighborhood
of an Irregular Singular Point

Maria V. Korovina & Vladimir Yu. Smirnov

Abstract The aim of this article is constructing asymptotics of solution of ordinary
differential equations with holomorphic coefficients in neighborhood of infinity.
Since infinity in general is irregular singular point then problem of representing
asymptotics of solution of an equation is a special case of Poincare problem.

Keywords: Asymptotics · Irregular singular point · Ordinary differential equations

In this paper we construct asymptotics of solutions of ordinary differential equa-
tions with holomorphic coefficients in vicinities of irregular singular points. We
consider ordinary differential equations with holomorphic coefficients of the form

bn (r)
(

d
dr

)n
u (r) + bn−1 (r)

(
d
dr

)n−1
u (r) + ...

+bi (r)
(

d
dr

)i
u (r) + ...+ b0 (r)u (r) = 0

(2.1)

here bi (r) are holomorphic functions.
If the coefficient at the high derivative bn (r) vanishes at some point, without loss

of generality we can take this point to be r = 0, and equation (2.1) has a singularity at
zero. In this case zero can be either regular or irregular singular point. The problem
of representing asymptotics of solution of an equation with holomorphic coefficients
in the vicinity of irregular singular point was first formulated by H. Poincare in
papers (Poincare, 1886, 1974). He was the first who demonstrated that solution of an
equation with holomorphic coefficients in the vicinity of an irregular singular point
in certain cases can be expanded into asymptotic series. One of possible techniques
of summing up these generally divergent series with the aid of integral transforms
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was formulated also by Poincare (1974). Poincare used Laplace integral transform;
however, it is applicable only in particular cases. In this paper for summing up
asymptotic series we will use the Laplace-Borel transform introduced by Ecalle
(1984).

One of the first papers devoted to the problem of constructing asymptotics in
the vicinity of an irregular singular point is the work of Thome (1871). The author
considered an equation with holomorphic coefficients(

d
dx

)n
u (x) + an−1 (x)

(
d
dx

)n−1
u (x) + ...

+ai (x)
(

d
dx

)i
u (x) + ...+ a0 (x)u (x) = 0

(2.2)

Here coefficients ai (x) are regular at infinity. This means, that there exists an
exterior of the circle |x| > a, that functions ai (x) , i = 0, 1, ..., n − 1 can be
expanded in it into convergent power series ai (x) =

∑∞
j=0

bji
xj . The aim of our study

is constructing asymptotics of solution of equation (2.2) in the vicinity of infinity.
Later the subject was studied by many authors. We should note papers by Sternberg
(1920) who considered the problem of constructing asymptotics of solution in the
neighborhood of infinity and also works by Sternin and Shatalov (2002) who tried
to apply Laplace-Borel transform to this problem.

Authors of this papers derived asymptotic expansions of solutions of ordinary
differential equations. These had the form of products of corresponding exponents
by divergent power series, namely

u =
n∑

i=1

eαi/rrσi

∞∑
k=0

aki r
k (2.3)

where αi, i = 1, ..., n are roots of polynomial H0 (p), σi and aki are some complex
numbers. However, the issue of interpretation of the obtained divergent series re-
mained unclear, in other words, there is no method of summing up these series. Such
asymptotics later got the name of WKB (Wentzel-Kramers-Brillouin) asymptotics.
This name appeared in solution of some problems of quantum mechanics where
asymptotics of such type were obtained. Similar problems are found in other areas
of mechanics. For example, a Laplace operator written in spherical coordinates has
a irregular singular point at zero (Korovina, 2017). They can also be used in many
other tasks, for example equation of this type is used to solve the planar problem of
finding the stress-strain state of a rectangular cross section body with a cylindrical
cavity along an ideal incompressible fluid moves (Sciarra et al, 2005).

In the case when an asymptotic expansion

u ≈ u1 + u2 + . . .+ un =
= eλ1/rrσ1

∑∞
k=0 a

k
1r

k + eλ2/rrσ2
∑∞

k=0 a
k
2r

k + . . .
+eλn/rrσn

∑∞
k=0 a

k
nr

k
(2.4)

has at least two addends corresponding to the values λ1 and λ2 with distinct real parts
(for definitiveness let Reλ1 > Reλ2) a significant complication in interpretation of
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the obtained expansion arises. All addends of the first WKB element corresponding
to the value λ1 (dominant WKB element) are of larger order at r > 0 than any of the
addends of the second (recessive) WKB element. That’s why to interpret expansion
(2.4) one should sum up (generally, divergent) series, corresponding to the dominant
WKB-element. Analysis of recessive components of solution u of equation (2.1) is
important, in particular, for derivation of uniform asymptotics of solutions in the
complex case, when point r is moving in the complex plane and roles of dominant and
recessive components of expansions can swap. In other words, plane is conditionally
subdivided into sectors in each of that one of the components is main and the other
one is recessive, and after transition from one sector to the other swap of leadership
occurs (the recessive component becomes the main one and vice versa). However, in
the vicinities of boundaries of these sectors several components are of the same order
and neither of them can be neglected. This phenomenon arises, e.g., in consideration
of the Euler example (Sternin and Shatalov, 1996) and in derivation of asymptotics at
infinity for the problem (2.1) and generally for all WKB asymptotics (2.2). So, study
of asymptotic expansions of equation (2.1) requires a regular method of summing
up divergent series for construction of uniform asymptotics of solutions in variable
r.

Later a technique for summing up such series based on the methods of resur-
gent analysis was developed. The method of summing up divergent series is the
Laplace-Borel transform. This technique was used in works by B.-W. Schulze, B.Yu.
Sternin and V.E. Shatalov in studies of degenerating equations, arising in studies of
elliptic equations on manifolds with cusp-like singularities, and also for derivation
of asymptotics of equation with a small parameter. In several cases these authors
managed to derive asymptotics for equations with parameter and equations with cus-
pidal degeneration in Sobolev weight spaces (Sternin and Shatalov, 1996; Schulze
et al, 1996).

However, later consideration of asymptotics in Sobolev weight spaces was laid
aside.

Later, another approach was selected. Asymptotics of solutions are derived using
Laplace-Borel transform in the space of functions of exponential growth.

The technique for interpretation and derivation of asymptotic expansions of the
form (2.4), based on Laplace-Borel transform, is called resurgent analysis. Its main
idea is as follows. Formal Borel transforms ũ1(p), ũ2(p) . . . are power series in
dual variable p convergent in the vicinities of points p = λi. At that, the inverse Borel
transform provides a regular way of summing up series (2.4). However, here one
should prove infinite continuability of functions ũj(p), i.e., continuability along any
path on Riemannian surface ũj(p) not passing through some discrete set depending
on the function (exact definition of infinite continuability will be given later). Proof
of this fact, as a rule, was very complicated in application of resurgent analysis to
construction of asymptotics of solutions of differential equations. Proof of infinite
continuability for equations with degenerations was given in Korovina and Shat-
alov (2010); Korovina (2011b). This result enables one to construct asymptotics of
solutions of linear differential equations with holomorphic coefficients.
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Thanks to this result, in Sternin and Shatalov (1996); Korovina (2011a) uniform
asymptotics for the case, when roots of the high symbol H0 (p) = H (0, p) are of
the first order, were derived.

However, methods used in derivation of asymptotics of solutions in the case when
the main symbol had simple roots appeared inapplicable in the case of multiple roots
except second-order equations. In Korovina (2017), the problem of constructing
asymptotics of solutions for second-order equations with arbitrary holomorphic
coefficients was solved for a general case. The author also constructed asymptotics
of solutions for Laplace equation on a manifold with a cuspidal singularity.

For solving problem of multiple roots, the method or re-quantization was de-
veloped (Korovina, 2016). This method is applied in the case, when the integral-
differential equation in dual space cannot be solved by the method of successive
approximations and is reduced to an equation with cuspidal degenerations. In this
case, we prove theorem of infinite continuability of solution (for ordinary differen-
tial equations it has already been proved) and once again apply the Laplace-Borel
transform. For the obtained equation we construct asymptotics with which we can
find asymptotics of the original equation. Using this method, many problems for
equations with degenerations in the case of multiple roots were solved.

The aim of this paper is derivation of asymptotics of equation (2.2) at infinity.
Problem (2.2) by change of variable x = 1

r is reduced to the equation with cuspidal
degeneration of the second order at zero, which can be written as

H

(
r,−r2

d

dr

)
u = 0 (2.5)

where

H

(
r,−r2

d

dr

)
=

(
−r2

d

dr

)n

+

n−1∑
i=0

ai (r)

(
−r2

d

dr

)i

(2.6)

The main symbol H0(p) of operator Ĥ is H0(p) = H (0, p).
The question arises: which form takes the asymptotics in the vicinity of a multiple

root.
First consider the case when the main symbol of differential operator has just one

root. Without loss of generality assume that this root is zero. Write equation (2.5) in
the form

(−r2 d
dr

)n
u+ a0r

m
(−r2 d

dr

)k
u+ a1r

m+1
(−r2 d

dr

)k−1
u+

a2r
m+2

(−r2 d
dr

)k−2
u+ ...+ ak+1r

m+ku+ ...

+
∑h

j=1 r
j
∑n−1

i=hj
aij
(−r2 d

dr

)i
u+ rh+1

∑n−1
i=0 ai (r)

(−r2 d
dr

)i
u = 0

(2.7)

Here hj + j > m + k. Let us call h = m + k the singularity index. We will
call terms of the form aijr

j
(
r2 d

dr

)i, under condition j + i > h, the lowest terms
of equation (2.7). Let us subdivide lowest terms into two types. To the first type
belong terms for which h ≥ j and to the second type those where h < j. Our goal
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is derivation of asymptotics of solutions of equation (2.7) in the vicinity of infinity.
For singularity index equal to 1 + k this problem was solved in Korovina (2019).

Let inequality

hi + i− h > (m− i)
n− h

m
(2.8)

be fulfilled. Then the following theorem holds

THEOREM. Asymptotics of solution of equations (2.2) in the vicinity of infinity
have the form

u(x) ≈∑n−k
j=1 exp

(∑n−k−m
i=1 αj

ix
i

n−k

)
x− σi

n−k
∑∞

l Aj
lx

− l
n−k+

+
∑k0

j=0

(
ln 1

x

)j
xαj

∑∞
i=0 b

j
ix

−i,
(2.9)

where αj
n−k−m, j = 1, ..., n−k are roots of polynomials pn−k+

(
n−k

n−k−m

)n−k

a0,

Aj
l , σi, b

j
i , k0 and αj

i , j = 1, ..., n− k − 1 are some numbers.
If the main symbol has several multiple roots, after Laplace-Borel transform we

move one of the roots to zero and find asymptotics of solution in the vicinity of zero,
then move the second root to zero and so on. In the result we find asymptotics of
solution in dual space in vicinities of all roots of the polynomial. Then, applying the
inverse Laplace-Borel transform, we get asymptotics of the original equation in the
vicinity of zero. Details are explained in Korovina (2019).
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Chapter 3
Poincare Problem and Classification of Irregular
Singular Points for Linear Differential Equations
with Holomorphic Coefficients

Maria V. Korovina & Vladimir Yu. Smirnov

Abstract In the paper we study the Poincare problem for second-order linear dif-
ferential equations and also classification of asymptotic expansions of solutions in
vicinities of irregular singular points for linear differential equations with holomor-
phic coefficients

Keywords: Asymptotics · Irregular singular point · Ordinary Differential Equations

The problem of representing asymptotics of solution of an equation with holomor-
phic coefficients was first formulated by Poincare (1886). The author demonstrated
that the solution of an equation with holomorphic coefficients in several cases can be
represented in the form of asymptotic series. The Poincare problem is formulated as
follows: Find asymptotic expansions for solutions of arbitrary linear equations with
holomorphic coefficients. In the presented article the authors solves the Poincare
problem for second-order equations. We also give classification of singular points
and study corresponding asymptotic expansions.

Second-order differential equations with singular points are used in various fields
of mechanics. For example Laplace operator written in spherical coordinates has a
singular point in zero (Korovina, 2017). Also second-order equation of this type is
used to solve the planar problem of finding the stress-strain state of a rectangular
cross section body with a cylindrical cavity along an ideal incompressible fluid moves
(Sciarra et al, 2005). In this case equations with irregular singular point arises.
Another example of second-order equation with singular point is DPE (Density
Profile Equation). They are studied in dell’Isola et al (1995, 1996).

Consider ordinary differential equations
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bn (r)
(

d
dr

)n
u (r) + bn−1 (r)

(
d
dr

)n−1
u (r)+

...+ bi (r)
(

d
dr

)i
u (r) + ...+ b0 (r)u (r) = 0

(3.1)

here bi (r) are holomorphic functions.
If the coefficient at high derivative bn (r) vanishes at some point, without loss of

generality we can assume that this point is r = 0, so equation (3.1) has a singularity
at zero. In this case, zero can be either regular or irregular singular point. Equation
(3.1) can be reduced to equation of the form

Ĥu = H

(
r,−rk+1 d

dr

)
u = 0, (3.2)

where Ĥ is a differential operator with holomorphic coefficients

H (r, p) =
n∑

i=0

b′i (r) p
i. (3.3)

Here b′i (r) are corresponding holomorphic functions. The minimal value of
k was calculated in Kats (2015). Depending on the minimal value of k we can
subdivide equations into three types and each of them is associated with different
types of asymptotics. Equations with k = −1 belong to the first type. In this case we
have non-degenerate differential equations without singularity at zero. When k=0,
equation is degenerated. The singular point is regular, we have an equation of Fuchs
type and asymptotics of solution in this case are conormal.

A special type of asymptotics arises when k ∈ N . This corresponds to the case of
irregular singularities. The equation is of non-Fuchs type. An example of non-Fuchs
asymptotics are those of the form

n∑
j=1

exp

(
pj
rk

+

k−1∑
i=1

αj
k−i

rk−i

)
rσj

∞∑
i=0

bji r
i (3.4)

Non-Fuchs asymptotics of the form (3.4) correspond to the case when the main
symbol of operator H0(p) = H (0, p) has only simple roots pj , j = 1, ..., n. Here∑∞

i=0 b
j
i r

i is an asymptotic series and αj
k−i, σj are some numbers. Korovina and

Shatalov (2011); Korovina (2011) derived uniform non-Fuchs asymptotics for this
case. Consider equation

H(r,−r2
d

dr
)u = f. (3.5)

Let the right-hand side of the equation can be represented in the form of WKB
(Wentzel-Kramers-Brillouin) asymptotics, in other words,

f =

n∑
i=1

eλi/rrσi

∞∑
k=0

aki r
k
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Hence, the Laplace-Borel transform of function f has singularities at points λi, i =
1, ..., n. If the numbers λi, i = 1, ..., n do not coincide with the roots of polynomial
H0 (p), this case is called non-resonance. Let roots of polynomial H0 (p) be of the
first order and the equation be non-resonance. Then the following theorem holds.

THEOREM Let function u (r) be a solution of equation (3.5), then under for-
mulated above conditions for any positive A the resurgent function u(r) can be
represented in the form

u (r) =
∑
j

uj (r) +O
(
e−

A
r

)
(3.6)

The sum is taken over union {pj} of roots of the polynomial H0 (p) and singu-
larities of Laplace-Borel transformation of the right-hand side f̃ (p) located in the
half-plane Rep > −A, and functions uj (r) are inverse Laplace-Borel transforms
of functions ũj (p) with singularities at points pj and their asymptotic expansions
are

uj (r) = e
pj
r rσj

∞∑
r=0

a
(j)
k rk, (3.7)

here σj a
(j)
k – are some numbers.

These coefficients were calculated in Kats (2015, 2016).
When the equation has order higher than two, asymptotics of solution has the

form (3.4).
If polynomial H (0, p) has multiple roots, the problem of constructing asymp-

totics of solutions of corresponding non-Fuchs equations becomes much more com-
plicated. In a general case, the Poincare problem has not been solved yet. The question
arises: Do non-Fuchs asymptotics of the form (3.4) represent the general form of
asymtptotics for all linear differential equations with holomorphic coefficients?

To answer this question, consider linear second-order differential equations

H(r,
1

n
rn+1 d

dr
)u(r) = 0, (3.8)

where symbol H(r, p) is a second-order polynomial with respect to p with holomor-
phic coefficients. Earlier we proved that solutions of equations like this are resurgent
functions. We will assume that the main symbol has a multiple root. If it is not the
case, asymptotics of solutions will have the form of non-Fuchs asymptotics (3.4).
So, consider equation(

1
nr

n+1 d
dr

)2
u+ a1(r)

(
1
nr

n+1 d
dr

)
u+ a0 (r)u+

rv(r)
(
1
nr

n+1 d
dr

)2
u = 0,

(3.9)

where ai(r) and v(r) are holomorphic coefficients. Represent coefficients ai(r) in
the form

a1(r) = brk + rk+1b1(r),
a0(r) = crp + rp+1c1(r)

(3.10)
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Here b1(r), c1(r) are corresponding holomorphic functions, b and c are nonzero
constants. Since the main symbol of the differential operator has second multiplicity
at zero, neither k nor p can vanish, so k ∈ N and p ∈ N .

Korovina (2014) demonstrated than if k > n or p
2 > n, equation (3.9) is reduced

to an equation with conical degeneration and asymptotics of its solution, as was
written above, have conormal form. When p is odd and inequality k > p

2 holds,
asymptotics have the form

exp
(
− α0

rn− p
2
+
∑2n−p−1

i=1
α1

i

rn− p
2
− i

2

)
rσ1
∑∞

i=0 b
1
i r

i
2+

+exp
(

α0

rn− p
2
+
∑2n−p−1

i=1
α2

i

rn− p
2
− i

2

)
rσ2
∑∞

i=0 b
2
i r

i
2

(3.11)

here α0 = 2ni
√
c

2n−p . In other cases, asymptotics of solutions are non-Fuchs asymptotics
of the form (3.4). Notice that asymptotics (3.11) differ from non-Fuchs asymptotics
in the following: Powers of variable r in exponents of asymptotics (3.11) unlike
asymptotics (3.4) can be non-integral.

Asymptotics like this also arise in the case when asymptotics of equation(
d
dx

)n
u (x) + an−1 (x)

(
d
dx

)n−1
u (x) + ...

+ai (x)
(

d
dx

)i
u (x) + ...+ a0 (x)u (x) = 0

are constructed in the vicinity of infinitely distant point which, generally speaking,
is an irregular singular point. Asymptotics of solutions have the form

u(r) ≈
m∑
j=1

exp

(
n−h∑
i=1

αj
i r

− i
m

)
xσj

∞∑
l

Aj
l r

l
m +

k0∑
j=0

(ln r)
j
xαj

∞∑
i=0

bji r
i (3.12)

Here h, m,Aj
i , j = 0, 1, 2 are corresponding numbers. Details of the problem are

exposed in Korovina (2019). Let us call asymptotics of the type (3.12) generalized
asymptotics of non-Fuchs type. It is evident that asymptotics of non-Fuchs type
represent a particular case of the generalized non-Fuchs asymptotics.

We can suppose that
Asymptotics of solution of equation (3.1) can be represented as a sum of a

generalized non-Fuchs asymptotics and a conormal asymptotics.
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Chapter 4
Behavior of Solutions of the Cauchy Problem
and the Mixed Initial Boundary Value Problem
for an Inhomogeneous Hyperbolic Equation with
Periodic Coefficients

Hovik A. Matevossian, Giorgio Nordo, and Anatoly V. Vestyak

Abstract We study the asymptotic as t → ∞ behavior of solutions u(x, t) of the
Cauchy problem and the mixed initial boundary value problem for a second-order
hyperbolic equation with periodic coefficients inR1 and on the semi-axis. In the case
of non-homogeneous equation, initial and boundary data are zero, and the right-hand
side of the equation is of the form f(x) exp(−iωt), where ω > 0 is real.

Keywords: Asymptotic behavior · Hyperbolic equation · Cauchy problem · Mixed
initial boundary value problem · Periodic coefficients

4.1 Introduction

Problem A. Let u(x, t) be a solution of the Cauchy problem

utt(x, t)− (p(x)ux(x, t))x + q(x)u(x, t) = f(x)e−iωt, (x, t) ∈ R1 × {t > 0},
(4.1)

with the initial conditions
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u(x, t)|t=0 = 0, ut(x, t)|t=0 = 0, x ∈ R1. (4.2)

Problem B. Let u(x, t) be a solution of the mixed initial boundary value problem
problem

utt(x, t)− (p(x)ux(x, t))x + q(x)u(x, t) = f(x)e−iωt, x > 0, t > 0, (4.3)

with zero initial and boundary conditions

u(x, t)|t=0 = 0, ut(x, t)|t=0 = 0, x ≥ 0;

u(x, t)|x=0 = 0, t ≥ 0.
(4.4)

Here the functions p(x) and q(x) are 1 -periodic:

p(x+ 1) = p(x) ≥ const > 0, q(x+ 1) = q(x) > const ≥ 0. (4.5)

Moreover, the functions p(x) and q(x) are continuous, the function q(x) has a
finite number of discontinuities of the first kind on the period, ψ ∈ C∞

0 (R1) and
suppψ ⊂ [0, 1]. Equation (4.1) (or (4.3)) describes the oscillation driven by a force
periodic in t, and ω > 0 is real.

The behavior as t → ∞ of solutions of problems similar to Problems A and B,
and the corresponding multi-dimensional problems under the condition that the po-
tential either differs from a constant by a compactly supported function or sufficiently
rapidly tends to a constant at infinity, has been studied in many papers (see, e.g.,
Laptev, 1975; Matevossian and V, 2017; Peržan, 1978; Surguladze, 1989; Topiler,
1983; Vainberg, 1989; Vestyak and Matevossian, 2016; Vestyak and Matevosyan,
2017).

In particular, in article of Laptev (1975), an asymptotic expansion as t → ∞ of
the solution u(x, t) of the Cauchy problem for the equation

utt(x, t)− uxx(x, t) + (α0 + q(x))u = 0, (x, t) ∈ R1 × {t > 0},
u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), x ∈ R1.

(4.6)

with compactly supported initial functions ϕ(x) ∈ C2(R1) and ψ(x) ∈ C1(R1),
and under weaker constraints on the potential α0 + q(x), where α0 = const, and
q(x) for some k ≥ 1 satisfies to the condition∫ +∞

−∞
|x|k|q(x)| < ∞. (4.7)

In Peržan (1978), the following Cauchy problem was considered for the string
oscillation equation:

utt(x, t) = (a(x)ux(x, t))x, 0 < a0 ≤ a(x) ≤ A0 < +∞, (x, t) ∈ R1 × {t > 0},
u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = 0, x ∈ R1.

(4.8)
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Sufficient conditions for the stabilization of the solution u(x, t) as t → +∞
uniformly in x on any compact set and necessary and sufficient conditions for
the stabilization of the solution u(x, t) in the mean were obtained under certain
assumptions on the tension rate a(x). In Topiler (1983), the behavior of the solution
of the Cauchy problem

uxx − q(x)utt = 0, 0 < q0 ≤ q(x) ≤ q∞ < +∞, (x, t) ∈ R1 × {t > 0},
u(x, t)|t=0 = ϕ(x), ut(x, t)|t=0 = ψ(x), x ∈ R1,

(4.9)
for the hyperbolic equation was studied for large values of t, and the rate of

decrease as t → ∞ of solutions related to the rate of stabilization of q(x) as
x → ±∞ was estimated under the assumption that the function q(x) tends to a limit
as x → ±∞ in a certain way. The behavior of the solution of the Cauchy problem
for the one-dimensional hyperbolic equation with periodic potential q(x) for large
values of t was studied in article of Surguladze (1989), and the Bloch principle for
elliptic equations with periodic coefficients was obtained in article of Zhikov and
Pastukhova (2016). In the case of periodic p(x) and q(x), the asymptotic behavior
as t → ∞ of the solution of the Cauchy problem for a hyperbolic equation was
first studied in papers of Vestyak and Matevossian (2016); Vestyak and Matevosyan
(2017).

4.2 Notation and Preliminaries

Let L2(Ω) be the space of measurable functions on Ω satisfying the condition

||u;L2(Ω)|| =
(∫

Ω

|u|2dx
)1/2

< ∞. (4.10)

Let H0 denote the Hill operator

H0 = − d

dx

(
p(x)

d

dx

)
+ q(x) (4.11)

on the space L2(R1).
The Hill operator has a continuous spectrum only, which is located on the real

axis and is bounded on the left (Titchmarsh, 1958).
Let yn(x, λn) be eigenfunctions of the periodic Sturm–Liouville problem nor-

malized by the condition ||yn;L2([0, 1])|| = 1:

−(p(x)y′)′ + q(x)y = λny, x ∈ [0, 1],

y(0) = y(1), y′(0) = y′(1),
(4.12)
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and let yn(x, μn) be eigenfunctions of the anti-periodic Sturm–Liouville problem
normalized in L2([0, 1]):

−(p(x)y′)′ + q(x)y = μny, x ∈ [0, 1],

y(0) = −y(1), y′(0) = −y′(1).
(4.13)

where the λn and μn, n = 0, 1, 2, .. are are eigenvalues of the corresponding prob-
lems numbered in ascending order with multiplicities taken into account.

Let ϕ(x, λ) and θ(x, λ) are the fundamental system of solutions of the equation

(p(x)y′)′ + (λ− q(x))y = 0, p(x) ≥ const > 0, q(x) > const ≥ 0, (4.14)

with condition
θ(0, λ) = 1, ϕ(0, λ) = 0,

θ′(0, λ) = 0, ϕ′(0, λ) = 1,
(4.15)

where ϕ′(x, λ) is the derivative of the function ϕ(x, λ) of the variable x.
Let L∗ be the operator on L2(0,+∞) generated by the differential operation

Ly = −(p(x)y′)′ + q(x)y (4.16)

and the condition y(0) = 0.
The properties of the spectrum of the operator L∗ and the eigenvalue problem

−(p(x)y′)′ + q(x)y = μny, x ∈ (0, 1),

y(0) = y(1) = 0
(4.17)

are well known (see, e.g., Coddington and Levinson, 1955). The continuous spectrum
of the operator L∗ coincides with that of the operator H0, and the eigenvalues
λ = λm,m = 1, 2, . . . , of L∗ coincide with those zeros of the function ϕ(1, λ) at
which

sign
(
(ϕ′(1, λ)− θ(1, λ))

√
(ϕ′(1, λ) + θ(1, λ))2 − 4

)
= −1, (4.18)

where the branch of the root
√
(ϕ′(1, λ) + θ(1, λ))2 − 4 determinate by the condi-

tion √
(ϕ′(1, λ) + θ(1, λ))2 − 4 > 0 with λ < λ0. (4.19)

The eigenvalues λ = μn, n = 1, 2, . . . , of the problem (4.17) coincide with the zeros
of the function ϕ(1, λ) and, therefore, {λm} ⊆ {μn}. The values λm and μn are
numbered in ascending order with multiplicities taken into account. By vn(x, λm)
(vn(x, μn)) we denote the eigenfunction of problem (4.17) with eigenvalue λm (μn)
normalized by the condition ||v;L2([0, 1])|| = 1.

Let
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h(x, ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(H0 − ω2)−1(f), if ω2 /∈ σ(H0),

lim
Im k>0,k→ω

(H0 − k2)−1(f), if ω2 ∈ σ(H0), andω2

does not lie on the boundary
of the spectrumσ(H0),

(4.20)

where the limit is regarded in the uniform metric on each closed interval in R1. The
function h(x, ω) is the solution of the equation

(p(x)y′)′ + (ω2 − q(x))y = f(x), (4.21)

and belongs to L2(R1) if ω2 does not belong to the spectrum σ(H0) of the operator
H0. Further, let C > 0 be an arbitrary fixed constant.

4.3 Main Results

Theorem 4.1. If the Hill operator H0 is positive, p(x) ≥ const > 0, q(x) ≥ 0, and
the point ω2 does not lie on the boundary of the spectrum σ(H0) of the operator H0,
then, for |x| < C and t > 0, the solution of the Problems A and B has the form

u(x, t) = −ie−iωth(x, ω) +
1√
t
{u1(x, t) + u2(x, t)}+ v(x, t), (4.22)

where u1(x, t) is the periodic solution of the Problems A and B,

u1(x, t) =

∞∑
n=0

aλn
ψλn

vn(x, λn) sin(
√

λnt+ (−1)n
π

4
+ bλn

), (4.23)

u2(x, t) is an anti-periodic solution of the Problems A and B,

u2(x, t) =

∞∑
n=0

aμn
ψμn

vn(x, μn) sin(
√
μnt+ (−1)n+1π

4
+ bμn

), (4.24)

and for |x| < C and t > 0, the function v(x, t) satisfies the estimates

|v(x, t)| ≤ C0

t
||f ;L2(R1)||, C0 = const(C). (4.25)

where ψλn (orψμn) are the coefficients of the Fourier series expansion of the
function ψ(x) with respect to the system {vn(x, λn)}∞n=0, (or{vn(x, μn)}∞n=0),
and aλn

, aμn
, bλn

, bμn
are constants, where aλn

and aμn
are of order o(1/n2) as

n → ∞.

Here the sums are taken over only those n for which λn (μn) are simple
eigenvalues of the periodic (anti-periodic) Sturm–Liouville problem, and each
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vn(x, λn)(vn(x, λn)) is the periodic (anti-periodic) function onR1 whose restriction
to [0, 1] coincides with yn(x, λn)(yn(x, μn)).

Let ε > 0 be a sufficiently small number, and let the point ω2 lie on the boundary
on the spectrum σ(H0) of the operator H0. Then, in the domain

Ωk ≡ {k : Im k > 0, |k − ω| < ε} (4.26)

the following equality holds:

(H0−k2)−1(f) = h1(x, ω)(k−ω)−1/2+h2(x, ω)+h3(x, ω)(k−ω)1/2+O(k−ω).
(4.27)

Theorem 4.2. If the Hill operator H0 is positive, p(x) ≥ const > 0, q(x) ≥ 0, and
the point ω2 lies on the boundary of the spectrum σ(H0) of the operator H0, then,
for |x| < C and t > 0, the solution of the Problems A and B has the form

u(x, t) = C1

√
te−iωth1(x, ω)− C2ie

−iωth2(x, ω)

+
1√
t
{u1(x, t) + u2(x, t) + C3e

−iωth3(x, ω)}+ v(x, t),
(4.28)

where the functions u1(x, t) and u2(x, t) have the same form as in Theorem 4.1
with the only difference that the expansions of u1(x, t) and u2(x, t) don’t contain
the term corresponding to ω2 and, as in in Theorem 4.1, the function v(x, t) satisfies
the estimate (4.25) for |x| < C, t > 0, and Ci = const, i = 0, 1, 2, 3.

The main idea of the proofs of these theorems is the same as in the case of a
compactly supported function q(x) (Vainberg, 1989). Problems A and B are solved
using the Fourier transform with the contour of integration in the inverse Fourier
transform shifted onto the “non-physical sheet” of the Riemannian surface of the
spectral parameter, after which the integral defining the solution is studied, i.e., the
principal therm of the asymptotics is chosen and the remainder estimated.

Note that the integral under consideration and the methods of its study strongly
differ from those in the case of a compactly supported function q(x). The study of the
integral is based essentially on the properties of the resolvent of the Hill operator H0

(see Firsova, 1984, 1987, 1989; Hochstadt, 1965; Korotyaev, 2000).
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Chapter 5
A Soft Embedding Theorem for Soft Topological
Spaces

Giorgio Nordo

Abstract In this paper, based on the researches on soft set theory and soft topology,
we introduce the notions of soft separation between soft points and soft closed sets
in order to obtain a generalization of the well-known Embedding Theorem to the
class of soft topological spaces.

Keywords: Soft set · Soft topology · Soft mapping · Soft slab · Embedding theorem

5.1 Introduction

Almost every branch of sciences and many practical problems in engineering, eco-
nomics, computer science, physics, meteorology, statistics, medicine, sociology, etc.
have its own uncertainties and ambiguities because they depend on the influence of
many parameters and, due to the inadequacy of the existing theories of parameter-
ization in dealing with uncertainties, it is not always easy to model such a kind of
problems by using classical mathematical methods. In Molodtsov (1999) initiated
the novel concept of Soft Sets Theory as a new mathematical tool and a completely
different approach for dealing with uncertainties while modelling problems in a
large class of applied sciences. Indeed, dealing with uncertainties becomes of the
utmost importance, especially when complex systems must be studied. This is partic-
ularly true for some mechanical systems, for example, in studying the new conceived
materials, so-called metamaterials (Barchiesi et al, 2019; dell’Isola et al, 2019b,a)
which are ad hoc designed to provide a specific behaviour, micro-devices that show
a “size effect” (Abali et al, 2015), biological applications (Lekszycki and dell’Isola,
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2012; Giorgio et al, 2019; Sheidaei et al, 2019) characterized by an evolution of
their mechanical behaviour, energy harvesting and vibration control (Giorgio et al,
2009; Lossouarn et al, 2015; dell’Isola and Vidoli, 1998), and robotics (Giorgio and
Del Vescovo, 2018, 2019) and so on.

In the past few years, the fundamentals of soft set theory have been studied by
many researchers. Starting from Maji et al (2002, 2003) studied the theory of soft
sets initiated by Molodtsov, defining notion as the equality of two soft sets, the
subset and super set of a soft set, the complement of a soft set, the union and the
intersection of soft sets, the null soft set and absolute soft set, and they gave many
examples. In Pei and Miao (2005); Chen et al (2005) improved the work of Maji.
Further contributions to the Soft Sets Theory were given by Yang (2008); Ali et al
(2009); Li (2011); Qin and Hong (2010); Sezgin and Atagün (2011); Neog and Sut
(2011); Ahmad and Kharal (2009); Babitha and Sunil (2010); Ibrahim and Yusuf
(2012); Singh and Onyeozili (2012); Feng and Li (2013); Onyeozili and Gwary
(2014); Çağman (2014).

In Shabir and Naz (2011) introduced the concept of soft topological spaces, also
defining and investigating the notions of soft closed sets, soft closure, soft neighbor-
hood, soft subspace and some separation axioms. Some other properties related to
soft topology were studied by Çağman et al (2011). In the same year Hussain and
Ahmad (2011) investigated the properties of soft closed sets, soft neighbourhoods,
soft interior, soft exterior and soft boundary, while Kharal and Ahmad (2011) defined
the notion of a mapping on soft classes and studied several properties of images and
inverse images. The notion of soft interior, soft neighborhood and soft continuity
were also object of study by Zorlutuna et al (2012). Some other relations between
these notions was proved by Ahmad and Hussain (2012). The neighbourhood proper-
ties of a soft topological space were investigated in Nazmul and Samanta (2013). The
class of soft Hausdorff spaces was extensively studied by Varol and Aygün (2013).
In Aygünoğlu and Aygün (2012) defined and studied the notions of soft continuity
and soft product topology. Some years later, Zorlutuna and Çaku (2015) gave some
new characterizations of soft continuity, soft openness and soft closedness of soft
mappings, also generalizing the Pasting Lemma to the soft topological spaces. Soft
first countable and soft second countable spaces were instead defined and studied
by Rong (2012). Furthermore, the notion of soft continuity between soft topolog-
ical spaces was independently introduced and investigated by Hazra et al (2012).
Soft connectedness was also studied in Al-Khafaj and Mahmood (2014); Hussain
(2015). In the same year, Das and Samanta (2013b,a) introduced and extensively
studied the soft metric spaces. In Hussain and Ahmad (2015) redefined and ex-
plored several properties of soft Ti (with i = 0, 1, 2, 3, 4) separation axioms and
discuss some soft invariance properties namely soft topological property and soft
hereditary property. Xie (2015) introduced the concept of soft points and proved
that soft sets can be translated into soft points so that they may conveniently dealt
as same as ordinary sets. Tantawy et al (2016) continued the study of soft Ti-spaces
(for i = 0, 1, 2, 3, 4, 5) also discussing the hereditary and topological properties for
such spaces. Fu et al (2017) investigated some basic properties concerning the soft
topological product space. Further contributions to the theory of soft sets and that
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of soft topology were added by Min (2011); Janaki and Sredja (2012); Varol et al
(2012); Peyghan (2013); Wardowski (2013); Nazmul and Samanta (2014); Peyghan
et al (2014); Georgiou et al (2013); Georgiou and Megaritis (2014); Uluçay et al
(2016); Wadkar et al (2016); Matejdes (2016); Fu et al (2017); Bdaiwi (2017), and,
more recently, by Bayramov and Aras (2018); El-Shafei et al (2018); Al-Shami et al
(2018); Nordo (2018, 2019a).

In the present paper we will present the notions of family of soft mappings
soft separating soft points and soft points from soft closed sets in order to give a
generalization of the well-known Embedding Theorem for soft topological spaces.

5.2 Preliminaries

In this section we present some basic definitions and results on soft sets and suitably
exemplify them. Terms and undefined concepts are used as in Engelking (1989).

Definition 5.1. (Molodtsov, 1999) Let U be an initial universe set and E be a
nonempty set of parameters (or abstract attributes) under consideration with re-
spect to U and A ⊆ E, we say that a pair (F,A) is a soft set over U if F is a
set-valued mapping F : A → P(U) which maps every parameter e ∈ A to a subset
F (e) of U.

In other words, a soft set is not a real (crisp) set but a parameterized family
{F (e)}e∈A of subsets of the universe U. For every parameter e ∈ A, F (e) may be
considered as the set of e-approximate elements of the soft set (F,A).

Remark 5.1. Ma et al (2010) proved that every soft set (F,A) is equivalent to the
soft set (F,E) related to the whole set of parameters E, simply considering empty
every approximations of parameters which are missing in A, that is extending in a
trivial way its set-valued mapping, i.e. setting F (e) = ∅, for every e ∈ E \A.
For such a reason, in this paper we can consider all the soft sets over the same
parameter set E as in Chiney and Samanta (2016) and we will redefine all the basic
operations and relations between soft sets originally introduced in Maji et al (2002,
2003); Molodtsov (1999) as in Nazmul and Samanta (2013), that is by considering
the same parameter set.

Definition 5.2. (Zorlutuna et al, 2012) The set of all the soft sets over a universe U
with respect to a set of parameters E will be denoted by SS(U)E.

Definition 5.3. (Nazmul and Samanta, 2013) Let (F,E), (G,E) ∈ SS(U)E be two
soft sets over a common universe U and a common set of parameters E, we say that
(F,E) is a soft subset of (G,E) and we write (F,E)⊆̃(G,E) if F (e) ⊆ G(e) for
every e ∈ E.

Definition 5.4. (Nazmul and Samanta, 2013) Let (F,E), (G,E) ∈ SS(U)E be two
soft sets over a common universe U, we say that (F,E) and (G,E) are soft equal
and we write (F,E)=̃(G,E) if (F,E)⊆̃(G,E) and (G,E)⊆̃(F,E).
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Definition 5.5. (Nazmul and Samanta, 2013) A soft set (F,E) over a universe U is
said to be the null soft set and it is denoted by (∅̃,E) if F (e) = ∅ for every e ∈ E.

Definition 5.6. (Nazmul and Samanta, 2013) A soft set (F,E) ∈ SS(U)E over a
universe U is said to be the absolute soft set and it is denoted by (Ũ,E) if F (e) = U
for every e ∈ E.

Definition 5.7. Let (F,E) ∈ SS(U)E be a soft set over a universe U and V be a
nonempty subset ofU , the constant soft set of V , denoted by (Ṽ ,E)) (or, sometimes,
by Ṽ ), is the soft set (V,E), where V : E → P(U) is the constant set-valued mapping
defined by V(e) = V , for every e ∈ E.

Definition 5.8. (Nazmul and Samanta, 2013) Let (F,E) ∈ SS(U)E be a soft set over
a universe U, the soft complement (or more exactly the soft relative complement) of
(F,E), denoted by (F,E)�, is the soft set

(
F �,E

)
where F � : E → P(U) is the

set-valued mapping defined by F �(e) = F (e)� = U \ F (e), for every e ∈ E.

Definition 5.9. (Nazmul and Samanta, 2013) Let (F,E), (G,E) ∈ SS(U)E be two
soft sets over a common universeU, the soft difference of (F,E) and (G,E), denoted
by (F,E)\̃(G,E), is the soft set (F \G,E)whereF \G : E → P(U) is the set-valued
mapping defined by (F \G)(e) = F (e) \G(e), for every e ∈ E.

Clearly, for every soft set (F,E) ∈ SS(U)E, it results (F,E)� =̃ (Ũ,E)\̃(F,E).
Definition 5.10. (Nazmul and Samanta, 2013) Let (F,E), (G,E) ∈ SS(U)E be
two soft sets over a universe U, the soft union of (F,E) and (G,E), denoted by
(F,E)∪̃(G,E), is the soft set (F ∪G,E) where F ∪G : E → P(U) is the set-valued
mapping defined by (F ∪G)(e) = F (e) ∪G(e), for every e ∈ E.

Definition 5.11. (Nazmul and Samanta, 2013) Let (F,E), (G,E) ∈ SS(U)E be two
soft sets over a universe U, the soft intersection of (F,E) and (G,E), denoted by
(F,E)∩̃(G,E), is the soft set (F ∩G,E) where F ∩G : E → P(U) is the set-valued
mapping defined by (F ∩G)(e) = F (e) ∩G(e), for every e ∈ E.

Definition 5.12. (Al-Khafaj and Mahmood, 2014) Two soft sets (F,E) and (G,E)
over a common universe U are said to be soft disjoint if their soft intersection is the
soft null set, i.e. if (F,E)∩̃(G,E) =̃ (∅̃,E). If two soft sets are not soft disjoint, we
also say that they soft meet each other. In particular, if (F,E)∩̃(G,E) ˜�=(∅̃,E) we
say that (F,E) soft meets (G,E).

Definition 5.13. (Xie, 2015) A soft set (F,E) ∈ SS(U)E over a universe U is said
to be a soft point over U if it has only one non-empty approximation which is a
singleton, i.e. if there exists some parameter α ∈ E and an element p ∈ U such
that F (α) = {p} and F (e) = ∅ for every e ∈ E \ {α}. Such a soft point is usually
denoted by (pα,E). The singleton {p} is called the support set of the soft point and
α is called the expressive parameter of (pα,E).
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Definition 5.14. (Xie, 2015) The set of all the soft points over a universe U with
respect to a set of parameters E will be denoted by SP(U)E.

Since any soft point is a particular soft set, it is evident that SP(U)E ⊆ SS(U)E.

Definition 5.15. (Xie, 2015) Let (pα,E) ∈ SP(U)E and (F,E) ∈ SS(U)E be a soft
point and a soft set over a common universe U, respectively. We say that the soft
point (pα,E) soft belongs to the soft set (F,E) and we write (pα,E)∈̃(F,E), if the
soft point is a soft subset of the soft set, i.e. if (pα,E)⊆̃(F,E) and hence if p ∈ F (α).
We also say that the soft point (pα,E) does not belongs to the soft set (F,E) and
we write (pα,E) /̃∈(F,E), if the soft point is not a soft subset of the soft set, i.e. if
(pα,E) ˜�⊆(F,E) and hence if p /∈ F (α).

Definition 5.16. (Das and Samanta, 2013b) Let (pα,E), (qβ ,E) ∈ SP(U)E be two
soft points over a common universeU, we say that (pα,E) and (qβ ,E) are soft equal,
and we write (pα,E)=̃(qβ ,E), if they are equals as soft sets and hence if p = q and
α = β.

Definition 5.17. (Das and Samanta, 2013b) We say that two soft points (pα,E) and
(qβ ,E) are soft distincts, and we write (pα,E) ˜�=(qβ ,E), if and only if p �= q or
α �= β.

The notion of soft point allows us to express the soft inclusion in a more familiar
way.

Proposition 5.1. Let (F,E), (G,E) ∈ SS(U)E be two soft sets over a common
universe U respect to a parameter set E, then (F,E)⊆̃(G,E) if and only if for every
soft point (pα,E)∈̃(F,E) it follows that (pα,E)∈̃(G,E).

Definition 5.18. (Hussain and Ahmad, 2011) Let (F,E) ∈ SS(U)E be a soft set over
a universe U and V be a nonempty subset of U, the sub soft set of (F,E) over V ,
is the soft set

(
VF,E

)
, where VF : E → P(U) is the set-valued mapping defined by

VF (e) = F (e) ∩ V , for every e ∈ E.

Remark 5.2. Using Definitions 5.7 and 5.11, it is a trivial matter to verify that a sub
soft set of (F,E) over V can also be expressed as

(
VF,E

)
=̃ (F,E)∩̃(Ṽ ,E).

Furthermore, it is evident that the sub soft set
(
VF,E

)
above defined belongs to

the set of all the soft sets over V with respect to the set of parameters E, which is
contained in the set of all the soft sets over the universe U with respect to E, that is(
VF,E

) ∈ SS(V )E ⊆ SS(U)E.

Definition 5.19. (Babitha and Sunil, 2010; Kazancı et al, 2010) Let {(Fi,Ei)}i∈I

be a family of soft sets over a universe set Ui with respect to a set of parame-
ters Ei (with i ∈ I), respectively. Then the soft product (or, more precisely, the
soft cartesian product) of {(Fi,Ei)}i∈I , denoted by

∏̃
i∈I(Fi,Ei), is the soft set(∏

i∈I Fi,
∏

i∈I Ei

)
over the (usual) cartesian product

∏
i∈I Ui and with respect

to the set of parameters
∏

i∈I Ei, where
∏

i∈I Fi :
∏

i∈I Ei → P
(∏

i∈I Ui

)
is

the set-valued mapping defined by
∏

i∈I Fi (〈ei〉i∈I) =
∏

i∈I Fi(ei), for every
〈ei〉i∈I ∈ ∏

i∈I Ei.
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Proposition 5.2. (Nordo, 2019b) Let
∏̃

i∈I(Fi,Ei) be the soft product of a family
{(Fi,Ei)}i∈I of soft sets over a universe set Ui with respect to a set of parameters
Ei (with i ∈ I), and let

(
pα,

∏
i∈I Ei

) ∈ SP(
∏

i∈I Ui)∏
i∈I Ei

be a soft point of the
product

∏
i∈I Ui, where p = 〈pi〉i∈I ∈ ∏

i∈I Ui and α = 〈αi〉i∈I ∈ ∏
i∈I Ei, then(

pα,
∏

i∈I Ei

) ∈̃ ∏̃
i∈I(Fi,Ei) if and only if ((pi)αi

,Ei) ∈̃(Fi,Ei) for every i ∈ I .

Corollary 5.1. (Nordo, 2019b) The soft product of a family {(Fi,Ei)}i∈I of soft
sets over a universe set Ui with respect to a set of parameters Ei (with i ∈ I) is null
if and only if at least one of its soft sets is null, that is

∏̃
i∈I(Fi,Ei) =̃

(
∅̃,∏i∈I Ei

)

iff there exists some j ∈ I such that (Fj ,Ej)=̃(∅̃,E).
Proposition 5.3. (Kazancı et al, 2010) Let {(Fi,Ei)}i∈I and {(Gi,Ei)}i∈I be two
families of soft sets over a universe set Ui with respect to a set of parameters Ei (with
i ∈ I), then it results:

∏̃
i∈I

((Fi,Ei)∩̃(Gi,Ei)) =̃
∏̃

i∈I
(Fi,Ei) ∩̃

∏̃
i∈I

(Gi,Ei) .

According to Remark 5.1 the following notions by Kharal and Ahmad have been
simplified and slightly modified for soft sets defined on a common parameter set.

Definition 5.20. (Kharal and Ahmad, 2011) Let SS(U)E and SS(U′)E′ be two sets of
soft open sets over the universe sets U and U′ with respect to the sets of parameters E
and E′, respectively. and consider a mapping ϕ : U → U′ between the two universe
sets and a mapping ψ : E → E′ between the two set of parameters. The mapping
ϕψ : SS(U)E → SS(U′)E′ which maps every soft set (F,E) of SS(U)E to a soft
set (ϕψ(F ),E′) of SS(U′)E′ , denoted by ϕψ(F,E), where ϕψ(F ) : E′ → P(U′) is
the set-valued mapping defined by ϕψ(F )(e′) =

⋃{
ϕ(F (e)) : e ∈ ψ−1({e′})} for

every e′ ∈ E′, is called a soft mapping from U to U′ induced by the mappings ϕ and
ψ, while the soft set ϕψ(F,E)=̃(ϕψ(F ),E′) is said to be the soft image of the soft
set (F,E) under the soft mapping ϕψ : SS(U)E → SS(U′)E′ .
The soft mappingϕψ : SS(U)E → SS(U′)E′ is said injective (respectively surjective,
bijective) if the mappings ϕ : U → U′ and ψ : E → E′ are both injective (resp.
surjective, bijective).

It is worth noting that soft mappings between soft sets behaves similarly to usual
(crisp) mappings in the sense that they maps soft points to soft points, as proved in
the following property.

Proposition 5.4. Let ϕψ : SS(U)E → SS(U′)E′ be a soft mapping induced by the
mappings ϕ : U → U′ and ψ : E → E′ between the two sets SS(U)E, SS(U′)E′ of
soft sets. and consider a soft point (pα,E) of SP(U)E. Then the soft imageϕψ(pα,E)
of the soft point (pα,E) under the soft mapping ϕψ is the soft point

(
ϕ(p)ψ(α),E′

)
,

i.e. ϕψ(pα,E)=̃
(
ϕ(p)ψ(α),E′

)
.



5 A Soft Embedding Theorem for Soft Topological Spaces 43

Corollary 5.2. Let ϕψ : SS(U)E → SS(U′)E′ be a soft mapping induced by the
mappings ϕ : U → U′ and ψ : E → E′ between the two sets SS(U)E, SS(U′)E′

of soft sets, then ϕψ is injective if and only if its soft images of every distinct pair
of soft points are distinct too, i.e. if for every (pα,E), (qβ ,E) ∈ SP(U)E such that
(pα,E) ˜�=(qβ ,E) it follows that ϕψ(pα,E) ˜�=ϕψ(qβ ,E).

Definition 5.21. (Kharal and Ahmad, 2011) Let ϕψ : SS(U)E → SS(U′)E′ be a soft
mapping induced by the mappings ϕ : U → U′ and ψ : E → E′ between the sets
SS(U)E, SS(U′)E′ of soft sets and consider a soft set (G,E′) of SS(U′)E′ . The soft
inverse image of (G,E′) under the soft mapping ϕψ : SS(U)E → SS(U′)E′ , denoted
by ϕ−1

ψ (G,E′) is the soft set (ϕ−1
ψ (G),E′) of SS(U)E where ϕ−1

ψ (G) : E → P(U)
is the set-valued mapping defined by ϕ−1

ψ (G)(e) = ϕ−1 (G (ψ(e))) for every e ∈ E.

Corollary 5.3. Let ϕψ : SS(U)E → SS(U′)E′ be a soft mapping induced by the
mappings ϕ : U → U′ and ψ : E → E′. If (F,E) ∈ SS(U)E and (F ′,E′) ∈
SS(U′)E′ are soft sets over U and U′, respectively and (pα,E) ∈ SP(U)E and
(qβ ,E′) ∈ SP(U′)E′ are soft points over U and U′, respectively, then the following
hold:

(1) (pα,E)∈̃(F,E) implies ϕψ(pα,E)∈̃ϕψ(F,E).
(2) (qβ ,E′)∈̃(F ′,E′) implies ϕ−1

ψ (qβ ,E′) ⊆̃ϕ−1
ψ (F ′,E′).

Definition 5.22. Let ϕψ : SS(U)E → SS(U′)E′ be a bijective soft mapping induced
by the mappings ϕ : U → U′ and ψ : E → E′. The soft inverse mapping of ϕψ ,
denoted by ϕ−1

ψ , is the soft mapping ϕ−1
ψ =

(
ϕ−1

)
ψ−1 : SS(U′)E′ → SS(U)E

induced by the inverse mappings ϕ−1 : U′ → U and ψ−1 : E′ → E of the mappings
ϕ and ψ, respectively.

Remark 5.3. Evidently, the soft inverse mapping ϕ−1
ψ : SS(U′)E′ → SS(U)E of a

bijective soft mapping ϕψ : SS(U)E → SS(U′)E′ is also bijective and its soft image
of a soft set in SS(U′)E′ coincides with the soft inverse image of the corresponding
soft set under the soft mapping ϕψ .

Definition 5.23. (Aygünoğlu and Aygün, 2012) LetSS(U)E, SS(U′)E′ andSS(U′′)E′′

be three sets of soft open sets over the universe sets U,U′,U′′ with respect to
the sets of parameters E,E′,E′′, respectively, and ϕψ : SS(U)E → SS(U′)E′ ,
γδ : SS(U)E′ → SS(U′)E′′ be two soft mappings between such sets, then the soft
composition of the soft mappings ϕψ and γδ , denoted by γδ ◦̃ϕψ is the soft mapping
(γ ◦ ϕ)δ◦ψ : SS(U)E → SS(U′′)E′′ induced by the compositions γ ◦ϕ : U → U′′ of
the mappings ϕ and γ between the universe sets and δ ◦ψ : E → E′′ of the mappings
ψ and δ between the parameter sets.

The notion of soft topological spaces as topological spaces defined over a initial
universe with a fixed set of parameters was introduced by Shabir and Naz (2011).

Definition 5.24. (Shabir and Naz, 2011) Let X be an initial universe set, E be a
nonempty set of parameters with respect to X and T ⊆ SS(X)E be a family of soft
sets over X , we say that T is a soft topology on X with respect to E if the following
four conditions are satisfied:
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(i) the null soft set belongs to T, i.e. (∅̃,E) ∈ T.
(ii) the absolute soft set belongs to T, i.e. (X̃,E) ∈ T.
(iii) the soft intersection of any two soft sets of T belongs to T, i.e. for every

(F,E), (G,E) ∈ T then (F,E)∩̃(G,E) ∈ T.
(iv) the soft union of any subfamily of soft sets in T belongs to T, i.e. for every

{(Fi,E)}i∈I ⊆ T then
⋃̃

i∈I(Fi,E) ∈ T.

The triplet (X,T,E) is called a soft topological space (or soft space, for short) over
X with respect to E.
In some case, when it is necessary to better specify the universal set and the set of
parameters, the topology will be denoted by T(X,E).

Definition 5.25. (Shabir and Naz, 2011) Let (X,T,E) be a soft topological space
over X with respect to E, then the members of T are said to be soft open set in X .

Definition 5.26. (Hazra et al, 2012) Let T1 and T2 be two soft topologies over a
common universe set X with respect to a set of paramters E. We say that T2 is
finer (or stronger) than T1 if T1 ⊆ T2 where ⊆ is the usual set-theoretic relation of
inclusion between crisp sets. In the same situation, we also say that T1 is coarser (or
weaker) than T2.

Definition 5.27. (Shabir and Naz, 2011) Let (X,T,E) be a soft topological space
over X and (F,E) be a soft set over X . We say that (F,E) is soft closed set in X if
its complement (F,E)� is a soft open set, i.e. if (F,E)� ∈ T.

Notation 5.2.1 The family of all soft closed sets of a soft topological space (X,T,E)
over X with respect to E will be denoted by σ, or more precisely with σ(X,E) when
it is necessary to specify the universal set X and the set of parameters E.

Definition 5.28. (Aygünoğlu and Aygün, 2012) Let (X,T,E) be a soft topological
space over X and B ⊆ T be a non-empty subset of soft open sets. We say that B is
a soft open base for (X,T,E) if every soft open set of T can be expressed as soft
union of a subfamily of B, i.e. if for every (F,E) ∈ T there exists some A ⊂ B such
that (F,E) =

⋃̃ {(A,E) : (A,E) ∈ A}.

Proposition 5.5. (Nazmul and Samanta, 2013) Let (X,T,E) be a soft topological
space over X and B ⊆ T be a family of soft open sets of X . Then B is a soft
open base for (X,T,E) if and only if for every soft open set (F,E) ∈ T and any
soft point (xα,E)∈̃(F,E) there exists some soft open set (B,E) ∈ B such that
(xα,E)∈̃(B,E)⊆̃(F,E).

Definition 5.29. (Zorlutuna et al, 2012) Let (X,T,E) be a soft topological space,
(N,E) ∈ SS(X)E be a soft set and (xα,E) ∈ SP(X)E be a soft point over a common
universe X . We say that (N,E) is a soft neighbourhood of the soft point (xα,E)
if there is some soft open set soft containing the soft point and soft contained
in the soft set, that is if there exists some soft open set (A,E) ∈ T such that
(xα,E)∈̃(A,E)⊆̃(N,E).
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Notation 5.2.2 The family of all soft neighbourhoods (sometimes also called soft
neighbourhoods system) of a soft point (xα,E) ∈ SP(X)E in a soft topological
space (X,T,E) will be denoted by N(xα,E) (or more precisely with NT

(xα,E) if it is
necessary to specify the topology).

Definition 5.30. (Shabir and Naz, 2011) Let (X,T,E) be a soft topological space
overX and (F,E) be a soft set overX . Then the soft closure of the soft set (F,E)with
respect to the soft space (X,T,E), denoted by s-clX(F,E), is the soft intersection
of all soft closed set over X soft containing (F,E), that is

s-clX(F,E)=̃
⋂̃{

(C,E) ∈ σ(X,E) : (F,E)⊆̃(C,E)
}
.

Proposition 5.6. (Shabir and Naz, 2011) Let (X,T,E) be a soft topological space
over X , and (F,E) be a soft set over X . Then the following hold:

(1) s-clX(∅̃,E)=̃ (∅̃,E).
(2) s-clX(X̃,E)=̃ (X̃,E).
(3) (F,E) ⊆̃ s-clX(F,E).
(4) (F,E) is a soft closed set over X if and only if s-clX(F,E)=̃ (F,E).
(5) s-clX(s-clX(F,E)) =̃ s-clX(F,E).

Proposition 5.7. (Shabir and Naz, 2011) Let (X,T,E) be a soft topological space
and (F,E), (G,E) ∈ SS(X)E be two soft sets over a common universe X . Then the
following hold:

(1) (F,E) ⊆̃ (G,E) implies s-clX(F,E) ⊆̃ s-clX(G,E).
(2) s-clX((F,E) ∪̃ (G,E)) =̃ s-clX(F,E) ∪̃ s-clX(G,E).
(3) s-clX((F,E) ∩̃ (G,E)) ⊆̃ s-clX(F,E) ∩̃ s-clX(G,E).

Definition 5.31. (Xie, 2015) Let (X,T,E) be a soft topological space, (F,E) ∈
SS(X)E and (xα,E) ∈ SP(X)E be a soft set and a soft point over the common
universe X with respect to the sets of parameters E, respectively. We say that
(xα,E) is a soft adherent point (sometimes also called soft closure point) of (F,E)
if it soft meets every soft neighbourhood of the soft point, that is if for every
(N,E) ∈ N(xα,E), (F,E) ∩̃ (N,E) ˜�=(∅̃,E).

As in the classical topological space, it is possible to prove that the soft closure
of a soft set coincides with the set of all its soft adherent points.

Proposition 5.8. (Xie, 2015) Let (X,T,E) be a soft topological space, (F,E) ∈
SS(X)E and (xα,E) ∈ SP(X)E be a soft set and a soft point over the com-
mon universe X with respect to the sets of parameters E, respectively. Then
(xα,E)∈̃ s-clX(F,E) if and only if (xα,E) is a soft adherent point of (F,E).

Having in mind the Definition 5.18 we can recall the following proposition.
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Proposition 5.9. (Hussain and Ahmad, 2011) Let (X,T,E) be a soft topological
space over X , and Y be a nonempty subset of X , then the family TY of all sub soft
sets of T over Y , i.e.

TY =
{(

YF,E
)
: (F,E) ∈ T

}

is a soft topology on Y .

Definition 5.32. (Hussain and Ahmad, 2011) Let (X,T,E) be a soft topological
space over X , and let Y be a nonempty subset of X , the soft topology TY ={(

YF,E
)
: (F,E) ∈ T

}
is said to be the soft relative topology of T on Y and

(Y,TY ,E) is called the soft topological subspace of (X,T,E) on Y .

Definition 5.33. (Zorlutuna et al, 2012) Let ϕψ : SS(X)E → SS(X ′)E′ be a soft
mapping between two soft topological spaces (X,T,E) and (X ′,T′,E′) induced by
the mappings ϕ : X → X ′ and ψ : E → E′ and (xα,E) ∈ SP(X)E be a soft point
over X . We say that the soft mapping ϕψ is soft continuous at the soft point (xα,E)
if for each soft neighbourhood (G,E′) ofϕψ(xα,E) in (X ′,T′,E′) there exists some
soft neighbourhood (F,E) of (xα,E) in (X,T,E) such that ϕψ(F,E) ⊆̃ (G,E′).
Ifϕψ is soft continuous at every soft point (xα,E) ∈ SP(X)E, thenϕψ : SS(X)E →
SS(X ′)E′ is called soft continuous on X .

Proposition 5.10. (Zorlutuna et al, 2012) Let ϕψ : SS(X)E → SS(X ′)E′ be a soft
mapping between two soft topological spaces (X,T,E) and (X ′,T′,E′) induced by
the mappings ϕ : X → X ′ and ψ : E → E′. Then the soft mapping ϕψ is soft
continuous if and only if every soft inverse image of a soft open set in X ′ is a soft
open set in X , that is, if for each (G,E′) ∈ T′ we have that ϕ−1

ψ (G,E′) ∈ T.

Proposition 5.11. (Zorlutuna et al, 2012) Let ϕψ : SS(X)E → SS(X ′)E′ be a soft
mapping between two soft topological spaces (X,T,E) and (X ′,T′,E′) induced
by the mappings ϕ : X → X ′ and ψ : E → E′. Then the soft mapping ϕψ is
soft continuous if and only if every soft inverse image of a soft closed set in X ′

is a soft closed set in X , that is, if for each (C,E′) ∈ σ(X ′,E′) we have that
ϕ−1
ψ (C,E′) ∈ σ(X,E).

Definition 5.34. (Zorlutuna et al, 2012) Let ϕψ : SS(X)E → SS(X ′)E′ be a soft
mapping between two soft topological spaces (X,T,E) and (X ′,T′,E′) induced by
the mappings ϕ : X → X ′ and ψ : E → E′, and let Y be a nonempty subset of X ,
the restriction of the soft mapping ϕψ to Y , denoted by ϕψ |Y , is the soft mapping
(ϕ|Y )ψ : SS(Y )E → SS(X ′)E′ induced by the restriction ϕ|Y : Y → X ′ of the
mapping ϕ between the universe sets and by the same mapping ψ : E → E′ between
the parameter sets.

Proposition 5.12. (Zorlutuna et al, 2012) If ϕψ : SS(X)E → SS(X ′)E′ is a soft
continuous mapping between two soft topological spaces (X,T,E) and (X ′,T′,E′),
then its restriction ϕψ |Y : SS(Y )E → SS(X ′)E′ to a nonempty subset Y of X is soft
continuous too.
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Proposition 5.13. If ϕψ : SS(X)E → SS(X ′)E′ is a soft continuous mapping be-
tween two soft topological spaces (X,T,E) and (X ′,T′,E′), then its corestriction
ϕψ : SS(X)E → ϕψ (SS(X)E) is soft continuous too.

Proof. It easily follows from Definitions 5.20 and 5.21, and Proposition 5.10.

Definition 5.35. (Aygünoğlu and Aygün, 2012) Let (X,T,E) be a soft topological
space over X and S ⊆ T be a non-empty subset of soft open sets. We say that S
is a soft open subbase for (X,T,E) if the family of all finite soft intersections of
members of S forms a soft open base for (X,T,E).

Proposition 5.14. (Aygünoğlu and Aygün, 2012) Let S ⊆ SS(X)E be a family of
soft sets over X , containing both the null soft set (∅̃,E) and the absolute soft set
(X̃,E). Then the family T(S) of all soft union of finite soft intersections of soft sets
in S is a soft topology having S as soft open subbase.

Definition 5.36. (Aygünoğlu and Aygün, 2012) Let S ⊆ SS(X)E be a a family of
soft sets over X respect to a set of parameters E and such that (∅̃,E), (X̃,E) ∈ S,
then the soft topology T(S) of the above Proposition 5.14 is called the soft topology
generated by the soft open subbase S over X and (X,T(S),E) is said to be the soft
topological space generated by S over X .

Definition 5.37. (Aygünoğlu and Aygün, 2012) Let SS(X)E be the set of all the soft
sets over a universe set X with respect to a set of parameter E and consider a family
of soft topological spaces {(Yi,Ti,Ei)}i∈I and a corresponding family {(ϕψ)i}i∈I
of soft mappings (ϕψ)i = (ϕi)ψi : SS(X)E → SS(Yi)Ei

induced by the mappings
ϕi : X → Yi and ψi : E → Ei (with i ∈ I). Then the soft topology T(S) generated
by the soft open subbase S =

{
(ϕψ)

−1
i (G,Ei) : (G,Ei) ∈ Ti, i ∈ I

}
of all soft

inverse images of soft open sets of Ti under the soft mappings (ϕψ)i is called the
initial soft topology induced on X by the family of soft mappings {(ϕψ)i}i∈I and
it is denoted by Tini(X,E, Yi,Ei, (ϕψ)i; i ∈ I).

Proposition 5.15. (Aygünoğlu and Aygün, 2012) The initial soft topology
Tini(X,E, Yi,Ei, (ϕψ)i; i ∈ I) induced on X by the family of soft mappings
{(ϕψ)i}i∈I is the coarsest soft topology on SS(X)E for which all the soft map-
pings (ϕψ)i : SS(X)E → SS(Yi)Ei

(with i ∈ I) are soft continuous.

Definition 5.38. (Aygünoğlu and Aygün, 2012) Let {(Xi,Ti,Ei)}i∈I be a family of
soft topological spaces over the universe setsXi with respect to the sets of parameters
Ei, respectively. For every i ∈ I , the soft mapping
(πi)ρi

: SS(
∏

i∈I Xi)∏
i∈I Ei

→ SS(Xi)Ei
induced by the canonical projections

πi :
∏

i∈I Xi → Xi and ρi :
∏

i∈I Ei → Ei is said the i-th soft projection mapping
and, by setting (πρ)i = (πi)ρi

, it will be denoted by
(πρ)i : SS(

∏
i∈I Xi)∏

i∈I Ei
→ SS(Xi)Ei

.

Definition 5.39. (Aygünoğlu and Aygün, 2012) Let {(Xi,Ti,Ei)}i∈I be a family of
soft topological spaces and let {(πρ)i}i∈I be the corresponding family of soft pro-
jection mappings (πρ)i : SS(

∏
i∈I Xi)∏

i∈I Ei
→ SS(Xi)Ei

(with i ∈ I). Then, the
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initial soft topology Tini

(∏
i∈I Xi,E, Xi,Ei, (πρ)i; i ∈ I

)
induced on

∏
i∈I Xi by

the family of soft projection mappings {(πρ)i}i∈I is called the soft product topology
of the soft topologies Ti (with i ∈ I) and denoted by T

(∏
i∈I Xi

)
.

The triplet
(∏

i∈I Xi,T
(∏

i∈I Xi

)
,
∏

i∈I Ei

)
will be said the soft topological prod-

uct space of the soft topological spaces (Xi,Ti,Ei).

The following statement easily derives from Definition 5.39 and Proposition 5.15.

Corollary 5.4. The soft product topology T
(∏

i∈I Xi

)
is the coarsest soft topol-

ogy over SS(
∏

i∈I Xi)∏
i∈I Ei

for which all the soft projection mappings (πρ)i :

SS(
∏

i∈I Xi)∏
i∈I Ei

→ SS(Xi)Ei
(with i ∈ I) are soft continuous.

Proposition 5.16. (Aygünoğlu and Aygün, 2012) Let {(Xi,Ti,Ei)}i∈I be a family
of soft topological spaces, (X,T(X),E) be the soft topological product of such soft
spaces induced on the product X =

∏
i∈I Xi of universe sets with respect to the

product E =
∏

i∈I Ei of the sets of parameters, (Y,T′,E′) be a soft topological
space and ϕψ : SS(Y )E′ → SS(X)E be a soft mapping induced by the mappings
ϕ : Y → X and ψ : E′ → E. Then the soft mappings ϕψ is soft continuous if and
only if, for every i ∈ I , the soft compositions (πρ)i ◦̃ϕψ with the soft projection
mappings (πρ)i : SS(X)E → SS(Xi)Ei

are soft continuous mappings.

Let us note that the soft cartesian product
∏̃

i∈I(Fi,Ei) of a family {(Fi,Ei)}i∈I

of soft sets over a set Xi with respect to a set of parameters Ei, respectively, as
introduced in Definition 5.19, is a soft set of the soft topological product space(∏

i∈I Xi,T
(∏

i∈I Xi

)
,
∏

i∈I Ei

)
i.e. that

∏̃
i∈I(Fi,Ei) ∈ SS(

∏
i∈I Xi)∏

i∈I Ei

and the following statement holds.

Proposition 5.17. (Nordo, 2019b) Let
(∏

i∈I Xi,T
(∏

i∈I Xi

)
,
∏

i∈I Ei

)
be the

soft topological product space of a family {(Xi,Ti,Ei)}i∈I of soft topological
spaces and let

∏̃
i∈I(Fi,Ei) be the soft product in SS(

∏
i∈I Xi)∏

i∈I Ei
of a fam-

ily {(Fi,Ei)}i∈I of soft sets of SS(Xi)Ei
, for every i ∈ I . Then the soft closure

of
∏̃

i∈I(Fi,Ei) in the soft topological product
(∏

i∈I Xi,T
(∏

i∈I Xi

)
,
∏

i∈I Ei

)

coincides with the soft product of the corresponding soft closures of the soft sets
(Fi,Ei) in the corresponding soft topological spaces (Xi,Ti,Ei), that is:

s-cl∏
i∈I Xi

(∏̃
i∈I

(Fi,Ei)

)
=̃
∏̃

i∈I
s-clXi

(Fi,Ei).

5.3 Soft Embedding Theorem

Definition 5.40. (Aras et al, 2013) Let (X,T,E) and (X ′,T′,E′) be two soft topo-
logical spaces over the universe sets X and X ′ with respect to the sets of parameters
E and E′, respectively. We say that a soft mapping ϕψ : SS(X)E → SS(X ′)E′ is a
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soft homeomorphism if it is soft continuous, bijective and its soft inverse mapping
ϕ−1
ψ : SS(X ′)E′ → SS(X)E is soft continuous too. In such a case, the soft topologi-

cal spaces (X,T,E) and (X ′,T′,E′) are said soft homeomorphic and we write that
(X,T,E)≈̃(X ′,T′,E′).

Definition 5.41. Let (X,T,E) and (X ′,T′,E′) be two soft topological spaces. We
say that a soft mapping ϕψ : SS(X)E → SS(X ′)E′ is a soft embedding if its
corestriction ϕψ : SS(X)E → ϕψ (SS(X)E) is a soft homeomorphism.

Definition 5.42. (Aras et al, 2013) Let (X,T,E) and (X ′,T′,E′) be two soft topo-
logical spaces. We say that a soft mappingϕψ : SS(X)E → SS(X ′)E′ is a soft closed
mapping if the soft image of every soft closed set of (X,T,E) is a soft closed set of
(X ′,T′,E′), that is if for any (C,E) ∈ σ(X,E), we have ϕψ(C,E) ∈ σ(X ′,E′).

Proposition 5.18. Letϕψ : SS(X)E → SS(X ′)E′ be a soft mapping between two soft
topological spaces (X,T,E) and (X ′,T′,E′). If ϕψ is a soft continuous, injective
and soft closed mapping then it is a soft embedding.

Proof. If we consider the soft mapping ϕψ : SS(X)E → ϕψ (SS(X)E), by hy-
pothesis and Proposition 5.13, it immediately follows that it is a soft continuous
bijective mapping and so we have only to prove that its soft inverse mapping
ϕ−1
ψ =

(
ϕ−1

)
ψ−1 : ϕψ (SS(X)E) → SS(X)E is continuous too. In fact, be-

cause the bijectiveness of the corestriction and Remark 5.3, for every soft closed
set (C,E) ∈ σ(X,E), the soft inverse image of the (C,E) under the soft inverse
mapping ϕ−1

ψ coincides with the soft image of the same soft set under the soft

mapping ϕψ , that is
(
ϕ−1
ψ

)−1

(C,E) =̃ϕψ(C,E) and since by hypothesis ϕψ is soft

closed, it follows that
(
ϕ−1
ψ

)−1

(C,E) ∈ σ(X ′,E′) which, by Proposition 5.11,
proves that ϕ−1

ψ : SS(X ′)E′ → SS(X)E is a soft continuous mapping, and so, by
Proposition 5.12, we finally have that ϕ−1

ψ : ϕψ (SS(X)E) → SS(X)E is a soft
continuous mapping.

Definition 5.43. Let (X,T,E) be a soft topological space over a universe set X
with respect to a set of parameter E, let {(Xi,Ti,Ei)}i∈I be a family of soft
topological spaces over a universe set Xi with respect to a set of parameters Ei,
respectively and consider a family {(ϕψ)i}i∈I of soft mappings (ϕψ)i = (ϕi)ψi

:
SS(X)E → SS(Xi)Ei

induced by the mappings ϕi : X → Xi and ψi : E → Ei

(with i ∈ I). Then the soft mapping Δ = ϕψ : SS(X)E → SS(
∏

i∈I Xi)∏
i∈I Ei

induced by the diagonal mappings (in the classical meaning) ϕ = Δi∈Iϕi : X →∏
i∈I Xi on the universes sets and ψ = Δi∈Iψi : E → ∏

i∈I Ei on the sets of
parameters (respectively defined by ϕ(x) = 〈ϕi(x)〉i∈I for every x ∈ X and by
ψ(e) = 〈ψi(e)〉i∈I for every e ∈ E) is called the soft diagonal mapping of the soft
mappings (ϕψ)i (with i ∈ I) and it is denoted by Δ = Δi∈I(ϕψ)i : SS(X)E →
SS(

∏
i∈I Xi)∏

i∈I Ei
.

The following proposition establishes a useful relation about the soft image of a
soft diagonal mapping.
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Proposition 5.19. (Nordo, 2019b) Let (X,T,E) be a soft topological space over a
universe set X with respect to a set of parameter E, let (F,E) ∈ SS(X)E be a soft
set of X , let {(Xi,Ti,Ei)}i∈I be a family of soft topological spaces over a universe
set Xi with respect to a set of parameters Ei, respectively and let Δ = Δi∈I(ϕψ)i :
SS(X)E → SS(

∏
i∈I Xi)∏

i∈I Ei
be the soft diagonal mapping of the soft mappings

(ϕψ)i, with i ∈ I . Then the soft image of the soft set (F,E) under the soft diagonal
mapping Δ is soft contained in the soft product of the soft images of the same soft
set under the soft mappings (ϕψ)i, that is

Δ(F,E) ⊆̃
∏̃

i∈I
(ϕψ)i(F,E).

Proof. Set ϕ = Δi∈Iϕi : X → ∏
i∈I Xi and ψ = Δi∈Iψi : E → ∏

i∈I Ei, by
Definition 5.43, we know that Δ = Δi∈I(ϕψ)i = ϕψ . Suppose, by contradiction,
that there exists some soft point (xα,E)∈̃(F,E) such that

Δ(xα,E) /̃∈
∏̃

i∈I
(ϕψ)i(F,E).

Set
(
yβ ,

∏
i∈I Ei

)
=̃Δ(xα,E) =̃ϕψ(xα,E), by Proposition 5.4, it follows that

(
yβ ,

∏

i∈I

Ei

)
=̃

(
ϕ(x)ψ(α),

∏

i∈I

Ei

)

where
y = 〈yi〉i∈I = ϕ(x) = (Δi∈Iϕi) (x) = 〈ϕi(x)〉i∈I

and
β = 〈βi〉i∈I = ψ(α) = (Δi∈Iψi) (α) = 〈ψi(α)〉i∈I .

So, set (Gi,Ei) =̃ (ϕψ)i(F,E) for every i ∈ I , we have that
(
yβ ,

∏

i∈I

Ei

)
/̃∈
∏̃

i∈I
(Gi,Ei)

hence, by Proposition 5.2, it follows that there exists some j ∈ I such that
(
(yj)βj

,Ej

)
/̃∈ (Gj ,Ej)

that, by Definition 5.15, means

yj /∈ Gj(βj)

i.e.
ϕj(x) /∈ Gj (ψj(α))

and so, by using again Definition 5.15, we have
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(
ϕj(x)ψj(α)

,Ej

)
/̃∈ (Gj ,Ej)

that, by Proposition 5.4, is equivalent to

(ϕψ)j(xα,E) /̃∈ (Gj ,Ej)

which is a contradiction because we know that (xα,E)∈̃(F,E) and by Corollary
5.3(1) it follows (ϕψ)j(xα,E) ∈̃ (ϕψ)j(F,E) =̃ (Gj ,Ej).

Definition 5.44. Let {(ϕψ)i}i∈I be a family of soft mappings
(ϕψ)i : SS(X)E → SS(Xi)Ei

between a soft topological space (X,T,E) and the
members of a family of soft topological spaces {(Xi,Ti,Ei)}i∈I .
We say that the family {(ϕψ)i}i∈I soft separates soft points of (X,T,E) if for every
(xα,E), (yβ ,E) ∈ SP(X)E such that (xα,E) ˜�=(yα,E) there exists some j ∈ I such
that (ϕψ)j(xα,E) ˜�=(ϕψ)j(yβ ,E).

Definition 5.45. Let {(ϕψ)i}i∈I be a family of soft mappings
(ϕψ)i : SS(X)E → SS(Xi)Ei

between a soft topological space (X,T,E) and the
members of a family of soft topological spaces {(Xi,Ti,Ei)}i∈I .
We say that the family {(ϕψ)i}i∈I soft separates soft points from soft closed sets
of (X,T,E) if for every (C,E) ∈ σ(X,E) and every (xα,E) ∈ SP(X)E such that
(xα,E)∈̃

(
X̃,E

)
\̃(C,E) there exists some j ∈ I such that

(ϕψ)j(xα,E) /̃∈ s-clXj((ϕψ)j(C,E)).

Proposition 5.20 (Soft Embedding Theorem). Let (X,T,E) be a soft topological
space, {(Xi,Ti,Ei)}i∈I be a family of soft topological spaces and {(ϕψ)i}i∈I be
a family of soft continuous mappings (ϕψ)i : SS(X)E → SS(Xi)Ei

that separates
both the soft points and the soft points from the soft closed sets of (X,T,E). Then
the soft diagonal mapping Δ = Δi∈I(ϕψ)i : SS(X)E → SS(

∏
i∈I Xi)∏

i∈I Ei
of

the soft mappings (ϕψ)i is a soft embedding.

Proof. Let ϕ = Δi∈Iϕi, ψ = Δi∈Iψi and Δ = Δi∈I(ϕψ)i = ϕψ as in Definition
5.43, for every i ∈ I , by using Definition 5.23, we have that every corresponding
soft composition is given by

(πρ)i ◦̃Δ = ((πi)ρi) ◦̃ϕψ = (πi ◦ ϕ)ρi◦ψ = (ϕi)ψi
= (ϕψ)i

which, by hypothesis, is a soft continuous mapping. Hence, by Proposition 5.16, it
follows that the soft diagonal mapping Δ : SS(X)E → SS(

∏
i∈I Xi)∏

i∈I Ei
is a soft

continuous mapping.
Now, let (xα,E) and (yβ ,E) be two distinct soft points of SP(X)E. Since, by

hypothesis, the family {(ϕψ)i}i∈I of soft mappings soft separates soft points, by
Definition 5.44, we have that there exists some j ∈ I such that

(ϕψ)j(xα,E) ˜�=(ϕψ)j(yβ ,E)
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that is
(ϕj)ψj

(xα,E) ˜�= (ϕj)ψj
(yβ ,E).

Hence, by Proposition 5.4, we have that:
(
ϕj(x)ψi(α)

,Ej

)
˜�=
(
ϕj(y)ψi(β)

,Ej

)

and so, by the Definition 5.17 of distinct soft points, it necessarily follows that:

ϕj(x) �= ϕj(y) or ψj(α) �= ψj(β).

Since ϕ = Δi∈Iϕi : X → ∏
i∈I Xi and ψ = Δi∈Iψi : E → ∏

i∈I Ei are usual
diagonal mappings, we have that:

ϕ(x) �= ϕ(y) or ψ(α) �= ψ(β)

and, by Definition 5.17, it follows that:
(
ϕ(x)ψ(α),

∏

i∈I

Ei

)
˜�=
(
ϕ(y)ψ(β),

∏

i∈I

Ei

)

hence, applying again Proposition 5.4, we get:

ϕψ(xα,E) ˜�=ϕψ(yβ ,E)

that is:
Δi∈I(ϕψ)i(xα,E) ˜�=Δi∈I(ϕψ)i(yβ ,E)

i.e. that Δ(xα,E) ˜�=Δ(yβ ,E) which, by Corollary 5.2, proves the injectivity of the
soft diagonal mapping Δ : SS(X)E → SS(

∏
i∈I Xi)∏

i∈I Ei
.

Finally, let (C,E) ∈ σ(X,E) be a soft closed set in X and, in order to prove that
the soft image Δ(C,E) is a soft closed set of σ

(∏
i∈I Xi,

∏
i∈I Ei

)
, consider a soft

point (xα,E) ∈ SP(X)E such that Δ(xα,E) /̃∈Δ(C,E) and, hence, by Corollary
5.3(1), such that (xα,E) /̃∈(C,E). Since, by hypothesis, the family {(ϕψ)i}i∈I of
soft mappings soft separates soft points from soft closed sets, by Definition 5.45, we
have that there exists some j ∈ I such that

(ϕψ)j(xα,E) /̃∈ s-clXj((ϕψ)j(C,E))

that is:
(ϕj)ψj

(xα,E) /̃∈ s-clXj
((ϕψ)j(C,E))

that, by Proposition 5.4, corresponds to:
(
ϕj(x)ψj(α)

,Ej

)
/̃∈ s-clXj((ϕψ)j(C,E)) .
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So, set (Ci,Ei) =̃ s-clXi
((ϕψ)i(C,E)) for every i ∈ I , we have in particular for

i = j that (
ϕj(x)ψj(α)

,Ej

)
/̃∈ (Cj ,Ej)

which, by Definition 5.15, is equivalent to say that:

ϕj(x) /∈ Cj (ψj(α))

and since the diagonal mapping ϕ = Δi∈Iϕi : X → ∏
i∈I Xi on the universes sets

is defined by ϕ(x) = 〈ϕi(x)〉i∈I , it follows that:

ϕ(x) /∈
∏

i∈I

Ci (ψi(α)) .

Now, since the diagonal mapping ψ = Δi∈Iψi : X → ∏
i∈I Xi on the sets of

parameters is defined by ψ(α) = Δi∈Iψi(α) = 〈ψi(α)〉i∈I , using Definition 5.19,
we obtain:

∏

i∈I

Ci (ψi(α)) =

(∏

i∈I

Ci

)
(ψ(α))

and hence that

ϕ(x) /∈
(∏

i∈I

Ci

)
(ψ(α))

which, by Definitions 5.15 and 5.19, is equivalent to say that:
(
ϕ(x)ψ(α),

∏

i∈I

Ei

)
/̃∈
∏̃

i∈I
(Ci,Ei)

that, by Proposition 5.4, means:

ϕψ(xα,E) /̃∈
∏̃

i∈I
(Ci,Ei)

i.e.
Δ(xα,E) /̃∈

∏̃
i∈I

s-clXi
((ϕψ)i(C,E)) .

So, recalling, by Proposition 5.17, that

s-cl∏
i∈I Xi

(∏̃
i∈I

(ϕψ)i(C,E)
)
=̃
∏̃

i∈I
s-clXi((ϕψ)i(C,E))

it follows that:

Δ(xα,E) /̃∈ s-cl∏
i∈I Xi

(∏̃
i∈I

(ϕψ)i(C,E)
)
.

Since, by Propositions 5.19 and 5.6(3) we have
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Δ(C,E) ⊆̃
∏̃

i∈I
(ϕψ)i(C,E) ⊆̃ s-cl∏

i∈I Xi

(∏̃
i∈I

(ϕψ)i(C,E)
)

and, by applying Propositions 5.7(1) and 5.6(5), we obtain

s-cl∏
i∈I Xi

(Δ(C,E)) ⊆̃ s-cl∏
i∈I Xi

(∏̃
i∈I

(ϕψ)i(C,E)
)

it follows, a fortiori, that

Δ(xα,E) /̃∈ s-cl∏
i∈I Xi

(Δ(C,E)) .

So, it is proved by contradiction that s-cl∏
i∈I Xi

(Δ(C,E)) ⊆̃Δ(C,E) and hence, by
Proposition 5.6(4) and Definition 5.42, that Δ : SS(X)E → SS(

∏
i∈I Xi)∏

i∈I Ei
is

a soft closed mapping.
Thus, we finally have that the soft diagonal mapping Δ = Δi∈I(ϕψ)i :

SS(X)E → SS(
∏

i∈I Xi)∏
i∈I Ei

is a soft continuous, injective and soft closed
mapping and so, by Proposition 5.18, it is a soft embedding.

5.4 Conclusion

In this paper we have introduced the notions of family of soft mappings separating
points and points from closed sets and that of soft diagonal mapping and we have
proved a generalization to soft topological spaces of the well-known Embedding
Theorem for classical (crisp) topological spaces. Such a result could be the start
point for extending and investigating other important topics such as extension and
compactifications theorems, metrization theorems etc. in the context of soft topology.
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Chapter 6
The Diffusion–Vortex Problems in Terms of
Stresses for Bingham Materials

Dimitri Georgievskii

Abstract The formulations and the new exact self-similar solutions of the diffusion-
vortex problems in terms of stresses simulating a non-steady one-dimensional shear
in some curvilinear orthogonal coordinate system of two-constant rigid visco-plastic
medium (the Bingham solid), are analyzed. Both the diffusion of plane and axisym-
metric vortex layers as and the diffusion of vortex thread belong to these type of
incompressible flows. A shear is realized inside the certain expanding in time sub-
domains of infinite space with beforehand unknown bounds. Herewith one possible
way for formulation of additional condition at infinity is described. We introduce
into consideration the generalized diffusion of vortex which contains several mate-
rial parameters and an order of stress irregularity in zero. The self-similar solutions
where an order of irregularity corresponds or does not correspond to the kind of
shear in the selected coordinate system are constructed.

Keywords: Bingham solid · Visco-plastic medium

6.1 The Generalized Diffusion of Vortex

Let us consider the non-steady flows of incompressible homogeneous rigid visco-
plastic medium with linear viscosity (the Bingham solids) such that they represent
one-dimensional shear in some orthogonal coordinate system. We should present
the material in dimensionless form including the density ρ, the dynamical viscosity
μ, and the parameter σs/

√
2 in the dimension basis. Here σs is yield stress of the

Bingham material according to the Mises–Hencky criterion of plasticity (Klimov
et al, 2005).
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Let in some orthogonal coordinate system at any time moment the domain Ω
occupied by medium is described by the inequality Ω = {x > 0} where x is
one of curvilinear coordinates the dimension analog of which possesses a length
dimension. The domain Ω consists of two beforehand unknown subdomains —the
zone of visco-plastic flow Ωf = {0 < x < ξ(t)}, ξ(0) = 0, and the immovable
rigid zone Ωr = {ξ(t) < x}. The stress intensity is equal to the yield stress on the
moving interface of Ωf and Ωr. Mass forces are assumed to be absent.

The non-steady one-dimensional shear flow is characterized (Georgievskii, 2007)
by the only nonzero component v(x, t) of the velocity vector, and two tangent
components d(x, t) and s(x, t) of the strain rate tensor and the stress tensor:

d =
1

2

(
∂v

∂x
− a2v

x

)
, vu =

√
trd2 =

√
2 |d|, σu =

√
tr s2 =

√
2 |s| (6.1)

where vu and σu are the quadratic invariants of d and s named by intensities of
strain rate and stresses respectively; s is the stress deviator tensor.

In the domain Ωf (where σu >
√
2 or in other words |s| > 1) the constitutive

relations of the Bingham material

x ∈ Ωf : s =
σu

vu
d, σu =

√
2 + 2vu (6.2)

are fulfilled. By virtue of (6.1) they reduce to the connection of the functions s and
v:

x ∈ Ωf : s = sign d+ 2d = sign

(
∂v

∂x
− a2v

x

)
+

∂v

∂x
− a2v

x
(6.3)

Everywhere in Ω the equation of motion

x ∈ Ω = Ωf ∪Ωr :
∂s

∂x
+

a1s

x
=

∂v

∂t
(6.4)

is correct.
In the rigid zone Ωr (where σu ≤ √

2 or in other words |s| ≤ 1) the constitutive
relations are not given. Instead of it we require that the domainΩr moves as absolutely
rigid body or in particular is in rest.

On the boundary of the domain Ωf the following conditions are given

x → +0 : xαs → Sh(t), S = const; x = ξ(t) : σu =
√
2 ⇐⇒ |s| = 1

(6.5)
where h(t) is the Heaviside function; S is the given intensity of tangent stresses; α
is the order of peculiarity of the function s in zero; the real-valued parameters a1
and a2 depend on a choice of the orthogonal coordinate system as well as on a kind
of a shear in this system.

Since ξ(0) = 0, i.e. the domain of visco-plastic flow is missing when t = 0,
there are no any initial conditions in the formulation of problem. This fact leads to
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insufficiency of the system (6.5) for obtaining of all unknown functions. Further the
additional condition for a solvability of the problem will be stated.

Thus in all the domain Ω occupied by the Bingham material we search two
functions s(x, t) and v(x, t) such that s ∈ C2(Ωf ), s ∈ C(Ω), v ∈ C2(Ωf ),
v ∈ C1(Ω) as well as the function ξ(t) complying with the equations (6.3), (6.4) and
the boundary conditions (6.5). Without loss of generality, the constant S is assumed
to be positive so we can be determined with signs:

x ∈ Ωf : s > 1, d > 0; x ∈ Ωr : s ≤ 1, d = 0

Using the equations (6.3) and (6.4) it is not difficult to derive the following
parabolic equation for s(x, t):

x ∈ Ωf :
∂2s

∂x2
+

1

x
(a1 − a2)

∂s

∂x
− 1

x2
a1(a2 + 1) s =

∂s

∂t
(6.6)

It is naturally to search its solution in self-similar form s(x, t) = s̃(η)/xα; η =
x/(2

√
t). Then

s̃′′ +
[
2η +

1

η
(a1 − a2 − 2α)

]
s̃′ +

1

η2
(α− a1)(α+ a2 + 1)s̃ = 0 (6.7)

s̃|η→0 → S (6.8)

Let us turn our attention to the important particular case realizable in the appli-
cations under consideration below when α = a1. This means a correspondence of
the order of peculiarity in zero and kind of shear. Then the equation (6.7) with the
only boundary condition (6.8) has the exact analytical solution

s̃(η) = S

(
1− c

η∫
0

ζa1+a2 −ζ2

dζ

)
(6.9)

with unknown constant c. It is necessary to require that a1+a2 > −1 for integrability
of (6.9) in zero (and moreover α ≥ 0 ⇐⇒ a1 ≥ 0). The integral in (6.9) can be
expressed in terms of elementary functions if the number a1 + a2 is odd.

For the unknown function ξ(t) we can write the following equation resulting of
the solution (6.9) as well as the second boundary condition (6.5):

ξα = S

(
1− c

ξ/(2
√
t)∫

0

ζa1+a2 −ζ2

dζ

)
(6.10)

How to find the coefficient value c? One of possible ways consists of the following
(see also Kruzhkov, 1969; Ogibalov and Mirzadzhanzade, 1977; Tikhonov and
Samarskii, 2013; Iannacci et al, 1998; Andres et al, 2001). We rewrite the equation
(6.10) in terms of dimension variables:
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ρσs/

√
2

μ

)α

ξαdim =
Sdim

σs/
√
2

(
1− c

η0∫
0

ζa1+a2 −ζ2

dζ

)
, η0 =

ξdim

2
√

μtdim/ρ

(6.11)
[σs] = [Sdim] = ML−1T−2, [ξdim] = L, [tdim] = T

and require that the value c should not depend on the material constant of the medium,
in particular should be fixed by passage to the limit σs → 0. This limit means a
transition to Newtonian viscous fluid where rigid zones are absent generally, i.e.
η0 = ∞. Realizing passage to the limit σs → 0, η0 → ∞ in (6.11) we receive

c =

( ∞∫
0

ζa1+a2 −ζ2

dζ

)−1

(6.12)

It follows from (6.10) when t → ∞ that the interface x = ξ(t) of the domains
Ωf and Ωr approaches to the value ξ∞ = S1/α if α > 0 and to infinity if α = 0.

Inside the immovable rigid zone Ωr:

x ∈ Ωr : s(x, t) =

(
ξ(t)

x

)a1

(6.13)

The function s(x, t) has a break on the moving bound x = ξ(t) but this break
disappears over time so that

x ∈ Ω, t → ∞ : s(x, t) → S

xa1
(6.14)

It is not difficulty to obtain analytically the velocity v(x, t). For that purpose it is
necessary to integrate the equation

∂

∂x

v

xa2
=

S

xa1+a2
− 1

xa2
− Sc

xa1+a2

x/(2
√
t)∫

0

ζa1+a2 −ζ2

dζ (6.15)

with the condition v(ξ(t), t) = 0.

6.2 Diffusion of Plane Vortex Layer. Extraction of a Plane out of
Visco-Plastic Space

We consider several important particular cases of the investigated above problem
simulating nonsteady shear flows by diffusion-vortex type of the Bihgham material
(Georgievskii, 2006, 2018). Let us at first turn out attention to a plane flow and set
that Ω is the half-plane described by the inequality x > 0 in the Cartesian coordinate
system (x1, x2), x2 ≡ x. Herewith the component v1(x, t) of the velocity vector,
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the component d12(x, t) of the strain rate tensor and the component σ12(x, t) of the
stress tensor play a part in the function v, d and s respectively. Both the kinematics
and shear geometry such that a1 = a2 = 0, α = 0.

It should be noted that if a1 = a2 = 0 then the constant c in (6.12) is equal to
2/
√
π (the Euler–Poisson integral). The solution (6.9) in terms of stresses can be

written as

s̃(η) = S

(
1− 2√

π

η∫
0

e−ζ2

dζ

)
≡ S erfc η; s(x, t) = s̃(η) (6.16)

where erfc η is the additional error function. The interface bound ξ(t) = 2η0
√
t is

determined from the equation (6.10):

η0∫
0

e−ζ2

dζ =

√
π(S − 1)

2S
(6.17)

Using the constitutive relation (6.3) where a2 = 0 or directly the equation (6.15)
we can obtain v after integrating:

v(x, t) = −(S − 1)(ξ(t)− x) +
2S√
π

ξ(t)∫
x

x̃/(2
√
t)∫

0

e−ζ2

dζ dx̃ (6.18)

Here it is taken into account that v(ξ(t), t) = 0 what corresponds to immovability
of the rigid zone Ωr. It follows from the equation of equilibrium (6.4) in Ωr (where
a1 = 0) that s ≡ 1 in Ωr. Thus, a continuity of s by x as well as a smoothness of v
by x in all the space Ω are ensured.

The solution relevant to diffusion of plane vortex layer (or extraction of a plane
out of the Bingham material) is such that the domain of visco-plastic flow Ωf spreads
during infinite time at all the domain Ω penetrating into the depths with decreasing
velocity inversely proportional to

√
t.

6.3 Diffusion of Axially Symmetric Vortex Layer. Extraction of a
Thread out of Visco-Plastic Space

Let now in the cylindrical coordinate system (r, θ, z) a (rz)-shear is realized in all
three-dimensional space Ω without the axis z, i.e. Ω = {r > 0}. The components
vz(r, t), drz(r, t) and srz(r, t) are the only nonzero components of the velocity
vector, the strain rate tensor and the stress tensor respectively. In this case a1 = 1,
a2 = 0, α = 1.

The general solution in terms of stresses (6.9) leads to the following shear stress
in the domain Ωf = {0 < r < ξ(t)}:
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s̃(η) = Se−η2 ⇐⇒ s(r, t) =
S

r
exp
(
−r2

4t

)
(6.19)

The interface bound of Ωf and Ωr = {r > ξ(t)} may be found from the transcen-
dental equation

ξ = S exp
(
−ξ2

4t

)
(6.20)

which easily allows to express the inverse function t = t(ξ).
The velocity of flow v(r, t) in Ωf has a logarithmic peculiarity when r → 0:

v(r, t) = ξ(t)− r − S

ξ(t)∫
r

exp
(
− r̃2

4t

) dr̃

r̃
(6.21)

The equation of equilibrium in rigid zone arising from (6.4) by ∂v/∂t ≡ 0 leads
to the stress distribution in Ωr: s(r, t) = ξ(t)/r guaranteeing necessary classes of
smoothness for s and v in Ω. The function s(r, t) has a break in the point r = ξ(t)
but this break disappears over time and lim

t→∞ s(r, t) = S/r in all the domain Ω.
It should be noted that according to (6.20) the interface bound ξ(t) approaches to

the value ξ∞ = S when t → ∞ , i.e. exterior part of the cylinder by the radius S is
at rest for any time.

6.4 Diffusion of Vortex Thread

The third typical diffusion-vortex problem in terms of stresses is connected with
analysis of non-steady (rθ)-shear (rotation or torsion) in the cylindrical coordinate
system (r, θ, z) realizable in all the space without the axis z: Ω = {r > 0}. Unlike
the axial longitudinal shear (section 6.3) the nonzero components vθ(r, t), drθ(r, t)
and srθ(r, t) correspond to the functions v, d and s. The parameters a1, a2 and α
take the values a1 = 2, a2 = 1 and α = 2 for (rθ)-shear.

The solution in terms of stresses (6.9), (6.12) in the domainΩf = {0 < r < ξ(t)}
by such values of a1 and a2 has a form

s̃ = C(1 + η2)e−η2 ⇐⇒ s(r, t) = S
( 1

r2
+

1

4t

)
exp
(
−r2

4t

)
(6.22)

so that the interface bound r = ξ(t) is obtained from the following transcendent
equation

ξ2 = C
(
1 +

ξ2

4t

)
exp
(
−ξ2

4t

)
(6.23)

Rotation velocity of the material in the domain Ωf may be found after substitution
of (6.22) into the constitutive relation (6.3) and integrating over x ≡ r with the same
boundary condition v(ξ(t), t) = 0:
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v(r, t) = −r ln
r

ξ(t)
− Cr

ξ(t)∫
r

( 1

r̃3
+

1

4r̃t

)
exp
(
− r̃2

4t

)
dr̃ (6.24)

As is obvious, it has a peculiarity by order 1/r when r → 0.
The equation of equilibrium in the rigid zone Ωr = {r > ξ(t)} arising from

(6.4) by ∂v/∂t ≡ 0 gives the usual in (rθ)-shear problems distribution of tangent
stresses: s(r, t) = ξ2(t)/r2. Then the function s(r, t) is continuous in all the space
Ω as well as the function v(r, t) is continuously differentiable.

We emphasize the typical property of the solution (6.22)–(6.24) highly similar to
the noted one in section 6.3. The interface bound ξ(t) of the domains Ωf and Ωr

approaches to the value ξ∞ =
√
S when t → ∞, i.e. exterior part of the cylinder by

the radius
√
S is at rest and is not subjected to rotation. Therefore, neither extracting

a thread (the axis z) out of visco-plastic space by the aid of longitudinal shear nor
realizing a vortex motion around this thread it is impossible to deform all the space.
The domain of visco-plastic flow should be bounded by some cylinder with the
radius depending on the shear intensity. It is worth noticing that Bingham solid is
very interesting in mechanical applications. Indeed, It can be used as a damping
material, especially in the framework of the newly conceived metamaterials (see,
e.g., dell’Isola et al, 2019a,b).
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Chapter 7
On the Behavior of Solutions of Quasilinear
Elliptic Inequalities Near a Boundary Point

Andrej A. Kon’kov

Abstract Assume that p > 1 and p − 1 ≤ α ≤ p are real numbers and Ω is a
non-empty open subset of Rn, n ≥ 2. We consider the inequality

divA(x,Du) + b(x)|Du|α ≥ 0,

where D = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) is the gradient operator and, moreover,
A : Ω × Rn → Rn and b : Ω → [0,∞) are some functions with

C1|ξ|p ≤ ξA(x, ξ), |A(x, ξ)| ≤ C2|ξ|p−1, C1, C2 = const > 0,

for almost all x ∈ Ω and for all ξ ∈ Rn. For solutions of this inequality we obtain
estimates depending on the geometry of Ω. In particular, these estimates imply
regularity conditions of a boundary point.

Keywords: Quasilinear Elliptic Inequalities · Boundary conditions

7.1 Introduction

Let Ω be an open subset of Rn, n ≥ 2. By Bx
r and Sx

r we mean the open ball
and the sphere in Rn of radius r > 0 and center at a point x. In the case of
x = 0, we write Br and Sr instead of B0

r and S0
r , respectively. Let us denote

Br1,r2 = {x ∈ Rn : r1 < |x| < r2} and Ωr1,r2 = Br1,r2 ∩ Ω, 0 < r1 < r2.
Through out the paper, we assume that Sr ∩Ω �= ∅ for any r ∈ (0, R), where R > 0
is some real number.

We are interested in the behavior of solutions of the problem
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divA(x,Du) + b(x)|Du|α ≥ 0 in BR ∩Ω, u|BR∩∂Ω = 0, (7.1)

where D = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) is the gradient operator and the function
A : Ω × Rn → Rn satisfies the ellipticity conditions

C1|ξ|p ≤ ξA(x, ξ), |A(x, ξ)| ≤ C2|ξ|p−1

with some constants C1 > 0, C2 > 0, and p > 1 for almost all x ∈ Ω and for
all ξ ∈ Rn. It is also assumed that p − 1 ≤ α ≤ p is a real number and b is a
non-negative function such that b ∈ Lν(Ωr,R) for all r ∈ (0, R), where ν satisfies
the following requirements:

(i) if α = p, then ν = ∞;
(ii) if α = p− 1 and 1 < p ≤ n, then ν > n;
(iii) if α = p− 1 and p > n, then ν = p;
(iv) if p− 1 < α < p and n �= p, then ν = max{n, p}/(p− α);
(v) if p− 1 < α < p and n = p, then ν > p/(p− α).

We say that u ∈ W 1
p (BR ∩Ω) ∩ L∞(BR ∩Ω) is a solution of problem (7.1) if

A(x,Du) ∈ Lp/(p−1)(BR ∩Ω),

−
∫
Ω

A(x,Du)Dϕdx+

∫
Ω

b(x)|Du|αϕdx ≥ 0

for any non-negative function ϕ ∈ C∞
0 (BR ∩ Ω), and uψ ∈ o

W1
p(Ω) for any

ψ ∈ C∞
0 (BR).

In his classical papers, Wiener (1924b,a) obtained a boundary point regularity
criteria for solutions of the Dirichlet problem for the Laplace equation. In other
words, he found necessary and sufficient conditions for solutions of the Dirichlet
problem for the Laplace equation to be continuous at a boundary point. The criteria
was formulated in terms of capacity which is very similar to the one that arises in
electrostatics. This approach proved to be very productive and was subsequently used
by many authors (Björn, 2001; Gariepy and Ziemer, 1977; Kon’kov, 2014, 2004;
Landis, 1997; Littman et al, 1963; Maz’ya, 1970; Iannacci et al, 1998; Andres et al,
2001; dell’Isola et al, 2019a,b). Maz’ya (1970) managed to get sufficient regularity
conditions for solutions of the Dirichlet problem for the p-Laplace equation. The
results of V.G. Maz’ya were generalized for quasilinear equations containing term
with lower-order derivatives by Gariepy and Ziemer (1977) and for systems of quasi-
linear equations by Björn (2001). In doing that, Björn (2001); Gariepy and Ziemer
(1977) imposed essential restrictions on coefficients of the lower-order derivatives.
In the case of problem (7.1), this restrictions take the form b1/(p−α) ∈ Ln(BR ∩Ω)
if 1 < p < n and b1/(p−α) ∈ Lλ(BR ∩ Ω), λ > n, if p = n. Therefore, the results
of Björn (2001); Gariepy and Ziemer (1977) can not be applied if b(x) grows fast
enough as x → 0 (see Examples 1–3). Below we present Theorems 1–10 that are
free from this shortcoming.

We use the following notations. For every solution of (7.1) we put
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M(r;u) = ess sup
Sr∩Ω

u, (7.2)

where the restriction of u to Sr∩Ω, r ∈ (0, R), is understood in the sense of the trace
and the essential supremum in (7.2) is taken with respect to (n − 1)-dimensional
Lebesgue measure on the sphere Sr. In accordance with the maximum principle
either M(·;u) is a monotonic function on the whole interval (0, R) or there exists
R∗ ∈ (0, R) such that M(·;u) does not increase on (0, R∗) and does not decrease
on (R∗, R).

Let E be a non-empty open subset of the sphere Sr. We denote

λmin(E) = inf
ψ∈C∞

0 (E)

∫
E
|∇ψ|p dSr∫

E
|ψ|p dSr

,

where |∇ψ| = (gij∇iψ∇jψ)
1/2, gij is the dual metric tensor on Sr induced by

the standard euclidean metric on Rn, and dSr is the (n − 1)-dimensional volume
element of Sr. By the variational principle, λmin(E) is the first eigenvalue of the
problem

Δpv = −λ|v|p−2v in E, v|∂E = 0,

for the p-Laplace–Beltrami operator Δpv = ∇i(|∇v|p−2gij∇jv).
The capacity of a compact set K ⊂ ω relative to a non-empty open set ω ⊂ Rn

is defined as
cap(K,ω) = inf

ϕ

∫
ω

|Dϕ|p dx,

where the infimum is taken over all functions ϕ ∈ C∞
0 (ω) that are identically equal

to one in a neighborhood of K. By definition, the capacity of the empty set is equal
to zero. In the case of ω = Rn, we write cap(K) instead of cap(K,ω). If p = 2 and
n ≥ 3, then cap(K) coincides with the well-known Wiener capacity.

It can be shown that cap(K,ω) has the following natural properties.

(a) Monotonicity: If K1 ⊂ K2 and ω2 ⊂ ω1, then

cap(K1, ω1) ≤ cap(K2, ω2).

(b) Similarity property: If K ′ = λK and ω′ = λω, where λ > 0 is a real number,
then

cap(K ′, ω′) = λn−p cap(K,ω).

(c) Semiadditivity: Assume that K1 and K2 are compact subsets of an open set ω,
then

cap(K1 ∪K2, ω) ≤ cap(K1, ω) + cap(K2, ω).

By the ε-essential inner diameter of an open set ω, where 0 < ε < 1 is a real
number, we mean the value

diamε ω = sup

{
r ∈ (0,∞) : ∃x ∈ ω

cap(Bx
r \ ω,Bx

2r)

cap(Br, B2r)
< ε

}
.
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In this way, if ω = ∅, then diamε ω = 0.
The ε-essential inner diameter is a monotone set function, i.e. diamε ω1 ≤

diamε ω2 if ω1 ⊂ ω2. It also is a monotone function of ε. In other words,
diamε1 ω ≤ diamε2 ω if ε1 ≤ ε2.

We say that f ∈ Lν,ε(ω), where ν ≥ 1 and 0 < ε < 1 are real numbers and ω is
an open set, if f ∈ Lν,loc(ω) and

sup
x∈ω

‖f‖Lν(ω∩Bx
diamε ω) < ∞.

It can be seen that Lν,ε(ω) is a Banach space with the norm

‖f‖Lν,ε(ω) = |S1|−1/ν sup
x∈ω

‖f‖Lν(ω∩Bx
diamε ω)

,

where |S1| is the (n− 1)-dimensional volume of S1. In the case of f ∈ L∞(ω), we
obviously have

‖f‖Lν,ε(ω) ≤ (diamε ω)
n/ν‖f‖L∞(ω). (7.3)

7.2 Estimates of Solutions near a Boundary Point

Below we assume by default that Λ, q, and D are non-negative measurable functions
such that

Λ(r) ≤ inf
t∈(r/θ,rθ)∩(0,R)

λmin(St ∩Ω), (7.4)

q(r) ≥ (diamε Ωr/θ,rθ)
p−α−n/ν‖b‖Lν,ε(Ωr/θ,rθ), (7.5)

and
D(r) ≤ 1

diamε Ωr/θ,rθ

for almost all r ∈ (0, R), where θ > 1 and 0 < ε < 1 are some real numbers.

Remark 1 In view of (7.3), if b ∈ L∞(Ωr,R) for any r ∈ (0, R), then to per-
form (7.5) it is sufficient to require that

q(r) ≥ (diamε Ωr/θ,rθ)
p−α esssup

Ωr/θ,rθ

b

for almost all r ∈ (0, R).

Theorem 1 Let p− 1 < α ≤ p and∫ R

0

min{(rΛ(r))1/(p−1), Λ1/p(r)}
1 + q1/(α−p+1)(r)

dr = ∞.

Then every non-negative solution of (7.1) satisfies the estimate
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M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

min{(tΛ(t))1/(p−1), Λ1/p(t)}
1 + q1/(α−p+1)(t)

dt

)
(7.6)

for all sufficiently small r > 0, where the constant C > 0 depends only on n, p, α,
ε, θ, and the ellipticity constants C1 and C2.

Example 1 Assume that p− 1 < α ≤ p, {(x′, xn) ∈ Rn : |x′| < k1xn, 0 < xn <
R} ⊂ BR \Ω, and

b(x) ≤ k2|x|l (7.7)

for almost all x ∈ BR ∩Ω, where k1 and k2 are positive constants and l ∈ R.
If l ≥ α − p, then Theorem 1 implies that M(r;u) → 0 as r → +0 for any

non-negative solution of (7.1). In addition, the estimate

M(r;u) ≤ M(R;u)rk

is valid for all sufficiently small r > 0, where the constant k > 0 does not depend
on u. Really, we can take the function Λ such that

Λ(r) ∼ r−p as r → +0 (7.8)

or, in other words,
κ1r

−p ≤ Λ(r) ≤ κ2r
−p

with some constants κ1 > 0 and κ2 > 0 for all r > 0 from a neighborhood of zero.
In so doing, as the q, we can take a bounded function.

We note that, from paper Gariepy and Ziemer (1977), the required regularity
follows only for l > α− p. In the case of the critical exponent l = α− p, the results
of Gariepy and Ziemer (1977) are inapplicable.

Now, let the inequality

b(x) ≤ k2|x|α−p

(
log

1

|x|
)σ

be fulfilled instead of (7.7). In other words, we examine the case of the critical
exponent l = α − p. If σ ≤ α − p + 1, then in accordance with Theorem 1, where
Λ satisfies (7.8) and

q(r) ∼
(
log

1

r

)σ

as r → +0,

we have M(r;u) → 0 as r → +0 for any non-negative solution of (7.1). In addition,
it can be shown that

M(r;u) ≤ M(R;u)e−Cf(r) (7.9)

for all sufficiently small r > 0, where
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f(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log
1

r
, σ ≤ 0,(

log
1

r

)(α−p+1−σ)/(α−p+1)

, 0 < σ < α− p+ 1,

log log
1

r
, σ = α− p+ 1,

and C > 0 is a constant independent of u.

Theorem 2 Let p− 1 < α ≤ p,∫ R

0

Λ1/p(r)

1 + q1/(α−p+1)(r)
dr = ∞

and, moreover,

lim inf
r→+0

rp−n cap
(
Brθ−2/3,rθ−1/3 \Ω,Br/θ,r

)
> 0. (7.10)

Then every non-negative solution of (7.1) satisfies the estimate

M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

Λ1/p(t)

1 + q1/(α−p+1)(t)
dt

)
(7.11)

for all sufficiently small r > 0, where the constant C > 0 depends only on n, p, α,
ε, θ, C1, C2, and on the limit in the left-hand side of (7.10).

Remark 2 Condition (7.11) is obviously fulfilled if we can touch zero by a cone that
lies entirely outside the set Ω. This condition is also fulfilled if

lim
r→+0

diamε Ωr/θ,rθ

r
= 0.

Theorem 3 Let p− 1 < α ≤ p,∫ R

0

D(r)

1 + q1/(α−p+1)(r)
dr = ∞

and, moreover, (7.10) holds. Then every non-negative solution of (7.1) satisfies the
estimate

M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

D(t)

1 + q1/(α−p+1)(t)
dt

)

for all sufficiently small r > 0, where the constant C > 0 depends only on n, p, α,
ε, θ, C1, C2, and on the limit in the left-hand side of (7.10).
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Example 2 Assume that p − 1 < α ≤ p, BR ∩ Ω ⊂ {(x′, xn) ∈ Rn : |xn| <
k1|x′|s, |x′| < R}, and (7.7) is valid, where k1 > 0, k2 > 0, and s > 1 are some
constants.

In the case of l ≥ α− p+ 1− s, applying Theorem 3 with

D(r) ∼ r−s and q(r) ∼ rs(p−α)+l as r → +0,

we obtain that M(r;u) → 0 as r → +0 for any non-negative solution of (7.1). In
so doing, Theorem 3 implies estimate (7.9), where

f(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r1−s, s(α− p) ≤ l,

r(α−p+1−s−l)/(α−p+1), α− p+ 1− s < l < s(α− p),

log
1

r
, l = α− p+ 1− s.

We note that the results of paper Gariepy and Ziemer (1977) yields the required
regularity for l > (α− p)(n+ s− 1)/n. It does not present any particular problem
to verify that (α− p)(n+ s− 1)/n > α− p+1− s for all positive integers n. Thus,
Theorem 3 provides us with a regularity condition that is better than the analogous
condition given in Gariepy and Ziemer (1977).

Now, let the inequality

b(x) ≤ k2|x|α−p+1−s

(
log

1

|x|
)σ

be fulfilled instead of (7.7).
If σ ≤ α − p + 1, then M(r;u) → 0 as r → +0 for any non-negative solution

of (7.1). In addition, the function M(·;u) satisfies estimate (7.9), where

f(r) =

⎧⎪⎪⎨⎪⎪⎩
(
log

1

r

)(α−p+1−σ)/(α−p+1)

, σ < α− p+ 1,

log log
1

r
, σ = α− p+ 1.

To show this, it is sufficient to apply Theorem 3 with

D(r) ∼ r−s and q(r) ∼ rs(p−α)+α−p+1−s

(
log

1

r

)σ

as r → +0.

Theorem 4 Estimate (7.6) remains valid if, under the assumptions of Theorem 1,
the function Λ satisfies the inequality

Λ(r) ≤ inf
Ω

rθ−1/3,rθ1/3

μp
δ + r−n cap

(
Brθ−2/3,rθ−1/3 \Ω,Br/θ,r

)
(7.12)

instead of (7.4), where θ > 1 and 0 < δ < 1− θ−1/3 are some real numbers and
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μδ(x) = sup
r∈(0,δ|x|)

(r1−n cap(Bx
r \Ω,Bx

2r))
1/(p−1).

In this case, the constant C > 0 in (7.6) depends also on δ.

Corollary 1 Let the inequality

Λ(r) ≤ r−n cap
(
Brθ−2/3,rθ−1/3 \Ω,Br/θ,r

)
be fulfilled instead of (7.4) and, moreover,∫ R

0

(rΛ(r))1/(p−1)

1 + q1/(α−p+1)(r)
dr = ∞.

Then every non-negative solution of (7.1) satisfies the estimate

M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

(tΛ(t))1/(p−1)

1 + q1/(α−p+1)(t)
dt

)

for all sufficiently small r > 0, where the constant C > 0 depends only on n, p, α,
θ, and the ellipticity constants C1 and C2.

Theorem 5 Estimate (7.11) remains valid if, in the assumptions of Theorem 2, the
functionΛ satisfies inequality (7.12) instead of (7.4). In this case, the constantC > 0
in (7.11) depends also on δ.

Theorem 6 Let u be a non-negative solution of (7.1), where α = p− 1. Then there
exist constants k > 0 and C > 0 depending only on n, p, ε, θ, and the ellipticity
constants C1 and C2 such that the condition∫ R

0

e−kq(r) min{(rΛ(r))1/(p−1), Λ1/p(r)} dr = ∞ (7.13)

implies the estimate

M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

e−kq(t) min{(rΛ(r))1/(p−1), Λ1/p(r)} dt
)

(7.14)
for all sufficiently small r > 0.

Theorem 7 Let u be a non-negative solution of (7.1) with α = p − 1 and, more-
over, (7.10) holds. Then there exist constants k > 0 and C > 0 depending only on
n, p, α, ε, θ, C1, C2, and on the limit in the left-hand side of (7.10) such that the
condition ∫ R

0

e−kq(r)Λ1/p(r) dr = ∞ (7.15)

implies the estimate
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M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

e−kq(t)Λ1/p(t) dt

)
(7.16)

for all sufficiently small r > 0.

Theorem 8 Let u be a non-negative solution of (7.1) with α = p − 1 and, more-
over, (7.10) holds. Then there exist constants k > 0 and C > 0 depending only on
n, p, α, ε, θ, C1, C2, and on the limit in the left-hand side of (7.10) such that the
condition ∫ R

0

e−kq(r)D(r) dr = ∞

implies the estimate

M(r;u) ≤ M(R;u) exp

(
−C

∫ R

r

e−kq(t)D(t) dt

)

for all sufficiently small r > 0.

Example 3 Assume that α = p − 1, BR ∩ Ω ⊂ {(x′, xn) ∈ Rn : |xn| <
k1|x′|s, |x′| < R}, and (7.7) is valid, where k1 > 0, k2 > 0, and s > 1 are
some constants.

In the case of l ≥ −s, taking

D(r) ∼ r−s and q(r) ∼ 1 as r → +0

in Theorem 8, we obtain M(r;u) → 0 as r → +0 for any non-negative solution
of (7.1). In so doing, estimate (7.9) is valid, where

f(r) = r1−s.

Note that the results of paper Gariepy and Ziemer (1977) guarantee the required
regularity for l > −(n+ s− 1)/n. It is easy to see that −s < −(n+ s− 1)/n for
all integers n ≥ 2. Thus, Theorem 8 gives us a better regularity condition than the
results of paper Gariepy and Ziemer (1977).

Theorem 9 In the hypotheses of Theorem 6, let the function Λ satisfies inequal-
ity (7.12) instead of (7.4). Then there exist constants k > 0 and C > 0 depending
only on n, p, δ, ε, θ, and the ellipticity constants C1 and C2 such that the condi-
tion (7.13) implies estimate (7.14).

Theorem 10 In the hypotheses of Theorem 7, let the function Λ satisfies inequal-
ity (7.12) instead of (7.4). Then there exist constants k > 0 and C > 0 depending
only on n, p, δ, α, ε, θ, C1, C2, and on the limit in the left-hand side of (7.10) such
that the condition (7.15) implies estimate (7.16).
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Chapter 8
Integrable Dissipative Dynamical Systems with
Three and Four Degrees of Freedom

Maxim V. Shamolin

Abstract In this work, the integrability of some classes of dynamic systems on
tangent bundles of three-dimensional manifolds is demonstrated. The corresponding
force fields possess the so-called variable dissipation and generalize those considered
earlier.

Keywords: Dynamic systems · Tangent bundles

8.1 Introduction

In many problems of dynamics, there appear mechanical systems with three-
dimensional manifolds as position spaces. Tangent bundles of such manifolds natu-
rally become phase spaces of such systems. For example, study of a four-dimensional
generalized spherical pendulum in a nonconservative force field leads to a dynamic
system on the tangent bundle of a three-dimensional sphere, and the metric of special
form on it is induced by an additional symmetry group (Bogoyavlenskii, 1986; Bo-
goyavlenskii and Ivakh, 1985). In this case, dynamic systems describing the motion
of such a pendulum possess alternating dissipation and the complete list of first in-
tegrals consists of transcendental functions that can be expressed in terms of a finite
combination of elementary functions (Bogoyavlenskii and Ivakh, 1985; Dubrovin
and Novikov, 1984).

The class of problems about the motion of a point on a three-dimensional surface
is also known; the metric on it is induced by the Euclidean metric of the ambient
space. In some cases of systems with dissipation, it is also possible to find a complete
list of first integrals; the list consists of transcendental functions. The results obtained

M. V. Shamolin
Institute of Mechanics, Lomonosov Moscow State University, 1 Michurinskii Ave., 119192,
Moscow, Russian Federation
e-mail: shamolin@imec.msu.ru

77© Springer Nature Switzerland AG 2020
B. E. Abali and I. Giorgio (eds.), Developments and Novel Approaches
in Nonlinear Solid Body Mechanics, Advanced Structured Materials 130,
https://doi.org/10.1007/978-3-030-50460-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50460-1_8&domain=pdf


78 Shamolin

are especially important in the aspect of the presence of just a nonconservative force
field in the system (see, e.g., Giorgio and Scerrato, 2017; Baroudi et al, 2019;
dell’Isola et al, 2019a,b).

8.2 Equations of Geodesic Lines

It is well known that, in the case of a three-dimensional Riemannian manifold M3

with coordinates (α, β), β = (β1, β2), and affine connection Γ i
jk(x) the equations of

geodesic lines on the tangent bundle T∗M3{α̇, β̇1, β̇2;α, β1, β2}, α = x1, β1 = x2,
β2 = x3, x = (x1, x2, x3), have the following form (the derivatives are taken with
respect to the natural parameter):

ẍi +
3∑

j,k=1

Γ i
jk(x)ẋ

j ẋk = 0, i = 1, 2, 3. (8.1)

Let us study the structure of Eqs. (8.1) under a change of coordinates on the
tangent bundle T∗M3. Consider a change of coordinates of the tangent space:

ẋi =

3∑
j=1

Rij(x)zj , (8.2)

which can be inverted:

zj =

3∑
i=1

Tji(x)ẋ
i,

herewith Rij , Tji, i, j = 1, 2, 3, are functions of x1, x2, x3, and

RT = E,

R = Rij , T = Tji.

We also call Eqs. (8.2) new kinematic relations, i.e., relations on the tangent bundle
T∗M3.

The following equalities are valid:

żj =

3∑
i=1

Ṫjiẋ
i +

3∑
i=1

Tjiẍ
i, Ṫji =

3∑
k=1

Tji,kẋ
k, (8.3)

Tji,k =
∂Tji

∂xk
, j, i, k = 1, 2, 3.

If we substitute Eqs. (8.1) to Eqs. (8.3), we have:
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żi =

3∑
j,k=1

Tij,kẋ
j ẋk −

3∑
j,p,q=1

TijΓ
j
pqẋ

pẋq, (8.4)

in the last system, one should substitute formulas (8.2) instead of ẋi, i = 1, 2, 3.
Furthermore, Eq. (8.4) we can rewrite:

żi +

3∑
j,k=1

Qijkẋ
j ẋk|(8.2) = 0, (8.5)

Qijk(x) =

3∑
s=1

Tis(x)Γ
s
jk(x)− Tij,k(x). (8.6)

Proposition 1 System (8.1) is equivalent to compound system (8.2), (8.4) in a domain
where detR(x) �= 0.

Therefore, the result of the passage from equations of geodesic lines (8.1) to an
equivalent system of equations (8.2), (8.4) depends both on the change of variables
(8.2) (i.e., introduced kinematic relations) and on the affine connection Γ i

jk(x).

8.3 A Fairly General Case

Consider next a sufficiently general case of specifying kinematic relations in the
following form: ⎧⎨⎩

α̇ = −z3,

β̇1 = z2f1(α),

β̇2 = z1f2(α)g(β1),

(8.7)

where f1(α), f2(α), g(β1) are smooth functions on their domain of definition.
Such coordinates z1, z2, z3 in the tangent space are introduced when the following
equations of geodesic lines are considered (Kozlov, 1983; Shamolin, 2015c) (in
particular, on surfaces of revolution):⎧⎨⎩

α̈+ Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 = 0,

β̈1 + 2Γ 1
α1(α, β)α̇β̇1 + Γ 1

22(α, β)β̇
2
2 = 0,

β̈2 + 2Γ 2
α2(α, β)α̇β̇2 + 2Γ 2

12(α, β)β̇1β̇2 = 0,

(8.8)

i.e., other connection coefficients are zero. In case (8.7), Eqs. (8.4) take the form⎧⎪⎪⎨⎪⎪⎩
ż1 =

[
2Γ 2

α2(α, β) +
d ln |f2(α)|

dα

]
z1z3 −

[
2Γ 2

12(α, β) +
d ln |g(β1)|

dβ1

]
f1(α)z1z2,

ż2 =
[
2Γ 1

α1(α, β) +
d ln |f1(α)|

dα

]
z2z3 − Γ 1

22(α, β)
f2
2 (α)

f1(α)
g2(β1)z

2
1 ,

ż3 = Γα
11f

2
1 (α)z

2
2 + Γα

22f
2
2 (α)g

2(β1)z
2
1 ,

(8.9)
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and Eqs. (8.8) are almost everywhere equivalent to compound system (8.7), (8.9) on
the manifold T∗M3{z3, z2, z1;α, β1, β2}.

To integrate system (8.7), (8.9) completely, it is necessary to know, generally
speaking, five independent first integrals.

Proposition 2 If the system of equalities⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Γ 1

α1(α, β) +
d ln |f1(α)|

dα + Γα
11(α, β)f

2
1 (α) ≡ 0,

2Γ 2
α2(α, β)+

+d ln |f2(α)|
dα + Γα

22(α, β)f
2
2 (α)g

2(β1) ≡ 0,[
2Γ 2

12(α, β) +
d ln |g(β1)|

dβ1

]
f2
1 (α) + Γ 1

22(α, β)f
2
2 (α)g

2(β1) ≡ 0,

(8.10)

is valid everywhere in its domain of definition, system (8.7), (8.9) has an analytic
first integral of the form

Φ1(z3, z2, z1) = z21 + z22 + z23 = C2
1 = const. (8.11)

We suppose that the condition

f1(α) = f2(α) = f(α), (8.12)

is satisfied in Eqs. (8.7); the function g(β1)must satisfy the transformed third equality
from (8.10):

2Γ 2
12(α, β) +

d ln |g(β1)|
dβ1

+ Γ 1
22(α, β)g

2(β1) ≡ 0. (8.13)

Proposition 3 If properties (8.12) and (8.13) are valid and the equalities

Γ 1
α1(α, β) = Γ 2

α2(α, β) = Γ1(α), (8.14)

are satisfied, system (8.7), (8.9) has a smooth first integral of the following form:

Φ2(z2, z1;α) =
√

z21 + z22 Φ0(α) = C2 = const, (8.15)

Φ0(α) = f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
.

Proposition 4 If property (8.12) is valid and the equality

Γ 2
12(α, β) = Γ2(β1), (8.16)

and the second equality from (8.14) (Γ 2
α2(α, β) = Γ1(α)) are satisfied, system (8.7),

(8.9) has a smooth first integral of the following form:

Φ3(z1;α, β1) = z1Φ0(α)Φ(β1) = C3 = const, (8.17)
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Φ(β1) = g(β1) exp

{
2

∫ β1

β10

Γ2(b)db

}
.

Proposition 5 If conditions (8.12), (8.13), (8.14), (8.16) are satisfied, system (8.7),
(8.9) has a first integral of the following form:

Φ4(z2, z1;β) = β2 ±
∫ β1

β10

C3g(b)√
C2

2Φ
2(b)− C2

3

db = C4 = const, (8.18)

where, after taking integral (8.18), one should substitute the left-hand sides of
equalities (8.15), (8.17) instead of the constants C2, C3, respectively.

Under the conditions listed above, system (8.7), (8.9) has a complete set (four) of
independent first integrals of the form (8.11), (8.15), (8.17), (8.18).

8.4 Potential Field of Force

Let us now somewhat modify system (8.7), (8.9) under conditions (8.12), (8.13),
(8.14), (8.16), which yields a conservative system. Namely, the presence of the
force field is characterized by the coefficient F (α) in the second equation of
system (8.19) at b = 0. The system under consideration on the tangent bundle
T∗M3{z3, z2, z1;α, β1, β2} takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −z3 + bδ(α),
ż3 = F (α) + Γα

11(α, β)f
2(α)z22 + Γα

22(α, β)f
2(α)g2(β1)z

2
1 ,

ż2 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z2z3 − Γ 1

22(β1)f(α)g
2(β1)z

2
1 ,

ż1 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
z1z3 −

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
f(α)z1z2,

β̇1 = z2f(α),

β̇2 = z1f(α)g(β1),

(8.19)

and at b = 0 it is almost everywhere equivalent to the following system:⎧⎨⎩
α̈+ F (α) + Γα

11(α, β)β̇
2
1 + Γα

22(α, β)β̇
2
2 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ 1
22(β1)β̇

2
2 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 = 0.

Proposition 6 If the conditions of Proposition 2 are satisfied, system (8.19) at b = 0
has a smooth first integral of the following form:

Φ1(z3, z2, z1;α) = z21 + z22 + z23 + F1(α) = (8.20)

= C1 = const, F1(α) = 2

∫ α

α0

F (a)da.
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Proposition 7 If the conditions of Propositions 3, 4 are satisfied, system (8.19) at
b = 0 has two smooth first integrals of form (8.15), (8.17).

Proposition 8 If the conditions of Proposition 5 are satisfied, system (8.19) at b = 0
has a first integral of form (8.18).

Under the conditions listed above, system (8.19) at b = 0 has a complete set of
(four) independent first integrals of form (8.20), (8.15), (8.17), (8.18).

8.5 Force Field with Dissipation

Let us now consider system (8.19) at b �= 0. In doing this, we obtain a system
with dissipation. Namely, the presence of dissipation (generally speaking, sign-
alternating) is characterized by the coefficient bδ(α) in the first equation of system
(8.19), which is almost everywhere equivalent to the following system:⎧⎪⎪⎨⎪⎪⎩

α̈− bα̇δ′(α) + F (α) + Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 = 0,

β̈1 − bβ̇1δ(α)
[
2Γ1(α) +

d ln |f(α)|
dα

]
+ 2Γ1(α)α̇β̇1 + Γ 1

22(β1)β̇
2
2 = 0,

β̈2 − bβ̇2δ(α)
[
2Γ1(α) +

d ln |f(α)|
dα

]
+ 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 = 0.

Now we pass to integration of the sought six-order system (8.19) under condition
(8.13), as well as under the equalities

Γα
11(α, β) = Γα

22(α, β)g
2(β1) = Γ3(α). (8.21)

We also introduce (by analogy with (8.13)) a restriction on the function f(α). It
must satisfy the transformed first equality from (8.10):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ3(α)f

2(α) ≡ 0. (8.22)

To integrate it completely, one should know, generally speaking, five independent
first integrals. However, after the following change of variables,

z1, z2 → z, z∗, z =
√

z21 + z22 , z∗ =
z2
z1

,

system (8.19) decomposes as follows:⎧⎪⎨⎪⎩
α̇ = −z3 + bδ(α),

ż3 = F (α) + Γ3(α)f
2(α)z2,

ż =
[
2Γ1(α) +

d ln |f(α)|
dα

]
zz3,

(8.23)
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√
1 + z2∗f(α)

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± zz∗√
1+z2∗

f(α),
(8.24)

β̇2 = ± z√
1 + z2∗

f(α)g(β1). (8.25)

It is seen that to integrate system (8.23)–(8.25) completely, it is sufficient to
determine two independent first integrals of system (8.23), one integral of system
(8.24), and an additional first integral attaching Eq. (8.25) (i.e., four integrals in
total).

Theorem 11 Let the equalities

Γ3(α)f
2(α) = κ

d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(8.26)

be valid for some κ, λ ∈ R. Then system (8.19) under equalities (8.13), (8.21),
(8.22) has a complete set of (four) independent, generally speaking, transcendental
first integrals.

In the general case, the first integrals are written awkwardly. In particular, if
κ = −1, the explicit form of one of first integrals for system (8.23) is as follows:

Θ1(z3, z;α) = G1

(
z3

δ(α)
,

z

δ(α)

)
=

z23 + z2 − bz3δ(α) + λδ2(α)

zδ(α)
= C1 = const.

(8.27)
Here, the additional first integral for system (8.23) has the following structural

form:
Θ2(z3, z;α) = G2

(
δ(α),

z3
δ(α)

,
z

δ(α)

)
= C2 = const. (8.28)

Here, after taking the integral, one should substitute the left-hand side of equality
(8.27) for C1. The right-hand side of this equality is expressed through a finite
combination of elementary functions; the left-hand part, depending on the function
δ(α). Therefore, expressing first integrals (8.27), (8.28) through a finite combination
of elementary functions depends not only on calculation of quadratures but also on
the explicit form of the function δ(α).

The first integral for system (8.24) has the form

Θ3(z∗;β1) =

√
1 + z2∗
Φ(β1)

= C3 = const, (8.29)

as for the function Φ(β1), see (8.17). The additional first integral attaching Eq. (8.25)
is found by analogy with (8.18):

Θ4(z∗;β) = β2 ±
∫ β1

β10

g(b)√
C2

3Φ
2(b)− 1

db = C4 = const,
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here, after taking this integral, one should substitute the left-hand side of equality
(8.29) for C3.

8.6 Structure of Transcendental First Integrals

If α is a periodic coordinate with a period of 2π, system (8.23) becomes a dynamic
system with variable dissipation with a zero mean (Shamolin, 2015a,b, 2016a). At
b = 0, it turns into a conservative system having two smooth first integrals of form
(8.20), (8.15). By virtue of (8.26),

Φ1(z3, z2, z1;α) = z21 + z22 + z23 + 2

∫ α

α0

F (a)da ∼= z2 + z23 + λδ2(α), (8.30)

where “∼=” means equality up to an additive constant. At the same time, by virtue of
(8.22) and (8.26),

Φ2(z2, z1;α) =
√

z21 + z22 f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
∼= zδ(α) = C2 = const,

(8.31)
where “∼=” now means equality up to a multiplicative additive constant.

It is evident that the ratio of the two first integrals (8.30) and (8.31) (or, (8.20)
and (8.15)) is also a first integral of system (8.23) for b = 0. However, at b �= 0, each
of the functions

z2 + z23 − bz3δ(α) + λδ2(α) (8.32)

and (8.31) taken individually is not a first integral of system (8.23). However, the
ratio of functions (8.32) and (8.31) is a first integral of system (8.23) (at κ = −1)
for any b.

Generally, for systems with dissipation, transcendence of functions (in the aspect
of the presence of essentially singular points) as first integrals is inherited from
the existence of attracting and repelling limit sets in the system (Shamolin, 2016b,
2017a).

8.7 Conclusions

By analogy with low-dimensional cases, we pay special attention to two important
cases for the function f(α) defining the metric on a sphere:

f(α) =
cosα

sinα
, (8.33)

f(α) =
1

cosα sinα
. (8.34)



8 Integrable Dissipative Dynamical Systems with Three and Four Degrees of Freedom 85

Case (8.33) forms a class of systems corresponding to the motion of a dynamically
symmetric four-dimensional solid body at zero levels of cyclic integrals, generally
speaking, in a nonconservative field of forces (Shamolin, 2017b,c). Case (8.34)
forms a class of systems corresponding to the motion of a material point on a three-
dimensional sphere also, generally speaking, in a nonconservative field of forces. In
particular, at

δ(α) ≡ F (α) ≡ 0,

the system under consideration describes a geodesic flow on a three-dimensional
sphere. In case (8.33), the system describes the spatial motion of a four-dimensional
solid body in the force field under the action of a tracking force (Shamolin, 2017c).
In particular, if

δ(α) =
F (α)

cosα
,

and
δ(α) = sinα,

the system also describes a generalized four-dimensional spherical pendulum in a
nonconservative force field and has a complete set of transcendental first integrals
that can be expressed in terms of a finite combination of elementary functions.

If the function δ(α) is not periodic, the dissipative system under consideration is
a system with variable dissipation with a zero mean (i.e., it is properly dissipative).
Nevertheless, an explicit form of transcendental first integrals that can be expressed
in terms of a finite combination of elementary functions can be obtained even in
this case. This is a new nontrivial case of integrability of dissipative systems in an
explicit form.

8.8 Important Example: Case of Four-Dimensional Manifold

We consider the rather general case of introducing the kinematic relations in the
form

α̇ = −z4, β̇1 = z3f1(α), β̇2 = z2f2(α)g1(β1), β̇3 = z1f3(α)g2(β1)h(β2),
(8.35)

where fk(α), k = 1, 2, 3, gl(β1), l = 1, 2, h(β2), are smooth functions. Such
coordinates z1, z2, z3, z4 are introduced in the tangent space if the following classes
of geodesic equations are considered (in particular, on spheres or more general
surfaces of revolution):⎧⎪⎪⎨⎪⎪⎩

α̈+ Γα
11(α, β)β̇

2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 + 2Γ 1
α1(α, β)α̇β̇1 + Γ 1

22(α, β)β̇
2
2 + Γ 1

33(α, β)β̇
2
3 = 0,

β̈2 + 2Γ 2
α2(α, β)α̇β̇2 + 2Γ 2

12(α, β)β̇1β̇2 + Γ 2
33(α, β)β̇

2
3 = 0,

β̈3 + 2Γ 3
α3(α, β)α̇β̇3 + 2Γ 3

13(α, β)β̇1β̇3 + 2Γ 3
23(α, β)β̇2β̇3 = 0,

(8.36)
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i.e., the remaining connection coefficients vanish. In the case (8.35), we can write
(8.4) as

ż1 =
[
2Γ 3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ 3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ 3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

ż2 =
[
2Γ 2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ 2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

−Γ 2
33(α, β)

f2
3 (α)

f2(α)
g2
2(β1)

g1(β1)
h2(β2)z

2
1 ,

ż3 =
[
2Γ 1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ 1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2−

−Γ 1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż4 = Γα
11f

2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 ,

(8.37)
and the system (8.36) is almost everywhere equivalent to the composite system
(8.35), (8.37) on the tangent bundle T∗M4{z4, z3, z2, z1;α, β1, β2, β3}.

Generally speaking, for the complete integrability of the system (8.35), (8.37)
we need to know seven independent first integrals. However, a less number of first
integrals is required in the case under consideration, which will be shown in the
study of systems with dissipation below.

Proposition 9 If the following identities hold everywhere on their domain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Γ 1
α1(α, β) +

d ln |f1(α)|
dα + Γα

11(α, β)f
2
1 (α) ≡ 0,

2Γ 2
α2(α, β) +

d ln |f2(α)|
dα + Γα

22(α, β)f
2
2 (α)g

2
1(β1) ≡ 0,[

2Γ 2
12(α, β) +

d ln |g1(β1)|
dβ1

]
f2
1 (α) + Γ 1

22(α, β)f
2
2 (α)g

2
1(β1) ≡ 0,

2Γ 3
α3(α, β) +

d ln |f3(α)|
dα + Γα

33(α, β)f
2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,[
2Γ 3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f2
1 (α) + Γ 1

33(α, β)f
2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,[
2Γ 3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2
2 (α)g

2
1(β1) + Γ 2

33(α, β)f
2
3 (α)g

2
2(β1)h

2(β2) ≡ 0,

(8.38)
then the system (8.35), (8.37) has an analytic first integral of the form

Φ1(z4, . . . , z1) = z21 + . . .+ z24 = C2
1 = const. (8.39)

We apply an approach allowing us to find successfully the complete list of first
integrals of systems with dissipation by using the solutions to the system (8.38). We
assume that in (8.35) the following conditions are satisfied:

f1(α) = f2(α) = f3(α) = f(α), (8.40)

moreover, gl(β1), l = 1, 2, h(β2) satisfy the transformed equations from (8.38):⎧⎪⎨⎪⎩
2Γ 2

12(α, β) +
d ln |g1(β1)|

dβ1
+ Γ 1

22(α, β)g
2
1(β1) ≡ 0,

2Γ 3
13(α, β) +

d ln |g2(β1)|
dβ1

+ Γ 1
33(α, β)g

2
2(β1)h

2(β2) ≡ 0,

2Γ 3
23(α, β) +

d ln |h(β2)|
dβ2

+ Γ 2
33(α, β)h

2(β2) ≡ 0.

(8.41)
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Proposition 10 If (8.40) and (8.41), hold and

Γ 1
α1(α, β) = Γ 2

α2(α, β) = Γ 3
α3(α, β) = Γ1(α), (8.42)

then the system (8.35), (8.37) has a smooth first integral of the form

Φ2(z3, z2, z1;α) =
√

z21 + z22 + z23 Φ0(α) = C2 = const, (8.43)

Φ0(α) = f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
.

Proposition 11 Under the assumptions of Proposition 10, if

g1(β1) = g2(β1) = g(β1), (8.44)

Γ 2
12(α, β) = Γ 3

13(α, β) = Γ2(β1), (8.45)

then the system (8.35), (8.37) has a smooth first integral of the form

Φ3(z2, z1;α, β1) =
√

z21 + z22Φ0(α)Ψ1(β1) = C3 = const, (8.46)

where

Ψ1(β1) = g(β1) exp

{
2

∫ β1

β10

Γ2(b)db

}
.

The following two assertions are proved in the same way as Propositions 10 and 11.

Proposition 12 Under the assumptions of Propositions 10 and 11, if

Γ 3
23(α, β) = Γ3(β2), (8.47)

then the system (8.35), (8.37) has a smooth first integral of the form

Φ4(z1;α, β1, β2) = z1Φ0(α)Ψ1(β1)Ψ2(β2) = C4 = const, (8.48)

where

Ψ2(β2) = h(β2) exp

{
2

∫ β2

β20

Γ3(b)db

}
.

Proposition 13 Under the assumptions of Propositions 10, 11, and 12, the system
(8.35), (8.37) has a first integral of the form

Φ5(z2, z1;α, β) = β3 ±
∫ β2

β20

C4h(b)√
C2

3Φ
2
2(b)− C2

4

db = C5 = const. (8.49)

The first integrals (8.39), (8.43), (8.46), (8.48), (8.49) form the complete list of
independent first integrals of the system (8.35), (8.37) under the above conditions
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(the fact that only five (instead of seven) first integrals are included into the complete
list will be justified below).

8.8.1 Equations of Motion in a Potential Force Field and First
Integrals

Modifying the system (8.35), (8.37) under the conditions (8.40)–(8.42), (8.44),
(8.45), (8.47), we obtain a conservative system. Namely, the presence of a force
field is characterized by a sufficiently smooth coefficient F (α) in the second equa-
tion of the system (8.50). The system under consideration on the tangent bundle
T∗M4{z4, z3, z2, z1;α, β1, β2, β3} takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −z4,
ż4 = F (α) + Γα

11f
2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 ,

ż3 =
[
2Γ 1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ 1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2−

−Γ 1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =
[
2Γ 2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ 2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

−Γ 2
33(α, β)

f2
3 (α)

f2(α)
g2
2(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =
[
2Γ 3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ 3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ 3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),
(8.50)

which is almost everywhere equivalent to the system⎧⎪⎪⎨⎪⎪⎩
α̈+ F (α) + Γα

11(α, β)β̇
2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ 1
22(α, β)β̇

2
2 + Γ 1

33(α, β)β̇
2
3 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ 2
33(α, β)β̇

2
3 = 0,

β̈3 + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0.

Proposition 14 Under the assumptions of Proposition 9, the system (8.50) has a
smooth first integral of the form

Φ1(z4, . . . , z1;α) = z21 + . . .+z24 +F1(α) = C1 = const, F1(α) = 2

∫ α

α0

F (a)da.

(8.51)

The following two assertions are proved in the same way as Propositions 10–13.

Proposition 15 Under the assumptions of Propositions 10, 11, 12, the system (8.50)
has three smooth first integrals of the form (8.43), (8.46), (8.48).
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Proposition 16 Under the assumptions of Proposition 13, the system (8.50) has a
first integral of the form (8.49).

The first integrals (8.51), (8.43), (8.46), (8.48), (8.49) form the complete list of
independent first integrals of the system (8.50) under the above conditions (we will
show below that the complete list consists of five (not seven) first integrals).

8.8.2 Equations of Motion in a Force Field with Dissipation and
First Integrals

We consider a more complicated system of the form (8.50) with dissipation. Namely,
the presence of dissipation (generally speaking, alternating) is characterized by a
sufficiently smooth coefficient bδ(α) in the first equation of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = −z4 + bδ(α),
ż4 = F (α) + Γα

11f
2
1 (α)z

2
3 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + Γα

33f
2
3 (α)g

2
2(β1)h

2(β2)z
2
1 ,

ż3 =
[
2Γ 1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ 1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
2−

−Γ 1
33(α, β)

f2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =
[
2Γ 2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ 2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

−Γ 2
33(α, β)

f2
3 (α)

f2(α)
g2
2(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =
[
2Γ 3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ 3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ 3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),
(8.52)

which is almost everywhere equivalent to the system⎧⎪⎪⎨⎪⎪⎩
α̈− bα̇δ′(α) + F (α) + Γα

11(α, β)β̇
2
1 + Γα

22(α, β)β̇
2
2 + Γα

33(α, β)β̇
2
3 = 0,

β̈1 − bβ̇1δ(α)W (α) + 2Γ1(α)α̇β̇1 + Γ 1
22(α, β)β̇

2
2 + Γ 1

33(α, β)β̇
2
3 = 0,

β̈2 − bβ̇2δ(α)W (α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ 2
33(α, β)β̇

2
3 = 0,

β̈3 − bβ̇3δ(α)W (α) + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0,

W (α) =

[
2Γ1(α) +

d ln |f(α)|
dα

]
.

We proceed by integrating the eighth order system (8.52) under the conditions
(8.40), (8.41), (8.44), provided that the following identities hold:

Γα
11(α, β) = Γα

22(α, β)g
2(β1) = Γα

33(α, β)g
2(β1)h

2(β2) = Γ4(α). (8.53)
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We also impose the condition on the function f(α): it should satisfy the trans-
formed first identity in (8.38):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ4(α)f

2(α) ≡ 0. (8.54)

In general, for the complete integrability of the system (8.52) it is necessary to
know seven independent first integrals. However, after the change of variables

w4 = z4, w3 =
√

z21 + z22 + z23 , w2 =
z2
z1

, w1 =
z3√

z21 + z22
,

the system (8.52) splits:⎧⎪⎨⎪⎩
α̇ = −w4 + bδ(α),

ẇ4 = F (α) + Γ4(α)f
2(α)w2

3,

ẇ3 =
[
2Γ1(α) +

d ln |f(α)|
dα

]
w3w4,

(8.55)

⎧⎨⎩ ẇ2 = ±w3

√
1 + w2

2f(α)g(β1)
[
2Γ3(β2) +

d ln |h(β2)|
dβ2

]
,

β̇2 = ± w2w3√
1+w2

2

f(α)g(β1),
(8.56)

⎧⎨⎩ ẇ1 = ±w3

√
1 + w2

1f(α)
[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± w1w3√
1+w2

1

f(α),
(8.57)

β̇3 = ± w3√
1 + w2

2

f(α)g(β1)h(β2). (8.58)

It is clear that for the complete integrability of the system (8.55)–(8.58) it suffices
to have two independent first integrals of the system (8.55), one first integral of
the system (8.56), one first integral of the system (8.57) (exchanging independent
variables), and the additional first integral, “binding” Equation (8.58) (i.e., five first
integrals in total).

Theorem 8.1. Let for some κ, λ ∈ R

Γ4(α)f
2(α) = κ

d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
. (8.59)

Then the system (8.52) under the conditions (8.40), (8.41), (8.44), (8.53), (8.54)
possesses the complete list of (five) independent, generally speaking, transcendental
first integrals.
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Chapter 9
A Variational Formulation of Classical
Nonlinear Beam Theories

Simon R. Eugster & Jonas Harsch

Abstract This article intends to present a concise theory of spatial nonlinear clas-
sical beams followed by a special treatment of the planar case. Hereby the consid-
ered classical beams are understood as generalized one-dimensional continua that
model the mechanical behavior of three-dimensional beam-like objects. While a one-
dimensional continuum corresponds to a deformable curve in space, parametrized
by a single material coordinate and time, a generalized continuum is augmented by
further kinematical quantities depending on the very same parameters. We introduce
the following three nonlinear spatial beams: The Timoshenko beam, the Euler–
Bernoulli beam and the inextensible Euler–Bernoulli beam. In the spatial theory, the
Euler–Bernoulli beam and its inextensible companion are presented as constrained
theories. In the planar case, both constrained theories are additionally described
using an alternative kinematics that intrinsically satisfies the defining constraints of
these theories.

9.1 Introduction

One particular reason for confusion in beam theory is the lack of a consistent
naming in literature. Hence, whenever talking and writing about beam theory, it is
crucial to clarify this ambiguity by defining the kinematics of the discussed theory.
In this article, a Timoshenko beam is considered as a generalized one-dimensional
continuum described by a spatial curve, its centerline, augmented in each point of
the curve by an orthonormal director triad. For beam-like three-dimensional elastic
bodies the director triads model the cross sections, which remain plane and rigid for
all configurations. Alternative names given in literature are “special Cosserat rod”,
see Antman (2005), “Simo–Reissner beam” referring to Simo (1985) and Reissner
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(1981), “geometrically exact beam”, see (Betsch and Steinmann, 2003; Eugster et al,
2014), or “poutres naturelle” (“natural beam”) in French literature as for instance
in Ballard and Millard (2009). If the director triad is constrained such that one of
the directors always algins with the centerline’s tangent, we call the beam an Euler–
Bernoulli beam (Eugster, 2015; Eugster and Steigmann, 2020). Also here alternative
names are around, i.e., “Kirchhoff–Clebsch rod” (Steigmann and Faulkner, 1993),
“Kirchhoff–Love rod” (Greco and Cuomo, 2013), “Kirchhoff rod” (Meier et al,
2014), or “Navier–Bernoulli beam” (Ballard and Millard, 2009). We call the beam
an inextensible Euler–Bernoulli beam if in addition the norm of the centerline’s
tangent remains unchanged throughout the motion.

Since the beginning of continuum mechanics, beam theory has been an om-
nipresent research field that has newly received its attention not only in soft robotics
(Deutschmann et al, 2018; Eugster and Deutschmann, 2018; Till et al, 2019) but
also in the field of mechanical metamaterials (Barchiesi et al, 2019b). Many meta-
materials are composed of networks of beams such as the class of pantographic
materials (dell’Isola et al, 2019a,b, 2020b), which were analyzed in various forms,
see among others (Alibert et al, 2003; Andreaus et al, 2018; Barchiesi et al, 2019a,
2020; Boutin et al, 2017; Capobianco et al, 2018; dell’Isola et al, 2016a,c; dell’Isola
and Steigmann, 2015; Giorgio et al, 2017; Maurin et al, 2019; Rahali et al, 2015;
Shirani et al, 2019; Steigmann and dell’Isola, 2015). The presented beam theories
are formulated in a variational setting, where the principle of virtual work plays the
role of the fundamental postulate in mechanics, see (Eugster and Glocker, 2017;
dell’Isola et al, 2020a; dell’Isola and Placidi, 2011; dell’Isola and Seppecher, 1995;
Eugster and dell’Isola, 2017, 2018). The principle states that the sum of all virtual
work contributions of the modeled mechanical effects must vanish for all virtual
displacements. For static problems, the total virtual work is composed of internal
and external virtual work contributions, which model, respectively, mechanical in-
teractions of material points of the beam among themselves as well as mechanical
interactions of material points of the beam and the environment. For dynamic prob-
lems, virtual work contributions incorporating inertial effects of the beam have to be
added. Moreover, the principle of virtual work must then hold for all time instants.
The main task in the development of a beam theory is the definition of each virtual
work contribution. This task is by no means unique and can be considered as the
modeling procedure in mechanics. Since the (inextensible) Euler–Bernoulli beam
can be considered as a constrained Timoshenko beam, the virtual work contributions
thereof are formulated first in Sections 9.2–9.5. We pursue the following strategy
for the internal and external virtual work contributions. The internal virtual work
contributions are related to the variation of a strain energy function that depends
on the kinematical quantities describing the beam (Section 9.2). The set of strain
energy functions is reduced in Section 9.3 by the requirement of an invariance prin-
ciple. More precisely, we postulate the invariance under superimposed rigid body
motions of the strain energy function. Similar invariance conditions are obtained
when advocating for a change of observer as discussed in Steigmann (2017). This
leads us not only to the most general strain energy function that guarantees the
invariance principle, but also to the internal virtual work of the Timoshenko beam.



9 A Variational Formulation of Classical Nonlinear Beam Theories 97

The suitable external virtual work contributions are subsequently obtained by an
integration by parts procedure. Accordingly, the form of the internal virtual work
defines the external force effects that the beam can resist. These are for the classical
theories, distributed forces and couples as well as point forces and couples at both
ends of the beam. The virtual work contributions of the inertial effects are derived
in the sense of an induced theory in which the beam is considered as a constrained
three-dimensional body, see (Antman, 2005; Eugster, 2015). The total virtual work
of the (inextensible) Euler–Bernoulli beam is obtained in Section 9.6 by augmenting
the strain energy function in the sense of a Lagrange multiplier method (Bersani et al,
2019; dell’Isola et al, 2016b). In Section 9.7, the motion of the beams are restricted
to be planar. For the Timoshenko beam, the parametrization of the required rota-
tion fields becomes trivial. For both the Euler–Bernoulli beam and the inextensible
Euler–Bernoulli beam, a minimal set of kinematical descriptors can be found. In
these minimal formulations, the virtual work contributions of the constraints vanish.

9.2 Notation and Kinematics

We regard tensors as linear transformations from a three-dimensional vector spaceE3

to itself and use standard notation such asAT,A−1, det(A). These are, respectively,
the transpose, the inverse, and the determinant of a tensor A. The set of tensors is
denoted by L(E3;E3). The tensor 1 stands for the identity tensor, which leaves every
vector a ∈ E3 unchanged, i.e. a = 1a. We use Skw to denote the linear subspace of
skew tensors and Orth+ = {A ∈ L(E3;E3)|ATA = AAT = 1∧ det(A) = +1}
to identify the group of rotation tensors. The tensor product of three-vectors is
indicated by interposing the symbol ⊗. Latin and Greek indices take values in
{1, 2, 3} and {2, 3}, respectively, and, when repeated, are summed over their ranges.
Furthermore, we abbreviate the arguments in functions depending on the three
components (a1, a2, a3) or merely on the last two components (a2, a3) of a vector
a ∈ E3 by (ai) or (aα), respectively. Derivatives of functions f = f(s, t) with
respect to s and t are denoted by a prime f ′ = ∂f/∂s and a dot ḟ = ∂f/∂t,
respectively. The variation of a function f = f(s, t), denoted by a delta, is the
derivative with respect to the parameter ε of a one-parameter family f̂ = f̂(s, t; ε)

evaluated at ε = 0, i.e. δf(s, t) = ∂f̂/∂ε(s, t; 0). The one-parameter family satisfies
f(s, t) = f̂(s, t; 0).

Next, we introduce the required kinematical quantities for the spatial nonlinear
Timoshenko beam theory. The motion of the centerline is the mapping r : I ×R →
E3, (s, t) �→ r(s, t), where, for each instant of time t ∈ R, the closed interval
I = [l1, l2] ⊂ R parametrizes the set of beam points. We make the convenient
choice to use as material coordinate the arc length parameter s of the reference
centerline r0 : I → E3. To capture cross-sectional orientations of beam-like bodies,
the kinematics of the centerline is augmented by the motion of positively oriented
director triads di : I × R → E3. The directors dα(s, t) span the plane and rigid
cross section of the beam for the material coordinate s at time t. The positively
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oriented director triads in the reference configuration are given by the mappings
Di : I → E3. While D1 is identified with the unit tangent to the reference centerline
r0, i.e., D1 = r′0, the vectors D2(s) and D3(s) are identified with the geometric
principal axes of the cross sections.

Fig. 9.1 Kinematics of a spatial Timoshenko beam.

With the reference and current rotation fields R0 : I → Orth+ and R : I ×R →
Orth+, respectively, the reference and current director triads are related to a fixed
right-handed inertial frame {e1, e2, e3} by

Di(s) = R0(s)ei , di(s, t) = R(s, t)ei . (9.1)

Using the identity tensor in the form 1 = ei ⊗ ei together with the relations (9.1),
the current and reference rotation fields can be expressed as

R0 = R01 = R0(ei ⊗ ei) = (R0ei)⊗ ei = Di ⊗ ei , (9.2)
R = R1 = R(ei ⊗ ei) = (Rei)⊗ ei = di ⊗ ei . (9.3)

With the inverse relations of (9.1) at hand and exploiting the equivalence of the
inverse and the transpose for rotations, we can relate all bases by

ei = RT
0 (s)Di(s) = RT(s, t)di(s, t) . (9.4)

To capture the deformation between the reference and the current configuration, we
introduce the rotation field Λ : I×R → Orth+, (s, t) �→ Λ(s, t) = R(s, t)RT

0 (s),
which rotates the reference director triads to the current director triads, i.e.,

di(s, t) = Λ(s, t)Di(s) . (9.5)

Using the identity tensor in the form 1 = Di⊗Di and repeating the steps as in (9.3),
we can represent the rotation between reference and current configuration as
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Λ = Λ1 = Λ(Di ⊗Di) = (ΛDi)⊗Di
(9.5)
= di ⊗Di . (9.6)

Using (9.1) and (9.4), the rate of change of the reference director triad with respect
to the arc length s is expressed as

D′
i(s) = (R0(s)ei)

′ = R′
0(s)ei

(9.4)
= R′

0(s)R
T
0 (s)Di(s) = κ̃0(s)Di(s) , (9.7)

where we have introduced the reference curvature κ̃0(s) = R′
0(s)R

T
0 (s). Taking

the derivative with respect to s of (9.2), the reference curvature can be expressed
with respect to the Di ⊗Dj-basis as

κ̃0 = κ̃0
ijDi⊗Dj = (Di⊗ei)

′(Dj⊗ej)T = D′
i⊗Di = (Di·D′

j)Di⊗Dj . (9.8)

The reference curvature κ̃0 is skew-symmetric, i.e., κ̃T
0 = −κ̃0. This follows

straightforwardly from

0 = (1)′ = (R0RT
0 )

′ = R′
0R

T
0 +R0R

′
0
T = R′

0R
T
0 + (R′

0R
T
0 )

T . (9.9)

Thus κ̃0(s) has an associated axial vector ax(κ̃0(s)) = κ0(s) ∈ E3 defined by the
relation κ̃0(s)a = κ0(s) × a ∀a ∈ E3. The reference curvature can thus also be
expressed by the vector valued function

κ0 = κ0
iDi = ax(κ̃0) =

1

2
εijkκ

0
kjDi =

1

2
εijk(Dk ·D′

j)Di , (9.10)

where εijk denotes the Levi-Civita permutation symbol, which is ±1 for even and
odd permutations of {1, 2, 3}, respectively, and zero otherwise.

The current curvature w̃(s, t) = R′(s, t)RT(s, t) ∈ Skw and its axial repre-
sentation w(s, t) ∈ E3 capture the rate of change of the current director triad with
respect to the arc length parameter s and emerge in the relation

d′
i = (Rei)

′ = R′ei
(9.4)
= R′RTdi = w̃di = w × di . (9.11)

The skew symmetry of w̃(s, t) follows from the analogous computations as carried
out in (9.9). The current curvature can be represented with respect to thedi⊗dj-basis
as

w̃ = w̃ijdi ⊗ dj = (di ⊗ ei)
′(dj ⊗ ej)T = d′

i ⊗ di = (di · d′
j)di ⊗ dj , (9.12)

or as vector-valued function

w = widi = ax(w̃) =
1

2
εijkw̃kjdi =

1

2
εijk(dk · d′

j)di . (9.13)

The rate of change of the current directors with respect to time t is described by
the angular velocity ω̃(s, t) = Ṙ(s, t)RT(s, t) = Λ̇(s, t)ΛT(s, t) ∈ Skw, which
appears together with the corresponding axial vector ω(s, t) ∈ E3 in
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ḋi = (Rei)̇ = Ṙei
(9.4)
= ṘRTdi = ω̃di = ω × di . (9.14)

The angular velocity can thus be represented as

ω̃ = ω̃ijdi ⊗ dj = (di ⊗ ei)̇(dj ⊗ ej)T = ḋi ⊗ di = (di · ḋj)di ⊗ dj , (9.15)

or as vector-valued function in the form

ω = ωidi = ax(ω̃) =
1

2
εijkω̃kjdi =

1

2
εijk(dk · ḋj)di . (9.16)

The skew-symmetry of ω̃ can be verified similar to (9.9).
The rate of change of the current directors under a variation of the current

configuration is captured by the skew symmetric virtual rotation δφ̃ = δRRT =
δΛΛT with its axial vector δφ(s, t) ∈ E3. Both representations can be recognized
in

δdi = δ(Rei) = δRei = δRRTdi = δφ̃di = δφ× di . (9.17)

As before, the virtual rotation can be represented either as the tensor function

δφ̃ = δφ̃ijdi⊗dj = δ(di⊗ei)(dj⊗ej)T = δdi⊗di = (di ·δdj)di⊗dj , (9.18)

or as the vector-valued function

δφ = δφidi = ax(δφ̃) =
1

2
εijkδφ̃kjdi =

1

2
εijk(dk · δdj)di . (9.19)

Due to the symmetry of second derivatives, the partial derivative with respect to
s and the variation δ commute, i.e., δ(d′

i) = (δdi)
′ = δd′

i. This identity can be
reformulated by using (9.11), (9.17) and subtracting the left-hand side from the right-
hand side, yielding δ(w × di) − (δφ × di)

′ = 0. Application of the product rule,
applying once again (9.11) and (9.17) as well as making use of the skew-symmetry
of the cross product, i.e., a× b = −b× a , ∀a,b ∈ E3, we get

δw × di +w × (δφ× di)− δφ′ × di + δφ× (di ×w) = 0 . (9.20)

Using the Jacobi identity a×(b×c)+b×(c×a) = −c×(a×b) ∀a,b, c ∈ E3 and
applying twice the skew-symmetry of the cross-product, the above equation reduces
to

(δw − δφ′ − δφ×w)× di = 0 . (9.21)

Since (9.21) must hold for arbitrary di ∈ E3, we can conclude that

δφ′ = δw − δφ×w . (9.22)
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9.3 Strain Energy Functional

Following Shirani et al (2019), we assume the strain energy E stored in a beam
segment [s1, s2] ⊂ I to be expressed as

E =

∫ s2

s1

U ds , (9.23)

where U , the strain energy function per unit reference arc length s, is a function of
the list {r, r′,Λ,Λ′} and possibly depends explicitly on s, i.e.,

U = U(r, r′,Λ,Λ′; s) . (9.24)

The explicit s-dependence may arise from an initial curvature of the beam, or from
nonuniform material properties.

By the requirement that strain energy functions must ensure invariance under
superimposed rigid body motions, we can reduce the set of possible strain energy
functions. Thus, for Q(t) ∈ Orth+ and c(t) ∈ E3, the strain energy function U
must be invariant under the transformations

r �→ r+ = Qr+ c , r′ �→ (r+)′ = Qr′ ,

Λ �→ Λ+ = QΛ , Λ′ �→ (Λ+)′ = QΛ′ .
(9.25)

By choosing Q(t) = 1 and c(t) ∈ E3 arbitrary, we get the condition

U(r, r′,Λ,Λ′; s) = U(r+, (r+)′,Λ+, (Λ+)′; s) = U(r+ c, r′,Λ,Λ′; s) , (9.26)

from which we conclude that U(r, r′,Λ,Λ′; s) = Ũ(r′,Λ,Λ′; s) has to be indepen-
dent of the centerline r. For a particular material coordinate s ∈ I , we choose the
rotation Q(t) = ΛT(s, t) together with a vanishing displacement c(t) = 0, which
yields the condition

Ũ(r′,Λ,Λ′; s) = Ũ(ΛTr′,ΛTΛ,ΛTΛ′; s) = Ũ(ΛTr′,1,ΛTΛ′; s) . (9.27)

Due to ΛTΛ = 1, the strain energy per unit arc length Ũ may not depend on
the argument Λ either. Hence, we conclude that if the strain energy function U
is invariant under superimposed rigid body motions then there is a strain energy
function W̃ which is related to U by

U(r, r′,Λ,Λ′; s) = W̃ (ΛTr′,ΛTΛ′; s) . (9.28)

The reverse direction, which implies from condition (9.28) the invariance of U ,
is obtained immediately since the kinematic quantities ΛTr′ = (Λ+)T(r+)′ and
ΛTΛ′ = (Λ+)T(Λ+)′ are invariant under the transformations (9.25). For that
reason, we take these kinematic quantities as generalized strain measures of the
beam, where
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Γ(s, t) = Γi(s, t)Di(s) = ΛT(s, t)r′(s, t) = (r′(s, t) · di(s, t))Di(s) (9.29)

incorporates in its Di-components the projection of the centerline’s tangent r′ onto
the current directors di. Identifying R′ = w̃R in (9.11), the second generalized
strain measure ΛT(s, t)Λ′(s, t) ∈ Skw can be related to the reference and current
curvature by

ΛTΛ′ = (RRT
0 )

T(RRT
0 )

′ = R0RTR′RT
0 +R0R

′T
0

= ΛTw̃Λ− κ̃0 = κ̃− κ̃0 ,
(9.30)

where we have introduced the current curvature pulled-back to the reference config-
uration κ̃ = ΛTw̃Λ. Making use of (9.6) and the definition of w̃ given in (9.12), κ̃
can be represented as

κ̃ = κ̃ijDi ⊗Dj = ΛTw̃Λ = w̃ijΛ
T(di ⊗ dj)Λ = w̃ijDi ⊗Dj , (9.31)

which shows that the components of κ̃ in the Di ⊗Dj-basis and w̃ in the di ⊗ dj-
basis coincide, i.e., κ̃ij = w̃ij . The skew symmetry of ΛTΛ′ allows us to write the
strain measure also as the vector-valued function

κ− κ0 = (κi − κ0
i )Di = ax(κ̃)− ax(κ̃0) (9.32)

with their corresponding components in the Di-basis given by

κi =
1

2
εijkκ̃kj =

1

2
εijk(dk · d′

j) , κ0
i =

1

2
εijkκ̃

0
kj =

1

2
εijk(Dk ·D′

j) . (9.33)

Replacing ΛTΛ′ with its axial vector (9.32) and putting the dependence of the
strain energy function on a pre-curved reference configuration indicated by a non-
vanishing κ0 into the explicit s-dependence, we obtain the final form of the objective
strain energy function per unit arc length

U(r, r′,Λ,Λ′; s) = W (Γ,κ; s) (9.34)

which solely depends on (9.29) and the current parts of (9.32).
Whenever an explicit strain energy function is required in the following, we choose

the quadratic strain energy function of the form

W (Γ,κ; s) =

3∑
i=1

{
1

2
Ei(Γi − δi1)

2 +
1

2
Fi(κi − κ0

i )
2

}
. (9.35)

Note that there is a possible s-dependence in the axial stiffness E1, the shear stiff-
nesses E2 and E3, the torsional stiffness F1 as well as the flexural stiffnesses F2 and
F3.

If the beam models a body that could also be described as a three-dimensional
continous body with isotropic material, the stiffnesses are often related to the material
properties and the geometry of the body. Then, the axial stiffness E1 is given by the
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Young’s modulus times the cross-sectional area, the shear stiffnesses E2 and E3 are
shear modulus times the cross-sectional area multiplied with an appropriate shear
correction factor (Timoshenko and Goodier, 1951; Cowper, 1966), the torsional
stiffness F1 is shear modulus times the polar moment of the cross section and the
flexural stiffnesses F2 and F3 are Young’s modulus times the appropriate second
moment of area of the cross section.

9.4 Virtual Work Contributions

With the objective strain energy function (9.34), we define the internal virtual work
contributions of the beam using the first variation of the beam’s total strain energy
E in accordance with

δW int = −δE = −
∫ l2

l1

δW ds = −
∫ l2

l1

{
∂W

∂Γi
δΓi +

∂W

∂κi
δκi

}
ds . (9.36)

In the following, the variations of the generalized strain measures are derived. The
variations of the components of (9.29) can be computed using (9.17) together with the
invariance of the triple product with respect to even permutations, i.e., a · (b× c) =
b · (c×a) = c · (a×b) ∀a,b, c ∈ E3, and the skew-symmetry of the cross product

δΓi = δ(r′ · di) = (δr′ − δφ× r′) · di . (9.37)

Again using the properties of the triple product, the relation of the permutation
symbol and the Kronecker delta εijkεjkl = εijkεljk = 2δil as well as (9.17), the
variation of the first equation in (9.33) is given as

δκi =
1

2
εijkδ(dk · d′

j)
(9.17)
=

1

2
εijk[(δφ× dk) · d′

j + dk · (δφ× dj)
′]

=
1

2
εijk[(δφ× dk) · d′

j + dk · (δφ′ × dj + δφ× d′
j)]

=
1

2
εijkdk · (δφ′ × dj) =

1

2
εijkδφ

′ · (dj × dk)

=
1

2
εijkεjkl(δφ

′ · dl) = δφ′ · di .

(9.38)

Substituting (9.22) and the variation of the two generalized strain measures (9.37)
and (9.38) into the internal virtual work (9.36), their final form is given by
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δW int = −
∫ l2

l1

{
∂W

∂Γi
δΓi +

∂W

∂κi
δκi

}
ds

= −
∫ l2

l1

{
(δr′ − δφ× r′) · n+ δφ′ ·m} ds

= −
∫ l2

l1

{(δr′ − δφ× r′) · n+ (δw − δφ×w) ·m} ds ,

(9.39)

where the generalized internal forces n = ∂W
∂Γi

di and m = ∂W
∂κi

di have been
introduced. The interpretation of these generalized forces is postponed to the next
section. However, note that in the case of inelastic behavior, where no strain energy
function might be available, the internal virtual work could be defined by (9.39)
in which the generalized forces n and m follow different constitutive laws than
here. According to Germain (1973) or Eugster and Glocker (2017), the internal
virtual work must vanish for all rigid virtual displacements, i.e., for δr(s, t) =
δc(t)+δϕ(t)×r(s, t) and δφ(s, t) = δϕ(t), where δc(t), δϕ(t) ∈ E3. Independent
of the constitutive assumption, this is granted when using the internal virtual work
(9.39).

Using integration by parts in the second line of (9.39), we can rewrite the internal
virtual work as

δW int =

∫ l2

l1

{δr · n′ + δφ · (m′ + r′ × n)} ds

−
2∑

i=1

(−1)i {δr · n+ δφ ·m} |s=li .

(9.40)

For the static case, where only the internal virtual work contributions equilibrate the
external virtual work contributions, (9.40) gives us the form of the external forces that
we allow in our beam theory. These are distributed external forces n : I × R → E3

and distributed external couples m : I × R → E3. In addition we allow point-wise
defined external forces n1,n2 : R → E3 and couples m1,m2 : R → E3 to be
applied on the boundaries l1 and l2 of the beam. This leads to the virtual work
contributions of the external forces of the form

δW ext =

∫ l2

l1

{δr · n+ δφ ·m} ds+

2∑
i=1

{δr · ni + δφ ·mi} |s=li . (9.41)

If we want to allow countable many point forces inside the beam, the open set (l1, l2)
has to be divided into further open sets, where the point forces are applied on the
corresponding boundaries.

In order to formulate the virtual work contributions of inertial effects, we pro-
ceed differently as before. For a meanwhile, we assume that the beam is a three-
dimensional continuous body whose points in the reference configuration occupy
the positions
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X(s, θα) = r0(s) + θαDα(s) . (9.42)

Hence, every material point in the reference configuration is addressed by the co-
ordinates (s, θ2, θ3) ∈ B ⊂ R3. We assume that the cross sections of the beam are
spanned by the reference directors D2 and D3 such that θ2 and θ3 are the cross
section coordinates. In the sense of an induced theory, we assume the beam to be a
constrained three-dimensional continuum whose current configuration is restricted
to

x(s, θα, t) = r(s, t) + θαdα(s, t) . (9.43)

In fact the kinematical ansatz (9.43) restricts the motion of the cross sections to
remain plane and rigid for any motion. The virtual work of the inertial forces of a
three-dimensional continuum is commonly defined as

δW dyn = −
∫
B

δx · ẍ dm = −
∫
B

δx · ẍ ρ0 dAds , (9.44)

where ρ0 : B → R is the beam’s mass density per unit volume in its reference
configuration and dA is the cross-sectional surface element in the beam’s refer-
ence configuration. For convenience, we introduce ρ(s, θα, t) = θαdα(s, t) with its
corresponding skew-symmetric tensor ρ̃(s, θα, t) ∈ Skw. Using (9.17), the virtual
displacements admissible with respect to the position field (9.43) are obtained as

δx = δr+ δφ× θαdα = δr+ δφ× ρ = δr− ρ̃δφ . (9.45)

Making use of the kinematic relation (9.14) and by taking the first and second time
derivative of the position field (9.43), the velocity and acceleration fields are

ẋ = ṙ+ ω × θαdα = ṙ+ ω × ρ ,

ẍ = r̈+ ω̇ × ρ+ ω × (ω × ρ) = r̈− ρ̃ω̇ + ω̃ω̃ρ .
(9.46)

For the next steps, we introduce some abbreviations for integral expressions that
will appear in the upcoming derivation and which are related to the zeroth, first and
second moment with respect to the mass density ρ0. The cross section mass density
per unit of s is defined as

Aρ0
(s) :=

∫
A(s)

ρ0 dA , (9.47)

where A(s) = {(θ2, θ3) ∈ R2|(s, θ2, θ3) ∈ B}. In case that the centerline does not
coincide with the line of centroids rc : I × R → E3, (s, t) �→ rc(s, t) a coupling
term

c = Aρ0
(rc − r) =

∫
A(s)

ρρ0 dA =

∫
A(s)

θαdαρ0 dA (9.48)

will remain. Using (9.14) and (9.48), the second time derivative of the coupling term
is

c̈ = (ω × c)̇ = ω̇ × c+ ω × (ω × c) = −c̃ω̇ + ω̃ω̃c . (9.49)
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Note that we denoted the skew-symmetric tensor corresponding to c by c̃. The last
required integrated quantity is the cross section inertia density defined as

Iρ0
=

∫
A(s)

ρ̃ρ̃Tρ0 dA . (9.50)

Furthermore, the time derivative of h = Iρ0
ω, i.e., the product of the cross section

inertia density Iρ0 and the angular velocity ω is

ḣ(s, t) = (Iρ0

ij ωjdi)̇ = Iρ0

ij (ω̇jdi + ωjḋi) . (9.51)

Note that the components of cross section inertia density Iρ0
= Iρ0

ij di ⊗ dj in the
di ⊗ dj-basis are constant with respect to time t. Since the cross product of two
collinear vectors vanishes, i.e., 0 = ω × ω = ω × ωkdk, we can extend the above
equation, which leads together with (9.14) to the compact form

ḣ = Iρ0

ij di ⊗ dj(ω̇kdk + ω × ωkdk) + ω × Iρ0

ij ωjdi = Iρ0ω̇ + ω̃Iρ0ω . (9.52)

With the acceleration vector (9.46) and the virtual displacements (9.45), the contri-
butions of the inertial forces to the virtual work are given by

δW dyn = −
∫
B

δx · ẍ dm = −
∫
B

(δr− ρ̃δφ) ·(r̈− ρ̃ω̇+ω̃ω̃ρ)ρ0 dAds . (9.53)

The integration over the body B can be split in an integration over the cross section
A(s) and an integration along the arc length s. Together with the integrated quantities
defined above, the properties of the triple product, the skew symmetry ρ̃ = −ρ̃T, as
well as the relation ãb̃b̃a = −b̃ããb for ã, b̃ ∈ Skw, where a = ax(ã), b = ax(b̃),
we obtain

δW dyn = −
∫ l2

l1

{
δr ·

(
r̈

∫
A(s)

ρ0dA−
∫
A(s)

ρ̃ρ0dAω̇ + ω̃ω̃

∫
A(s)

ρρ0dA

)
+ δφ ·

(∫
A(s)

ρ̃ρ0dAr̈+

∫
A(s)

ρ̃ρ̃Tρ0dAω̇ + ω̃

∫
A(s)

ρ̃ρ̃Tρ0dAω

)}
ds

= −
∫ l2

l1

{δr · (Aρ0 r̈− c̃ω̇ + ω̃ω̃c)+δφ · (c̃r̈+ Iρ0ω̇ + ω̃Iρ0
ω)}ds.

(9.54)
Using (9.49) and (9.52), the virtual work contributions of the inertial terms can be
written in the compact form

δW dyn = −
∫ l2

l1

{
δr · (Aρ0 r̈+ c̈) + δφ · (c× r̈+ ḣ)

}
ds . (9.55)
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9.5 Principle of Virtual Work and Equations of Motion

The principle of virtual work can be stated as following. For all admissible virtual
displacements and for any instant of time t, the total virtual work of the beam must
vanish, i.e.,

δW tot = δW dyn + δW int + δW ext = 0 ∀δr, δφ, t . (9.56)

Inserting the individual contributions of the virtual work (9.39), (9.41) and (9.55)
into the principle of virtual work (9.56) leads to the weak variational formulation of
the spatial nonlinear Timoshenko beam

δW tot =

∫ l2

l1

{δr · (n−Aρ0 r̈− c̈)+δφ · (m− c× r̈−ḣ)− (δr′ − δφ× r′) · n

− δφ′ ·m} ds+

2∑
i=1

{δr · ni + δφ ·mi} |s=li = 0 ∀δr, δφ, t .

(9.57)

Using the internal virtual work in the form (9.40), i.e., after integration by parts, we
end up with the strong variational formulation of the spatial nonlinear Timoshenko
beam

δW tot =

∫ l2

l1

{δr · (n′ + n−Aρ0 r̈− c̈)

+ δφ · (m′ + r′ × n+m− c× r̈− ḣ)} ds (9.58)

+
2∑

i=1

{
δr · (ni−(−1)in)+δφ · (mi−(−1)im)

} |s=li = 0, ∀δr, δφ, t.

By the fundamental lemma of calculus of variations, (9.58) can only be fulfilled if
the equations of motion of the Timoshenko beam

n′ + n = Aρ0 r̈+ c̈

m′ + r′ × n+m = c× r̈+ ḣ
(9.59)

are satisfied in the interior of the beam, s ∈ (l1, l2), together with the boundary
conditions n(l1, t) = −n1(t), m(l1, t) = −m1(t) and n(l2, t) = n2(t), m(l2, t) =
m2(t), see also (Antman, 2005; Dill, 1992). Certainly appropriate initial conditions
in time have to be stated.

For getting an interpretation of the generalized internal forcesn andm introduced
in the internal virtual work contributions (9.39), we consider the static problem of
a cantilever beam with reference length L, i.e., I = [0, L]. The beam is clamped at
s = 0 and subjected to distributed forces n and couples m as well as a point force
and a couple n2, m2 at s = L. For the clamped end, the boundary conditions and



108 Eugster, Harsch

the admissible virtual displacements and rotations read

r(0) = 0 , δr(0) = 0 , φ(0) = 0 , δφ(0) = 0 . (9.60)

Disregarding inertial effects and applying the admissible virtual displacements at the
boundary (9.60), the equations of motion (9.59) turn into the equilibrium conditions

n′ + n = 0

m′ + r′ × n+m = 0 ,
(9.61)

together with the force boundary conditions n(L) = n2 and m(L) = m2 at the
end of the beam. The boundary condition n(L) = n2 identifies n(L) as the force
applied at the end s = L; the same holds for the couple.

For s ∈ I , the fundamental theorem of calculus allows us to write
∫ L

s
n′ds =

n(L)−n(s). Using the first equilibrium equation in (9.61) together with the boundary
condition n(L) = n2, we get

n(s) = n(L)−
∫ L

s

n′ ds = n2 +

∫ L

s

n ds . (9.62)

Accordingly, n(s) corresponds to the force exerted by the segment (s, L] on the part
[0, s]. We consequently identify n = Nd1 +Q2d2 +Q3d3 as the resultant contact
force, where N = ∂W/∂Γ1 and Qα = ∂W/∂Γα correspond to the axial force and
the shear forces, respectively.

Using the relation
∫ L

s
m′ds = m(L)−m(s) together with the second equilibrium

equation in (9.61), the boundary condition m(L) = m2 and subsequent integration
by parts, we obtain

m(s) = m(L) +

∫ L

s

{r′ × n+m} ds

= m2 + r(L)× n(L)− r(s)× n(s) +

∫ L

s

{m− r× n′} ds .

(9.63)

For a fixed s ∈ I , let Δr(s) = r(s) − r(s) be the vector connecting the point r(s)
with r(s) for an arbitrary s ∈ I . Substituting r(s) = r(s) + Δr(s) in the above
equation, using the first equilibrium equation in (9.61) and the identity (9.62), the
terms with r(s) cancel and we get

m(s) = m2 +Δr(L)× n2 +

∫ L

s

{m+Δr× n} ds . (9.64)

From (9.64), it becomes apparent that m(s) is the couple exerted by the segment
(s, L] on the part [0, s]. We identify m = Td1 + M2d2 + M3d3 as the resultant
contact couple, whereT = ∂W/∂κ1 andMα = ∂W/∂κα correspond to the twisting
couple and the bending couples, respectively.
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9.6 Constrained Beam Theories

In the preceding sections, we have established the governing equations for a spatial
nonlinear Timoshenko beam. To end up with an Euler–Bernoulli or an inextensi-
ble Euler–Bernoulli beam, we have to prescribe further constraints. For the Euler–
Bernoulli beam, the current director d1 must align with the centerline’s tangent r′.
For an inextensible Euler–Bernoulli beam, also the norm of the centerline’s tangent
must remain constant, i.e., ‖r′‖ = ‖r′0‖ = 1. All required constraint conditions can
be formulated in the form g(s, t) = 0. To incorporate such a constraint into the
variational formulation, i.e., in the principle of virtual work (9.56), we augment the
strain energy functional of the whole beam (9.23) in accordance with

E∗ = E + E , E = −
∫ l2

l1

g(s, t)σ(s, t) ds , (9.65)

where the Lagrange multiplier field σ : I × R → R has been introduced. Again,
the internal virtual work is obtained by the variation of the strain energy functional,
which in the constrained case reads as

δW int,∗ = −δE∗ = −δE − δE = δW int + δW int
c , δW int

c = δW int
c,1 + δW int

c,2 ,

δW int
c,1 =

∫ l2

l1

g(s, t)δσ(s, t) ds , δW int
c,2 =

∫ l2

l1

δg(s, t)σ(s, t) ds . (9.66)

The first additional internal virtual work contribution δW int
c,1 corresponds to the weak

form of the constraint condition, which is important for a later numerical treatment.
The second contribution δW int

c,2 represents the virtual work of the constraint forces.
For multiple constraints, the contributions are just summed up.

9.6.1 Nonlinear Euler–Bernoulli Beam

If the current director d1 aligns with the centerline’s tangent r′, then the cross
sections spanned by the directors dα remain orthogonal to r′. This restriction can
be formulated by the two conditions

gα(s, t) = Γα(s, t) = dα(s, t) · r′(s, t) = 0 . (9.67)

For this case, the constraint conditions coincide with vanishing shear deformations,
see (9.29). Identifying δgα = δΓα = dα ·(δr′−δφ×r′), together with its definition
given in (9.37), the virtual work contributions of the constraints are
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δW int
c,1 =

∫ l2

l1

δσαgα ds =

∫ l2

l1

δσα(dα · r′) ds ,

δW int
c,2 =

∫ l2

l1

σαδgα ds =

∫ l2

l1

(δr′ − δφ× r′) · nC ds ,

(9.68)

where we have introduced nC = σαdα. Hence, the two Lagrange multiplier fields
σα act as shear constraint forces to enforce the vanishing shear deformations Γα in
the Euler–Bernoulli beam.

9.6.2 Nonlinear Inextensible Euler–Bernoulli Beam

If, in addition to (9.67), we further prescribe an inextensibility constraint, the con-
straint condition

g1(s, t) = Γ1(s, t)− 1 = d1(s, t) · r′(s, t)− 1 = 0 (9.69)

must hold. For the physically reasonable situation thatd1·r′ > 0 and sincedα·r′ = 0,
the constraint condition (9.69) coincides with the condition that the centerline’s
tangent has unit length. Indeed 0 = ‖r′‖ − 1 = [(di · r′)(di · r′)]1/2 − 1

(9.67)
=

[(d1 · r′)(d1 · r′)]1/2 − 1 = d1 · r′ − 1. Identifying δg1 = δΓ1, together with its
definition given in (9.37), the virtual work contributions of the constraints (9.67) and
(9.69) are

δW int
c,1 =

∫ l2

l1

δσigi ds =

∫ l2

l1

δσi(di · r′ − δi1) ds ,

δW int
c,2 =

∫ l2

l1

σiδgi ds =

∫ l2

l1

(δr′ − δφ× r′) · nC ds ,

(9.70)

with nC = σidi. For the inextensible Euler–Bernoulli beam, the resultant contact
forces are pure reaction forces that guarantee unshearability and inextensiblity of the
beam.

9.7 Constrained and Unconstrained Planar Beam Theories

In the previous section, we have shown how to augment the principle of virtual
work to also treat the Euler–Bernoulli beam theory and its inextensible version
as a constrained theory in a variational setting. In this section, we will restrict
the motion of the beams to be planar. Furthermore, we will work out the virtual
work contributions of the constrained theories in detail for a possible finite element
analysis as it is presented in Harsch and Eugster (2020). For the (inextensible)
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Euler–Bernoulli beam, we will also choose kinematical descriptions that satisfy
the constraint conditions intrinsically. These formulations are then called minimal
formulations referring to the terminology of minimal coordinates in finite degree of
freedom mechanics.

9.7.1 Timoshenko Beam

For the planar case, the kinematics of the beam’s centerline is restricted to the e1-e2-
plane. The position vector of the centerline, the tangent vector and its derivative with
respect to the arc length parameter s for the reference and current configurations are
given by

r0(s) = X(s)e1 + Y (s)e2 , r(s, t) = x(s, t)e1 + y(s, t)e2 ,

r′0(s) = X ′(s)e1 + Y ′(s)e2 , r′(s, t) = x′(s, t)e1 + y′(s, t)e2 ,

r′′0(s) = X ′′(s)e1 + Y ′′(s)e2 , r′′(s, t) = x′′(s, t)e1 + y′′(s, t)e2 ,

(9.71)

using the coordinate functions X,Y : I → R and x, y : I×R → R. Planar rotations
are given by rotations around D3 = d3 = e3. As depicted in Fig. 9.2, the reference

Fig. 9.2 Graphic illustration of planar position and rotation fields.

and current director triads are

D1 = cos θ0(s)e1+sin θ0(s)e2 , D2 = − sin θ0(s)e1+cos θ0(s)e2 ,

d1 = cos θ(s, t)e1+sin θ(s, t)e2 , d2 = − sin θ(s, t)e1+cos θ(s, t)e2 ,
(9.72)

where θ0 : I → R parameterizes the absolute angle of the reference director D1

with respect to the vector e1 and θ : I × R → R the absolute angle of the current
director d1.
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The rotation of the reference configuration is given by R0 = R0
ijei ⊗ ej , with

the components R0
ij = ei · Dj . The current rotation field is given analogously by

R = Rijei ⊗ ej with Rij = ei · dj . Both components can be written in matrix
notation as

[R0
ij ] =

⎛⎝cos θ0 − sin θ0 0
sin θ0 cos θ0 0
0 0 1

⎞⎠ , [Rij ] =

⎛⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞⎠ . (9.73)

The rotation field Λ = RRT
0 = RikR

0
jkei ⊗ ej = Λijei ⊗ ej has the components

in matrix form given by

[Λij ] = [Rik][R
0
kj ]

T =

⎛⎝cos(θ − θ0) − sin(θ − θ0) 0
sin(θ − θ0) cos(θ − θ0) 0

0 0 1

⎞⎠ . (9.74)

Computing the derivatives of the directors (9.72) with respect to s, we get

D′
1 = θ′0D2, D

′
2 = −θ′0D1, d

′
1 = θ′d1, d

′
2 = −θ′d1, D

′
3 = d′

3 = 0 . (9.75)

The curvatures κ̃ − κ̃0 = (κ̃ij − κ̃0
ij)Di ⊗ Dj and their associated axial vec-

tors κ − κ0 = (κi − κ0
i )di, together with their components are given in (9.33).

The components can be obtained by inserting the directors (9.72) and their partial
derivatives (9.75). This yields the very simple planar curvatures

[κ̃ij ] =

⎛⎝0 −θ′ 0
θ′ 0 0
0 0 0

⎞⎠ , [κ̃0
ij ] =

⎛⎝ 0 −θ′0 0
θ′0 0 0
0 0 0

⎞⎠ ,

κ = κ3e3 = θ′e3 , κ0 = κ0
3e3 = θ′0e3 .

(9.76)

The generalized strain measure Γ from (9.29) is computed using (9.71) together
with (9.72) and reads

Γ = Γ1D1 + Γ2D2 = (r′ · d1)D1 + (r′ · d2)D2 . (9.77)

The third componentΓ3 of the strain measure vanishes, because the current tangential
vector has no component in d3-direction.

The velocities and accelerations of the beam’s centerline are easily computed
from (9.71) as

ṙ = ẋe1 + ẏe2 , r̈ = ẍe1 + ÿe2 . (9.78)

The rate of change of the director triad ḋi is obtained by replacing the derivative
with respect to s in (9.75) by the time derivative. The angular velocity (9.15) can be
easily computed in the ei ⊗ ej-basis as
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ω̃ = ṘRT = ω̃ijei ⊗ ej , [ω̃ij ] = [Ṙik][Rkj ]T =

⎛⎝0 −θ̇ 0

θ̇ 0 0
0 0 0

⎞⎠ . (9.79)

Since d3 = e3, the associated axial vector ω can be represented as

ω = ax(ω̃) = θ̇e3 . (9.80)

The variation of the beam’s centerline and the variation of the tangent vector are

δr = δxe1 + δye2 , δr′ = δx′e1 + δy′e2 . (9.81)

Also for the virtual rotation δφ̃ given in (9.18), it is easiest to compute its
components in the ei ⊗ ej-basis as

δφ̃ = δΛΛT = δφ̃ijei ⊗ ej , [δφ̃ij ] = [δΛik][Λkj ]T =

⎛⎝ 0 −δθ 0
δθ 0 0
0 0 0

⎞⎠ .

(9.82)
The associated axial vector and its partial derivative with respect to the arc length
parameter s read

δφ = ax(δφ̃) = δθe3 , δφ′ = δθ′e3 . (9.83)

Dropping the index in the shear force Q2 and the bending couple M3, the planar
form of the resultant contact forces and couples defined in (9.39) are

n = Nd1 +Qd2 = (N cos θ −Q sin θ) e1 + (N sin θ +Q cos θ)e2

= n1e1 + n2e2 ,

m = Md3 = Me3 .

(9.84)

Note the just introduced abbreviations n1 = N cos θ −Q sin θ and n2 = N sin θ +
Q cos θ.

For the sake of compact notation, we define the mapping

⊥ : E3 → E3 , a �→ a⊥ = Aa , A = e2 ⊗ e1 − e1 ⊗ e2 , (9.85)

which rotates a vector in the e1-e2 plane around the e3-axis by π/2 in the mathe-
matically positive sense. Accordingly, we can write

δr′ − δφ× r′ = δx′e1 + δy′e2 + δθy′e1 − δθx′e2 = δr′ − δθr′⊥ . (9.86)

Inserting the variation of the tangent vector (9.81), the above computed expression,
the variation of the virtual rotation (9.83) and the planar contact forces and couples
given in (9.84) into the internal virtual work contributions (9.39), we obtain its planar
form
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δW int = −
∫ l2

l1

{(δr′ − δθr′⊥) · n+ δθ′M} ds . (9.87)

The external forcesn = n1e1+n2e2 only act in the e1-e2-plane and external couples
are of the form m = Me3. Same holds for the external forces ni = ni

1e1+ni
2e2 and

couples mi = M ie3 at the boundaries of the beam. The virtual work contributions
of the external forces are straightforwardly obtained by inserting (9.81) and (9.83)
into (9.41), i.e.,

δW ext =

∫ l2

l1

{
δr · n+ δθM

}
ds+

2∑
i=1

{
δr · ni + δθM i

} |s=li . (9.88)

For the sake of brevity, we assume that the centerline r corresponds with the line
of centroids rc. Hence, the coupling term c = Aρ0

(rc − r) and its time derivatives
vanish. Moreover, we assume a homogeneous mass distribution in the cross section
such that the directors dα coincide with the geometric principal axes of the beam’s
cross section. Thus, the components of the cross section inertia density Iρ0 =
Iρ0

ij di ⊗ dj can be arranged in matrix form given by the diagonal matrix

[Iρ0

ij ] = Diag[I1, I2, I3] =

⎛⎝I1 0 0
0 I2 0
0 0 I3

⎞⎠ . (9.89)

The product of the cross section inertia density with the angular velocity and its time
derivative (9.52) are given by

h = Iρ0
ω = I3θ̇e3 , ḣ = Iρ0ω̇ + ω × Iρ0

ω = I3θ̈e3 . (9.90)

Using the above derived simplifications, together with the variation and accel-
eration of the centerline given in (9.81) and (9.78), respectively, the virtual work
contributions of the inertial forces (9.55) reduce to

δW dyn = −
∫ l2

l1

{
δr ·Aρ0 r̈+ δθI3θ̈

}
ds . (9.91)

The total virtual work of the planar Timoshenko beam is given by assembling the
individual contributions from (9.87), (9.88) and (9.91) which yields

δW tot =

∫ l2

l1

{
δr · (n−Aρ0 r̈) + δθ(M − I3θ̈ + r′⊥ · n)− δr′ · n− δθ′M

}
ds

+
2∑

i=1

{
δr · ni + δθM i

} |s=li . (9.92)

By identifying the first set of constraint conditions (9.67) with the quantities given
in (9.77), we get
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g2(s, t) = Γ2 = r′ · d2 = 0 , g3(s, t) = Γ3 = r′ · d3 = 0 , (9.93)

where the constraint g3 is trivially fulfilled. With δg2 = δΓ2 = δr′ · d2 − δθr′ · d1,
the spatial virtual work contributions given in (9.68) reduces to

δW int
c,1 =

∫ l2

l1

δσ2(r
′ ·d2) ds , δW int

c,2 =

∫ l2

l1

σ2(δr
′ ·d2−δθr′ ·d1) ds . (9.94)

Adding the virtual work contributions above to the unconstrained total virtual work
of the Timoshenko beam (9.92), the Euler–Bernoulli beam model is obtained.

In addition to (9.93), the inextensibility condition (9.69) can be met in the form

g1(s, t) = Γ1(s, t)− 1 = d1 · r′ − 1 = ‖r′‖ − 1 = g − 1 = 0 , (9.95)

where we have introduced the abbreviation g = ||r′||. The variation of the current
stretch is given by

δΓ1 = δg =
δr′ · r′

g
, (9.96)

which leads for the inextensible Euler–Bernoulli beam to the additional virtual work
contributions

δW int
c,1 =

∫ l2

l1

δσ1(g − 1) ds , δW int
c,2 =

∫ l2

l1

σ1
δr′ · r′

g
ds . (9.97)

Adding the virtual work contributions above, together with (9.94) to the uncon-
strained total virtual work of the planar Timoshenko beam (9.92), the inextensible
planar Euler–Bernoulli beam model is obtained.

9.7.2 Euler–Bernoulli Beam

In this section, we show how to formulate the planar Euler–Bernoulli beam theory
with coordinates that meet the required constraint conditions and for which the
constraint forces become obsolete. By inserting the planar versions for the tangent
vector (9.71) and the second director (9.72) into the first equality given in (9.93), we
can express the absolute angle of the current cross section as

θ = arctan

(
y′

x′

)
. (9.98)

Recapitulating the abbreviation g = ‖r′‖ = [(x′)2 + (y′)2]1/2, the variation and the
partial derivative with respect to s of (9.98) are given by

δθ =
x′δy′ − y′δx′

g2
=

r′⊥ · δr′
g2

, θ′ =
x′y′′ − y′x′′

g2
=

r′⊥ · r′′
g2

, (9.99)
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where we have used d
dx arctan(x) = (1 + x2)−1 and the chain rule of differential

calculus. With the same arguments, the first and second time derivative of (9.98) are
given by

θ̇ =
r′⊥ · ṙ′

g2
, θ̈ =

r′⊥ · r̈′
g2

− 2θ̇r′ · ṙ′
g2

, (9.100)

where, for the second identity, we have used the property a⊥ · a = 0 ∀a ∈ E3.
Using the skew symmetry of the rotation operation (9.85)1 and the linearity of the
dot product, the variation of θ′ is computed straightforwardly as

δθ′ =
1

g2
(δr′′ · r′⊥ − δr′ · [2θ′r′ + r′′⊥]) . (9.101)

With the above derived relations at hand, we are able to replace all quantities
depending on θ in the virtual work of the Euler–Bernoulli beam. After minor re-
arrangements, this leads to the compact internal virtual work contributions of the
Euler–Bernoulli beam

δW int = −
∫ l2

l1

{δΓ1 N + δθ′M} ds

= −
∫ l2

l1

{
1

g
δr′ ·

(
r′N − M

g
[2θ′r′ + r′′⊥]

)
+ δr′′ · r′⊥M

g2

}
ds .

(9.102)
Note, that the integral of the virtual work has to exist, thus we require the beam’s
centerline to be at least C1-continuous. This has to be kept in mind for a later
discretization.

Inserting the first identity of (9.99) into the planar virtual work contributions of
the external forces, given in (9.88), we get

δW ext =

∫ l2

l1

{
δr · n+

r′⊥ · δr′
g2

M

}
ds

+
2∑

i=1

{
δr · ni +

r′⊥ · δr′
g2

M i

} ∣∣∣∣
s=li

. (9.103)

Using the relations given in (9.99) and (9.100), the virtual work contributions of
the inertial forces (9.91) are given by

δW dyn = −
∫ l2

l1

{
δr ·Aρ0 r̈+ I3

r′⊥ · δr′
g4

(
r′⊥ · r̈′ − 2θ̇r′ · ṙ′

)}
ds . (9.104)

Note that very often the cumbersome contribution containing I3 is omitted, see
Elishakoff et al (2015) for a discussion about that issue.

1 Using the property that A in (9.85) is skew symmetric, i.e., AT = −A, we get a ·b⊥ = a ·Ab =
(ATa) · b = − (Aa) · b = −a⊥ · b and thus the variation of the rotated tangential vector and the
centerline’s second derivative can be swapped by a sign change, i.e., δr′⊥ · r′′ = −δr′ · r′′⊥.
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Additionally, the inextensibility (9.96) can be enforced by adding the planar
version of the constraint virtual work contributions (9.97) to the total planar virtual
work, which leads to the mixed formulation (minimal formulation and inextensibility
constraint) of the planar inextensible Euler–Bernoulli beam.

9.7.3 Inextensible Euler–Bernoulli Beam

The third constraint condition (9.69) can also be satisfied by choosing a new set of
coordinates. Computing the components of the current tangent vector in the di-basis
yields

r′ = (r′ · di)di
(9.93)
= (r′ · d1)d1 = Γ1d1

(9.95,9.72)
= cos θe1 + sin θe2 , (9.105)

which necessarily fulfills (9.69). In what follows, r′ = r′(θ) is considered as function
of θ. The position vector at (s, t) is obtained as the integrated quantity

r(s, t) =

∫ s

l1

r′(θ(s̄, t)) ds̄+ r(t) , (9.106)

where r(t) is the time dependent reference point at s = l1. Computing the time
derivative of the above equation, we get the velocity vector

ṙ(s, t) =

∫ s

l1

∂r′

∂θ
(θ(s̄, t))θ̇(s̄, t) ds̄+ ṙ(t) . (9.107)

Accordingly, the acceleration vector is obtained as

r̈(s, t) =

∫ s

l1

{
∂2r′

∂θ2
(θ(s̄, t))θ̇2(s̄, t) +

∂r′

∂θ
(θ(s̄, t))θ̈(s̄, t)

}
ds̄+ r̈(t) . (9.108)

The variation of the position vector is given as

δr(s, t) =

∫ s

l1

∂r′

∂θ
(θ(s̄, t))δθ(s̄, t) ds̄+ δr(t) . (9.109)

Using the last identity of (9.95) and inserting its variation δΓ1 = 0 into the internal
virtual work of the Euler–Bernoulli beam given in (9.102), we get

δW int = −
∫ l2

l1

δθ′M ds . (9.110)

The external virtual work contributions of the inextensible Euler–Bernoulli beam
in minimal formulation are given as
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δW ext =

∫ l2

l1

{(∫ s

l1

∂r′

∂θ
δθ ds̄+ δr

)
· n+ δθM

}
ds

+
2∑

i=1

{(∫ s

l1

∂r′

∂θ
δθ ds̄+ δr

)
· ni + δθM i

} ∣∣∣∣
s=li

. (9.111)

Inserting (9.108) and (9.109) into the virtual work contributions of the inertial
forces given in (9.55) we obtain the cumbersome relation

δW dyn =−
∫ l2

l1

{
δr ·Aρ0 r̈+ δθI3θ̈

}
ds

=−
∫ l2

l1

Aρ0

{∫ s

l1

δθ
∂r′

∂θ
· ∂

2r′

∂θ2
θ̇2 ds̃+

∫ s

l1

δθ
∂r′

∂θ
ds̃ · r̈

+

∫ s

l1

δθ
∂r′

∂θ
· ∂r

′

∂θ
θ̈ ds̃+ δr ·

∫ s

l1

∂2r′

∂θ2
θ̇2 ds̃

+ δr ·
∫ s

l1

∂r′

∂θ
θ̈ ds̃+ δr · r̈+ δθ

I3
Aρ0

θ̈

}
ds .

(9.112)

If we apply this theory of the planar inextensible Euler–Bernoulli beam to the static
consideration of a clamped straight cantilever subjected to a force or a couple at the
end, the principle of virtual work leads us directly to the equations known from the
elastica theory.

Even though this minimal formulation of the inextensible Euler–Bernoulli beam
would be suitable for a subsequent finite element analysis, we will not pursue this any
further in Harsch and Eugster (2020). The double integral expressions that appear
in the virtual work expressions of distributed forces and couples (9.111) as well as
in the intertia terms (9.112) make a numerical treatment extremely cumbersome and
not to strive for. Just think about the numerical error of the position (9.106) that
cumulates with increasing beam length.

9.8 Conclusion

In this article we presented the derivation of the equations of motion describing
the three classical beams, i.e., the Timoshenko beam, the Euler–Bernoulli beam as
well as its inextensible companion. The governing equations for the beams were
obtained within the variational framework of the principle of virtual work. The ap-
plied variational formulation is beneficial not only to add constraints in the sense
of the Lagrange multiplier method but also for a subsequent finite element formu-
lation as shown in Harsch and Eugster (2020) for the planar theories. Therefore we
additionally elaborated all virtual work contributions of the classical planar theories
both as constrained and as unconstrained theories. The corresponding virtual work
contributions are ready for a Bubnov–Galerkin discretization.
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Chapter 10
Finite Element Analysis of Planar Nonlinear
Classical Beam Theories

Jonas Harsch & Simon R. Eugster

Abstract This article is based on the planar beam theories presented in Eugster and
Harsch (2020) and deals with the finite element analysis of their presented beam
models. A Bubnov-Galerkin method, where B-splines are chosen for both ansatz
and test functions, is applied for discretizing the variational formulation of the
beam theories. Five different planar beam finite element formulations are presented:
The Timoshenko beam, the Euler–Bernoulli beam obtained by enforcing the cross-
section’s orthogonality constraint as well as the inextensible Euler–Bernoulli beam
by additionally blocking the beam’s extension. Furthermore, the Euler–Bernoulli
beam is formulated with a minimal set of kinematical descriptors together with a
constrained version that satisfies inextensibility. Whenever possible, the numerical
results of the different formulations are compared with analytical and semi-analytical
solutions. Additionally, numerical results reported in classical beam finite element
literature are collected and reproduced.

10.1 Introduction

The finite element discretization relies on the variational formulation of the planar
classical beam theories given in Eugster and Harsch (2020). With the mere choice of
ansatz and test functions, the discretization of the virtual work contributions directly
leads to the corresponding beam finite element formulations. Besides the time t, the
virtual work contributions presented in Eugster and Harsch (2020) are parametrized
by a single material coordinate s, the arc length parameter of the reference curve.
With the subsequent discretization in mind, it is convenient to express the individual
virtual work contributions in terms of a non arc length coordinate ξ given in the
unit interval. This reparametrization is presented in Section 10.3 and yields the total
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virtual work of the different beam formulations given in the so-called parameter
space.

The minimal formulation of the Euler–Bernoulli beam, which can be found in (Eu-
gster and Harsch, 2020, Section 9.7.2), requires shape functions that are at least
C1-continuous. Hence, the well-known Lagrangian shape functions, being only C0-
continuous, can not be used here. Gontier and Vollmer (1995) proposed the usage
of computer aided design (CAD) curve representation, such as Béziers curves, Basis
splines (B-splines) or non rational B-splines (NURBS), for implementing beam finite
elements. More recently, Hughes et al (2005) and Cottrell et al (2009) established
the name isogeometric analysis, which unifies the fields of CAD and finite element
analysis. They show the power of combining both tools for numerical analysis of
partial differential equations. Led by these ideas, (Greco and Cuomo, 2013, 2014)
used B-spline shape functions, which meet the above-mentioned C1-continuity re-
quirements, to implement a spatial Euler–Bernoulli beam. B-spline curves, which
go back to the pioneering works of Schöneberg (1946) and de Boor (1972), are in-
troduced in Section 10.4, based on the comprehensive monographs (Piegl and Tiller,
1997; Farin, 1997).

Section 10.5 shows that substituting the B-spline curves into the virtual work
contributions in parameter space leads to the semi-discrete equations of motion,
which are still continuous in time. If the discretized model additionally contains
geometric bilateral constraints, either stemming from the constrained beam models
or from enforcing boundary conditions, this leads to a set of differential algebraic
equations. Although the formulations based on the Timoshenko beam model are not
restricted to the above-mentioned continuity requirement, B-splines or NURBS can
again be used for their discretization (Cazzani et al, 2016a,b). Another advantage
over standard shape functions is, by using B-spline shape functions the global poly-
nomial degree can be chosen arbitrarily. Thus, besides the standard h-refinement
(decreasing the element length), also a p-refinement (increasing the polynomial de-
gree) can easily be carried out. The combination of h- and p-refinement is called
k-refinement (Cottrell et al, 2009; Greco and Cuomo, 2013). The discretization and
all associated algorithms are generalized for any polynomial degree, which will later
prove to be advantageous when studying normal modes.

Exclusive numerical examples are studied in Section 10.6. First, the presented
beam formulations together with their finite element approximations are verified
using analytical and semi-analytical problems from literature. Second, numerical
examples of more advanced problems are treated, e.g., tracing the post-buckling
equilibrium path of precurved beams. The numerical outcomes are compared with
results reported in classical beam finite element literature. The article closes with
conclusions and suggestions for future work.
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10.2 Notation

LetE3 denote a three-dimensional Euclidean vector space with an orthonormal basis
{e1, e2, e3}. For the discretization, all arising vector quantities from Eugster and
Harsch (2020) will be expressed in this basis. For that, we collect the components of
vectors a = a1e1 + a2e2 + a3e3 ∈ E3 in the tuple Ia = (a1, a2, a3)T ∈ R3.
If not stated otherwise, Rf -tuples are considered in the sense of matrix mul-
tiplication as Rf×1-matrices, i.e., as "column vectors". Its transposed will be
given by a R1×f -matrix, i.e., a "row vector". The components of a vector rotated
around e3 by π

2 is denoted by Ia
⊥ = (−a2, a1, a3)T. Partial derivatives of vec-

tor valued functions f : Rf → R,q �→ f(q), are introduced as “row vectors”
∂f/∂q = (∂f/∂q1 · · · ∂f/∂qf ) ∈ R1×f . Derivatives of functions f = f(s, t) with
respect to the first argument and t are denoted by a prime f ′ = ∂f/∂s and a dot
ḟ = ∂f/∂t, respectively. The variation of a function f = f(s, t), denoted by a
delta, is the derivative with respect to the parameter ε of a one-parameter family
f̂ = f̂(s, t; ε) evaluated at ε = 0, i.e., δf(s, t) = ∂f̂/∂ε(s, t; 0). The one-parameter
family satisfies f(s, t) = f̂(s, t; 0).

10.3 Virtual Work Contributions in Parameter Space

Fig. 10.1 Mapping from the material domain I to the parameter space Ī .

As mentioned in the introduction, the parameter domain can be defined as
Ī = [0, 1] ⊂ R. Points ξ ∈ Ī belonging to the parameter domain are obtained
from material points s ∈ I = [l1, l2] ⊂ R by a mapping ϕ : I → Ī . This new
parametrization can be understood in the sense of a non arc length parametrization.
We can introduce the strictly increasing function

ϕ : I → Ī , s �→ ξ = ϕ(s) , (10.1)

depicted in Fig. 10.1. Using the monotonicity property of (10.1), there exists an
inverse function ϕ−1 : I → Ī , which is defined on the set Ī = ϕ(I), given by

ϕ−1 : Ī → I , ξ �→ s = ϕ−1(ξ) . (10.2)
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Let V denote some linear space, e.g., R. With the above mappings at hand we can
express an arbitrary function f : I × R → V , e.g., the fields x, y, and θ introduced
in (Eugster and Harsch, 2020), by a new function f̄ : Ī × R → V , defined on the
parameter space Ī .

Fig. 10.2 Commutative dia-
gram for the relations of the
material coordinate s and non
arc length coordinate ξ.

I × R V

Ī × R

ϕ

f

ϕ−1

f̄

Since the diagram in Fig. 10.2 commutes, we find the relation

f(s, t) = f̄(ϕ(s), t) . (10.3)

Using (10.3) together with the chain rule of differential calculus, the first and second
derivatives of f with respect to s are given by

f ′(s, t) =
∂f̄

∂ξ
(ϕ(s), t)

dϕ

ds
(s) = f̄ ′(ϕ(s), t)ϕ′(s) ,

f ′′(s, t) =
∂2f̄

∂ξ2
(ϕ(s), t)

(
dϕ

ds
(s)

)2

+
∂f̄

∂ξ
(ϕ(s), t)

d2ϕ

ds2
(s)

= f̄ ′′(ϕ(s), t)(ϕ′(s))2 + f̄ ′(ϕ(s), t)ϕ′′(s) ,

(10.4)

where a prime (·)′ denotes the derivative with respect to the first argument, i.e.,
either s or ξ. The arc length parametrization of the reference curve r0 = r0(s) is
defined such that the arc length of a curve can be written as

l2 − l1 =

∫ l2

l1

‖r′0(s)‖ ds =

∫ l2

l1

ds , (10.5)

from which we identify ‖r′0(s)‖ = 1. This can be further manipulated using (10.4)
and yields the relation for the Euclidean norm of the reference tangential vector

1 = ‖r′0(s)‖ = ‖r̄′0(ϕ(s))‖ |ϕ′(s)| . (10.6)

By using the property that ϕ is a strictly increasing function, its derivative with
respect to s is positive and ϕ′(s) coincides with its absolute value. Inserting these
observations into (10.6), we obtain

ϕ′(s) =
1

‖r̄′0(ϕ(s))‖
=

1

Ḡ(ϕ(s))
, (10.7)
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where we have introduced Ḡ(ξ) = ‖r̄′0(ξ)‖. The inverse function theorem yields the
relation

(ϕ−1)′(ξ) =
1

ϕ′(ϕ−1(ξ))
= Ḡ(ξ) . (10.8)

By repeated differentiation, the second derivative of ϕ is given by

ϕ′′(s) = − r̄′0(ϕ(s)) · r̄′′0(ϕ(s))
Ḡ4(ϕ(s))

. (10.9)

Using the abbreviation G(ξ) =
r̄′0(ξ)·r̄′′0 (ξ)

Ḡ2(ξ)
, we can insert (10.7) and (10.9) into

(10.4), to get

f ′(s, t) =
f̄ ′(ϕ(s), t)
Ḡ(ϕ(s))

,

f ′′(s, t) =
1

Ḡ2(ϕ(s))

(
f̄ ′′(ϕ(s), t)− f̄ ′(ϕ(s), t)G(ϕ(s))

)
.

(10.10)

In the individual virtual work contributions presented by Eugster and Harsch
(2020), integral expressions with respect to the material coordinate s occur. In order
to formulate the total virtual work in the parameter space, all functions depending on
the pair (s, t) have to be replaced with the overlined functions depending on (ϕ(s), t),
as shown in (10.3), together with their derivatives given in (10.10). With the help of
(10.3), these integrals can be expressed by the overlined functions according to∫ l2

l1

f(s, t) ds =

∫ l2

l1

f̄(ϕ(s), t) ds , (10.11)

where derivatives with respect to s have to be computed in accordance with (10.4).
Using integration by substitution, together with (10.8), the integral expression over
the material domain can be computed by an integral over the parameter space given
as ∫ l2=ϕ−1(1)

l1=ϕ−1(0)

f̄(ϕ(s), t) ds =

∫ 1

0

f̄(ξ, t)(ϕ−1)′(ξ) dξ =

∫ 1

0

f̄(ξ, t)Ḡ(ξ) dξ ,

(10.12)
where in the first step the identity map ξ = ϕ(ϕ−1(ξ)) was identified.

10.3.1 Timoshenko Beam

Next, we express the components of the beam’s centerline r and the rotation angle θ
by the overlined functions r̄ and θ̄. Moreover, we can collect their components given
in the ei-basis in the generalized state tuple
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s(ξ, t) = (x̄(ξ, t), ȳ(ξ, t), θ̄(ξ, t))T ∈ R3 . (10.13)

By substituting the mapping ϕ into all arising functions, we reformulate the virtual
work contributions of the inertia forces (Eugster and Harsch, 2020, (9.91)) in the
following compact form

δW dyn = −
∫ 1

0

δsTΘ̄s̈Ḡ dξ , Θ̄ =

⎛⎝Āρ0 0 0
0 Āρ0

0
0 0 Ī3

⎞⎠ . (10.14)

The virtual work contributions of the internal forces (Eugster and Harsch, 2020,
(9.87)) can be computed by

δW int =

∫ 1

0

{δsTt̄1 − δs′Tt̄2} dξ ,

t̄1 = (0, 0, (I n̄× Ie3)Ts
′)T , t̄2 = (n̄1, n̄2, M̄)T ,

(10.15)

where we have used x̄′n̄2 − ȳ′n̄1 = IeT3 (s
′ × I n̄) = (I n̄ × Ie3)Ts

′. Note that in
both terms of the sum, Ḡ cancels with the substituted change of integration domain.
In the same way the external virtual work contributions (Eugster and Harsch, 2020,
(9.88)) can be expressed in the parameter domain as

δW ext =

∫ 1

0

δsTt̄Ḡ dξ +

2∑
i=1

δsTt̄i|ξ=ϕ(li) ,

t̄ = (n̄1, n̄2, M̄)T , t̄i = (n̄
i
1, n̄

i
2, M̄ i)T .

(10.16)

10.3.2 Euler–Bernoulli Beam

Also for the Euler–Bernoulli beam, the overlined expressions have to be inserted.
From (10.10) and the fact that the variation and the partial derivative with respect to
s can be interchanged, we get

r′ =
r̄′

Ḡ
, r′′ =

r̄′′ − r̄′G
Ḡ2

, δr′ =
δr̄′

Ḡ
, δr′′ =

δr̄′′ − δr̄′G
Ḡ2

. (10.17)

The kinematical quantities defined in (Eugster and Harsch, 2020, (9.95) and (9.99))
are of the form

g =
‖r̄′‖
Ḡ

=
ḡ

Ḡ
, θ′ =

r̄′⊥ · r̄′′
ḡ2Ḡ

=
θ̄′

Ḡ
, (10.18)

where for the second identity we have used the property a⊥ · a = 0 ∀a ∈ E3.
Carrying out an integration by substitution, we obtain the virtual work contribu-

tions of the internal forces (Eugster and Harsch, 2020, (9.102)) given in parameter
space
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δW int = −
∫ 1

0

{
Iδr̄

′T
(

I r̄
′N̄
ḡ

− M̄

ḡ2
[
2θ̄′I r̄′ + I r̄

′′⊥])
+ Iδr̄

′′T
I r̄

′⊥ M̄

ḡ2

}
dξ .

(10.19)

It is remarkable that all terms involving G cancel.
Next we can express the variation of the angle θ, its velocity and acceleration (Eu-

gster and Harsch, 2020, (9.99) and (9.100)) by

δθ =
r̄′⊥ · δr̄′

ḡ2
, θ̇ =

r̄′⊥ · ˙̄r′
ḡ2

, θ̈ =
r̄′⊥ · ¨̄r′

ḡ2
− 2θ̇r̄′ · ˙̄r′

ḡ2
. (10.20)

Inserting the above relations into (Eugster and Harsch, 2020, (9.104)), the virtual
work contributions of the inertia forces in parameter space are transformed to

δW dyn = −
∫ 1

0

{
Ī3

I r̄
′⊥T

Iδr̄
′

ḡ4

(
I r̄

′⊥T
I ¨̄r

′ − 2θ̇I r̄
′T

I ˙̄r
′
)

+ Āρ0Iδr̄
T
I ¨̄r

}
Ḡ dξ .

(10.21)

Finally, the virtual work contributions for the external forces (Eugster and Harsch,
2020, (9.103)) have to be expressed in parameter space. This can be done analogously
to the above procedure and yields

δW ext =

∫ 1

0

{
Iδr̄TI n̄+

I r̄
′⊥T

Iδr̄
′

ḡ2
M̄

}
Ḡ dξ

+
2∑

i=1

{
Iδr̄TI n̄i +

I r̄
′⊥T

Iδr̄
′

ḡ2
M̄ i

} ∣∣∣∣
ξ=ϕ(li)

.

(10.22)

10.3.3 Constraint Virtual Work Contributions

Next, also the virtual work contributions of the constraint forces are expressed
in parameter space, using the same procedure as above. The planar virtual work
contributions of the orthogonality constraint (Eugster and Harsch, 2020, (9.94)) are
expressed in parameter space

δW int
c,1 =

∫ 1

0

δσ̄2(s
′T

I d̄2) dξ ,

δW int
c,2 =

∫ 1

0

σ̄2{δs′TI d̄2 − δsTIe3(s
′T

I d̄1)} dξ .

(10.23)
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Accordingly, the virtual work contributions of the inextensibility constraint (Eugster
and Harsch, 2020, (9.97)) can be transformed to the integrals over the parameter
space given by

δW int
c,1 =

∫ 1

0

δσ̄1(ḡ − Ḡ) dξ , δW int
c,2 =

∫ 1

0

σ̄1
Iδr̄

′T
I r̄

′

ḡ
dξ . (10.24)

10.4 B-Spline Shape Functions

The excellent monograph of Piegl and Tiller (1997) gives a comprehensive intro-
duction to the topic. They introduce B-spline shape functions and B-spline curves,
together with a myriad of important properties. For this, the knot vector Ξ with its
elements ξi, i = 1, . . . ,m will be introduced as a non-decreasing sequence, i.e.,
ξi ≤ ξi+1. The total number of knots is determined by the chosen polynomial degree
p of the target B-spline curve and the total number n of curve sections aka elements.
It can be computed as m = n + 2p + 1. In the subsequent treatment we restrict
ourselves to

• open knot vectors, i.e., the multiplicity of the first and last knot is p+ 1
• knot vectors in the unit interval [0, 1]
• equally spaced, so called uniform knot vectors, i.e., Δξ = ξi+1 − ξi =

1
n for

i = p+1, . . . , n+p belonging to the interior of the knot vector

These restrictions lead to knot vectors of the form

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξm−p−1︸ ︷︷ ︸
n−1

, 1, . . . , 1︸ ︷︷ ︸
p+1

} . (10.25)

According to (Cox, 1972; de Boor, 1972; Piegl and Tiller, 1997) the ith of total
N = n+p B-spline shape functions is recursively defined as

N i
0(ξ) =

{
1 , ξ ∈ [ξi, ξi+1)

0 , ξ /∈ [ξi, ξi+1)
,

N i
p(ξ) =

ξ − ξi
ξi+p − ξi

N i
p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
N i+1

p−1(ξ) ,

(10.26)

where in the last line possibly arising quotients of the form 0
0 are defined as zero. In

Fig. 10.3 all non-zero cubic shape functions for a uniform open knot vector, built of
four elements, are shown.

The first derivative of a B-spline shape function can be computed from two lower
order B-spline shape functions as

d

dξ
N i

p(ξ) = N i
p,ξ(ξ) =

p

ξi+p − ξi
N i

p−1(ξ)−
p

ξi+p+1 − ξi+1
N i+1

p−1(ξ) . (10.27)



10 Finite Element Analysis of Planar Nonlinear Classical Beam Theories 131

0 0.25 0.5 0.75 1
0

0.5

1
χĪ2
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Fig. 10.3 Non-zero cubic B-spline shape functions N1
3 to N7

3 for a given uniform and open knot
vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} which builds n = 4 elements. The indicator
function χĪ2 of the second element, defined in (10.34), picks the corresponding cubic shape
functions N2

3 to N5
3 .

Denoting thekth derivative ofN i
p(ξ) by dk

dξk
N i

p(ξ), repeated differentiation of (10.27)
leads to the general formula

dk

dξk
N i

p(ξ) =
p

ξi+p − ξi

(
dk−1

dξk−1
N i

p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dξk−1
N i+1

p−1(ξ)

)
.

(10.28)

Another generalization computes the kth derivative of N i
p(ξ) by the use of the basis

functions N i
p−k, . . . , N

i+k
p−k, namely

dk

dξk
N i

p(ξ) =
p!

(p− k)!

k∑
j=0

ak,jN
i+j
p−k(ξ) ,

ak,k =

{
1 k = 0

ak−1,0

ξi+p−k+1−ξi
k �= 0

,

ak,j =

{
ak−1,0

ξi+p−k+1−ξi
j = 0

ak−1,j−ak−1,j−1

ξi+p+j−k+1−ξi+j
j = 1, . . . , k − 1

.

(10.29)

Some knot differences in the denominator of ak,j given in (10.29) can be zero,
the arising quotient •

0 is defined as zero in these cases.1

1 Piegl and Tiller (1997) present an efficient algorithm that is based on (10.29) and that computes
for a given knot value ξ the value of the B-spline shape functions together with all k = 1, . . . , p

non-zero derivatives. The pseudocode is given in (Piegl and Tiller, 1997, Chap. 2, p. 71, algorithm
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In the following some important properties of B-spline shape functions, presented
by Piegl and Tiller (1997), are listed.

P1 N i
0(ξ) is a step function, which is only non-zero in the half open interval

Īi = [ξi, ξi+1), the so called ith knot span.
P2 N i

p(ξ) = 0 for ξ outside the knot span, which is called the local support
property. Note that the knot vector contains m− 1 = n+ 2p intervals, but only
n of them are non-zero. These non-zero intervals are called element intervals
Īe = Īe+p = [ξe+p, ξe+p+1) and are addressed by the element number e = i−p.
Note that we distinguish the knot span and the element interval by using a
subscript and a superscript, respectively.

P3 For positive p the shape function N i
p(ξ) is a linear combination of two lower

order shape functions with polynomial degree p − 1. This leads to a truncated
triangular table which is exemplary depicted in Fig. 10.4 for B-spline shape
functions up to a polynomial degree of p = 2. The arrows denote the influence
of the current shape function on shape functions of higher polynomial degree.

N1
2 N2

2 N3
2

N1
1 N2

1 N3
1 N4

1

N1
0 N2

0 N3
0 N4

0 N5
0

Fig. 10.4 Truncated triangular table for B-spline shape functions up to a polynomial degree of
p = 2.

P4 For a given knot span, Īi = [ξi, ξi+1) at most p + 1 shape functions N i
p are

non-zero, namely the functions N i−p
p , . . . , N i

p. Using again the triangular table
depicted in Fig. 10.4, we recognize that on the third knot span Ī3 = [ξ3, ξ4), the
only non-zero zeroth-degree shape function is N3

0 . Hence, the only linear and
quadratic shape functions not being zero on Ī3 are N2

1 , N3
1 and N1

2 , N2
2 , N3

2 ,
respectively. In Fig. 10.4, the dashed arrows point from or to the non-zero shape
functions for the third knot span. In Fig. 10.3 the cubic shape functions for a knot
vector Ξ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} are visualized. This defines a
B-spline curve given by n = 4 elements. For the fifth knot span (second element
interval) Ī5 = Ī2 = [0.25, 0.5) solely four of the total seven shape functions are
non-zero.

P5 All shape functions are positive, i.e., N i
p(ξ) ≥ 0 for all i, p, ξ. This is called the

non-negativity property.
P6 Partition of unity, for all ξ ∈ [ξi, ξi+1) in an arbitrary knot span Īi = [ξi, ξi+1),

we have
∑i

j=i−p N
j
p (ξ) = 1.

A2.3). This algorithm can be vectorized easily in order to compute all shape functions and their
derivatives for a set of knot values.
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P7 In the interior of a knot span, (ξi, ξi+1), the B-spline curve is a polynomial of
degree p and thus there exist all derivativesN i

p(ξ). At a knot ξi, the shape function
N i

p(ξ) is p−k times continuously differentiable, where k is the multiplicity of the
knot.2 Hence, increasing the polynomial degree globally increases the continuity
of the B-spline curve.

For uniform, open knot vectors Ξ ∈ [0, 1], on which we confined ourselves in the
beginning of this section, a pth degree B-spline curve is defined as

c(ξ, t) =

N∑
i=1

N i
p(ξ)q

i(t) , 0 ≤ ξ < 1 , (10.30)

where the tuple qi are denoted as control points. In the sense of a Galerkin method
in mechanics the N control points qi are called generalized coordinates. The B-
spline shape functions N i

p(ξ) are computed according to (10.26). A computational
algorithm for evaluating (10.30) is given in (Piegl and Tiller, 1997, Chap. 3, p. 82,
algorithm A3.1).

Computing the kth derivative of c(ξ, t), namely dk

dξk
c(ξ, t), is done analogously

to (10.30) and reads

dk

dξk
c(ξ) =

N∑
i=1

dk

dξk
N i

p(ξ)q
i , 0 ≤ ξ < 1 . (10.31)

The derivatives of the shape functions have to be computed by (10.28) or (10.29). A
computational algorithm for the evaluation of (10.31) is given in (Piegl and Tiller,
1997, Chap. 3, p. 93, algorithm A3.2).

10.5 Discrete Kinematics, Semidiscrete Virtual Work, and
Equations of Motion

In the subsequent, treatment the continuous fields s and I r̄ will be approximated by
pth order B-spline curves. Thus the infinite-dimensional beam models are projected
to finite dimensional discretized systems. Depending on the approximated field, the
ith control point qi is given by the tuples qi(t) = (xi(t), yi(t), θi(t))T ∈ R3 or
qi(t) = (xi(t), yi(t))T ∈ R2.

2 This property is of crucial importance for the discretization of the presented Euler–Bernoulli beam.
The evaluation of the internal virtual work contributions require the existence of the integral (10.19).
Since this integral includes terms of second derivative, C1-continuity of the chosen interpolation
polynomial is required. For polynomial degrees p ≥ 2 this continuity requirement is unconditionally
fulfilled.
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10.5.1 Timoshenko Beam

The generalized coordinates are collected in the tuple of generalized coordinates

q = (x1, . . . , xN , y1, . . . , yN , θ1, . . . , θN )T ∈ R3N . (10.32)

Thus, the generalized state tuple (10.13) can be approximated by the pth order
B-spline curve

s(ξ, t) ≈ c
(
ξ,q(t)

)
=

N∑
i=1

N i
p(ξ)q

i(t) . (10.33)

In a Galerkin method, it is convenient to evaluate the kinematic quantities in an
element-wise setting. As mentioned in P4, for a given element e and its corresponding
element interval Īe = [ξe+p, ξe+p+1), several B-spline shape functions are non-zero.
Thus, we have to partly consider multiple shape functions. In order to extract the
correct parts of the shape functions and to not consider the same parts multiple times,
the indicator function

χĪe : R → R , χĪe(ξ) =

{
1 , ξ ∈ Īe

0 , ξ /∈ Īe
(10.34)

is introduced. See Fig. 10.3 for a graphical visualization. With the above definition
at hand, (10.33) can be written as

c
(
ξ,q(t)

)
=

n∑
e=1

N∑
i=1

χĪe(ξ)N i
p(ξ)q

i(t) . (10.35)

As written in P4, for a given knot span Īi = Īi−p, only p + 1 B-spline shape
functions are non-zero, namely N i−p

p , . . . , N i
p. Thus instead of summing over all N

shape functions, we can equivalently write

c
(
ξ,q(t)

)
=

n∑
e=1

e+p∑
i=e

χĪe(ξ)N i
p(ξ)q

i(t) , (10.36)

where we have shifted the shape function index using the relation between knot span
and element number given by i = e + p. The inner sum can be computed by the
matrix tuple product

c
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)ce , ce = Ne
p(ξ)q

e(t) . (10.37)

It is composed of the element matrix of the B-spline shape functionsNe
p ∈ R3×3(p+1)

and the element generalized coordinate tuple qe ∈ R3(p+1), each of which is defined
as
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Ne
p =

⎛⎝Ne
p Ne+1

p . . . Ne+p
p 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 Ne
p Ne+1

p . . . Ne+p
p 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 Ne
p Ne+1

p . . . Ne+p
p

⎞⎠ ,

qe = (xe, xe+1, . . . , xe+p, ye, ye+1, . . . , ye+p, θe, θe+1, . . . , θe+p)T . (10.38)

Using the Boolean allocation matrix Ce ∈ R3(p+1)×3N , the relationship of the
element coordinates qe and the global nodal coordinates q is given by

qe = Ceq . (10.39)

Let the generalized velocities q̇, generalized accelerations q̈ and the first variation
of the generalized coordinates δq be of the same form as (10.32). By transferring
the relation between the element coordinates and the global ones from (10.39), we
are able to approximate the first and second spatial derivatives, the acceleration, as
well as the variation of the generalized state tuple by

s′(ξ, t) ≈ c′
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)Ne′
p (ξ)C

eq(t) ,

s′′(ξ, t) ≈ c′′
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)Ne′′
p (ξ)Ceq(t) ,

s̈(ξ, t) ≈ c̈
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)Ne
p(ξ)C

eq̈(t) ,

δs(ξ, t) ≈ δc
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)Ne
p(ξ)C

eδq(t) .

(10.40)

Furthermore, we can substitute the approximations for the variation and acceleration
of the generalized state tuple given in (10.40), into the planar virtual work of the
inertia contributions in parameter space (10.14). Recapitulating that the characteristic
function is non-zero only if ξ ∈ Īe, either one of the characteristic functions vanishes
if the two arising sums have not the same index, thus the product of two sums reduces
to a single one and we get

δW dyn ≈ −
∫ 1

0

n∑
e=1

χĪeδqTCeTNe
p
TΘ̄Ne

pC
eq̈Ḡ dξ . (10.41)

For a given element e, the characteristic function extracts the element interval Īe =
[ξe, ξe+1) from the parameter space Ī = [0, 1]. Thus, the integral over the whole
parameter space Ī reduces to an integral over the element interval Īe. Accordingly,
we obtain after minor rearrangements

δW dyn ≈ −δqT

n∑
e=1

CeT

∫ ξe+1

ξe

NeT
p Θ̄Ne

pḠ dξ Ceq̈ = −δqTMq̈ . (10.42)
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The global and elemental mass matrices M and Me, respectively, are obtained as

M =

n∑
e=1

CeTMeCe , Me =

∫ ξe+1

ξe

NeT
p Θ̄Ne

pḠ dξ . (10.43)

Further we used that δq and q̈ are independent of ξ and therefore can be pulled out
the integral.

Accordingly, the internal virtual work contributions in the parameter space, given
in (10.15), can be approximated by

δW int ≈ δqTf int , f int =

n∑
e=1

CeTf int,e ,

f int,e =

∫ ξe+1

ξe

{
NeT

p t̄1 −Ne′T
p t̄2

}
dξ ,

(10.44)

where we have introduced the global internal forces f int and their elemental contri-
butions f int,e. With some straightforward computations, the internal stiffness matrix
K = ∂f int

∂q can be computed as

K =
n∑

e=1

CeTKeCe , Ke =

∫ ξe+1

ξe

{
NeT

p

∂t̄1
∂qe

−Ne′T
p

∂t̄2
∂qe

}
dξ ,

∂t̄1
∂qe

=

(
∂0

∂qe
,
∂0

∂qe
, (I n̄× Ie3)TN

e′
p + (Ie3 × ce′)T

∂I n̄

∂qe

)T

,

∂t̄2
∂qe

=

(
∂n̄1

∂qe
,
∂n̄2

∂qe
,
∂M̄

∂qe

)T

.

(10.45)

Using the same procedure as for the inertia and internal virtual work contributions,
we obtain the discretized form of the external virtual work contributions in parameter
space (10.16) given by

δW ext ≈ δqT(f ext +

2∑
i=1

f exti ) , f ext =

n∑
e=1

CeTf ext,e ,

f ext,e =

∫ ξe+1

ξe

NeT
p t̄Ḡ dξ , f exti =

n∑
e=1

CeTχĪeNeT
p t̄i|ξ=ϕ(li) .

(10.46)

10.5.2 Euler–Bernoulli Beam

For the discretization of the Euler–Bernoulli beam, only the first 2N generalized
coordinates of (10.32) are collected in a new generalized coordinate tuple



10 Finite Element Analysis of Planar Nonlinear Classical Beam Theories 137

q = (x1, . . . , xN , y1, . . . , yN )T ∈ R2N . (10.47)

Similarly to (10.37), the components of the position vector given in the ei-basis can
be approximated by

I r̄(ξ, t) ≈ c
(
ξ,q(t)

)
=

n∑
e=1

χĪe(ξ)ce , ce = Ne
p(ξ)q

e(t) . (10.48)

The element matrix of the B-spline shape functionsNe
p ∈ R2×2(p+1) and the element

generalized coordinate tuple qe ∈ R2(p+1) are defined as

Ne
p =

(
Ne

p Ne+1
p . . . Ne+p

p 0 0 . . . 0
0 0 . . . 0 Ne

p Ne+1
p . . . Ne+p

p

)
,

qe = (xe, xe+1, . . . , xe+p, ye, ye+1, . . . , ye+p)T .

(10.49)

Using a new Boolean allocation matrix Ce ∈ R2(p+1)×2N , the relationship of the
element coordinates qe and global nodal coordinates q is again given by qe = Ceq.
Inserting the approximations for all required kinematic quantities into (10.21), we
get the approximated virtual work contributions of the inertia forces

δW dyn ≈ −δqTMq̈+ δqTh , M =

n∑
e=1

CeTMeCe , h =

n∑
e=1

CeThe ,

Me =

∫ ξe+1

ξe

(
Āρ0

NeT
p Ne

p +
Ī3
ḡ4

(Ne′T
p ce′⊥)(ce′⊥TNe′

p )

)
Ḡ dξ ,

he =

∫ ξe+1

ξe

2θ̇Ī3
ḡ4

(Ne′T
p ce′⊥)(ce′Tċe′)Ḡ dξ .

(10.50)
Note, that in addition to the mass matrix M, a gyroscopic force h and its elemental
counterpart he appears. Both h and he are quadratic in q̇ and q̇e, respectively.

Accordingly, the internal virtual work contributions (10.19) can be approximated
by

δW int ≈ δqTf int , f int =

n∑
e=1

CeTf int,e ,

f int,e = −
∫ ξe+1

ξe

{
Ne′T

p

(
ce′N̄
ḡ

− M̄

ḡ2
[
2θ̄′ce′ + ce′′⊥

])
+Ne′′T

p ce′⊥
M̄

ḡ2

}
dξ .

(10.51)

Using basic rules of calculus, the stiffness matrix can be derived as
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K =
∂f int

∂q
=

n∑
e=1

CeTKeCe ,

Ke =

∫ ξe+1

ξe

{
Ne′′T

p

(
k2

∂ce′⊥

∂qe
+ ce′⊥

∂k2
∂qe

)
+Ne′T

p

[
∂k1

∂qe
− (k3 + ce′′⊥

) ∂k2
∂qe

− k2

(
∂k3

∂qe
+

∂ce′′⊥

∂qe

)]}
dξ .

(10.52)
The introduced auxiliary functions and their partial derivatives with respect to the
generalized coordinates are given by

k1 =
ce′N̄
ḡ

,
∂k1

∂qe
= −k1

ḡ

∂ḡ

∂qe
+

1

ḡ

(
N̄Ne′

p + ce′
∂N̄

∂qe

)
,

k2 =
M̄

ḡ2
,

∂k2
∂qe

= −2
k2
ḡ

∂ḡ

∂qe
+

1

ḡ2
∂M̄

∂qe
,

k3 = 2θ̄′ce′ ,
∂k3

∂qe
= 2

(
ce′

∂θ̄′

∂qe
+ θ̄′Ne′

p

)
,

∂ḡ

∂qe
=

ce′

ḡ
Ne′

p ,
∂θ̄′

∂qe
=

1

ḡ2

(
ce′⊥TNe′′

p − ce′′T
∂ce′⊥

∂qe

)
− 2

θ̄′

ḡ

∂ḡ

∂qe
.

(10.53)

Finally, the external virtual work contributions in parameter space given in (10.22)
can be discretized by

δW ext ≈ δqT(f ext +

2∑
i=1

f exti ) , f ext =

n∑
e=1

CeTf ext,e ,

f ext,e =

∫ ξe+1

ξe

{
NeT

p n̄+Ne′T
p ce′⊥

M̄

ḡ2

}
Ḡ dξ ,

f exti =
n∑

e=1

CeTχĪe

{
NeT

p n̄i +Ne′T
p ce′⊥

M̄ i

ḡ2

}∣∣∣∣
ξ=ϕ(li)

.

(10.54)

10.5.3 Constraint Forces

In addition to the discretization of the position and rotation fields, the contributions
of the constraint forces (10.23) and (10.24) have to be discretized. This is done
by approximating the Lagrange multiplier fields σ̄1 and σ̄2 using B-spline curves
in accordance with (10.37), i.e., the same element distribution for the Lagrange
multiplier fields and the kinematic quantities is chosen. Two new sets of generalized
coordinates can be introduced

qσ1
= (σ̄1

1 , . . . , σ̄
N
1 )T ∈ RN , qσ2

= (σ̄1
2 , . . . , σ̄

N
2 )T ∈ RN . (10.55)
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Thus for k = 1, 2, both Lagrange multipliers can be approximated by the B-spline
curve of polynomial degree pσk

given as

σ̄k(ξ, t) ≈ ck
(
ξ,qσk

(t)
)
=

n∑
e=1

χĪe(ξ)cek ,

cek = Ne
pσk

(ξ)qe
σk
(t) , qe

σk
= Ce

σk
qσk

.

(10.56)

The element tuple of the B-spline shape functions Ne
pσk

∈ R1×pσk
+1 and the

element generalized coordinate tuple qe
σk

∈ Rpσk
+1 are defined as

Ne
pσk

= (Ne
pσk

, Ne+1
pσk

, . . . , N
e+pσk
pσk

) , qe
σk

= (σ̄e
k, σ̄

e+1
k , . . . , σ̄

e+pσk

k )T .
(10.57)

The question arises, which polynomial degree pσk
for the approximation of the La-

grange multipliers is compatible with the polynomial degree p of the approximated
kinematic quantities. Without further investigations, we chose the polynomial de-
gree pσk

= p− 1 in the subsequent treatment. Numerical experiments have shown,
that such a polynomial degree leads to good convergence and accuracy of the con-
straint beam models. By substituting the approximation of the Lagrange multiplier
fields given in (10.56) into the constraint virtual work contributions (10.23), the
approximated version reads

δW int
c,1 = δqT

σ2
gσ2

, gσ2
=

n∑
e=1

CeT
σ2

ge
σ2

, ge
σ2

=

∫ ξe+1

ξe

NeT
pσ2

(ce′TI d̄2) dξ ,

δW int
c,2 = δqTf intc = δqTWσ2

qσ2
, Wσ2

=

n∑
e=1

CeTWe
σ2
Ce

σ2
,

We
σ2

=

∫ ξe+1

ξe

{
Ne′T

p I d̄2 −NeT
p Ie3(c

e′T
I d̄1)

}
Ne

pσ2
dξ .

(10.58)
From the above we can identify the generalized force directions by the par-
tial derivative of the discretized constraint function, i.e., WT

σ2
= ∂gσ2/∂q and

WeT
σ2

= ∂ge
σ2

/∂qe.
For the inextensibility condition introduced in (10.24), the same steps as above

can be performed which yields

δW int
c,1 = δqT

σ1
gσ1

, gσ1
=

n∑
e=1

CeT
σ1

ge
σ1

, ge
σ1

=

∫ ξe+1

ξe

NeT
pσ1

(ḡ − Ḡ) dξ ,

δW int
c,2 = δqTf intc = δqTWσ1

qσ1
, Wσ1

=

n∑
e=1

CeTWe
σ1
Ce

σ1
,

We
σ1

=

∫ ξe+1

ξe

Ne′T
p

ce′

ḡ
Ne

pσ1
dξ .

(10.59)
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Again, the generalized force directions can be identified with the partial derivative
of the discretized constraint functions with respect to the generalized coordinates,
i.e. WT

σ1
= ∂gσ1

/∂q and WeT
σ1

= ∂ge
σ1

/∂qe.

10.5.4 Equations of Motion and Bilateral Constraints

The principle of virtual work, stated in (Eugster and Harsch, 2020, (9.56)), can be
formulated in a discrete way by inserting the discrete virtual work contributions pre-
sented in the previous section. The total virtual work has to vanish for all admissible
variations δq of the generalized coordinates and for any instant of time t, i.e.

δW = δW dyn + δW int + δW ext = 0 , ∀δq, ∀t . (10.60)

Substituting the generalized forces introduced in Section 10.5.1 and demanding it to
hold for arbitrary variations δq for all time t, we get

−δqT
(
M(q)q̈− f int(q)− f ext(q, q̇, t)

)
= 0 , ∀δq, ∀t

⇒ M(q)q̈− f int(q)− f ext(q, q̇, t) = 0 ,
(10.61)

which are the semidiscrete equations of motion of the planar Timoshenko beam,
which hold for all time instants t.

Similarly, the semidiscrete equations of motion of the planar Euler–Bernoulli
beam are obtained by substituting the discrete counterparts of the virtual work
contributions given in Section 10.5.2 into the principle of virtual work, which leads
to

M(q)q̈− h(q, q̇)− f int(q)− f ext(q, q̇, t) = 0 . (10.62)

Furthermore, the virtual work contributions of the constraint forces can be added
to both discrete virtual work principles given above. The constrained Euler–Bernoulli
beam is obtained by incorporating the angle constraint (10.58) in the total virtual
work of the Timoshenko beam. Further the inextensibility condition (10.59) can be
added, which yields the constrained inextensible Euler–Bernoulli beam formulation.
The discretized minimal formulated Euler–Bernoulli beam can be made inextensible
by the very same constraint condition. Next, depending on the desired constrained
beam formulation, the generalized vector of constraints gσ1

, respectively gσ2
are

named gσ when only one constraint condition is applied. Or both constraints gσ1

and gσ2
are stacked in the tuple gσ . In an analogous fashion, the corresponding

generalized coordinates tuple qσ is built. Similarly, one of the generalized force
directions Wσ1 and Wσ2 is named Wσ when only a single set of constraints is
required, or we can assemble Wσ1

and Wσ2
in a matrix Wσ , when both sets of

constraints are imposed. Thus, independent of the chosen set of constraints, the
equations of motion for the constrained beam models are given by
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M(q)q̈− f int(q)− f ext(q, q̇, t)−Wσ(q)qσ = 0

gσ(q) = 0 .
(10.63)

It is convenient to introduce another set of perfect bilateral constraints g(q, t) ∈
Rf which enforce the prescribed kinematic boundary conditions. Their associated
generalized force directions are WT = ∂g/∂q with W ∈ R3N×f or W ∈ R2N×f

for the Timoshenko and Euler–Bernoulli beam model, respectively. The correspond-
ing tuple of Lagrange multipliers is λ ∈ Rf . The discrete equations of motion
are extended with the constraint force contributions W(q, t)λ, together with the
additional constraint conditions g(q, t) and read

M(q)q̈− f int(q)− f ext(q, q̇, t)−Wσ(q)qσ −W(q, t)λ = 0

gσ(q) = 0

g(q, t) = 0 .

(10.64)

They have to be solved for the unknowns {q,qσ,λ}. In case of the Euler–Bernoulli
beam model the gyroscopic force vector h has to subtracted from the left-hand side
of the first equality in (10.63) and (10.64).

Both (10.63) and (10.64) are sets of differential algebraic equations (DAE) of in-
dex 3. A general introduction to DAE solvers is given in Hairer and Wanner (2002),
including the standard methods like Shake, Rattle and backward differentiation for-
mula (BDF). In structural dynamics the generalized-α method is a well-established
solver, not only because of its simple implementation, but also because of its ability
to eliminate the contribution of non-physical high-frequency modes. Variants of the
generalized α-method for constraint mechanical systems are introduced in (Lunk and
Simeon, 2006; Arnold and Brüls, 2007; Jay and Negrut, 2009). In order to include
unilateral constraints (Leine and van de Wouw, 2007), a more recent variant of the
generalized-α method is proposed by Brüls et al (2014, 2018).

The static equilibrium problem is obtained by omitting the inertia terms and
allowing the external forces and the bilateral constraints to depend only on the
generalized coordinates q. This leads to the static residual equation

R(q,qσ,λ) =
(
f int(q) + f ext(q) +Wσ(q)qσ +W(q)λ, gσ(q), g(q)

)T
.

(10.65)
Application of a truncated Taylor-series expansion of (10.65) around a given point
{q0,qσ0 ,λ0} yields a Newton–Raphson type iteration scheme, which solves for the
unknowns {q,qσ,λ}.

Finally, the arising element integrals over the domain Īe = [ξe, ξe+1] in the
individual parts of the equations of motion have to be computed. This is done
by using a numerical integration scheme. The basic idea of numerical quadrature
is the approximation of the integral

∫ b

a
f(ξ) dξ in a given interval I = [a, b] by

evaluating the function f at some discrete values ξi ∈ I and multiplication with the
so-called integration weights wi. Since numerical quadrature rules are well known
in literature, the reader is referred to basic textbooks about numerical analysis,
e.g., (Stoer et al, 2002, Chap. 3) and (Quarteroni et al, 2000, Chap. 9-10). The
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numerical examples, presented in the subsequent section are computed using the
Gauss-Legendre quadrature rule, whereby the number of quadrature points within
one element are chosen such that they equal the polynomial degree p of the B-spline
curves.

10.6 Numerical Examples

The subsequent section deals with the performed numerical examples. At first, we
present some static benchmark problems that show the differences of the finite
element implementations of all beam models and their numerical accuracy with
respect to analytical solutions. Afterwards more advanced problems are investigated,
including buckling problems, which are compared to numerical and semi-analytical
solutions found in literature. Finally, the natural frequencies of the presented Euler–
Bernoulli beam formulation will be compared to the analytically derived ones.

All presented beam models are implemented in an in-house object oriented multi-
body dynamics code written in Python. The data found in literature is digitalized
using the amazing Webplotdigitizer tool developed by Rohatgi (2019).

10.6.1 Pure Bending of a Cantilever Beam

In the first example a straight beam of length L = 2π, axial stiffness E1 = 5, shear
stiffness E2 = 1, and bending stiffness F3 = 2 is subjected to a concentrated end
couple M̄2 = 2πF3/L. The exact solution for this problem is given by a closed circle
of radius r = 1. This static boundary condition (pure bending) leads to a homogenous
flexural deformation. There should be neither extensional nor shear effects, thus we
expect all beam models leading to the very same solution. By regarding the computed
configurations depicted in Fig. 10.5, this expectation has come true.

Next, the convergence behavior of all five presented beam formulations were in-
vestigated, namely the Timoshenko beam (T1), the Euler–Bernoulli beam obtained
by adding the corresponding constraint (T2), the inextensible Euler–Bernoulli beam
given by additionally adding the inextensibility condition (T3), the minimal for-
mulation of the Euler–Bernoulli beam (E1) and the inextensible Euler–Bernoulli
beam obtained by adding the corresponding constraint condition (E2). All beam
formulations presented in the previous sections were computed with different num-
ber of elements n ∈ {8, 16, 32, 64, 128} (h-refinement) and polynomial degrees
p ∈ {2, 3, 5} (p-refinement). The Lagrange multiplier fields for the constrained
beam models were discretized with B-splines of polynomial degree pσk

= p − 1.
Further information regarding the different refinement strategies, including combi-
nations of h-and p-refinement, the so-called k-refinement, can be found in (Cottrell
et al, 2009; Greco and Cuomo, 2013). For each refinement level, 50 iterations of
a force controlled Newton–Raphson method were performed using a convergence
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Fig. 10.5 Same configurations for all presented beam models with load increments
λ ∈ {0, 0.25, 0.5, 0.75, 1}.

tolerance of 10−12 with respect to the maximum absolute error of the static resid-
ual (10.65). Let e be the Euclidean error of the point of applied couple with respect
to the analytical solution, given by the origin. In Fig. 10.6, the normalized error
e/L is depicted. By increasing the polynomial degree or the number of used finite
elements, the error decreases. Two more remarkable observations can be made. The
minimal formulations of the Timoshenko and Euler–Bernoulli beam led to the same
errors as their constrained counterparts. This is due to the absence of axial and
shear deformations in this problem. Thus, the constraints have no influence on the
convergence behavior. For the finest discretization (n = 128 and p = 5), all beam
models converge to an error of O(10−12), which coincides with the given tolerance
of the underlying Newton–Raphson scheme.

Henceforth, we restrict the presentation to the three kinematically different beam
models. For computational efficiency the models with the smallest number of degrees
of freedom are chosen. These are the Timoshenko beam model (T1), the minimal
formulation of the Euler–Bernoulli beam (E1) and its inextensible version (E2).

10.6.2 Cantilever Beam Subjected to Constant End Load

Let us consider an initially straight beam of length L = 2π, axial stiffness E1 = 5,
shear stiffness E2 = 1, and bending stiffness F3 = 2 which is subjected to a constant
end load in negative vertical direction. For the inextensible Euler–Bernoulli beam,
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Fig. 10.6 Normalized Euclidean error of the point of applied couple with respect to the analytical
solution, given by the origin, for all different beam models using different levels of refinement.

this kind of problem is solved analytically using the first and second elliptic integrals,
defined as

F (θ, k) =

∫ θ

0

(1− k2 sin2 θ̃)−
1
2 dθ̃ , E(θ, k) =

∫ θ

0

(1− k2 sin2 θ̃)
1
2 dθ̃ .

(10.66)
Byrd and Friedman (1954) give a general introduction to elliptic integrals. Let

IF = −P Ie2 , P =
(α
L

)2
F3 , (10.67)

be an external point force at the beam’s end s = L depending on a force parameter
α2. Bisshopp and Drucker (1945) derived the solution for the horizontal and vertical
deflection of the cantilever beam in terms of the elliptic integrals given in (10.66),
i.e.,

x(L) =
L
√
2

α

√
sinφ0 , sinφ0 = 2k2 − 1 ,

y(L) = L

(
1− 2

α

[
E(π/2, k)− E(θ1, k)

])
, sin θ1 =

√
2

2k
.

(10.68)
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The deflections solely depend on the parameter k. Bisshopp and Drucker (1945)
showed that the inextensibility condition leads to

α = F (π/2, k)− F (θ1, k) . (10.69)

By using a root-finding method, e.g., a bisection method, for a given load value
α2, the corresponding k value can be obtained. This completely determines the
displacement of the beam tip of the inextensible Euler–Bernoulli beam.

For the discretization of the used finite element models, n = 20 quadratic B-
spline elements (p = 2, pσ1

= 1) were used. The numerical solution was obtained
by application of a load controlled Newton–Raphson method with 10 load steps and
a convergence tolerance of 10−8 with respect to the maximum absolute error of the
static residual (10.65).

In Fig. 10.7, the configurations for the different beam models are compared with
the solution found by using elliptic integrals. For the inextensible Euler–Bernoulli
beam model all configurations are in excellent accordance with the elliptic integral
solution. The Euler–Bernoulli beam model leads to the same curvature but due to
its extensibility the end points do not coincide with the elliptic integral solution.
For the Timoshenko beam additionally shear deformation is allowed. Thus also the
curvatures do not coincide with those of the inextensible Euler–Bernoulli beam
solutions.

In Fig. 10.8, the normalized horizontal and vertical displacements given by δ =
−y(L)/L and Δ = x(L)/L are depicted for given load parameters α2. It can
be observed that the inextensible Euler–Bernoulli beam model can reproduce the
results obtained by using elliptic integrals. The Timoshenko and Euler–Bernoulli
beam models lead to slightly different results, due to presence of extensional and
shear deformations.

10.6.3 Cantilever Beam Subject to Follower End Load

In this example the large deflection of a cantilever beam of length L = 1, axial
stiffness E1 = EA (E = 2100, A = 20 · 10−4), shear stiffness E2 = GA (G =
E/(2 + 2ν), ν = 0.3), flexural stiffness F3 = EI (I = 1, 667 · 10−8) under non-
conservative transverse force is investigated. This problem was examined by (Argyris
and Symeonidis, 1981; Simo and Vu-Quoc, 1986). The beam is clamped on the left-
hand side and on the right-hand side a transverse follower force F with ||F|| =
λ3 · 10−3 is applied. The force is applied perpendicular to the beam tip. The angle
between the free end and the applied force thus always remains π/2.

For the discretization of the used finite element models, n = 20 quadratic B-
spline elements (p = 2, pσ1

= 1) were used. The numerical solution was obtained
by application of a load controlled Newton–Raphson method with 100 load steps
and a convergence tolerance of 10−8 with respect to the maximum absolute error of
the static residual (10.65).
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Fig. 10.7 Configurations for different load parameters α2 ∈ {0, 1
9
, 3
9
, 5
9
, 1}. The Timoshenko

beam is depicted by dashed lines, the Euler–Bernoulli beam by dashdotted lines and the
inextensible Euler–Bernoulli beam model by solid lines. The elliptic integral solutions given
in Bisshopp and Drucker (1945) are indicated by red crosses.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Δ = x(L)

L

δ = −y(L)

L

δ, Δ

α
2

Fig. 10.8 Force displacement curves for the cantilever beam. The analytical solutions using elliptic
integrals are depicted by red bullets and squares for the δ and Δ values, respectively. The finite
element solutions of the Timoshenko beam are depicted by solid lines, the Euler–Bernoulli beam
by dashed lines and the inextensible Euler–Bernoulli beam model by dashdotted lines.
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For small load increments, the configurations of the different beam formulations,
depicted in Fig 10.9, can’t be distinguished. For increasing load increments, the
configurations obtained by the Timoshenko beam model differ from the ones obtained
by the two Euler–Bernoulli beams. The effect of the inextensibility can not be
recognized.

In Fig. 10.10 the load deflection curve is compared with the results obtained
by Argyris and Symeonidis (1981). There is a good overall accordance. For the loads
betweenλ = 0.1 andλ = 0.2 the horizontal displacement curves are separated for all
beam models. In contrast to Argyris and Symeonidis (1981), larger load increments
were computed, in order to see slightly differences of the Timoshenko and Euler–
Bernoulli beam models. Again the inextensible Euler–Bernoulli beam can not be
distinguished from the extensible one.
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Fig. 10.9 Deformed configurations of the different beam models under a non-conservative follower
force with load parameters λ ∈ {

1
7
, 2
7
, 3
7
, 4
7
, 6
7
, 1
}

. The Timoshenko beam model is depicted by
solid lines, the Euler–Bernoulli beam by dashed lines and the inextensible Euler–Bernoulli beam
model by dashdotted lines.

10.6.4 Clamped-Hinged Circular Arch Subject to Point Load

In this example, we investigated the buckling and post-buckling behavior of a circular
arch of radiusR = 100 clamped on the right end and hinged on the left, see Fig. 10.11.
This problem is also discussed in (Dadeppo and Schmidt, 1975; Simo and Vu-Quoc,
1986), both of which are using an inextensible Euler–Bernoulli beam model, either
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Fig. 10.10 Load deflection curves for the horizontal displacement ux = x(L)− L and vertical
displacement uy = −y(L) of the point of applied load. The Timoshenko beam model is depicted
by solid lines, the Euler–Bernoulli beam with dashed lines and the inextensible Euler–Bernoulli
beam model by dashdotted lines. The results found in Argyris and Symeonidis (1981) are depicted
by red crosses.

by direct formulation or by utilizing a penalty approach, for their investigations.
The inner angle of the arc is 2α = 205◦. The arch is represented by two beams of
axial stiffness E1 = 50, shear stiffness E2 = 10 and flexural stiffness F3 = 1000.
The beams are connected by the use of bilateral constraints that guarantee the same
position and angle at the connection point. Both beams are of undeformed length
L1 = L2 = 100 180◦

α . A constant external force IF = −λIe2 is applied at the crown
of the circle.

B-spline shape functions are not able to represent perfect archs. In order to obtain
a pre-curved reference configuration an optimization technique was developed. Let
{pi}, i = 1, . . . k be a given set of points pi ∈ R2, which describe the target curve
of the reference configuration. Next a set of evaluation points ξi is collected in a
knot vector Ξ ∈ Rf . There are several possibilities found in literature (Piegl and
Tiller, 1997, Chap. 9.2, p. 364). The most simple method is choosing equally spaced
knots in the interval [0, 1]. Next a pth order B-spline curve divided into n elements,
which depends on the chosen polynomial degree p and the N = n + p generalized
coordinates {qj}, j = 1, . . . , N , can be introduced. The generalized coordinates
qj ∈ R2 are collected in a tuple q ∈ RN . Solving the optimization problem

K =
k∑

i=1

1

2
‖c(ξi,q)− pi‖2 → min , (10.70)
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leads to an optimal fit of the B-spline curve c, defined in (10.48), to the points
pi in a least squares sense. The necessary condition for solving the minimization
problem (10.70) reads ∂K/∂q = 0. Inserting the definition of the B-spline curve
given in (10.48) and after carrying out minor rearrangements, we obtain the linear
system of equations

Aq = b , A =

k∑
i=1

n∑
e=1

χĪe(ξi)C
eTNeT

p (ξi)N
e
p(ξi)C

e ,

b =

k∑
i=1

n∑
e=1

χĪe(ξi)C
eTNeT

p (ξi)pi .

(10.71)

This can be solved for the unknown generalized coordinates q of the reference
configuration. As a requirement for A to be well-conditioned, every knot span must
contain at least one ξi, see (Piegl and Tiller, 1997, Chap. 9.4.1, p. 412) and (de Boor,
1978, Chap. 14.4, p. 223).

In order to obtain the B-spline curve representing the angle, i.e., IeT3 c(ξ,q), with
c from (10.37), in a second step an analogous minimization problem has to be solved.
The angle of the target curve can be computed by θ̄i = arctan(ȳ′(ξi,q)/x̄′(ξi,q)).
The values for x̄′ and ȳ′ are obtained as the first and second component of the B-spline
curve’s derivative c′ given in (10.70). The new minimization problem reads

K∗ =

k∑
i=1

1

2
‖IeT3 c(ξi,q)− θ̄i‖2 → min . (10.72)

In the discretization, presented in the previous section, we restricted ourselves
to open knot vectors, thus we had to ensure that the first and last point p1 and pk,
respectively exactly match with the generalized coordinatesq1 andqN . Analogously,
the angles have to coincide with angles of the target curve. This was obtained by
additionally imposing constraints onto (10.70) and (10.72). These constraints are
met by extending the system with a Lagrange multiplier method, see (Piegl and
Tiller, 1997, Chap. 9.4.2).

In order to obtain post-buckling solutions, i.e., configurations after exceeding
a critical force value, a numerical path following algorithm was used instead of
the classical Newton–Raphson method. The most simple methods are the so-called
linear arc length methods. The first solution method was published by Riks (1979),
followed by others, e.g., Crisfield (1981). A general introduction to the topic of path-
following and arc length methods can be found in Crisfield (1991). In order to use
these solvers, together with bilateral constraints, some modifications are required.
The basic ideas are sketched below. First, in contrast to a load incremented solution
technique, the load parameter λ becomes an additional degree of freedom. Thus,
one additional equation has to be found, in order to close the static equilibrium
problem. This is done by introducing a new scalar function f(q, λ), limiting the
incremental displacements. As proposed by Crisfield (1991) the simple function
f(q, λ) = (q − q0)T(q − q0) − Δs2, with q0 being the last converged set of
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generalized coordinates lying on the equilibrium path andΔs some given incremental
length leads to good convergence. Next the extended residual equation

R(q,qσ,λ, λ) =

⎛⎜⎜⎝
f int(q) + λf ext(q) +Wσ(q)qσ +W(q)λ

gσ(q)
g(q)

f(q, λ)

⎞⎟⎟⎠ (10.73)

has to be linearized around the last converged set of generalized coordinates, i.e.,
around {q0,qσ0,λ0, λ0}. This directly yields the modified Newton–Raphson itera-
tion scheme. The choice of a predictor solution, in the beginning of each increment,
has to be made with special care, see Crisfield (1991) for an extensive discussion.

In the present example each of the two beam finite element models was build
by using n = 20 quadratic B-spline elements (p = 2, pσ1 = 1). The numerical
solution was obtained by using the linear arc length solver presented above with an
incremental length Δs = 0.08, together with a convergence tolerance of 10−6 with
respect to the maximum absolute error of the extended residual (10.73).

In Fig. 10.11, five pre- and post-buckling configurations of the different beam
models are depicted, where the post-buckling configurations are forming a loop. In
contrast to Dadeppo and Schmidt (1975), the post-buckling configurations are also
computed. It can be seen that for increasing load parameters the three beam models
lead to slightly different configurations. The Timoshenko beam, as the softest beam,
yields the largest deflection for λ = 1. The Euler–Bernoulli beam and its inextensible
version are stiffer and thus the deformation for the total external force are smaller
compared to the Timoshenko beam.

The load deflection curves for the horizontal and vertical deflection of the circles
apex are depicted in Fig. 10.12. For the inextensible Euler–Bernoulli beam, the
results found in (Dadeppo and Schmidt, 1975) and (Simo and Vu-Quoc, 1986) are in
good accordance. The buckling load for the different beam models are λb = 0.8297
(Timoshenko), λb = 0.8805 (Euler-Bernoulli), λb = 0.9102 (inextensible Euler-
Bernoulli). For the inextensible Euler–Bernoulli beam the buckling load is in good
agreement with the values reported by (Simo and Vu-Quoc, 1986, λb = 0.90528)
and (Dadeppo and Schmidt, 1975, λb = 0.897). In (Simo and Vu-Quoc, 1986)
a second limit point is identified with the load value λb = −0.0771, which only
slightly differs from the value λb = −0.0807 obtained by the presented inextensible
Euler–Bernoulli beam model.

10.6.5 Buckling of a Hinged Right-Angle Frame under Follower
Point Load

In this example the buckling of a both sided hinged right-angle frame of height and
length 120 under non-conservative transverse force is investigated, see Fig. 10.13.
Three beams are used for this problem. One vertical beam of lengthL1 = 120 and two
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Fig. 10.11 Deformed configurations of the different beam models for load parameters
λ ∈ {0, 0.4, 0.82,−0.045, 1}. The Timoshenko beam model is depicted by solid lines, the
Euler–Bernoulli beam by dashed lines and the inextensible Euler–Bernoulli beam model by
dashdotted lines.
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Fig. 10.12 Load deflection curves for the horizontal displacement ux = x(L1) and vertical
displacement uy = −(y(L1)− 100) of the point of applied load. The Timoshenko beam model is
depicted by solid lines, the Euler–Bernoulli beam by dashed lines and the inextensible
Euler–Bernoulli beam model by dashdotted lines. The results of Dadeppo and Schmidt (1975) are
depicted by blue circles, the ones computed by Simo and Vu-Quoc (1986) by red crosses.
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horizontal ones, the first of length L2 = 1
5L1, the second one of length L3 = 4

5L1.
The three beams are connected using bilateral constraints for the corresponding
positions and angles. At the point where the two horizontal beams meet, a non-
conservative load P = λ40 · 103 is applied under the angle π/2. The three beams
are build with Young’s modulus E = 7.2 · 106, shear modulus G = E/(2 + 2ν),
Poisson’s ratio ν = 0.3, cross section area A = 6, moment of inertia I3 = 2, axial
stiffness E1 = EA, shear stiffness E2 = GA and flexural stiffness F3 = EI3.

The vertical beam was discretized using n = 20 quadratic B-spline elements
(p = 2, pσ1

= 1), the small and large horizontal parts were discretized with 4
and 16 quadratic B-spline elements, respectively. The numerical solutions were
obtained using the previously presented linear arc length solver with Δs = 600 and
a convergence tolerance of 10−6 with respect to the maximum absolute error of the
extended residual (10.73).

Fig. 10.13 shows five representative configurations of the different beam models.
Only for the force increments λ = 0.885 and λ = −0.345minor differences between
the Timoshenko beam model and the two Euler–Bernoulli beams can be noted. This
is due to the large axial and shear stiffness parameters introduced by Argyris and
Symeonidis (1981), which where taken for comparative purposes.

In Fig. 10.14, the load deflection curves for the horizontal and vertical deflections
are depicted. The computed results are in good accordance with the ones reported
by (Argyris and Symeonidis, 1981) and (Simo and Vu-Quoc, 1986), both of which
present Timoshenko beam models. In the magnified areas small differences between
the Timoshenko beam and the two Euler–Bernoulli beams can be recognized. The
configurations for both Euler–Bernoulli beam models cannot be distinguished.

10.6.6 Natural Frequencies of a Two Sided Pinned
Euler–Bernoulli Beam

In this example the natural frequencies of a two sided pinned beam of length L = 2π,
axial stiffness E1 = 0.1, flexural stiffness F3 = 1 and mass density ρ0 = 1 are
compared with the ones computed using the Euler–Bernoulli beam finite element
model. For the numerical computation different polynomial degrees p ∈ {2, 3, 5}
and element numbers n ∈ {32, 128, 512} were compared and their influence on the
accuracy was investigated.

The analytic solutions for the eigenvalues are well known in literature, e.g., Graff
(1975). They can be derived from the governing equation

a2y′′′′(s, t) + ÿ(s, t) = 0 , a2 = EI/ρA . (10.74)

By substituting the separation ansatz y(s, t) = Y (s)T (t) into (10.74) and separating
the spatial and time dependent variables we get

a2
Y ′′′′

Y
=

T̈

T
= ω2 . (10.75)
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Fig. 10.13 Deformed configurations of the different beam models for load parameters
λ ∈ {0, 0.62, 0.885,−0.345, 1}. The Timoshenko beam model is depicted by solid lines, the
Euler–Bernoulli beam by dashed lines and the inextensible Euler–Bernoulli beam model by
dashdotted lines.

Fig. 10.14 Load deflection curves of the point of applied force for the horizontal displacement
ux = x(L2)− 120 and the vertical displacement uy = −(y(L2)− 120). The Timoshenko beam
model is depicted by solid lines, the Euler–Bernoulli beam by dashed lines and the inextensible
Euler–Bernoulli beam model by dashdotted lines. The results of Argyris and Symeonidis (1981)
are depicted by blue circles, the ones reported by Simo and Vu-Quoc (1986) using red crosses.
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The solution of the left hand side, a fourth order ordinary differential equation, is
given by

Y (s) = C1 sin(βs) + C2 cos(βs) + C3 sinh(βs) + C4 cosh(βs) , β4 =
ω2

a2
.

(10.76)
The second order ordinary differential equation of the right hand side is fulfilled by

T (t) = A cos(ωt) +B sin(ωt) . (10.77)

For a two sided pinned beam, the boundary conditions in terms of Y (s), are given
by Y (0) = Y ′′(0) = Y (L) = Y ′′(L) = 0. Inserting these boundary conditions
into (10.76), the constants C2 = C3 = C4 = 0 can be identified. Thus, the frequency
equation

sin(βL) = 0 , βL = nπ , n = 1, 2, . . . (10.78)

is obtained. The radial and cyclical frequencies for the two sided pinned beam are
given by

ωn = a
(nπ

L

)2
, fn =

aπn2

2L2
, n = 1, 2, . . . . (10.79)

The corresponding normal modes read

Yn(s) = sin(βns) , βn =
nπ

L
, n = 1, 2, . . . . (10.80)

The numerical eigenfrequencies were computed using the linearized equilibrium
equation

Mq̈−Kq = 0 , (10.81)

with stiffness matrix in (10.52). For the mass matrix (10.50), the term involving
I3 was omitted. This is in accordance with the linearized partial differential equa-
tion (10.74), where rotatory effects of the cross sections are not included. Substituting
the solution ansatz q = φeλt, q̈ = λ2φeλt, the corresponding eigenvalue problem
is obtained by multiplying e−λt from the right and using λ = iω(−K− ω2M

)
φ = 0 . (10.82)

This can be solved numerically for the normal values ωn and their corresponding
normal modes φn.

In Fig. 10.15 the absolute errors of the first 21 numerically computed natural
frequencies with respect to the analytical ones are depicted using a semi-logarithmic
axis. It can be observed that both refinement strategies lead to better agreements
of the finite element approximation with the analytical normal frequencies. For the
reported normal frequencies, the influence of the polynomial degree elevation of the
chosen B-spline shape functions is larger than increasing the number of elements.
For the finest refinement level (p = 5, n = 512) all shown normal frequencies are
computed up to machine precision.
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Fig. 10.15 Error in the first 21 natural frequencies of the finite element implementation of the
Euler–Bernoulli beam model.

10.7 Conclusion

Starting from a variational framework, this article presents a finite element analysis
of planar nonlinear classical beam theories. For discretizing the total virtual work, B-
splines are chosen for both ansatz and test functions. This led to three kinematically
different beam finite element models, either by finding a minimal set of kinematical
descriptors, or by imposing additional constraint equations. All different beam mod-
els were studied in a variety of numerical experiments. Reproduction of analytical
solutions and numerical results reported in classical beam finite element literature
show the power and versatility of the presented numerical implementations.

Thus, the investigated discretization approach is well-suited for application to
large systems of beams, e.g., pantographic structures (Andreaus et al, 2018; dell’Isola
et al, 2018, 2019). Due to the lack of ready-to-use beam finite element mod-
els (dell’Isola et al, 2016), or because of their simple but performant implemen-
tation (Turco et al, 2016; Giorgio, 2020), discrete Hencky-type beam models are
often used in literature.
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Further research should include a finite element discretization approach for spa-
tial beam models. This leads to a variety of applications, including out of plane
deformation of the above-mentioned pantographic structures and their buckling and
post-buckling behavior (Giorgio et al, 2017).
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Chapter 11
Modelling of Two-dimensional Timoshenko
Beams in Hencky Fashion

Emilio Turco

Abstract We describe a novel mechanical model of planar Timoshenko beam for
large displacements analysis in elastic regime following Hencky beam model guide-
lines. More precisely, we model the strain energy of the beam in a discrete form by
considering, besides the bending contribution, both the stretching and the sliding
contributions. In this way a discrete model of Timoshenko beam is generated. This
model, besides to be interesting di per sé has strong applications in the study of
metamaterials based on beam lattices where, sometimes, the approximations intro-
duced by the use of Euler–Bernoulli beam model are too rough for capturing some
desired details. In addition, this is an intermediate step toward the construction of
discrete three-dimensional Timoshenko beam models.

Keywords: Two-dimensional Timoshenko beam · Large displacements in elastic
regime · Buckling of beams

11.1 Introduction

The Timoshenko beam model is the object of several scientific studies of historical
kind (see, e.g., Elishakoff, 2020), of mathematical kind (see, e.g., Della Corte et al,
2019), both for static (Balobanov and Niiranen, 2018; Kiendl et al, 2015; Turco et al,
2020) and dynamic problems (Luu et al, 2015; Cazzani et al, 2016b,c,a). All these
studies prove the great interest about this model both di per sé and also from the
point of view of the technical applications.This interest is increased in last years
for the large use of this model in the analysis of metamaterials when their internal
structure requires beam models richer than the so-called Euler–Bernoulli beam (see,
e.g., Meza et al, 2017, 2014; Gross et al, 2019; Vangelatos et al, 2019a,b).
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By considering, for instance, pantographic metamaterials as described in the
recent papers (dell’Isola et al, 2019b,a), the beams forming the pantographic sheet
might have dimensions which suggest to consider the shear deformability instead
of neglecting it a priori choosing the Euler–Bernoulli model. The Timoshenko
beam model is obviously more expensive than Euler–Bernoulli model since the
former requires to describe the rotations which are independent from displacements.
However, this extra computational cost could balance, at least partially, a richer –
therefore more accurate in principle – model.

The discrete form used for modelling the Timoshenko beam which will be de-
scribed in this work is largely inspired by the work of Hencky (1921), although here
both the stretching and the sliding terms of the strain are considered. Starting from
the guidelines reported in Eremeyev and Altenbach (2017); Turco (2018); Eremeyev
(2019) for describing the bending strain for three-dimensional beams, here, limiting
ourselves to two-dimensional beams, we introduce in a simple way the stretching and
the sliding strain measures. Since the discrete model presented here uses, besides La-
grangian parameters for describing the rotation field, also the nodal displacements,
it makes simpler the treatment of systems of beams when the kinematical constraints
on the nodes have to be imposed, as is necessary for pantographic structures.

After this brief Introduction, it will be presented the discrete model of a two-
dimensional Timoshenko beam in the framework of Hencky approach, Section 11.2,
defining completely the strain energy and, therefore, both the structural reaction
and the stiffness matrix which are the main tools used in a path-following strategy
such as proposed by Riks (1972), Section 11.3. Some numerical results showing the
influence of the shear deformability are presented and discussed in Sec. 11.4. Finally,
some concluding remarks along with a list of forthcoming issues are presented in
Section 11.5.

11.2 Modelling of Two-Dimensional Timoshenko Beams

We consider a planar rectilinear beam1 discretized by means of a series of links of
equal length � (for the sake of simplicity) connected by joints, see Fig. 11.1 sketched
as black circles.

The position of j-th joint in the reference and in the current configuration is Pj

and pj , respectively. In the spirit of Cosserat brothers for one-dimensional continuum
and of the Timoshenko beam model, each joint is also equipped, in the reference
configuration, with a unit vectorDj which is transformed in the current configuration
in the unit vector dj = QjDj being Qj a proper orthogonal tensor which represents
a rotation. Reference and current configurations are described by the sets {Pj ,Dj}
and {pj ,dj}, respectively. We remark that using the immediately above hypotheses
the Lagrangian parameters used for describing the motion is the displacement of

1 The rectilinear hypothesis can easily be removed to represent broken lines approximating curves.
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Fig. 11.1 Reference and current configuration of a segment of planar Timoshenko beam discretized
à la Hencky.

j-th joint wj = pj − Pj and the rotation associated with the j-th proper orthogonal
tensor Qj .

Looking again at Fig. 11.1, we can define as strain measures the vector Δwj+1

Δwj+1 = (pj+1 − pj)− �QjDj , (11.1)

and the tensor ΔPj+1

ΔPj+1 = QT
j Qj+1 . (11.2)

Fig. 11.2 Strain measures for a planar Timoshenko beam discretized à la Hencky.
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The vector Δwj+1, i.e. the difference between pj+1 − pj (the vector which
connects the j-th and (j + 1)-th current positions) and �QjDj (that is the vector
having � norm obtained rotating Dj by Qj). The just defined strain vector Δwj+1,
can be decomposed in two parts:

Δwa,j+1 = (pj+i − pj)

(
1− �

‖pj+i − pj‖
)

, (11.3)

Δwc,j+1 = Δwj+1 −Δwa,j+1 , (11.4)

being the graphic representation of each one sketched in Fig. 11.2.
The norms of these two vectors describe the stretching and the sliding, respec-

tively, of the link in-between j and j + 1 joints.
The proper orthogonal tensor ΔPj+1 describes the bending that is the relative

rotation between the two considered links. In details, as reported in Turco (2018) for
the case of three-dimensional inextensible Euler–Benoulli beams, from Rodrigues’
formula, see Rodrigues (1840), the relation between a rotation of amplitude ϕ about
the rotation axis depicted by the unit vector e is represented by the proper orthogonal
tensor Q expressed by2

Q = cosϕI+ (1− cosϕ)e⊗ e+ sinϕE , (11.5)

being I and E the identity tensor and the skew tensor defined by the equivalence
Eu = e× u, respectively.

Equation (11.5) define the rotation tensor as function of the rotation angle ϕ and
the rotation axis e. If we are interested to the rotation angle and to the rotation axis
starting from the rotation tensor, taking into account that E is skew so tr(E) = 0
and ET = −E, we can simply evaluate the trace of Q:

tr(Q) = 2 cosϕ+ 1 , (11.6)

and the difference
Q−QT = 2 sinϕE , (11.7)

from which we can compute the vectorial invariant Q× of Q, in formula:

Q× = sinϕe . (11.8)

From Eqs. (11.6) and (11.8) we have

sinϕe

1 + cosϕ
=

2Q×
1 + tr(Q)

, (11.9)

and finally, by using the bisection formula, we obtain

2 It is better to treat the problem in 3D and successively simplify the results to the considered
two-dimensional case, i.e. e = e3.
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2 tan
ϕ

2
e =

4Q×
1 + tr(Q)

. (11.10)

Formula (11.10) suggest the use of variable 2 tan
ϕ

2
, instead of ϕ, to describe the

rotation angle. With this change of variable, Rodrigues formula can be written as

Q =
1

4 + ϑ2

(
(4− ϑ2)I+ 2θθθ ⊗ θθθ + 4ϑE

)
, (11.11)

where θθθ = ϑe and ϑ2 = θθθ · θθθ.
For two-dimensional Timoshenko beams, the kinematics is simpler since the

rotation axis is always directed along the unit vector e3. For example, the skew
tensor E and the rotation tensor Q become

E =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ , (11.12)

and

Q =

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦ or Q =
1

4 + ϑ2

⎡⎣ 4− ϑ2 −4ϑ 0
4ϑ 4− ϑ2 0
0 0 4 + ϑ2

⎤⎦ ,

(11.13)
respectively.

In the foregoing we have described the relationships between Lagrangian param-
eters used to describe the motion, i.e. the displacements of joints and the rotations
of the links which, following the Timoshenko guidelines have to be independent,
and the chosen strain measures Δwa,j , Δwc,j and ΔPj+1. Correspondingly, we
can write the strain energy of the beam just summing the following elementary
contributions:

2Ea = a‖Δwa,j+1‖2 , (11.14)
2Eb = b‖Δφφφj+1‖2 , (11.15)
2Ec = c‖Δwc,j+1‖2 , (11.16)

where, besides the quantities already defined, we use Δφφφj+1 which is the finite
relative rotation vector associated to ΔPj+1 by using the link defined by Eq. (11.10)
and a, b and c are the stiffness parameters related to stretching, bending and sliding.
We remark that in the considered case Δφφφj+1 has only one component different
from zero, i.e. the third.

Finally we observe that in the case of dj directed as the segment in-between j
and j +1 there is not sliding and we come back to the Hencky approximation of the
Euler–Bernoulli model as described, e.g., in Turco et al (2016).
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11.3 Numerically Driven Drawing of the Equilibrium Path

displacements vectoru, the nonlinear system of equilibrium equations can be written
as

s[u]− p[λ] = 0 , (11.17)

being the vector s the structural reaction, depending upon nodal displacement vector
u, and p[λ] the external load vector ruled by the dimensionless load parameter λ.
The structural reaction s can be computed starting from the total strain energy E of
the system, i.e. adding the contributions deriving from (11.14), (11.15) and (11.16),
as

s =
dE

du
, (11.18)

while, the external load is expressed in the form

p[λ] = p0 + λp̂ , (11.19)

able to represent both external loads λp̂ which increase with the dimensionless
parameter λ and external loads independent from λ, i.e. p0. This load representation
is useful to model the so-called load imperfections.

The solution of the nonlinear system of equations (11.17) could be obtained by
using a stepwise procedure which uses the Newton’s method. Starting from the
pair (ui, λi) which represents the i-th equilibrium point, the next one, and nearby,
(ui +Δu, λi +Δλ) can be computed, by linearizing Eq. (11.17)

s[ui] +KΔu− (p0 + (λi +Δλ)p̂) ≈ 0 , (11.20)

which uses the stiffness matrix K defined as

K =
ds

du
, (11.21)

computed in ui. Newton’s method, starting from the linearization (11.20), gives the
recurrent formula to compute Δu when the value of Δλ is fixed in advance:

Δu = −ΔλK−1p̂ . (11.22)

As is well documented in technical literature, Newton’s method does not converge
when K is singular or nearly-singular. In order to bypass this limitation, Riks Riks
(1972) proposed the parametrization of the equilibrium path by means its arc-length
instead of the dimensionless load parameter λ. The consequent integration scheme
is not affected by the convergence problems intrinsic in the Newton’s method, but it
has to be completed by an additional equation.

In some detail, Riks’ arc-length scheme proposes a correction on the extrapolation
obtained from Newton formula (11.22). If the pair (ui, λi) is an equilibrium point
and (Δu, Δλ) is a Newton extrapolation, the Riks correction (u̇, λ̇) can be evaluated

Enforcing the stationarity condition for the potential energy with respect to nodal
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from the linearization (11.17) in the point (ui +Δu, λi +Δλ)

s [ui +Δu] +Ku̇− (p0 + (λi +Δλ+ λ̇)p̂) ≈ 0 , (11.23)

where the stiffness matrix K is now computed in ui +Δu. From (11.23) u̇ can be
computed from

u̇ = −K−1
(
s[ui +Δu]− (p0 + (λi +Δλ+ λ̇)p̂)

)
, (11.24)

The additional equation required to compensate the unknown λ̇ can be chosen in
several different ways. One producing a very simple formula, also computationally
convenient, is

Δu ·Ku̇ = 0 , (11.25)

which enforces the K-orthogonality between the Newton extrapolation Δu and
the Riks correction u̇. Substituting (11.24) in (11.25) and taking also into account
(11.22), simple calculations give the straightforward expression

λ̇ =
û · r
û · p̂ , (11.26)

being r = s[ui + Δu] − (p0 + (λi + Δλ)p̂) the rest of equilibrium equations
and û = K−1p̂ (from (11.22)). Finally, from (11.24), the Riks correction u̇ can be
computed making use of Newton extrapolation Δu.

Formulae (11.26), (11.24) and (11.22) fully define the Riks-based algorithm once
the first extrapolation is defined:

Δλ = μ(λi − λi−1) , (11.27)
Δu = μ(ui − ui−1) , (11.28)

here, μ is an adaptive coefficient used to vary the arc-length during the stepwise pro-
cedure and the pairs (λi,ui) and (λi−1,ui−1) the last and the second last computed
point of the equilibrium path, respectively. Synthetically, the adaptive coefficient μ
drives the step-length of each step on the nonlinearity of the equilibrium path. A
straightforward expression for computing μ, is suggested in Wriggers (2008); Clarke
and Hancock (1990):

μ = 1− rl − nl

rl + nl
, (11.29)

it uses the number of required loops rl to reach the convergence in the current step
and the number of needed loops nl (the usual choiche is nl = 5). At the beginning
of the analysis process μ = 1 is assumed, whereas the value of Δλ is estimated
by some auxiliary analysis. The initial settings of Δλ and of Δu fix, implicitly, the
curve arc-length.
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11.4 Quantitative Analysis of the Influence of the Shear Stiffness
Parameter

The quantitative difference between the discrete form of the Euler–Bernoulli and
Timoshenko beam models can be estimated in a simple way by referring to a can-
tilever beam � long loaded with a transversal force F on the free end. If we compute,
in the case of linear elasticity and for small displacements, the transversal displace-
ment of the free end, neglecting the deformation due to the shear, we have F�3/3EI
being E and I the Young modulus of the material and the inertia of the cross-section,
respectively. Therefore, the bending stiffness is 3EI/�3. Conversely, the contribution
related to the shear deformability is F�/GA∗ being G and A∗ the shear modulus of
the material and the reduced area of the cross-section, respectively. The correspond-
ing shear stiffness is GA∗/�. If we compute the ratio between the displacement of
the free end due to the shear and to the bending contributions we have

ws

wb
=

3EI

�3

GA∗

�

, (11.30)

from which we deduce that this ratio is inversely proportional to the square of the
beam length. If we consider a beam with rectangular cross-section b depth and h
height, the ratio becomes

ws

wb
∝
(
h

�

)2

, (11.31)

besides to be dependent from the Poisson’s ratio. For example, for h/� = 0.5 the
shear term is equal to the 25% of bending term and so surely not negligible.

Fig. 11.3 Deformation
modes: stretching (on the
top), sliding (on the middle)
and bending (on the bottom).

Starting from this simple analysis, we can compute numerically the values of
the energy related to stretching, bending and sliding following Eqs. (11.14), (11.15)
and (11.16). Therefore, for large displacements, we consider the three representative
deformation modes sketched in Fig. 11.3:
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1. the first one considers the pointsPj andPj+1 and the deformation corresponding
to pj+1 = Pj+1 + ue1 keeping pj = Pj ;

2. the second one, always for the points Pj and Pj+1, considers the deformation
corresponding to pj+1 = Pj+1 + ve2 keeping pj = Pj ;

3. the third one considers for the links in-between three consecutive points Pj−1,
Pj and Pj+1 the rotations θj keeping θj−1 = 0.

Figure 11.4 reports the dimensionless strain energy split in stretching, bending
and sliding contributions as function of the parameters u, v and θj . We remark that
the parameter u influences only the stretching energy, v stretching and sliding and,
finally, θj stretching, bending and sliding. Figure 11.5 reports the sliding-stretching
strain energy ratio versus the dimensionless displacement vj/� varying the c/a ratio
from 0.1 to 10 keeping unchanged b. Figure 11.6 shows as the sliding-bending strain
energy ratio varies when the non-dimensional stiffness ratio c�2/b increases from
0.1 to 10 keeping unchanged a.

The last two plots show, also quantitatively, the influence of the sliding part of the
energy, respect to the stretching and the bending part, when the stiffness parameter
c increases. In addition, we notice that the sliding part of the strain energy decreases
when the displacement parameter of the considered deformation mode increases.

11.4.1 Tip Deflection of a Cantilever Beam

By referring to the cantilever beam reported in Fig. 11.7 loaded with a transversal
force on the tip, Figure 11.8 shows as the cantilever beam tip displacement varies
when the load parameter λ increases varying the stiffness ratio c/b. As can be noticed
from the plots, for large displacements the influence of the parameter c is relevant
and surely it can not be neglected.

Figure 11.9 reports two deformations corresponding to the end of the loading
path. They correspond to the values c/b = 0.005, on the left, and c/b = 5, on the
right, respectively. Colors red and blue distinguish the current positions of nodes
and of rotations, respectively. It can be noticed that the two deformations are very
different. In the first one, see Fig. 11.9(a), the effect of sliding is clearly visible and it
is described by the blue segments sharply distinct from the red line which describes
the displacements. In the second one, see Fig. 11.9(b), blue segments and red line
are overlapped showing that for the used c/b ratio the sliding is practically negligible
and the Euler–Bernoulli beam model could be profitably used.

Figure 11.10 shows the strain energy evolution, when λ increases, for two limit
cases, c/b = 0.005 on the left and c/b = 5 on the right. Small values of the sliding
stiffness c, respect to bending stiffness b, give non-negligible values of the sliding
strain energy, respect to the bending strain energy, whereas for higher values of c the
relative contribution Ec is negligible, respect to the bending strain energy.
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Fig. 11.4 Dimensionless
strain energy, split in stretch-
ing, bending and sliding
contributions, corresponding
to deformation modes as-
sociated to uj/�, vj/� and
θj .
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Fig. 11.5 Sliding-stretching
strain energy ratio correspond-
ing to the deformation modes
associated to vj/� varying the
c/a ratio from 0.1 to 10.

Fig. 11.6 Sliding-bending
strain energy ratio corre-
sponding to the deformation
modes associated to θj vary-
ing the c�2/b ratio.

Fig. 11.7 Cantilever beam
under a shear force on the tip.

11.4.2 Buckling of a Simply Supported Beam

By referring to the simply-supported beam depicted in Fig. 11.11 loaded with a
compression force ruled by the load parameter λ and a transversal force on the beam
midpoint mimicking an imperfection load, Figure 11.12 shows as the dimensionless
transversal displacement t/L of the midpoint varies when the load parameter λ
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Fig. 11.8 Dimensionless can-
tilever beam tip displacement
t/L loaded by a transversal
force on the tip (L is the
length of the beam) vs. the
load parameter λ varying c/b
ratio.

Fig. 11.9 Deformation for c/ = 0.005, on the left, and c/b = 5, on the right, (red color is used for
current positions of nodes blue color for rotations.

Fig. 11.10 Strain energy (total and split in stretching Ea, bending Eb and sliding Ec parts) for
c/b = 0.005 (on the left) and c/b = 5 (on the right).



11 Modelling of Two-dimensional Timoshenko Beams in Hencky Fashion 171

Fig. 11.11 Simply supported
beam under compression load
and transversal imperfection.

increases varying the stiffness ratio c/b. From the plots, we can guess, at least
approximatively, the strong influence of c/b ratio on the buckling loads and on the
first part of the secondary branches while last parts of the equilibrium paths are
practically indistinguishable.

Fig. 11.12 Buckling of a
simply supported beam: di-
mensionless midpoint dis-
placement t/L (L is the
length of the beam) vs. load
parameter λ varying c/b ratio.

Figure 11.13 reports two deformations corresponding to the end of the loading
path.3 They correspond to the values c/b = 0.005, on the left, and c/b = 5, on
the right, respectively. As in the foregoing, red and blue colors distinguish current
positions of nodes and rotations, respectively. It can be noticed that the two de-
formations are very different. In the first one, see Fig. 11.13(a), the sliding effect,
described by the blue segments sharply distinct from the red line which describes the
displacements, is clearly visible. In the second one, see Fig. 11.13(b), blue segments
and red line are overlapped showing that the used c/b ratio the sliding is practically
negligible and the Euler–Bernoulli beam model could be profitably used.

Figure 11.14 shows the strain energy evolution, when λ increases, for two limit
cases, c/b = 0.005 on the left and c/b = 5 on the right. Small values of the sliding
stiffness c, respect to bending stiffness b, give non-negligible values of the sliding

3 The Author is aware that these solutions are admissible only if the overlapping of the beam is
allowed.
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Fig. 11.13 Buckling of a simply supported beam: deformation for c/b = 0.005, on the left, and
c/b = 5, on the right, (red color is used for current positions of nodes whereas in blue color for
rotations.

strain energy, respect to the bending strain energy, whereas for higher values of c the
relative contribution Ec is negligible, respect to the bending strain energy.

Fig. 11.14 Buckling of a simply supported beam: strain energy (total and split in stretching Ea,
bending Eb and sliding Ec parts) for c/b = 0.005 (on the left) and c/b = 5 (on the right).

11.5 Concluding Remarks and Future Challenges

This work has presented and discussed a novel discrete mechanical model, largely
inspired by the Hencky work, devoted to study two-dimensional Timoshenko beam.
After the model presentation and a brief sketch of the algorithm used for recon-
structing the equilibrium path, the results of some numerical simulations are used
for evaluating the sensitivity of results respect to the shear stiffness parameter. In
some detail, numerical simulations have shown that neglecting the shear deformation
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can produce results almost far from those produced taking into account the shear
contribution. This result is confirmed also when buckling problems for simple beams
are considered.

After this preliminary work, there are several open problems to tackle, in partic-
ular: i) it is necessary a further careful analysis on the stiffness parameters used to
model the elastic response of the discrete beam; these parameters should be linked
to the usual constitutive parameters of the material, for instance the Young and the
tangential stiffness moduli, and to the geometric parameters of the beam, for instance
the transversal cross-section area, the inertia and the shear correction factor; in addi-
tion, the stiffness parameters of the discrete beam might be considered as variables
along the beam (functionally graded materials); an extended campaign of numerical
simulations might be discover new and exotic mechanical behaviors (see, e.g., Al-
ibert et al, 2003; Seppecher et al, 2011; Misra et al, 2018; De Angelo et al, 2019;
Turco et al, 2019; Scerrato and Giorgio, 2019); ii) it is intriguing the development of
continuum models4, such as reported, e.g., in Boutin et al (2017); Giorgio et al (2018,
2019); Barchiesi et al (2019b); Placidi et al (2020); Barchiesi et al (2019a); Abdoul-
Anziz and Seppecher (2018); Abdoul-Anziz et al (2019); Andreaus et al (2018);
Abali et al (2015); Spagnuolo and Andreaus (2019) based on the discrete model and
on the results presented here; their use could help to identify the stiffness parameter
of the discrete model besides to be useful for developing continuum models devoted
to the analysis of plane or curved structures moulded as, e.g., shells and tubes (see
Greco et al, 2018, 2019a,b; Greco and Cuomo, 2015; Greco, 2020; Abali et al, 2016;
Yang et al, 2018); iii) it is promising the extension of elastic stability theory for
micromorphic, strain-gradient media and granular materials, likewise the nonlinear
elasticity theory (see, e.g. Ogden, 1997; Fu and Ogden, 1999), and to Cosserat me-
dia (see, e.g., Eremeev and Zubov, 1994; Sheydakov and Altenbach, 2016; Lakes,
2018; Solyaev et al, 2020; Balobanov and Niiranen, 2018; Misra and Poorsolhjouy,
2015; Pideri and Seppecher, 1997; dell’Isola et al, 2015; Niiranen et al, 2019); iv)
it should be considered the extension to problems where dynamics effects have to
necessarily be considered (see, e.g., Giorgio, 2020; Giorgio and Del Vescovo, 2019,
2018; Giorgio et al, 2017; Laudato and Barchiesi, 2019) or technical problems which
consider the active control of vibrations (see Chróścielewski et al, 2019) and therein
references.
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Chapter 12
Nonlinear Phenomena in Granular Solids:
Modeling and Experiments

Marco Laudato

Abstract The International Conference on Nonlinear Solid Mechanics (ICoNSoM)
2019, held in Rome from 16th to 19th of June 2019, had as main goal to gather
together researchers in the field of nonlinear Solid Mechanics in a stimulating re-
search environment. This work is a rational report of activities of one of the several
mini-symposia held during the conference titled “Nonlinear Phenomena in Granular
Solids: Modeling and Experiments”. The main aim is to provide the interesting reader
with the main topics treated during the discussions and to furnish all the relevant bib-
liography. Additional information, such as the abstracts of all the talks, can be found at
the official web-site of the conference: http://www.memocsevents.eu/iconsom2019/.

Keywords: Granular solids · Continuum mechanics

12.1 Introduction

The study of granular materials is one of the key topics in the current landscape of
Solid Mechanics. It is possible to find applications of results and methods of granular
mechanics in several areas of fast and recent development such as biomechanics, geo-
physics, and material development (dell’Isola et al, 2015, 2017; Alibert et al, 2003;
Barchiesi et al, 2019; Abali et al, 2017; Giorgio et al, 2016, 2017; dell’Isola et al,
2019a,b; Yang et al, 2018; Giorgio et al, 2009; Lossouarn et al, 2015; Alessandroni
et al, 2004). One of the main reasons of this vast applicability is that several kinds
of materials can be considered under the umbrella of granular materials. They span
from soft membranes made of aggregations of cells to highly packed and dense solids
made of particulate. From both the mathematical and experimental point of view, in
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all the forms that they have been studied, granular material represents a formidable
challenge due to fundamental role played by the properties of the grains themselves
and their interaction. This has been the main motivation to dedicate a symposium
on modeling and experimental challenges in nonlinear granular mechanics within
the International Conference of Nonlinear Solid Mechanics 2019 (ICoNSoM 2019),
held in Rome from 16th to 19th of June 2019. The International Research Center
on Mathematics and Mechanics of Complex Systems (M&MoCS) of L’Aquila Uni-
versity together with the McGill University of Montreal, the Roma Tre University,
and the Laboratoire International Associé Coss&Vita have conceived the ICoNSoM
2019 international conference to allow the interaction and exchange of new ideas
and points of view between scientists and engineers from all the areas of Solid
Mechanics.

Due to the number of topics treated, the conference has been divided into thematic
symposia. The main goal of this paper is to report the activities and the discussions
of the Nonlinear Phenomena in Granular Solids: Modeling and Experiments sym-
posium. In the next section, we will describe the content of the topics treated during
the symposium and we will indicate all the relevant references. We aim for provid-
ing a comprehensive snapshot of the current state of the art of the research in this
fundamental framework.

12.2 Nonlinear Phenomena in Granular Solids: Modeling and
Experiments

The symposium Nonlinear phenomena in granular solids: modeling and experiments
has been the stage of ten contributions. In this section, we will review the content of
the talks and provide the relevant bibliography.

The contributions have been presented according to their more applicative or
theoretical nature. In the first group we have seen the talks by Tatiana Yuzhina on
deformation and deconstruction of hardwood trees, Mikhail Gonov on the dynamic
properties of concrete under compression, Ioan Ionescu on damage probing in ce-
mented granular materials, and Nakase Hitoshi on the study of risk assessment of
nuclear facilities under severe scenarios. In the second group we have gathered the
contributions by Niel Kruyt on the role of fabric in the behavior of granular material,
Takashi Matsushima on grain-scale description of higher-order continuum model
for granular solid, Luca Placidi on damage and plastic evolution of second gradient
effective elastic moduli of heterogeneous granular materials, Payam Poorsolhjouy
on micro-macro identification from grain properties, Maurizio Romeo on electro-
magnetic microcontinuum approaches to granular media, and Antoine Wautier on
strain localization from a mesoscale point of view.
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12.2.1 Deformation and Destruction at Deformation Rate of Order
103 s−1 Wood of Hardwood Trees - Tatiana Yuzhina

Tatiana Yuzhina, in her talk “Deformation and destruction at deformation rate of
order 103 s−1 wood of hardwood trees” presented the results of tests on birch and
aspen with different directions, with respect to the fibers location, of cutting samples.
The steepness of the load branches and the destructive stresses have been analyzed
with respect to different cutting angles and the resulting behavior, including also
plasticity, have been represented in terms of stress-strain diagrams. In particular, the
greatest destructive stress as well as the greatest steepness of the load branches has
been observed at cutting angle of 0◦. On the other hand, the minimum values for
such parameters have been observed for 90◦ cut corners. A remarkable behavior of
these kinds of wood is that, after exhaustion, they show a relaxation behavior which
passes into the area of ideal plasticity until the end of the load. Once the reasons of
this behavior have been discussed (Bragov et al, 2018), the results of the analysis of
the behavior of the wood batches with respect to the room temperature have been
shown. The reader is invited to see the papers by Bragov and Lomunov (1997); Zhao
et al (2016); Sciarra et al (2007); dell’Isola et al (2009); Madeo et al (2013); Turco
(2018); Turco et al (2019); Bilotta and Turco (2017); Igumnov et al (2019) to gain a
deeper insight into the subject, especially from a theoretical viewpoint.

12.2.2 Experimental Study of the Dynamic Properties of Concrete
under Compressive Load - Mikhail Gonov

Mikhail Gonov presented a talk titled “Experimental study of the dynamic properties
of concrete under compressive load”. The talk discussed the study of the deformation
and fracture of concrete under dynamic loads within the framework of Kolsky
method. The main goal of such tests were to characterize the high-speed deformation
and destruction of fine concrete. In particular, the role played by copper pulse shapers
in the dynamic tests has been discussed. The tests consisted of 35 test shots carried
out with copper pulse shapers at 7 different speed. In this kind of tests, the role
of the pulse shaper is to enhance the quality of the basic premise of the Kolsky
method on the homogeneity of the highly deformed state of the samples. To check
on the quality of this assumption, an accurate comparison of the results obtained in
dynamic tests with the pulse formers and in absence of them has been performed
and the results (Bragov et al, 2013) have been presented. Many efforts are expended
to understand the complicated behavior of a very complex material as the concrete
do is. In addition to the presentation summarized here, some relevant articles can be
provided by Konstantinov et al (2018); Giorgio et al (2019); Giorgio and Scerrato
(2017); Scerrato et al (2014, 2016); Chiaia et al (2015); Kezmane et al (2017);
Contrafatto and Cuomo (2006); Contrafatto et al (2012, 2017, 2016); Stochino et al
(2016).



182 Laudato

12.2.3 Damage Probing in Cemented Granular Materials with
Ultrasound - Ioan Ionescu

The analysis of fault core sliding or earthquakes in different states of materials
has been discussed in the talk “Damage probing in cemented granular materials
with ultrasound” by Ioan Ionescu. In particular, the results of the experimental and
numerical investigation of the transition from cohesive to granular states of synthetic
rock under different loadings have been discussed (Langlois and Jia, 2014; Gomez
et al, 2020). The rock model used during the investigation is cemented granular
material in which it is possible to tune both the nature and amount of cements
and the packing density. Damage has been modeled in gedometric configuration
by considering an elasto-plastic deformation due to a quasi-static load. In this way
the contact stiffness between the grains has been minimized during the damage
evolution. The comparison of the results on wave velocity in damaged samples have
been, finally, presented and discussed (Khidas and Jia, 2012).

12.2.4 The Role of Fabric in the Behavior of Granular Material -
Niels Kruyt

During the talk “The role of fabric in the behavior of granular material” by Niels
Kruyt, the interplay between the behavior of particles at micro-scale and the con-
tinuum model at macro-scale have been discussed. In particular, the speaker went
through an overview on the role of fabric in characteristic behavior of granular ma-
terials such as shear strength, dilatancy, and elasto-plasticity (Pouragha et al, 2019).
The evolution of the fabric of a initially isotropic granular assemblies undergoing
small strain has been analyzed by means of a systematic approach in which the fabric
changes during the evolution were modeled in terms of two-dimensional isotropic
functions by means of a representation theorem. The results on this analysis on the
evolution of the fabric has been presented and the crucial role played by contact
gains and losses during the evolution has been elucidated (Kruyt, 2012, 2010; Fortin
et al, 2005; Bonelli et al, 2012).

12.2.5 Grain-Scale Description of Higher-Order Continuum Model
for Granular Solid - Takashi Matsushima

In the talk by Takashi Matsushima, “Grain-scale description of higher-order con-
tinuum model for granular solid”, the results of a series of distinct element method
based simulations aimed at exploring the shear band width as a function of packing
density and of the grain properties have been presented. In particular, it has been
presented the results on the analysis of the relation between the shear band width and
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maximum dilation rate within the framework of strain gradient theory (Matsushima
and Chang, 2011; Matsushima et al, 2002). Although it is well known that such
finite width localization zone cannot be forecasted by classical first order elasticity
theories, all the higher-order continuum theories are still phenomenological and the
physical nature of the needed higher-order terms has not been clarified. The results
of this analysis have been discussed, highlighting the relation between the maximum
dilation rate, which is well described by strain-gradient theory, and the shear band
width.

12.2.6 Validation of a Simple Model Using the Distinct Element
Method for Numerical Simulations of Slope Collapse -
Nakase Hitoshi

The contribution “Validation of a simple model using the distinct element method
for numerical simulations of slope collapse” by Nakase Hitoshi was focusing on the
study of risk assessment of nuclear facilities under severe scenarios, like earthquakes.
In particular, the results of the investigation, based on the development of a model
based on distinct element method simulations, on the reaching distance of fallen
rocks and the impacts on nuclear facilities, as well as the risk of slope failure have
been presented and deeply discussed (Nakase et al, 2017). In order to reduce the
computational cost of distinct element method simulations based on clump elements
to model the complex shape of sand or rocks, a new approach focusing on the
geo-technical behavior of such complex shaped particles has been proposed. In this
method, although the rock mass geometry is simplified, the probabilistic behavior
of a single collision is carefully modeled in terms of the roughness of slope. The
results of this method and the comparison with the standard approaches have been
discussed in the final part of the talk.

12.2.7 Damage and Plastic Evolution of Second Gradient Effective
Elastic Moduli of Heterogeneous Granular Materials - Luca
Placidi

Luca Placidi, in his talk “Damage and plastic evolution of second gradient effective
elastic moduli of heterogeneous granular materials”, discussed a damage elasto-
plastic model aimed at describing the evolution of anisotropy of a heterogeneous
granular solid. In particular, the micro-mechanical model has been defined by consid-
ering a collection of particles interacting via inter-particle contacts, while to facilitate
the derivation of the overall stiffness tensors, the interactions have been considered
as continuous in the orientation space (Solyaev et al, 2019; Placidi et al, 2019). In
the final part of the talk, some examples involving anisotropy have been discussed.
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In particular, in order to entail the anisotropy of the heterogeneous granular solid, a
model for elasto-plastic damage, based on spring interaction between the grains, has
been outlined. The effectiveness of this model has been analyzed on some relevant
examples and compared with standard numerical approaches (see, e.g., Placidi et al,
2018a; Placidi and Barchiesi, 2018; Abali et al, 2015; Placidi et al, 2018b, 2020;
Nguyen and Niiranen, 2020).

12.2.8 Micro-Macro Identification: Continuum Parameters from
Grain Properties - Payam Poorsolhjouy

In the contribution “Micro-macro identification: continuum parameters from grain
properties” by Payam Poorsolhjouy a numerical approach to derive average grain-
scale properties used in the Granular Micromechanics Approach has been presented.
In particular, the results of the analysis under both small and large deformations
and the evidences of non-affine movements in the assembly and their relations with
higher gradient theories have been precisely discussed (Poorsolhjouy and Misra,
2019). The main advantage in the use of the Granular Micromechanics Approach
with respect to other coarse-grained based models is that it is based on a statistical
analysis of the directional distribution of both stiffness and geometric properties of
the grain pain interactions. Starting with such knowledge of the microstructure, in
the final part of the talk it has been discussed a numerical approach to derive the
macroscopic properties of the materials. Finally, some considerations on the appli-
cation of this approach on large deformations problems have been discussed. The
literature on micro-macro identification of granular materials is absolutely vast, so it
is quite difficult to recall all papers about that subject. However, a selection of papers
considered of the utmost esteem by the writer is as follows (Misra and Poorsolhjouy,
2015a; Chang and Misra, 1990; Yang and Misra, 2012; Misra and Poorsolhjouy,
2015b; Misra and Singh, 2015; Misra and Poorsolhjouy, 2017; Nejadsadeghi et al,
2019; Misra et al, 2020; De Angelo et al, 2020; Abali et al, 2019; De Angelo et al,
2019).

12.2.9 Electromagnetic Microcontinuum Approach to Granular
Media - Maurizio Romeo

Maurizio Romeo, in his talk “Electromagnetic microcontinuum approach to gran-
ular media”, discussed an approach to the analysis of electro-magneto-elastic in-
teractions in continuum mechanics. In particular, by exploiting the microcontinuum
theory framework (Misra and Poorsolhjouy, 2016), an extension has been presented
in Romeo (2011) regarding the classical constitutive approach to electromagnetic
interactions (Abali and Queiruga, 2019). In this approach, micro-deformations are
directly related to electric multipoles and, consequently, the expressions for electric
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polarization and magnetization can be explicitly derived. The equations resulting
from a variational method have been discussed, highlighting the effects of external
electromagnetic dipole and quadrupole fields on granular materials (Romeo, 2016,
2018). The balance equations obtained in this way include Ampère law and Gauss
law in the usual formalization in terms of scalar and vector potentials.

12.2.10 Strain Localization from a Mesoscale Point of View -
Antoine Wautier

Antoine Wautier, in his contribution “Strain localization from a mesoscale point of
view”, presented the results of his investigation on the micro-mechanical mechanism
responsible for the strain localization pattern in granular materials. This response is
a peculiar characteristic of granular materials: on loose granular material only a pure
hardening behavior happens and it is not possible to observe any strain localization. In
particular, by performing an analysis of the mechanical and geometrical characteristic
of force chains inside and outside the shear band area, it has been shown that the
hardening regime is linked to the concentration of the load on less and less force
chains and to the degradation of the contact network. Finally, an explanation of the
softening regime in terms of force chain rotations within the shear band domain has
been discussed (Wautier et al, 2018a). It is also worth noting the works by Wautier
and Guzina (2015); Wautier et al (2017); Nicot et al (2017); Wautier et al (2018b);
Eremeyev et al (2019); Eremeyev (2019); Eremeyev and Sharma (2019)

12.3 Conclusions

The centrality of Granular Mechanics in modern Solid Mechanics clearly emerges
from the several topics touched during the Nonlinear Phenomena in Granular Solids:
Modeling and Experiments symposium. Starting from very applicative investigations
(such as wood and concrete characterizations, as discussed in the first two contribu-
tions) to theoretical discussions on generalized theory of elasticity and electromag-
netism (e.g. the talks by Luca Placidi and Maurizio Romeo), Granular Mechanics
appears to be an eclectic tool which, if properly understood, will bring promis-
ing developments in Solid Mechanics. Of course during the interesting discussions,
moderated by the excellent work made by the chairmen, several open problems and
questions, such as the role of the grains at different scales of description or the need
of generalized theories of elasticity to properly describe the granular behavior, have
been highlighted. The role of conferences like International Conference of Nonlinear
Solid Mechanics 2019 (and of papers like the present one) is exactly to push this kind
of discussions which are catalyst for the advancement of science. To this regard, the
symposium Nonlinear Phenomena in Granular Solids: Modeling and Experiments
can be considered a successful experience. We expect similar reports from other
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symposia with the hope of spreading the ideas and creating new collaborations,
which are the main and ultimate goals of events like ICoNSoM 2019.
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Chapter 13
A Tool to Describe Particle System Evolution
from Swarm Robotics Behavior

Ramiro dell’Erba

Abstract A technique, known as position based dynamics, can be used to provide
a visual description of the evolution of a two-dimensional particle system without
solving the differential equations of dynamics. To this aim we applied an algorithm
generally employed in submarine robot swarm control; the position of a particle in
a lattice, like a robot element of a swarm, is determined by the position of its neigh-
bors. By this way we generated an interaction’s law based on the reciprocal position
of particles without the definition of forces. We have therefore created software able
to reproduce some behavior of deformable bodies according to Cauchy’s standard
model and second gradient theory. It gives a plausible simulation of continuum defor-
mation and fracture and can be useful to describe final and sometime intermediate,
configuration of a continuum material under assigned strain of some of its points;
the advantages are in saving computational time, with respect to solving classical
differential equation. Many aspects have to be still investigated, like the relationships
describing the interaction rules between particles and its physical meaning and some
results does not sound very good. In this paper we try to focus the job done and what
is coming over.

Keywords: Position based dynamics · Robot swarm

13.1 Introduction

Position based dynamics (PBD) (Bender et al, 2015) is a technique used in com-
puter animation since some years; its efficiency, simplicity and robustness gain it
successful. PBD is not dedicate to compute real physical phenomena but its aim is to
generate plausible, to the eye of the spectator, simulation saving computational cost

R. dell’Erba
ENEA Technical Unit technologies for energy and industry - Robotics Laboratory
e-mail: ramiro.dellerba@enea.it

191© Springer Nature Switzerland AG 2020
B. E. Abali and I. Giorgio (eds.), Developments and Novel Approaches
in Nonlinear Solid Body Mechanics, Advanced Structured Materials 130,
https://doi.org/10.1007/978-3-030-50460-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50460-1_13&domain=pdf


192 dell’Erba

(Umetani et al, 2014); the obtained results sacrifice some accuracy compared with
finite element methods (FEM). The PBD method does not compute forces and solve
heavy differential equations but it employs a different approach, based on position,
where the new position of a lattice’s particle is computed starting from its neighbor’s
positions. One of the advantages is the easy description of complex objects and can
take profit of the increase of the GPU power, that leaded the method to popularity.
In our Laboratory, we are working on the control system of a robotic swarm (see
Fig. 13.1); the control system is inspired from fish school behavior and we have
applied the same principle (dell’Erba, 2015; Moriconi and dell’Erba, 2012); in our
laboratory we are working on this topic since many years. To reach a geometric
configuration the single element of a robotic swarm is subject to flocking rule quite
similar to PBD algorithm (Battista et al, 2016; dell’Erba, 2018a,b). Basically the
displacement of a particle (discretized continuum equivalent to a swarm element)
is computed using neighbors position. Indeed the compute of new position for a
particle group is equivalent to a constrained geometrical problem where we use a
transformation operator. Matrices representing the particles configurations, Ct, for
a discrete set of time steps t1, t2, ...tn and the transformation operator led from a
configuration to another. One of the differences, between our methods and PBD, lies
in the use of the velocity of the particles often used in PBD; this, in our opinion, hides
the dynamic inside so, up to now we avoid using them. Complex micro-structures are
not easily analyzed by Cauchy Continuum theory and poor software can be applied
to enlighten some deformation aspects. Moreover these structures are able to gen-
erate large set of experimental data that are difficult to manage. Another argument
is that classical Cauchy continua sometimes are not able to give required accuracy
prediction in highly non-homogeneous microstructure; to overcome this problem
generalizations have to be introduced, considering additional degrees of freedom
to take in account for the kinematics at the level of the microstructure, (Seddik
et al, 2008; Placidi et al, 2009; Pietraszkiewicz and Eremeyev, 2009; Altenbach et al,
2009b; Eremeyev et al, 2012; Altenbach et al, 2009a; Altenbach and Eremeyev, 2013;
Barchiesi et al, 2018a; Placidi et al, 2019; Rosi et al, 2017; Turco, 2019; Turco et al,
2017b; Franciosi and Lebail, 2004), or including in the deformation energy density
higher gradients of the displacement than the first one (Abali et al, 2017; Cuomo
et al, 2017; Turco et al, 2016b; dell’Isola et al, 2015b; Javili et al, 2013; Seppecher
et al, 2011; Forest et al, 2011; Placidi, 2014; Andreaus et al, 2016; Abali et al, 2015;
Placidi et al, 2016; dell’Isola et al, 2015a; Alibert et al, 2003) in the deformation
energy. The last is an important topic if we consider the actual technological interest
towards exotic mechanical metamaterials able to perform targeted tasks (Bückmann
et al, 2012; dell’Isola et al, 2019b; Barchiesi et al, 2018b; Carcaterra et al, 2015;
Turco et al, 2017a; dell’Isola et al, 2016a; Milton and Seppecher, 2012), for these
reasons the availability new and more efficient algorithms is at the centre of attention
on this time. The software we have proposed can show a large range of behaviors
just modifying its parameters and/or lattice type. In this paper we recall the work just
done but focussing our attention on what still must be investigated and something
that still does not fit. Particularly attention has been posed about a beam subject to
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a shear load, to underline the influence of the parameter’s choices. We also outline
the differences with the solution of the ordinary differential equations.

13.2 Method

Extended description of the algorithm is reported in Battista et al (2016); dell’Erba
(2018a,b). A two-dimensional body is represented in a discrete form using particles
that, at the initial time, are posed in the nodes of a lattice. We can choice (Choice
1) the lattice to describe the body between the plane Bravais lattices (five) but we
have used also honey comb lattice. This is the first of the choices we have to do in
our model and every of them determine different behaviors, starting from the same
initial conditions. To describe the body deformation, we are considering four kinds
of different particles with different behaviors; it is easily possible to increase this
number, to describe other behaviors owing the modular structure of the algorithm.
We underline that the role of the particles can be changed at any time step during
body’s deformation. The kinds of particles are the following:

1. The leaders; the motion is assigned and their displacement generate the motion
of the other particles.

2. The followers; their motion is computed using the rules of interaction between
them and with other particles, typically neighbors.

3. The frame; these particles are introduced because any particle must have the
same number of neighbors, to avoid collapsing and edge effects. A frame rule
motion is assigned to compute their motion (see Figure 13.2 and 13.3).

4. The ghost; these not existing particles are an escamotage used to describe fracture
mechanism (see Figure 13.4).

Now we shall see how the particle’s motion is computed. The leader’s motion is
given so we just have it. Concerning the follower’s motion we have to do some other
choices. As first (Choice 2) we have to choose the neighbors of any of them. It is
usual to employ the first nc particles, where nc is the lattice coordination number.
This choice is the case of first gradient theory; it is possible to use a larger set of
neighbors, i.e. the neighbors of the neighbors. In this last case, we obtain the second
gradient case. To this aim we extend the interaction points using a supplementary
external shell. This technique can be iterated to nth order interaction (see Figures
13.2 and 13.3). The Choice 3 is concerning how the particles interact between them.
Practically we have to define as the position of a particle is computed with respect
of the other particle’s position. We can decide, as example, to use a rule where the
new x coordinate of the particle j is in the centre of gravity of the neighbors

xj(t) =

∑all neighbors of j
k=2 xk(t)

N
(13.1)

N is the total number of neighbors and an equation like (13.1) can be used for
the y coordinate. So far, the coordinate of a follower point is computed as the
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average value of its neighbors; increasing the shell’s number we determine the order
of interaction. It is possible to use different rules to achieve different constitutive
equations behavior. Possible generalizations of Eq. (13.1) are geometric, power
and weighted mean. Possible weight is the particles Euclidean distances dis(k, j)
between the particles k and j. Our aim is to imitate Hooke’s law, where force is
increased with increasing displacement. By Eq. (13.1) we note as x and y coordinate
are independent so Poisson effect cannot be obtained. A possibility to obtain it is to
use

yj(t) = K ∗ (xj(t)− xj(t0)) ∗ da+

∑all neighbors of j
k=2 yk(t)

N
(13.2)

Where da is a function of the distance from the central axis, K a parameter deter-
mining the recall force and x(t0) the x coordinate at time t0. So far modification on
x coordinate has effect on the y coordinate. The Euclidean distance, dis(k, j), can
be used as weight.

xj(t) =

∑all neighbors of j
k=2 dis(k, j)xk(t)∑all neighbors of j

k=2 dis(k, j)
(13.3)

It is interesting to force the follower’s displacement to overcome equilibrium position,
computed form barycentre. This leads the lattice to oscillate.

xj(t) =

∑all neighbors of j
k=2 w(k, j)xk(t)∑all neighbors of j

k=2 w(k, j)
+

fd

(∑all neighbors of j
k=2 w(k, j)xk(t)∑all neighbors of j

k=2 w(k, j)
−MT (j, t0)

)
(13.4)

Wherew(k, j) is the weight, fd is a feedback factor andMT (i, t0) is thex coordinate
of j point at t0 to have memory of the initial configuration.

Using an algebraically point of view we can affirm as the compute of new set of
position for all the follower particles can be considered as a constrained geometrical
problem. The set of particle position, at a certain time, can be represented by a
bi-dimensional matrix; each elements of the matrix contains the coordinates of
one particle. Therefore, we use transformation operator leading from the matrix
describing particles configuration, Ct, to the matrix relative to other time steps t1,
t2, ...tn. It must be underlined that the neighbors can be dynamically changed at every
time step. We have chosen, in this paper, to keep fix the neighbors of every particle
as they are at the initial time t0; therefore we are considering crystalline lattice and
are dealing with materials in solid phase. This means that the concept of neighbors
is Lagrangian, and neighborhood is preserved in time evolution; exception to this
assumption is considered in fracture case. Changing metric can be used to customize
neighbor’s definition in other way; as example it is possible to consider the points
whose Euclidean distance (weighted or not to take into account anisotropies of the
lattice) is less than a prefixed threshold, instead to consider the coordination number.
Therefore at each time step the displacement of one shell propagates, starting from
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the leaders, up to involve all the other particles of the lattice. Note as, at the beginning,
only a limited number of points are involved. To avoid edge effects any follower has
to interact with the same number of elements; therefore we have to build an external
shell of point, a frame, surrounding the body. Frame motion has its rule: it follows
the motion of an assigned follower of its competence; could be the case where the
assigned followers are more (i.e. in a corner). In this case an average displacement,
or (Choice 4), a more generic complex rule could be considered. To describe fracture
phenomena, we have used ghost points. We decide a threshold, df , called as fracture
distance (Choice 5) to be overcome to declare fracture. Therefore if distance between
points is larger than fracture distances we say that the points stop to influence each
other so are no longer considered in computing follower position. We have introduced
ghost points with the aim to balance point’s displacements calculation, preserving
symmetry. Where we can put the ghost points’ A usual choice (Choice 6), is the
one so the original shape of the lattice is recovered (see Figure 13.4). Anyway, other
choices are possible and lead to different results (Battista et al, 2016; dell’Erba,
2018a,b).

Fig. 13.1 VENUS, element
of the swarm realized in our
laboratory.

Fig. 13.2 Kind of particles.
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Fig. 13.3 Kind of particles
(2nd gradient case).

Fig. 13.4 Fracture mecha-
nism: ghost.

In a next future we would like to consider the proposed model in a fully variational
setting, that provide clear methodological advantages (see (Lanczos, 2012) for an
introduction and (Placidi et al, 2008; dell’Isola and Placidi, 2011; dell’Isola et al,
2016b; dell’Isola and Gavrilyuk, 2012; dell’Isola et al, 2014) for cases regarding
continua with non-classical properties); we also try to introduce pseudo energetic
parameters using two formulas PE1 and PE2. PE1 can be considered as a measure
of how much we are far from the initial configuration, i.e.

PE1(t, j) =

all neighbors of j∑
k=1

(dis(t, k, j)− dis(t0, k, j))
2 (13.5)

Where dis(t, k, j) is the Euclidean distance between points k and j at time t. It is
clear as, by this formula, we try to emulate potential energy of material point subject
to Hooke’s law.Temporal contiguous configuration Ct and Ct−1 are compared by
PE2:

PE2(t, j) = ‖Ct − Ct−1‖ (13.6)

Where ‖ · ‖ is the Norm of the vector defined by the point j at time t and t − 1.
Remember as these two formula are artifices; they have no direct connection with
the usual energy definition, so we call it pseudo-energy. Anyway, they have shown
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to be useful in understanding deformation behavior. In this paper we use them just a
little; extensive use of these formulas can be finding in Battista et al (2016); dell’Erba
(2018a,b).

13.3 Results

In this section we briefly show some of the more significant results obtained applying
this software, in previous works (Battista et al, 2016; dell’Erba, 2018a,b) where
different strain of the leaders, with different choices, have been investigated. Some
more complexes samples behavior, like ASTM, the respect of Saint Venant principle
have also been described; moreover, we are looking for the limits of the tool, so we
searched and found some not satisfactory results that will be discussed in this paper.

13.3.1 Case a) Tensile Test

Consider a square shape specimen subjected to pull and release in tensile test. The
sample is subject to strain from right side (left side is clamped) with constant velocity
in x direction (speed is 0.6 unit length each step time); the specimen is represented
by a square lattice 10x10 unit. After a while the pull is stopped and the leaders allow
to return to the original configuration (this has the meaning that we have changed
category of the leaders and now they are followers) by attraction form the other
points. The rule, driving follower’s motion is barycentre. Therefore each point try
to reach the barycentre of its neighbors (Eq. (13.1)); coordination number of the
lattice determine the neighbors; so far after the first time step the leader’s motion
determine a movement of the first layer of neighbors that propagates during time
steps to the other particles. Each time step a larger shell of points is involved in the
whole displacement, up to regards all the lattice points. To describe second gradient
(Battista et al, 2016; dell’Erba, 2018a,b) we have to consider also the neighbors of
the first neighbors. In Figure 13.5, we show the lattice configuration in different
time; PE1 contour plot is on the right of the picture. The leaders are presented as
red points while the followers are in blue color. The frame is in orange color. From
the plot of Fig. 13.5, we could outline as the x displacement of the points is not
depending on the y coordinate as first impression; however, the PE1 picture advises
as of a light convexity of the contours (second picture of Fig. 13.5) showing as this
is not true.

In fact, a better examination of the point’s movements shows as, close to the
frame, the displacements, have a lower value with respect to what happen in the
central points of the lattice. This can be understood as an edge effect. If we consider
points on a vertical line those that are closer to the frame experiment the neighbors
influence with a little delay. This because the frame and of the followers have different
rule to determine their displacement. Therefore, they see a different situation with
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Fig. 13.5 Configuration of the lattice over different time (1,10, 20 and 401) and PE1 contour plot.

respect to a point close to the centre of the line. We can also note that the maximum
values of PE1 (red area): it is one line on its left because, in this example, some
neighbors of the leaders belong to the frame and are always are close to them, owing
to the frame rule. The tool is modular and very adaptable. So if we are intentioned
to avoid this convexity effect we can use a different frame or mirroring the followers
with the effect to simulate an infinite sample. Moreover, noted as at t = 401 the
lattice is still not completely back to the initial configuration because asymptotic
nature of the relaxation process. If we consider a central point of the lattice (i.e. sixth
column, seventh row, points are numbered from left to right and from bottom to up)
that we can numbered as point j = 67 we note as the value of the PE1 increases
when points are pulled; there is a time delay because of the need of a propagation
time of the shell, as can be noted from Figure 13.6; the PE1 decrease when the
leaders change category and become followers. Now they are only subjected to the
rules toward an equilibrium position obtained by barycentre. Changing point the
shape of the curve is not changed but can be more or less flared. In Figure 13.7 and
Figure 13.8 the time evolution of the x coordinates of the point j = 67 (centre of the
lattice) and of another point, close to the leaders, (j = 115) are shown. Also, in this
picture we can recognize the coordinate x increases linearly (velocity is constant),
after a delay (but less for j = 115), because of the need of a propagation time; later
it decrease to back to the original position.

A light modification of the barycentre rule can easily generate instabilities and
oscillations in the lattice; for example, if we add to Eq. (13.1) a little feedback term,
proportional to the difference between actual and initial position, we can overshoot
the old equilibrium position. The obtained result is showed in Figure 13.9 and Figure
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Fig. 13.6 PE1 of the central
point’s j = 67 versus time.

Fig. 13.7 X Evolution of the
point j = 67 versus time.

13.10 (we used different feedback); note as also the reaction time is changed. Using
higher feedback instabilities can be generated (see Figure 13.11).

13.3.2 Case b) Shear Test with Poisson Effect

An interesting case, always using a square lattice, can be seen in Figure 13.12
were the final configuration is shown after a shear test. Here we have used a rule
for the follower making use of “mixed coordinate”, which means the y coordinate
is dependent on the evolution of the x coordinate. This allows us to obtain lateral
contraction, i.e. Poisson effect. The result of the shear test is a strange “window” flag.
We have used a first and a second gradient model, changing the shell of neighbors.
Differences are in a stiffer reaction in the second gradient case, owing to the larger
numbers of neighbors involved in calculating the follower’s positions. Because of the
lateral contraction, the y coordinate of points above this axis decrease, with shear,
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Fig. 13.8 X Evolution of the
point j = 115 versus time.

Fig. 13.9 X Evolution j =
115 versus time (modified rule
with feedback).

Fig. 13.10 X Evolution
j = 115 versus time (modified
rule with feedback).
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Fig. 13.11 X Evolution of
point j = 67 versus time
(modified rule with feedback).

while below they are increased. Note the delay reaction time, because the involved
points have to be informed about the displacement of the leaders.

Fig. 13.12 Final configuration of the lattice with Poisson effect in shear test square lattice, first and
second gradient case.

13.3.3 Case c) Fracture Test

For the next example we shall consider a square sample undergone a tensile test with
fracture (Figure 13.13 just before fracture). Fracture distances are 6 units and speed
is 0.5 units/step, for 150 steps long. When a distance between the points is larger
than fracture distances the sample is broken and the followers go to equilibrium
position; if no followers remain attached to the leaders (it depends on the distances,
we shall see later in other cases) they return to their initial position. As explained



202 dell’Erba

in a preceding work (Battista et al, 2016; dell’Erba, 2018a,b) the convexity, in the
fracture mechanism, is related to the presence of the frame. Analysis of PE1 plot
show as, before fracture, there are areas of strain, and consequently stress for ordinary
materials, concentration. Higher strain areas are close to the leaders. The trend of
the follower points is quite linear during traction but it becomes non linear when the
followers remain alone and return back. This because the traction is imposed with
constant speed while the reassembly of the points is driven by the follower’s rule.
Once again involving a larger number of neighbors lead to a stiffer behavior as can
be seen in Figure 13.14 (second gradient case).

Fig. 13.13 Fracture test of
square specimen square lat-
tice.

13.3.4 Case d) The Importance of the Frame Rules

In the case of hexagonal lattice, we can choice two different rules for the frame, as
can be seen from Figure 13.15. In the first case a frame point displacement is just the
same of the corresponding follower. But in some case, like hexagonal lattice, we can
decide there are more than one corresponding follower and choose the point frame
displacement as the average value of them; in the case of Fig. 13.15 they are two.

This led to different final deformed configuration as can be outlined in Figure
13.16 and 13.17. The presence of a frame point in the middle leads the final con-
figuration to a concavity. The absence of followers on the right side, once again is
depending on the leader’s speed.
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Fig. 13.14 Same as Figure
13.13 but second gradient

Fig. 13.15 Alternative choice
for the frame rule displace-
ment. In the first case each
frame point is moving as a
corresponding follower. In
the second case as the aver-
age value of more followers
assigned.

13.3.5 Case e) The Importance of the Lattice

Consider now an oblique lattice (Figure 13.18). Owing to the asymmetry (see look at
the five red leaders on the right) of the leaders with respect to the frame a particular
breakage fracture can be observed. In fact if we consider a symmetry axes in x
direction we can note two leaders close to the frame in the upper level and only
one close to the bottom. This leads to a fracture starting from the bottom where
the attraction of the leaders is lower. It seems to rip a piece of paper. The fracture
distance is 10 units and the speed is 0.4 unit/time step.
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Fig. 13.16 Final configura-
tion in fracture test hexagonal
lattice.

Fig. 13.17 Same as Figure
13.16 but with different frame
rule.

13.3.6 Case f) Fracture the Importance of the Lattice and of the
Neighbors

In this case, we use a rectangular centered lattice for tensile test but we reduce the
neighbors’ number, nc, to five. This gives more mobility to the model leading to a
more plastic behavior and increasing the number of the detached points; The fracture
mechanism is quite different together as well as the final configuration (see Figure
13.19). This example shows, once again, that change in model parameters lead to
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Fig. 13.18 Fracture in tensile
test with oblique lattice.

different behaviors. The lower numbers of particles involved render the sample much
more fluid, allowing detachment of a larger number of particles, as we can see on
the right side of the pictures (see Figure 13.20).

Fig. 13.19 Fracture on tensile
test rectangular centered
lattice nc=5.
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Fig. 13.20 Final configura-
tion of Figure 13.19.

13.3.7 Case g) ASTM Test

In order to investigate sample behavior of more complex shape we consider specimen
ASTM D638 standards for tensile tests. The specimen is clamped at both ends on a
surface and pulled on one side, so, in this case, the leaders are many; the test speed is
of 2.5 unit/step, in x positive direction, for 150 traction step e 2500 relaxation step.
We shall consider tensile test with Poisson effect, change of the lattice and fracture;
many other cases can be found in the references. In Figure 13.21 the sample before
the test is shown; note the double set of frame points because we are considering
2◦ gradient case. A larger number of time steps is required for relaxation, owing
to the larger number of points used to describe the specimen; this does not mean a
longer relaxation time, because unit time is arbitrary, only because the influence of
the displacement propagates at two shell (second gradient case) each time step we
need many steps to involve the whole sample. In Figure 13.22 the elongated sample
(first gradient case) whiles in Figure 13.23 the second gradient case. Once again the
second gradient case seems to be stiffer with respect of the first gradient. It should
be noted that the sample does not reach a symmetric final configuration as we can
expect (see last figure); we have also wait for 10000 time relaxation steps without
modification. On the contrary if we use a rectangular shape sample it does (the
points are equally spaced). There is no physical reason for this, our opinion is that
this effect is linked to the particular equilibrium condition generate by the geometry.
We are working on this and on higher gradient computations. In the two cases we are
considering the Poisson effect it is possible to see lateral contraction. It seems the
points cluster to create islands but this effect must be investigated better. In case of
second gradient interaction this does not occur, as can be seen in Figure 13.23. The
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fracture test (see Figures 13.24, 13.25, and 13.26) is considered for the rectangular
centered lattice. Distance fracture is 11 units and the speed was 0.6step/unit time.
As can be seen, the fracture occurs close to the top of the profile and not in the
central area. Studies, in progress, show as the fracture zone can be moved by varying
working conditions. We can render the fracture more or less brittle changing the
model parameters like neighbors’ number, type of lattice, speed etc. As example in
second gradient the same sample has a more brittle behavior; or if I use a speed of
2.5 step/unit time in the same condition I will get no followers on the right side of
the fractured sample. We can observe differences in the internal distribution on the
points and in the convexity of the propagation front of the deformation i.e. see the
convexity of the points owing to the different lattice used compared to the preceding
case. It must be underlined as, changing the model parameters, the deformation and
fracture behavior can be expressed also by results like Figures 13.25 and 13.26 that
does not sound very familiar for simple elastic materials. Once again, we have the
need to connect the constitutive parameters of the material with the parameters of our
model to obtain significative behavior in according with the material characteristic.

Fig. 13.21 ASTM sample 2nd gradient before tensile tests.

Fig. 13.22 ASTM sample Poisson effect square lattice.

Fig. 13.23 ASTM sample Poisson effect square lattice 2nd gradient.
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Fig. 13.24 ASTM rectangular centered lattice before tensile test.

Fig. 13.25 AASTM rectangular centered lattice after tensile test.

Fig. 13.26 ASTM square lattice fracture.

13.3.8 The Beam

13.3.8.1 Case h) Short Beam

In this paragraph we want to investigate the behavior of our tool applied to a bi
dimensional bending beam loaded at one end and compare the results with that
obtained solving, numerically, ordinary differential equations. We consider a bi-
dimensional elastic short square beam (X and Y coordinate range is from 10 to 21
in the not deformed configuration) with materials parameters Y = 1000 N/m2 and
ν = 0.33, where Y is the Young modulus, ν the Poisson coefficient; this value is
close to that of a medium molecular weight polypropylene (Avella et al, 1996, 1995,
1993).The load is on the right boundary (Neumann condition) and on the left there
are no displacements (Dirichelet conditions).

Y
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u(x, y) and v(x, y) are the displacements function. We choice as boundary con-
ditions 50 Pa load as shear stress on the beam (Neumann condition for x = 21)
and u(10, y) = v(10, y) = 0 as Dirichlet condition.The equations can be solved
numerically discretizing the beam using a 10 x 10 square lattice; the found solution is
shown in Figure 13.27 together with the Von Mises plot in Figure 13.28; in red color
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is plotted the obtained deformed mesh. The equations have been solved by Mathe-
matica software carefully, owing the presence of Neumann boundary conditions, to
prevent early evaluation. Mesh is regular.

Fig. 13.27 FEM solutions of
bi-dimensional square beam,
under shear stress.

Fig. 13.28 Von Mises plot of
FEM solutions.

To apply our tool, we have to give the leaders movements, choice the algorithm
(i.e. the lattice, the interaction rules of the followers etc.) and to compute the strain
once the followers have readjusted in the equilibrium position, when a sufficiently
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long time. The leaders we have chosen are the right and left points of the beam,
therefore we assign the displacements of them as the solution obtained from the
FEM equations. Later we look at the arrangement of the other points to see the final
shape of the beam. The important thing to point out is that we still have no criteria
on the choice of the tool, like lattice, interaction law between the followers etc... As
first attempt we use a square lattice with no weight in computing the coordinates of
the followers. In Figure 13.29 the resulting configuration is shown, together with the
FEM solution represented by red points; in Figure 13.30 is plotted the corresponding
Von Mises plot. Left and right points of the beam are overlapped because they are
the leaders and we have just imposed their displacement as the FEM solution of the
deformed beam. It should be noted as external configuration of the beam is similar
but the internal displacement of the points, i.e. the strain, is quite different; this can
be seen better comparing the Von Mises plot of Figure 13.28 and Figure 13.30.
Changing the tool’s parameters can lead to different configuration, and of course to
different strain of the beam, as shown in a paper in press; almost none of them are
satisfactory.

Fig. 13.29 Beam deforma-
tion.

Second gradient case has showed no appreciable differences; we have tried to
give quantitative measurements of the discrepancies with the FEM solutions, using
the average value of the sum of the square differences between coordinates, in
many cases. Nobody emerges as the best match so we can conclude that the beam
deformation can be sometimes very similar to the FEM solution but the Von Mises
stress plot is quite always unsatisfactory. This point needs to be study again to a better
understanding of the physic behind the tool and what should be drive our choices
in the tool to describe material continuum. We have to remember that the materials
parameters Y and ν does not appear explicitly in our algorithm but they are hidden
into the interaction relationship between the followers, the neighbors and the choice
of the lattice. We do not know how to select our choices to match the well-known
problem and we hope to do this in a next paper. Changing the parameters of our tool
we obtain different results nobody of them perfectly coincident with classical solution
but, owing to the flexibility of the tool, we believe it exist a parameters combination
to fit the deformed beam; but this is meaningless until we do not understand how to
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Fig. 13.30 Corresponding
Von Mises Plot.

choose the parameters.. The reason of this lie in the fact that, up to now, we do not
start from the constitutive equations of the materials leading to the rules governing
points displacement. We have to work on how to connect the rules of our model with
classical physical proprieties of the material.

13.3.8.2 Case i) Long Beam

Also in the case of longer beam we can try many combination of the parameters tool
to fit the deflection of our beam but it is useless: we need to connect the constitutive
parameters with the tool. If we increase the ratio length/width of our beam from 1 to
5 the results are still different (see Figure 13.31, 13.32, 13.33, and 13.34). As can be
seen the results do not behave as we expected and show a wide range of possibilities
in which we could choose. Similar results were obtained if we increase the ratio
length/width up to 10 or more. In spite of the fact that external shape of the beam can
sometimes be acceptable, once again we can note as the displacement of the internal
particles is quite different from the FEM solutions; it is clear that the differences
are sometimes noticeable, as outlined by the Von Mises’ graphs. So far we stop trial
and errors to think about how to reach a better understanding of the physical process
behind the tool. So far we have a theory to drive the numerous choices we have to
do using the tool to describe material continuum deformation but we need further
studies on this differences that are left to future works.
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Fig. 13.31 Square lattice.

Fig. 13.32 Square lattice
reduced neighbors numbers.

Fig. 13.33 Hexagonal lattice.

13.4 Future Work and Conclusion

How to relate materials parameters with the choices we do in our tool is one of the
most important topics to be developed, to make a connection with the methods we
normally use in Continuum Mechanic. At this point we do not know how direct our
tool’s choices to describe a particular material continuum, characterized by a certain
set of constitutive equations; In the beam deformation we have used Young’s modulus
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Fig. 13.34 Hexagonal lattice
reduced neighbors numbers.

and Poisson’s coefficient assigned but there is no relationship to connect them with
the parameters of our model. This is the reason of the discrepancy in the resulting
deformation compared to FEM solution. To generalize in 3D the tool is quite easy but
optimization of the code, to keep low the computation time (order of seconds by using
a normal PC Desktop), must be still investigated. We are also relaxing the hypothesis
that the neighbors are always the same; this allows as describing liquid and gas. This
approach leads one calculation step more because it needs to compute the neighbors,
which in this case are defined as the particles belong to a certain volume, at each
time step. We are also introducing an interesting feature: constrained on the particle’s
motion. This could be useful describing structured object like pantograph (Misra et al,
2018; Boutin et al, 2017; Giorgio et al, 2018; Spagnuolo et al, 2017; De Angelo et al,
2019; Andreaus et al, 2018; Turco et al, 2016a; Turco and Rizzi, 2016; dell’Isola
et al, 2019a). It can be described as a set of beams with constrained point in the pivot;
in the Hencky vision can be conceived as a set of point interconnected by springs.
Some more developments, concerning different fracture mechanism, different frame
to avoid edge effects, other interactions rules and adaptive lattice are in progress. A
cellular automaton seems have good chance to enhance our work. A cellular automata
is a simple computational mechanism; as example, it changes the colour of each cell
of a lattice based on a transformation rule look at the color of neighbors’s cells. Some
trials to use them in Mechanics have been done (Dong et al, 2013; Konovalenko et al,
2010). One of the principal limits of Cellular automata system is regarding as they
do not evolve sufficiently; therefore they reach, often quickly, a limited asymptote
in their order of complexity. We are working on how to apply to our tool because
the principles are very similar. Working on flocking rules that are governing how
underwater robots swarm reach and maintain an assigned geometric configuration,
we found a profitably use in describing deformation of bi-dimensional continuum
medium. We have discussed a software tool, just presented in previous works, able
to describe strain deformation of a continuum medium in a plausible way taking
in account complex physical effects. The tool is based on Position Based Dynamic.
Differently from the PBD methods used in computer graphics, we still do not ask
for the knowledge of the velocity and do not introduce any kind of forces to take in
account mechanical effects. The strain is imposed by assigning the motion of some



214 dell’Erba

particles called leaders; the other particles called followers are moving according
to some rules, derived from our experience in robots swarm. Like in a bird swarm
the motion of the followers is determined using the position of their neighbors. So
far the deformed configuration is computed not using Newton law but only by the
relative positions between the particles of the lattice describing medium and by the
rules describing how a particle must be positioned with respect to its neighbors. One
of the principal advantages is in the saving machine time for computing. Practically
we are computing the action of a transformation operator between two matrices
representing the two configurations; the job can be easily parallelized between the
video card GPU cores, to save computational cost with respect to solve FEMs. The
results still are at a preliminary stage, thought they are interesting. We have used a
frame to take in account edge effects; fracture mechanism has been described using
a threshold effect. We showed that changing in parameters like, lattice, numbers of
neighbors, fracture distance, interaction rules, allows us to describe very different
behavior. Considerations on pseudo energy have been introduced to describe different
deformation regimes like elastic and plastic. This led to a better understanding of
the process, preliminary to introduce a potential interactions, depending on the
distance between the particles, which could be able to give back the well known
physical behavior. Therefore, we are proposing a tool that can be considered just
a graphic representation of plausible deformation behavior. This because, actually,
we just imitate a known behavior adjusting the algorithm parameters until we reach
something we know. Results of previous works have showed they have good similarity
according with the predictions of standard FEM simulations; this is true also in
fracture case. In this paper we have outlined some discrepancies with respect to
FEM solution like for a beam under shear stress. We have collected some success
showing plausible deformation in different conditions but when we consider a beam
under loading the need to connect constitutive equations with the parameters of our
tool emerges powerfully. However the tool has demonstrated enough flexibility to
give chances that, if we will be able to connect it with the constitutive parameters, it
can be useful to describe the large number of behavior we find in different materials,
inclusive of interesting complex biological tissues.
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Chapter 14
Characterization of Polystyrene under Shear
Deformation Using Molecular Dynamics

Maximilian Ries, Paul Steinmann, and Sebastian Pfaller

Abstract Nano-filled polymers are becoming more and more important to meet
the continuously growing requirements of modern engineering problems. The in-
vestigation of these composite materials at the molecular level, however, is either
prohibitively expensive or just impossible. Multiscale approaches offer an elegant
way to analyze such nanocomposites by significantly reducing computational costs
compared to fully molecular simulations. When coupling different time and length
scales, however, it is in particular important to ensure that the same material descrip-
tion is applied at each level of resolution. The Capriccio method (Pfaller et al, 2012,
2013), for instance, couples a particle domain modeled with molecular dynamics
(MD) with a finite element based continuum description and has been used i.a. to
investigate the effects of nano-sized silica additives embedded in atactic polystyrene
(PS), cf. Pfaller et al (2016); Liu et al (2017). However, a simple hyperelastic consti-
tutive law is used so far for the continuum description which is not capable to fully
match the behavior of the particle domain. To overcome this issue and to enable
further optimization of the coupling scheme, the material model used for the con-
tinuum should be derived directly from pure MD simulations under thermodynamic
conditions identical to those used by the Capriccio method. To this end, we analyze
the material response of pure PS under uniaxial deformation using strain-controlled
MD simulations (Ries et al, 2019). Analogously, we perform simulations under pure
shear deformation to obtain a comprehensive understanding of the material behav-
ior. As a result, the present PS shows viscoelastic characteristics for small strains,
whereas viscoplasticity is observed for larger deformations. The insights gained and
data generated are used to select a suitable material model whose parameters have
to be identified in a subsequent parameter optimization.
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14.1 Introduction and Methodology

In contrast to continuum mechanical approaches, particle-based simulation methods
like molecular dynamics (MD) enable the investigation of mechanisms taking place
at the molecular level. However, due to the high computational costs of such methods,
only small systems can be examined. To overcome this, partitioned-domain multi-
scale techniques were developed, which allow to simulate regions of high interest
at a fine resolution while treating the remaining regions on a coarse scale to reduce
the overall computational effort. One example is the Capriccio method (Pfaller et al,
2012, 2013) that couples a particle domain modeled with MD with a finite element
based continuum. This approach was already successfully employed to investigate
the effects of nano-sized silica additives embedded in atactic polystyrene by Pfaller
et al (2016); Liu et al (2017).

When a material is treated at different resolutions, it is necessary that the indi-
vidual material descriptions fully match. The material behavior on the fine scale is
predefined by the interactions between the particles usually given by force fields.
Consequently, the constitutive law used for the continuum has to be identified and
parameterized accordingly. To this end, we introduce a methodology to characterize
the mechanical behavior of a material directly from MD simulations (Ries et al,
2019) based on a classification scheme by Haupt (1993) depicted in Tab. 14.1. Sim-
ilar ideas of analyzing constitutive behavior via numerical pseudo-experiments have
been applied for other classes of materials as well, e.g., Turco et al (2019).

Table 14.1 Classification scheme to characterize material behavior introduced by (Haupt, 1993)
(visualization: (Ries et al, 2019))

We have derived four load cases from this, visualized in Fig. 14.1: time pro-
portional loading with different strain rates to evaluate the rate dependence, time
periodic tests either with varying strain amplitude or varying strain rate to quantify
the inelastic effects, and relaxation tests with preceding time periodic loading to
identify whether a quasi-static hysteresis exists.

Up to now, we applied this scheme to investigate atactic polystyrene as a model
system under uniaxial deformation and identified purely elastic behavior for small
strains, followed by a viscoplastic regime for larger deformations (Ries et al, 2019).

In this contribution, we supplement our work with examining the same material
under pure shear deformation: First, we show how this deformation can be applied
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(a) (b) (c) (d)

Fig. 14.1 Applied deformation: (a) time proportional with varying strain rate, (b) time periodic
with different strain amplitude, (c) time periodic with different maximum strain rate, (d) relaxation
tests with different preceding strain amplitudes

within the MD framework, then we present and discuss the results obtained from the
individual load cases.

The acquired insights and the generated data are used by Zhao et al (2020) for
the identification and calibration of a suitable constitutive law. Fig. 14.2 illustrates
the procedure needed to use multiscale modeling techniques to gain deeper insights
into polymer nanocomposites or fracture of polymers and puts the scope of this
contribution into context.

Fig. 14.2 Schematic overview: Particle-based material description (a), characterization procedure
(b), continuum mechanical constitutive law (c) and partitioned-domain multiscale investigations
(d), (Ries et al, 2019)
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14.2 Preparation of MD Systems

As a model system, atactic PS is investigated in coarse-grained resolution in which
each monomer is substituted by a so-called superatom. As a result, the number of
particles and thus the computational effort is reduced by a factor of 16 compared to the
fully atomistic model. This enables us to examine samples consisting of a sufficiently
large number of polymer chains at reasonable computation times. On the contrary,
the reduced number of particles leads to an implicit speed-up of the dynamics at the
coarse-grained model and thus all subsequently derived quantities evaluated on the
coarse-grained level do not match their atomistic counterparts. However, this does
not affect the significance of our results, as our aim is to reproduce the behavior of
the coarse-grained particle model by a continuum description.

The coarse-grained force fields describing the interactions between the super-
atoms were derived by Ghanbari et al (2011), who applied an iterative Boltzmann
inversion approach (Reith et al, 2003) presented in Qian et al (2008).

The PS chains are placed in the simulation box via a self-avoiding random-walks
algorithm implemented by Ghanbari et al (2011). In our case, these MD systems
consist of 300 PS chains with 200 superatoms each, resulting in 60 000 particles,
such that 180 000 degrees of freedom have to be considered.

Subsequently, the MD samples are equilibrated with a constant number of particles
in three steps: Firstly, the molecules are given 5 ns to disentangle at constant volume
and a temperature of 590K (NVT ensemble) followed by an equilibration of 20 ns
under constant temperature and atmospheric pressure of 101.3 kPa (NPT ensemble).
Secondly, the samples are cooled down to 100K at a constant cooling rate of
5Kns−1. This is significantly below the glass transition temperature of 170K of
coarse-grained PS (Rahimi et al, 2012). Lastly, the systems are kept at constant
temperature and pressure for another 2 ns to ensure sufficient equilibration at low
temperature.

These steps are carried out under periodic boundary conditions with the MD solver
IBIsCO developed by Karimi-Varzaneh et al (2011). In order to obtain statistically
reliable results, 10 slightly different samples are generated in this way.

A more detailed description of the initialization and equilibration of the MD
samples can be found in Ries et al (2019).

14.3 Pure Shear Deformation within MD

In order to analyze the behavior of the MD simulation box by means of continuum
mechanics, we need to link the deformation of the MD system to the continuum
deformation. To this end, we consider the undeformed continuum body to be a cube
and the deformed configuration to be a cuboid, both coinciding with the outlines of
the initial and deformed MD system, as depicted in Fig. 14.3. This allows us to track
the location of each particle before and after the deformation with position vectors
X and x(t), respectively.
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Furthermore, the overall deformation of the sample can be captured, e.g., with
the Green–Lagrange strain

E = 0.5 · [F t · F − 1
]

(14.1)

derived from the deformation gradient

F =
∂y(X, t)

∂X
(14.2)

with the deformation map y(X, t).

ez ≡ EZ

ex ≡ EX

ey ≡ EY

F (X, t)

X
x(
t)

u(X, t)

y(X, t)

Ω0 Ωt

t = t0
t > t0

Fig. 14.3 Continuum mechanical setting: Initial (Ω0) and current configuration (Ωt) of the MD
simulation box, position vectors X and x(t), deformation map y(X, t), displacement u(X, t) and
deformation gradient F (X, t), (Ries et al, 2019)

The MD code used only supports deforming the sample normal to the coordinate
axes and thus a shear deformation cannot be applied directly. However, we can exploit
the transformation rules of tensors and apply stretch in ẽx-direction, compression in
ẽz-direction while leaving the ẽy-direction unchanged as shown in Fig. 14.4 (a). A
rotation of 45° around the ẽy ≡ ey-axis results in the desired pure shear deformation
cf. Eq. 14.3 and Fig. 14.4 (b).

[
Ẽ
]
=

1

2

⎡⎣[λ2 − 1
]
0 0

0 0 0
0 0 − [λ2 − 1

]
⎤⎦ rot y 45°⇐⇒ [E] =

1

2

⎡⎣ 0 0
[
λ2 − 1

]
0 0 0[

λ2 − 1
]
0 0

⎤⎦
(14.3)

In the MD simulation, this deformation is applied stepwise via adjusting the box
lengths in the different directions accordingly which requires an NVT ensemble.
Controlling the length of the MD simulation box in each direction, and thus the
overall deformation, can be understood as Dirichlet boundary condition in terms
of continuum mechanics. In each of these loadsteps the Cauchy stress tensor is
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computed as

σ̃(t) = −[p(t)− patm1] (14.4)

from the pressure tensor p and atmospheric pressure patm. Moreover, the stress
is filtered loadstep-wise to exclude numerical noise and the equilibration at the
beginning of each loadstep (Ries et al, 2019). Rotating the stress tensor by 45° to
the ei coordinate system enables an investigation of the relation between the applied
shear strain Exz(t) and the resulting stress state σ(t) which will be discussed in the
following.

(a)

ẽy

ẽz

ẽx
L
x

lx =
λ · L

x

lz = λ · Lz

Lz

Ly
= ly

(b)

ẽy = ey

ez

ex

Fig. 14.4 Pure shear deformation: (a) in ẽi coordinate system with stretch λi, undeformed and
deformed box dimensions Li and �i, respectively and (b) in ei coordinate system obtained by 45°-
rotation around ẽy ≡ ey illustrating the actual shear deformation

14.4 Simulation Results

The components of the Cauchy stress tensor σ due to time periodic loading with
strain amplitude of Ea

xz = 4% and maximum strain rate of Ėmax
xz = 1%ns−1 are

shown over time in Fig. 14.5. Note that the stresses are expressed in σ to keep
comparability to our previous contributions Pfaller et al (2019); Ries et al (2019),
while E is chosen to account for large deformations, despite the fact that they are
not work conjugate. The stress state is clearly dominated by σxz , which follows the
applied sinusoidal deformation, while the other two shear stresses vanish. On the
contrary, the normal stress components σxx, σyy , σzz coincide and fluctuate around
zero with twice the deformation frequency. Since the other stress components are
considerably small compared to the stress in xz−direction, only σxz is evaluated in
the following.

The shear stress σxz obtained from time-proportional simulations with different
strain rates is depicted in Fig. 14.6. Overall, the faster the load is applied the stiffer
the material responds, which indicates a clear dependence on the load rate which
is characteristic for viscous material behavior. For each individual curve, the stress
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Fig. 14.5 Comparison of the components of the Cauchy stress tensor σ over time t for time
periodic pure shear test, strain amplitude Ea

xz = 4% and maximum strain rate Ėmax
xz = 1%ns−1:

(a) normal stress components σxx, σyy , σzz and (b) shear stress components σxy , σxz , σyz

increases linearly up to 1% strain and then flattens noticeably. Once the maximum
stress is reached, σ approximately remains constant.

Fig. 14.6 Influence of strain rate: Cauchy stress in shear direction σxz over Green-Lagrange strain
in shear direction exz for time proportional pure shear tests with maximum strain Emax

xz = 8% and
strain rates from Ėxz = 0.1%ns−1 to 20%ns−1

Time periodic loading leads to a stress- strain hysteresis as depicted in Fig. 14.7
for a strain amplitude Ea

xz = 8% and an initial strain rate Ėmax
xz = 1%ns−1. In the

first loading cycle, a stress maximum of 20.1MPa and a minimum of −17.6MPa
are obtained while in the subsequently cyclic softening leads to a stabilization of the
hysteresis reaching σmax

xz = 16.2MPa and σmin
xz = −16.0MPa. This behavior is

qualitatively observed for the other strain amplitudes investigated, too.
Since a stress-strain hysteresis is obtained, inelastic effects, i.e. viscosity and/or

plasticity, have to be present. In contrast to other materials, polymers dissipate energy
usually by chain slippage and disentanglement, while e.g. for concrete dissipation is
induced by internal friction (Giorgio and Scerrato, 2017). These can be quantified
by computing the dissipated energy density per cycle as
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Fig. 14.7 Time periodic pure shear: Cauchy stress σxz over Green-Lagrange strain Exz in shear
direction for strain amplitude Ea

xz = 8% and maximum strain rate Ėmax
xz = 1%ns−1, starting

points Pr for relaxation test

dcyc0 =

∫
cyc

S : dE =

∫
cyc

2Sxz · dExz (14.5)

with the Piola–Kirchhoff stress S = JF−1 · σ · F−t and
∫
cyc

denoting the integral
over one deformation cycle. Fig. 14.8 (a) indicates that for strain amplitudes up to 2%
there is almost no dissipation and thus the samples behave purely elastic. For larger
deformations, however, dcyc0 and therewith the inelasticity increases quadratically.
Next to this dependence on the strain amplitude, there is also a correlation with
the strain rate as depicted in Fig. 14.8 (b). For small Ėxz , the largest dissipation
occurs approaching an asymptote at 0%ns−1. For increasing strain rates, however,
dcyc0 decreases rapidly before flattening and reaching its minimal value. A likely
explanation is that for small deformation rates, the polymer chains have more time
to rearrange and thus to dissipate more energy compared to high strain rates.

Fig. 14.8 Dissipated energy density dcyc0 derived from cyclic pure shear tests for (a) different strain
amplitudes with Ea

xz with Ėmax
xz and (b) different maximum strain rates Ėmax

xz with Ea
xz = 4%
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14.5 Relaxation Tests

So far, we identified the presence of inelasticity for large deformations, but we could
not distinguish between viscous and plastic effects. In order to do so, we apply zero
strain to the MD samples after having been subjected to one deformation cycle. Thus
the starting point of the relaxation tests coincides with the end point of the first
stress-strain hysteresis, labeled Pr, cf. Fig.14.7. Since at this point the sample is not
subjected to a deformation, the elastic part of the stress has to vanish and thus elastic
effects are eliminated. On the contrary, the viscous part of the stress degrades over
time due to relaxation effects such as rearrangement of polymer chains, while the
plastic part of the stress remains unchanged.

This evolution of the shear stress σxz over the relaxation time is depicted in
Fig.14.9 for preceding strain amplitudes Ea

xz from 2% to 8%. First, we observe an
initial increase of σxz which is more pronounced for larger preceding deformation.
At Pr the samples are experiencing zero strain, but maximum deformation rate
Ėmax

xz which is now instantly reduced to zero. Since the present material exhibits
partly viscous behavior, as displayed in Fig. 14.6, this discontinuity has to lead to a
temporary increase of the stress since the deformation is completely prescribed.

Afterwards, the stress degrades over time with decreasing slope and eventually
approaches a constant level. This relaxation effect is more distinct for larger Ea

xz ,
which implies a correlation between viscosity and applied load. The remaining
σxz indicates that the samples experience also plastic effects even for the smallest
preceding deformation.

Fig. 14.9 Identification of plasticity on the basis of relaxation tests with Exz = 0% = const with
preceding cyclic loading with different strain amplitudes Ea

xz
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14.6 Summary and Outlook

In this contribution, we thoroughly discuss the application of a pure shear defor-
mation within the MD framework from a continuum mechanical point of view. We
investigate atactic polystyrene as a model system and successfully employ a char-
acterization scheme for the material behavior of polymers (Ries et al, 2019). From
time proportional tests, we observe a rate dependent material behavior and time peri-
odic simulations reveal an elastic regime for small deformations. However, inelastic
effects are present, which could be decomposed into viscous and plastic parts by
relaxation tests.

On the one hand, these findings underline the applicability of the used character-
ization scheme. On the other hand, the obtained data and the gained insights can be
utilized to further validate the constitutive law calibrated for this model material in
Zhao et al (2020). Embedding this constitutive law into multiscale techniques like
the Capriccio method will enable us to investigate complex polymer phenomena
such as fracture or the behavior of nanocomposites.
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Chapter 15
Manufacturing and Morphing Behavior of
High-Amplitude Corrugated Laminates

Gerald Rolf Kress & Daniel Thomas Filipovic

Abstract Unidirectionally fiber-reinforced materials are highly orthotropic with re-
spect to stiffness, strength, or thermal expansion. Flat and unsymmetric laminates
made of such materials will become curved when temperature changes. As fiber-
reinforced plastics (FRP) are typically processed at elevated temperatures, i.e. curing
of thermoset and melting of thermoplastic materials, the temperature-induced cur-
vature will appear at service temperatures. This chapter explains in Sections 15.2
through 15.8 how the effect can be used to create corrugated laminates where the
corrugation shape consists of circular sections with or without undercuts. The de-
formations occurring after releasing the cured laminates from the flat lamination
surface, as well as the morphing behavior, imply large deformations which we ad-
dress with an analytic nonlinear morphing model explained in Sections 15.9 through
15.11.
All modeling relies on periodicity of the corrugation pattern and large extension along
the direction transverse to the corrugations. The nonlinear deformations within one
representative unit cell are found by integration of curvature and strain that depend
on internal line reactions, and these in turn must be in equilibrium with external mor-
phing force. The equilibrium residual is removed by using the Newton minimization
method. The verified model is used to simulate morphing deformation and to study
the influence of laminate thickness and corrugation amplitude on line-force-stretch
diagrams.
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15.1 Introduction

A long plate with a corrugated center section is shown in Fig. 15.1, which could

� � �

� � �

� � �

Fig. 15.1 Long plate with thin-walled corrugated section. Source (Kress and Filipovic, 2019)

be part of a morphing-wing design. This application for corrugated laminates is so
obvious because of the extreme orthotropy along the directions along and transverse
to the corrugations. The low in-plane extensional stiffness along the corrugated di-
rection provides for the desired compliance along the wing chord direction whereas
the in-plane extensional stiffness transverse to the corrugations contributes via the
parallel-axis theorem to the wing bending stiffness along the span direction. More-
over, if the corrugation amplitude is very high, its extreme bending stiffness about
the chord direction assigns the function of stringer to the corrugated laminate.

15.1.1 Research on Morphing-Wing Applications

Starting with the work of Yokozeki et al (2006), corrugated laminates made from
fiber-reinforced materials are considered as candidate solutions for the flexible skins
needed in morphing wing design, and receive much research attention (Dayyani
et al, 2015; Airoldi et al, 2018; Chillara and Dapino, 2020). Six of the ten papers on
manufacturing methods mentioned in the literature review by Airoldi et al (2018)
allude in their titles to the application of corrugated laminates as flexible skins for
morphing wings.

There are problems with the aerodynamic properties of corrugated laminates.
One of those is that external pressure can lead to large deformations because of
the high in-plane compliance along the chord and the bending compliance about
the span directions. The structural response to uniform pressure of high-amplitude
corrugated laminates with corrugation patterns consisting of circular sections has
been studied by Thurnherr et al (2016a) with the result that structural deflection is
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controlled by the extremely high bending stiffness about the chord direction and that
the deflections can be kept very small if the corrugated laminate is supported by
sliding rails at some sufficiently small spacing along the span direction. Airoldi et al
(2018) report that the other aerodynamic problem is represented by the direct effects
of corrugation on aerodynamic performance, and refer to the studies by Thill et al
(2010c) and Xia et al (2014). The former authors state that the studies elaborated a
rule-of-thumb that the ratio of the height of corrugation to the chord length of the
aerodynamic profiles must be kept at very low levels (< 1%) to prevent a degradation
of the performance.

15.1.2 Manufacturing Methods for Corrugated Laminates

The patents by Chavannas (1962) and Lemelson (1970) relate to the manufacture
of corrugated materials for packaging purposes; these materials are not reinforced
with fibers. Johnson and Welsh (1978) patented a sine wave beam web and method
of manufacture. The patent includes fiber-reinforced plastics and the manufacturing
method requires molds. Donnecker et al (1999) disclose a method for making a
corrugated fiber-reinforced preform for a corrugated channel. Their method requires
shaping tools. Ashraf (2009) describes a method for producing a corrugated stretch
laminate. His method requires forming machinery.

Apart from applications as sandwich-core structures, the open literature consid-
ers corrugated laminates mostly in context of flexible skins for the application of
morphing wings. Airoldi et al (2018) provide a most recent literature review in-
cluding manufacturing of corrugated laminates (Yokozeki et al, 2006; Thill et al,
2007; Ghabezi and Golzar, 2013; Airoldi et al, 2013; Fournier et al, 2013; Thill
et al, 2010b; Panichelli et al, 2015; Schmitz and Horst, 2014), where only Schmitz
and Horst (2014) consider corrugation shapes consisting of circular sections. Quality
insurance in the production of thermoplastic sine wave beam production is addressed
by Fischer et al (2017). The circular-sections corrugation shape offers advantages
regarding modeling ease (Kress and Winkler, 2010, 2011; Filipovic and Kress, 2018;
Kress and Filipovic, 2019) and distributions of interlaminar stresses (Thurnherr et al,
2016c).

Because of the undercuts appearing in high-amplitude circular-sections corruga-
tion shapes, see Fig. 15.1, it is doubtful whether mold-based manufacturing methods
can be used for economic manufacturing processes of corrugated laminates. Forming
with cylinders leaves the questions of how to obtain good laminate quality and how
to arrive at reasonable manufacturing costs. The present authors believe that the only
cost-effective method for creating such corrugated laminates are mold-less manu-
facturing methods such as suggested in the review paper by Khoo et al (2015) and
more recently also addressed by Hoa (2017). The investigation of a manufacturing
method for high-amplitude corrugated thin-walled laminates (Filipovic and Kress,
2019) is used for the presentations in this chapter.
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15.1.3 Substitute-Plate Modeling

Under the premise that the layers within a laminate are perfectly bonded with each
other and that the total thickness is much larger than the distances away from free
edges and load-introduction points, a laminate behaves like a thin plate albeit with
more complex stiffness-couplings than ordinary plates made from homogeneous
materials. The relation between plate deformations and internal line reactions is
then described with the ABD matrix, see (15.7) and further explanations in Section
15.2.2. Globally, i.e. with sufficiently large in-plane extension, if compared to the
distances to free edges, load-introduction points, and to the length of one periodic unit
cell of the corrugation pattern, the static behavior of a corrugated laminate can also
be described with a substitute flat-plate model, where a tilde symbol ÃB̃D̃ indicates
corrugated laminate. Finding correct expressions for the entries of the matrices Ã,
B̃, and D̃ is the subject of the research field called substitute-plate modeling.

As early as 1986, Briassoulis (1986) reviews analytical expressions for equivalent
stiffnesses of orthotropic thin shells given in the literature to analyze corrugated shells
based on the assumption that these can be analyzed as thin, equivalent orthotropic
shells of uniform thickness. He also derives new expressions with improved mapping
of equivalent properties. Yokozeki et al (2006) base a simple analytical model on
beam theory to predict stiffness along the corrugated direction of laminates made
from woven composite which is considered a homogeneous material. Kress and
Winkler (2010) use thin-shell theory together with a unit-cell approach and the
generalized plane-strain assumption with respect to the direction transverse to the
corrugations to derive exact solutions for deformations and state variables valid for
symmetric cross-ply laminates, where the corrugation shape is composed of circular
sections. Kress and Winkler (2011) derive a finite-element formulation based on the
same assumption of generalized plane strain that reduces the number of independent
spatial variables from three down to two. The finite-element mesh is subject to
the periodicity conditions of the unit-cell approach. The model can simulate the
behavior of any corrugation shape, maps any laminate design correctly, and captures
all through-thickness effects which is in contrast to the limitations of thin-shell theory.
Both of their models produce a substitute-plate ÃB̃D̃ matrix. Xia and Friswell (2011)
and Xia et al (2012) suggest an homogenization-based analytical model, which can
be used for any corrugation shape. The base-sheet laminate ABD matrix must be
free of couplings between extension and bending, extension and shear, as well as
bending and torsion. Park et al (2016) present an analytical homogenization model
for corrugated composite laminates that can be applied to any corrugation geometry.
They give explicit expressions to calculate not only the effective extensional and
bending stiffness but also the effective transverse shear stiffness for a composite
corrugated panel. Nguyen-Minh et al. perform static (Nguyen-Minh et al, 2019) and
vibration (Nguyen-Minh et al, 2018) analyses for which they develop homogenization
models and cell-based smoothed Mindlin plate elements. They use their new methods
to analyze trapezoidal and sinusoidally corrugated panels. Most recently, Moro et al
(2019), have extended the exact model by Kress and Winkler (2010), which is limited
to symmetric cross-ply laminates, to be valid for arbitrary laminate stack-up. The
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various models have in common that they can calculate substitute-plate properties of
corrugated laminates only under the assumption of small deformations, i.e. predicted
stiffnesses are initial values.

15.1.4 Stresses in Corrugated Laminates

Using the reduced finite-element approach by Kress and Winkler (2011), Thurnherr
et al (2016b) present a parameter study on the influence of corrugation amplitude and
different lay-ups on interlaminar stresses where they consider two geometries, one
consists of circular sections and the other is a sinusoidal shape. They derive favorable
configurations to minimize normalized interlaminar stresses. Soltani et al (2019)
used a layer-wise finite-element formulation to predict deformations and interlaminar
stresses of corrugated laminates with circular-sections corrugation shape under large
extension along the corrugations, and validated their results with experiments.

15.1.5 Deformation Limits of Corrugated Laminates

Winkler and Kress (2010) determine the maximal possible deformations of a cor-
rugated sheet where the corrugation pattern consists of two circular segments. The
influence of the lay-up of cross-ply laminates and the influence of the geometry
is investigated. The calculations are based on considerations of layer-wise strains
that are calculated with the help of an analytical singly-curved shell model. For the
evaluation of the influence of geometric nonlinearities, finite element simulations
are performed and compared to the linear strain limit calculations. The influence of
scalable geometry parameters is also investigated. Schmitz and Horst (2014) investi-
gate deformation limits of circular corrugated unidirectional reinforced composites
for bending-dominated applications. They use a two-dimensional analytical stress-
function approach that takes through-thickness normal stresses into account. Pos-
sible failure modes, namely fiber fracture and layer delamination, of unidirectional
laminated corrugated sheets are predicted. Soltani et al (2019) used a layer-wise
finite-element formulation to predict all stress components in corrugated laminates
with circular-sections corrugation shape under large extension along the corruga-
tions. They found that interlaminar failure is the dominant initiating failure mode in
thicker unidirectional laminates and validated their results with experiments.

15.1.6 Large Deformation of Corrugated Laminates

It is the direction along the corrugations where large deformations can appear if
the corrugation amplitude is high enough. Thurnherr et al (2016c) perform struc-
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tural simulations with experimental validation to better understand the non-linear
structural response. They also develop a simplistic non-linear model based on rods
and rotational springs to efficiently simulate the highly non-linear load-displacement
curves of corrugated laminates with high accuracy. However, the highly abstracted
rod model maps neither the actual geometry nor the stresses within the laminate.
Ren and Zhu (2016) present a nonlinear planar beam formulation with stretch and
shear deformations to study equilibria of a beam under arbitrary end forces and
moments. The slope angle and stretch of the centroid line, and shear strain of cross-
sections, are chosen as dependent variables in this formulation, and end forces and
moments can be either prescribed or result from essential boundary conditions.
For thin beams, where shear-strain influence on deformation is negligible, Kress
and Winkler (2009) use the same modeling idea some years earlier in context of
finding realistic honeycomb-wall shapes resulting from the expansion process. This
approach is used to develop the model for describing highly non-linear morphing
deformations in the present work.

Recent contributions to the understanding of the behavior and modeling of planar
beams include the extensive review of modeling techniques for mapping large defor-
mations of planar elastic beams by Spagnuolo and Andreaus (2019) as well as the
evidence of motion around curled stable equilibrium configurations in the nonlinear
dynamics of beams, found by Baroudi et al (2019). Soltani et al (2019) used a layer-
wise finite-element formulation to predict deformations and interlaminar stresses of
corrugated laminates with circular-sections corrugation shape under large extension
along the corrugations.

15.1.7 Structure of the Paper

In view of the morphing-wing application, manufacturing of high-amplitude corru-
gated laminates harboring shape undercuts and prediction of nonlinear deformation
behavior are interrelated. The manufacturing modeling and simulation aspects are
treated in Sections 15.2 through 15.8 and a nonlinear morphing model is developed
in Sections 15.9 through 15.11. Discussion and conclusion are placed in Sections
15.12 and 15.13, respectively.

15.2 Geometry and Classical Theory of Laminated Plates Recall

In oder to be able to predict the flat-laminate design for creating a corrugated
laminate by the thermal curvature effect, where corrugation amplitude and periodic
length must meet specified values, it is necessary to consider the classical theory of
laminated plates (CTLP) and some geometric relations for describing the geometry
of corrugation shapes consisting of circular sections.
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15.2.1 Circular-Sections Corrugation Shape Geometry

Fig. 15.2 indicates the reference coordinates in which the corrugated laminate is
described and the curvilinear coordinates along the laminated sheet mid-plane. The
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Fig. 15.2 Corrugated laminate reference coordinates. Source: Kress and Filipovic (2019)

relation between circular-segments radius R, corrugation amplitude c, and periodic
length of the corrugation pattern P is given with (Kress and Winkler, 2010):

R =
16c2 + P 2

32c
. (15.1)

This equation is rearranged to calculate the periodic length of one corrugation-
pattern unit cell for given reference-shape curvature R and the ratio c̄ that is the
corrugation amplitude c normalized with respect to the periodic length P :

P = R
32c̄

16c̄2 + 1
; c̄ =

c

P
, (15.2)

where Fig. 15.3 illustrates that the normalized amplitude c̄ is a shape characteristic.
It appears in Figure 15.3, and Fig. 15.4(a) illustrates it more systematically, that
the highest normalized shape curvature κ̄ = P/R appears at intermediate corruga-
tion amplitude, specifically at the semi-circular shape. Note that extreme morphing
stretches, where the corrugated laminate tends to become flat, will create less bending
curvatures for high-amplitude corrugations than for corrugation shapes composed of
semi-circles (c̄ = 0.25). The condition, that the laminate with sheet thickness t must
not penetrate itself, gives the upper bound of the corrugation amplitude c (Filipovic
and Kress, 2018):
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Fig. 15.3 Shapes and amplitude-periodic-length ratios. The simplified relation for the
maximum-amplitude shape (d) ignores sheet thickness t

0 ≤ c ≤
P − t+

√
(P − t)

2 − P 2

4
2

. (15.3)

The curved-sheet length Ls, covering one period of corrugation, is given with (Kress
and Winkler, 2010):

Ls = 4ψ0R , (15.4)

where the opening angle ψ0 is defined in Fig. 15.2 and is calculated with (Kress and
Filipovic, 2019):

ψ0 = acos
(
1− c

R

)
. (15.5)

If the corrugated-shape unit cell with undeformed length P is stretched to flatness,
its length will increase from P to Ls. This thought allows the estimate of maximum
morphing capacity in terms of stretch λ (Kress and Filipovic, 2019):

λlim =
Ls

P
, (15.6)

where Fig. 15.4(b) illustrates that the morphing stretch limit increases progressively
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Fig. 15.4 Shape curvature κ̄(0) (a) and morphing-stretch limit λlim (b) versus shape parameter c̄
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with normalized corrugation amplitude c̄. For a maximum-corrugation amplitude
shown in Fig. 15.3 (d) where c̄ ≈ 0.933, the stretch limit reaches a value of more than
five. Note that the stretch limit in (15.6) is based on a pure geometric consideration
and that material strength may dictate lower values, depending on material strain
limits and the ratio of laminate thickness to reference-shape curvature.

15.2.2 Excerpts of the Classical Theory of Laminated Plates

The proposed manufacturing method relies on temperature-induced curvature where
the ratio of laminate thickness t to bending radius R remains rather small so that
the classical theory of laminated plates (CTLP), see for instance in Jones (1975),
is applicable. The circular-section radius R is estimated by the bending curvature,
suffered by an unsymmetric laminate due to a temperature difference ΔT between
processing and service temperatures. The deformations of an infinitesimally small
plate element under mechanical and thermal loads are calculated with{

N
M

}equ

+

{
N
M

}mec

=

[
A B
B D

]{
ε0

κ

}
, (15.7)

where the superscripts equ and mec indicate internal line reactions to thermal and
to mechanical loading, respectively. The line forces N and the line moments M in
(15.7) contain the components:

NT =
{
Nx Ny Nxy

}
MT =

{
Mx My Mxy

}
. (15.8)

The mid-plane strains ε0 and the plate curvatures κ contain the components:

ε0
T

=
{
ε0x ε0y ε0xy

}
κT =

{
κx κy κxy

}
. (15.9)

The membrane-, coupling-, and bending-stiffness matrices contain the components:

A =

⎡⎣A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤⎦ B =

⎡⎣B11 B12 B16

B12 B22 B26

B16 B26 B66

⎤⎦ D =

⎡⎣D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤⎦
(15.10)

The equivalent line loads are calculated by{
N

M

}equ

=

N∑
k=1

Q̄kᾱk

{ (
zk − zk−1

)
1
2

(
z2k − z2k−1

)}ΔT , (15.11)

where N is the number of layers in the laminate and where Q̄k and ᾱk denote the
reduced stiffness matrix (for plane-stress situations) and the coefficients of thermal
expansions of the kth layer; respectively, transformed to the reference system:
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Q̄k =

⎡⎣ Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤⎦
k

ᾱ =

⎧⎨⎩
ᾱ1

ᾱ2

ᾱ6

⎫⎬⎭ . (15.12)

These equations calculate double curvatures corresponding with saddle shapes of
unsymmetric bi-stable plates of moderate extension (Hyer, 1982). Corrugated lami-
nates, on the other hand, approximately undergo cylindrical bending,

κxx ≈ 0 , (15.13)

where the direction x is indicated in Fig. 15.1, if the corrugation amplitudes c are
sufficiently large if compared to the periodic length P but much smaller than the
extension transverse to the corrugations. For cross-ply laminates, and if no shear
deformation or twist are applied, the following internal reactions vanish in linear
theory:

Nx = Nxy = Mxy = 0. (15.14)

Obeying these constraints gives a more accurate estimate of the temperature defor-
mations under cylindrical bending with the following equations to be resolved for the
mid-plane strains and the curvature, where the equivalent and the mechanical line
loads in (15.7) superimpose each other to give the fictitious line reactions indicated
with the superscript ()fict:⎧⎪⎪⎨⎪⎪⎩

Nx

Ny

My

⎫⎪⎪⎬⎪⎪⎭
equ

+

⎧⎪⎪⎨⎪⎪⎩
Nx

Ny

My

⎫⎪⎪⎬⎪⎪⎭
mec

=

⎧⎪⎪⎨⎪⎪⎩
Nx

Ny

My

⎫⎪⎪⎬⎪⎪⎭
fict

=

⎡⎢⎢⎣
A11 A12 B12

A12 A22 B22

B12 B22 D22

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

ε0x

ε0y

κy

⎫⎪⎪⎬⎪⎪⎭ . (15.15)

The total-strain distributions are linear through the laminate’s thickness:

ε(z) = ε0 + zκ =

⎧⎪⎪⎨⎪⎪⎩
ε0x

ε0y

0

⎫⎪⎪⎬⎪⎪⎭+ z

⎧⎪⎪⎨⎪⎪⎩
0

κy

0

⎫⎪⎪⎬⎪⎪⎭ . (15.16)

Stresses in laminate layer k are calculated with

σ = Q̄k [ε (z)−αkΔT ] zk−1 ≤ z≤zk (15.17)

In the absence of mechanical loads, the local stresses in (15.17) are referred to as
residual stresses. They arise with a change of temperature away from a stress-free
reference, or processing, temperature. For strength prediction the local stresses have
to be transformed into material coordinates.
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15.3 Feasibility Study

The feasibility study addresses the questions:

1. Can thermal curvature with realistic laminate thickness be high enough?
2. Will the residual stresses remain small enough to guarantee strength?
3. Will the margins of strength allow for sufficient morphing stretches?

15.3.1 Materials

The feasibility study considers three typical carbon-fiber reinforced epoxies where
Table 15.1 shows the relevant material properties of prepregs with layer thickness
h = 0.125mm.

Table 15.1 Relevant material properties of unidirectional composites with fiber-volume fraction
vf = 0.6: Elastic constants, coefficients of thermal expansion (CTE), and values of strength
transverse to the fibers under tensile and compressive stress. Source: DORNIER SYSTEM GmbH

fiber E1 E2 ν12 α1 α2 YT YC

[MPa] [−] [10−6/K] [MPa]

T 300 135000 10000 0.27 −0.6 30 55 170

M 40 220000 7000 0.35 −0.8 30 50 150

GY 70 290000 5000 0.41 −1.0 30 40 130

15.3.2 Laminate Thermal Deformation Coefficients

Table 15.2 shows bending curvatures of various laminate stack-ups made from the

Table 15.2 Laminate temperature-curvature coefficients κT
y [10−4/mm K]. Layer thickness

h = 0.125mm.

fiber [90/0] [90/02] [90/03] [90/04]

cyl saddle cyl saddle cyl saddle cly saddle

T300 1.023 1.063 1.086 1.107 0.886 0.897 0.715 0.722

M40 0.635 0.640 0.908 0.915 0.840 0.844 0.715 0.718

GY 70 0.407 0.412 0.721 0.725 0.757 0.764 0.685 0.687
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materials whose properties are listed in Table 15.1 and visualized in Fig. 15.5. The
curvatures per unit temperature change ΔT = 1◦C relate to cylindrical bending
(cyl) and deformation without kinematic constraint (saddle). It can be seen that the
constraint of cylindrical bending has a relatively small influence on the coefficients
of thermal curvature (CTC). All materials find higher CTC values for numbers n0, of
span-wise oriented layers, larger than one. T300 and M40 find the highest values for
n0 = 2 and GY 70 for n0 = 3. The highest CTC values are obtained by T300, which
we ascribe to the relatively small Young’s modulus in fiber direction that allows
higher bending. We conclude that, out of the present selection, laminates [90/0] or
[90/02] made from T300 epoxy prepreg are best candidates for making corrugated
laminates with the help of thermal deformation. We assume that ΔT = −150◦C is
a realistic temperature difference available for creating curvature for thermoset resin
types with curing temperature of Tcur = 180◦C. It will create a bent-shape radius
of

R =
1

κT
y ΔT

(15.18)

For the laminates [90/0] and [90/02] we find R = 65.1mm and R = 61.4mm,
respectively. Laminate symmetry prevents thermal curvatures to appear, see the left
column in Table 15.3. A typical laminate-analysis program assumes no deformation

Table 15.3 Laminate thermal-deformation coefficients (T300). Layer thickness h = 0.125mm.

[90/02]s [90/02] [90/02]

saddle cylinder

ε0x [10−6/K] 3.800 2.47 −0.638

ε0y [10−6/K] 0.956 14.90 14.767

κx [10−6/mm/K] 0.000 −32.80 0.000

κy [10−6/mm/K] 0.000 110.00 108.630

Fig. 15.5 Thermal curvature
coefficients for cylindrical
bending (open markers) and
for unconstrained infinitesimal
small plates (solid markers)
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constraints under line loads so that for an unsymmetric laminate both curvature
components appear, see the center column in the table. Cylindrical bending implies
that one of the two bending curvatures must be zero. This constraint changes the
midplane strain ε0y and the non-vanishing curvature κy only slightly away from those
of the unconstrained laminate seen in the right column. However, the relatively large
change of ε0x might affect residual stresses significantly.

15.3.3 Residual Stresses

Residual stresses in fiber direction, σ1, are always so much less than the respective
stress limits that fiber failure is not an issue. Under the present loading conditions of
the considered cross-ply laminates shear stresses τ12 do not appear. Therefore, Tables
15.4 and 15.5 only list direct residual stresses transverse to the fiber direction, σ2, for
the symmetric and the unsymmetric laminates [90/0] and [90/02]; respectively. The
symmetric versions are free of bending and the unsymmetric versions are subject
to temperature load without any kinematic constraint (saddle) and the cylindrical-
bending constraint (cylinder). The material strength is assessed with the margin of
safety

MS =
Yt − σ2

σ2
(15.19)

For the symmetric [90/0]s laminate, the transverse stresses are tensile and the same in

Table 15.4 Stresses σ2 [MPa] with margins of safety [%] at ply interfaces (IF) in symmetric and
unsymmetric laminates [90/0] made from T300. Layer thickness h = 0.125mm.

ply deg IF [90/0]s [90/0] [90/0]

saddle cylinder
1 90 bot 41.2 (33) 16.0 (244) 44.5 ( 24)

1 90 top 41.2 (33) 30.6 ( 78) 39.3 ( 40)

2 0 bot 41.2 (33) 30.6 ( 78) 33.0 ( 67)

2 0 top 41.2 (33) 16.0 (244) 13.7 (301)

all layers. Much smaller stress values are found in the unsymmetric laminate [90/0].
For the symmetric [90/02]s laminate the transverse stresses shown in Table 15.5 are
tensile but slightly higher in the 90◦ than in the 0◦ layers. The constraint of cylindrical
bending about the x direction reduces the stress in the 0◦ layer significantly but the
maximum stress in the 90◦ direction is increased, reducing the margin of safety down
to MS = 19%. Transverse stresses at the surface z = 0.1875 become negative but
do not challenge the compressive strength of Yc = 170 MPa.

The plots in Fig. 15.6 give a visual impression of the stress distributions based on
the data provided in the tables. Stresses within the 90◦ and 0◦ layers are plotted with
solid and dashed lines, respectively. The vertical lines marked with open squares give
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Table 15.5 Stresses σ2 [MPa] with margins of safety [%] at ply interfaces (IF) in symmetric and
unsymmetric laminates [90/02] made from T300. Layer thickness h = 0.125mm.

ply deg IF [90/02]s [90/02] [90/02]

saddle cylinder
1 90 bot 42.0 (31) 34.4 ( 60) 46.3 ( 19)

1 90 top 42.0 (31) 34.9 ( 60) 40.8 ( 35)

2 0 bot 38.9 (41) 31.2 ( 76) 32.7 ( 68)

2 0 top 38.9 (41) 12.0 ( 358) 12.2 ( 351)

3 0 bot 38.9 (41) 12.0 ( 358) 12.2 ( 351)

3 0 top 38.9 (41) −7.1 (2294) −8.2 (1973)
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Fig. 15.6 σ2 in laminates [90, 0] (a) and [90, 02] (b), Solid lines in 90◦ layer, dashed lines in 0◦
layers, vertical lines correspond with total bending constraint, dotted lines indicate material strength

the stress distributions without bending deformation as they occur in symmetric lam-
inates. The slanted lines marked with open circles correspond to cylindrical bending.
Dotted lines indicate the tensile-stress and compressive-stress limits, respectively.
Morphing action applied to maximum-amplitude corrugated laminates will tend to
reduce the thermally induced bending curvature so that the stress distributions will
move closer to those of the symmetric laminates, thereby reducing the highest ten-
sile stresses. The analysis of residual stresses indicates feasibility of the proposed
manufacturing method.

15.4 Design Procedure

The structural requirement of a given application may lead to other laminate designs
than suggested in the feasibility study. The here described design procedure focuses
on finding the information for making the lay-up in terms of prepreg patches for a
desired corrugated shape.

1. obtain material data and curing process data
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2. specify unsymmetric laminate design
3. calculate temperature curvature κT

y from (15.8) and (15.11) → radius R

4. choose c/P ratio for desired shape
5. calculate periodic length P from (15.2)
6. perform stress analysis
7. calculate curved length Ls from (15.5) and (15.4) for prepreg cutting

Step 3 requires application of the classical theory of laminated plates. Steps 4
through 6 may be iterated for maximizing the margin of safety against inter-fiber
failure (matrix failure or debonding).

15.5 Mold-Less Manufacturing

Fig. 15.7 indicates a schematic of the design principle for integrating flat and
corrugated sections in the same manufacturing process. The section, that will as-
sume a corrugated shape evolving with cooling after curing, is within the dashed
vertical lines. Outside of this section, the laminate increases gradually in thick-
ness where the figure suggests simple tapering. Interlaminar shearing or peeling
stresses in the tapering will be very small as only small line loads can be trans-
mitted along the corrugated direction. A 90-degree layer runs throughout the cor-
rugated part in order to avoid lap jointing. The lay-up ensues from bottom to

Fig. 15.7 Stacking sequence for one complete corrugation period. Dashed lines indicate transition
to non-morphing parts of the design. For better visualization, the ratio between length and
thickness is not to scale.

top on a flat substrate (or a gently curved substrate for the aerodynamic shape
of a wing). After lay-up, the standard steps of vacuum bagging and curing in
an autoclave must be performed to obtain the formed design shown in Fig. 15.8.
The advantages of the suggested manufacturing method include:

1. no tooling other than for flat laminates required
2. same high quality as of flat laminates
3. additional manufacturing effort marginal
4. fully integrated design of corrugated parts in skin
5. automation potential: automated tape laying
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Consequently, realizing flexible skin integrated in morphing-wing designs implies
lower costs if compared with other manufacturing methods.

Fig. 15.8 Laminate shown in Fig. 15.7 after manufacturing process.

15.6 Process Simulations

The geometrically nonlinear structural analysis with the finite-element method
(FEM) first simulates the creation of a corrugation shape by thermal deformation due
to cooling after the processing step, and it secondly simulates the large deformations
under morphing action. The results of the the FEM simulations in terms of deformed
shapes and stress distributions are used to verify the predictions by the classical
theory of laminated plates (CTLP). The same FEM procedure is also used to verify
the nonlinear morphing model explained in Sections 15.9 through 15.11.

15.6.1 Simulation Tools and Verification

A proprietary data generator reads the data from the text file shown in Fig. 15.9
and generates a text file containing ANSYS-Parametric-Design-Language (APDL)
commands for controlling the structural-analysis steps. The bending-radius R(ΔT )
must be obtained by CTLP. Areas are created for each circular section according to
the scheme indicated in Fig. 15.7 and attributed the respective material laws for 90◦
and 0◦ layers. Mesh density is determined by using one row of rectangular finite
elements per layer, with lateral size between one and ten times the layer thickness. A
convergence study showed that, within this range, element size has negligible effect
on final results. The unsymmetric laminate [0/90] has been used for comparison of
CTLP predictions and FEM simulation results. The considered result is the axial
displacement that occurs when the flat laminate takes on the corrugated shape upon
cooling down by ΔT = −150◦C, see estimated thermal displacement in Fig. 15.9.
The error measure,
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Fig. 15.9 Data generator text input file. Quantities below the dashed line are derived.

Δux =
uFEM
y − uCTLP

y

uCTLP
y

[%] , (15.20)

obtains agreement better than 0.2%.

15.6.2 FEM Residual Stress Evaluations

The color coding in Fig. 15.10 depicts the distribution of the stress σx within a
small section of the 0◦ layer at the apex of the corrugation pattern. It can be taken
from the false-color scaling shown in Fig. 15.10 that minimum and maximum stress

Fig. 15.10 FEM evaluation
of σx within 0◦ layer at
corrugation apex
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values (13.5/33) agree closely with those values obtained by the classical theory of
laminates plates listed in Table 15.4 (13.7/33).

15.7 Aerodynamic Sliding Overlaps Design

The suggested fabrication method mitigates the aerodynamic penalty of corrugated
flexible skins: Fig. 15.11 shows that parts of the laminate can be designed so that
they serve as sliding overlaps covering the corrugations and creating a closed aero-
dynamically smooth surface with tolerable deviations from smoothness. The sliding

Fig. 15.11 Aerodynamic scales design; arrow indicates air flow direction

overlaps are laminated together with the other layers along the curved sections as
indicated in Fig. 15.11. This implies high stiffness and strength of the sliding overlaps
along the chord direction. As the overlaps, or scales, contribute to 90◦ layer thickness,
the lamination plan shown in Fig. 15.12 foresees double numbers of the respective
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Fig. 15.12 Scales design lamination scheme. Length-to-thickness ratios not realistic. Red line
indicates separation of scale from the rest of the laminate by Teflon foil.

layers. To maintain similar thermal curvature coefficients as listed in Table 15.2, and
with them similar geometric corrugation parameters, individual layers must have
half of the thickness considered in previously considered laminate designs, namely
0.125mm → 0.0625mm, where the smaller thickness is realistic as such prepregs
are commercially available.
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15.8 Corrugated Laminate Demonstrator

15.8.1 Autoclave-Table Size

Of the table area of 800mm×2000mm some width along the edges must be reserved
for applying the sealing material for the vacuum bagging. We choose a net lay-up area
of 700mm×1900mm. Because of the large curved length per corrugation period
the corrugations are placed parallel to the larger plate extension.

15.8.2 Material

A prepreg made by North Thin-Ply Technologies, namely NTPT THINPREGTM 513,
was used to make a demonstrator. Table 15.6 lists values issued in the data sheets
for fiber and matrix whereas the composite properties have been estimated with the
simplified equations by Chamis (1983).

Table 15.6 Material properties. Young’s moduli [MPa], CTE [10−6 K−1]

E α ν

matrix 513 4100 55.0 0.3

EfL EfT αfL αfT νfL νfT

fiber T800 29400 1600 −0.3 28.1 0.2 0.01

composite vf = 55% 163545 9143 0.002 39.3 0.24 −
composite vf = 60% 178040 9672 −0.004 37.9 0.24 −
composite vf = 65% 192535 10241 −0.009 36.5 0.24 −

15.8.3 Prototype for Measuring Thermal Curvature

The first prototype-laminate consists of three regions,

[90/02]− [02/90]− [90/02],

where the outer regions measure 50mm along the 90◦ direction and the inner one
100mm. The dimension of the laminated plate along the other direction is 400mm.
The outer regions with reversed stack-up sequence help to suppress saddle shapes.
We used a processing temperature of Tproc = 120◦C. Fig. 15.13a) shows the resulting
part after applying the autoclave process. The thickness of a 3-layer laminate was
measured at 0.18mm so that cured layer thickness is 0.06mm. At a room temperature
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a) prototype b) shape curvature versus volume fraction

Fig. 15.13 First prototype for measuring thermal curvature (a) and measured and predicted shape
curvatures (b).

of about 20◦C, its radius of curvature has been measured as R = 37.5mm. Using the
material properties listed in Table 15.6, we predicted the curvature radii shown in the
plot to the right in Fig. 15.13b), which are in good agreement with the measurement,
particularly for the higher temperature difference ΔT = −100K.

15.8.4 Corrugated-Laminate Sample with Three Unit Cells

The thermal curvature measured on the prototype indicate that the curved length of
one maximum-amplitude circular section is about 210mm. Fig. 15.14 illustrates that
the demonstrator laminate consists of nine regions,
[90/0]s − [02/90]− [90/02]− [02/90]− [90/02]− [02/90]− [90/02]− [02/90]− [90/0]s,

Fig. 15.14 Demonstrator laminate after laying process
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where the two outer regions on each side of the laminate have a width of 105mm
whereas the other regions have a width of 210mm. Upon the curing process within
the autoclave and removal of the auxiliary materials, the laminate takes on the shape
of a corrugated laminate shown in Fig. 15.15.

15.9 Morphing Model

The development of an analytic morphing model (Kress and Filipovic, 2019) has
been motivated by the analysis of the manufacturing process and the FEM morphing
simulations presented so far. The theory holds for corrugated laminates where the
reference configuration is a periodic corrugation pattern consisting of circular sec-
tions and where the laminates are much thinner than the circular-sections radii. Thus,
the deformations are nonlinear whereas the material strains remain small (Kress and
Winkler, 2009; Ren and Zhu, 2016).

15.9.1 Geometric and Mechanical Unit Cells

The sketch to the left in Fig. 15.16 shows one periodic unit cell of the corru-
gation pattern and indicates the natural and essential boundary conditions. At
all points marked with open circles the bending moment My vanishes. The left-
most point is fixed in space but allowed to rotate. The point at the right of the
geometric unit cell does not move along z, uz = 0, and a specified displace-
ment uy = û imposes morphing strain. The geometric-unit-cell is point symmet-
ric with respect to its center point, and the two circular segments are in them-
selves symmetric with respect to vertical lines. Therefore, the point marked with
a solid circle cannot rotate. Because of these circumstances, and even though
the stacking sequence of the first circular section, say [0n/90m], is reversed in
the second one, the structural behavior of the geometric unit cell is fully de-

Fig. 15.15 Cured demonstra-
tor laminate after cool-down
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Fig. 15.16 Geometric and mechanical unit cells

scribed by the mechanical unit cell shown in the sketch to the right of the figure.
The relation between stress resultants and deformations is described in the local
system shown in Fig. 15.2, where the coordinate mapping between the moving
trihedral x ξ2 ξ3 and the reference system xyz is given with⎧⎨⎩

x
ξ2
ξ3

⎫⎬⎭ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦⎧⎨⎩
x
y
z

⎫⎬⎭ . (15.21)

For writing convenience of subscripts, we prefer to replace the symbol ξ2 with s.

15.9.2 Reference Configuration

Fig. 15.2 indicates points in the reference configuration,

y(0)(ξ2) = RsinΔψ ; z(0)(ξ2) = R [1− cosΔψ]− c , (15.22)
where

Δψ = ψ − ψ0 =
ξ2
R

− ψ0 = κ0ξ2 − ψ0 , (15.23)

Point B in the reference configuration shown in Fig. 15.17 is given with:

y
(0)
B =

P

4
; z

(0)
B = −c . (15.24)

15.9.3 Cylindrical Bending and Constitutive Equations

Cylindrical bending implies that curvature deformations vanish, ε1x = ε1xs = 0. We
also assume that the midplane strain transverse to the corrugations and the shearing
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strain vanish, ε0x = ε0xs = 0. As the laminate is free of couplings between in-plane
shear and normal line forces as well as between twist and bending moments, ε0xs = 0.
The remaining relations between line loads and laminate deformations are:

Nx = A12ε
0
s Mx = D12ε

1
s

Ns = A22ε
0
s + B22ε

1
s Ms = B22ε

0
s + D22ε

1
s

(15.25)

15.9.4 Mechanical Unit-Cell Equilibrium

Fig. 15.17 redraws the mechanical unit cell identified in Fig. 15.16, where θ coincides
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Fig. 15.17 Equilibrium at unit cell and internal stress resultants

with Δϕ if no deformation is applied, and indicates stress resultants reacting to the
essential boundary conditions. A specified line force NB = Ny = N causes the
reaction line force NA = −N at point A. The internal moment at B is obtained from
the cross product of the reaction NA and distance between the line along which NA

acts and point B: ⎧⎨⎩
0
0
zB

⎫⎬⎭×
⎧⎨⎩

0
−N

0

⎫⎬⎭ =

⎧⎨⎩
zBN
0
0

⎫⎬⎭ =

⎧⎨⎩
MB

0
0

⎫⎬⎭ (15.26)

The local mid-surface in-plane line force N2 (ξ2) along ξ2 is a component of N
obtained from the transformation rule (15.21),

N2 (ξ2) = N cos (θ) , (15.27)

whereas the local transverse force Q3(ξ2) is not considered as the laminate thickness
is assumed much smaller than the corrugation-shape curvature. We connect the local
line loads with the second and the fourth of the laminate constitutive equations in
(15.22) to obtain: {

Ncos (θ)

Nz

}
=

[
A22 B22

B22 D22

]{
ε02

ε12

}
. (15.28)
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Resolving (15.28) for the laminate deformations gives:{
ε02

ε12

}
=

1

D

[
D22 −B22

−B22 A22

]{
N cos (θ)

Nz

}
, (15.29)

where D is the determinant:

D = A22D22 −B2
22 . (15.30)

15.9.5 Curvature and Rotation

The curvature κ(t)(ξ2) of the deformed configuration is the sum of shape curvature
of the reference configuration κ(0) = 1/R and of the bending curvature ε12(ξ2) due
to deformation caused by mechanical load N in (15.29):

κ(t)(ξ2) = κ(0) + ε12(ξ2) , (15.31)

where the linear distributions of the bending moment M2 and of the bending strain
ε12(ξ2) along z is considered. The total slope follows from integrating the curvature
along the curvilinear coordinate ξ2 (Kress and Winkler, 2009; Ren and Zhu, 2016):

θ(t)(ξ2) =

∫ ξ2

0

κ(t)(σ) dσ + C1 (15.32)

where the integration constant C1 must be adjusted to maintain the symmetry con-
dition at B, namely θ

(t)
B = 0. The total slope equals the angle of rotation in the

directional transformation (15.21).

15.9.6 Deformed Configuration

The deformed configuration is calculated from integrating mid-plane strain ε02 and
rotation θ over the curved length ξ2.

15.9.6.1 Stretch of Line Elements

A reference-configuration line element of the mid-surface dξ
(0)
2 changes length by

the stretch λ:
dξ

(t)
2 = λdξ

(0)
2 =

(
1 + ε02

)
dξ

(0)
2 . (15.33)

At position ξ2 the stretching of the line element gives the incremental displacements
(Ren and Zhu, 2016):
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du0
y = cos (θ) ε02 dξ

(0)
2 ; du0

z = −sin (θ) ε02 dξ
(0)
2 . (15.34)

Note that the stretch of the line elements becomes significant at the end of morphing
action when the corrugated laminate has become almost flat.

15.9.6.2 Integration of the Rotation

Positions of points in the deformed configuration are found by integrating the slope
(Kress and Winkler, 2009) and thereby considering the stretch (Ren and Zhu, 2016)
of line elements:

duy = du0
y + du1

y ; duz = du0
z + du1

z . (15.35)

At position ξ2 the stretching of the line element gives the incremental displacements:

y(t) (ξ2) =

∫ ξ2

0

cos (θ)λdσ ; z(t) (ξ2) = −
∫ ξ2

0

sin (θ)λdσ . (15.36)

At the reference configuration the point B indicated in Fig. 15.17 has the position
y
(0)
B = P/4, z(0)B = −c. Deformation changes that position to:

y
(t)
B =

∫ Ls

0

cos (θ)λdσ ; z
(t)
B = −

∫ Ls

0

sin (θ)λdσ . (15.37)

15.9.6.3 Displacements in Reference Coordinates

Displacements follow from the difference between current and reference configura-
tions:

uy = y(t) − y(0) ; uz = z(t) − z(0) , (15.38)

which yields:

uy =

∫ ξ2

0

cos (θ)λdσ − y(0) ; uz = −
∫ ξ2

0

sin (θ)λdσ − z(0) . (15.39)

15.10 Morphing Solution Algorithm

Deformed configurations of the problem at hand depend most directly on an applied
line force N . On the other hand, it is desired to specify morphing stretch λ̂morph. Fig.
15.18 illustrates that the solution algorithm is therefore partitioned into outer and
inner iterative processes, where the outer process finds the line force effectuating
that the actual stretch λmorph is equal to the specified stretch λ̂morph, and where the
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inner loop finds a deformed configuration where the stress resultants agree with the
distributions of the internal line force and line moment that equilibrate the external
line force N . For creating force-displacement diagrams from zero up to the specified

Fig. 15.18 Solution scheme. All symbols are defined in the following Section 15.10.1.

displacement ûy , N is increased in steps and the respective deformed configurations
are calculated by the inner process. As soon as the current displacement uy(λmorph)

comes close to or exceeds the specified value uy(λ̂morph), the outer process starts to
minimize the difference between current and specified displacements.

15.10.1 Inner Process

A loop on load steps creates the data points for line-force-displacement diagrams, as
Fig. 15.18 shows. The procedure starts with applying the line force N to the reference
configuration y(0) (ξ2) and z(0) (ξ2) to calculate curvature and mid-plane strain after
(15.29), angles θ after (15.32), and the deformed configuration after (15.36). At this
point, the deformed configuration’s stress resultants cannot be in equilibrium with
the external line force N . A scalar error measure is provided with:
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f =

∫ Ls

0

{
ΔN2

ΔM2

}T {
ΔN2

ΔM2

}
ds , (15.40)

where {
ΔN2

ΔM2

}
=

{
N int

2

M int
2

}
−
{

Next
2

Mext
2

}
, (15.41)

where the first term in the parentheses presents stress resultants corresponding with
the laminate deformations,{

N int
2

M int
2

}
=

[
A22 B22

B22 D22

]{
ε02

ε12

}
, (15.42)

and the second term contains the line reactions dictated by global equilibrium. In a
numerical presentation of the problem, the integral becomes a sum over all entries
of the data-point arrays:

f =

n+1∑
k=1

fk =
n+1∑
k=1

{
ΔN2

ΔM2

}T

k

{
ΔN2

ΔM2

}
k

Δs , (15.43)

where the curved mid-plane length Ls is subdivided into n sections of equal length
Δs and the state variables are assigned to the n + 1 interface and end points. The
plate deformations ε02k and ε12k completely control the deformed configuration and
are therefore solution parameters of the quadratic error function, or objective, f . The
Newton method minimizes the objective,

ε
(t+1)
k = ε

(t)
k +Δε

(t)
k , (15.44)

where the array εk contains midplane strain and bending curvature and where the
improvement Δε(t) is:

ε
(t)
k =

{
ε02

ε12

}(t)

k

, Δε
(t)
k = − (∇∇f)

−1 ∇f
(t)
k . (15.45)

The derivatives, namely the gradient ∇f
(t)
k ,

∇f
(t)
k = 2

{
ΔN2

ΔM2

}(t)T

k

[
A22 B22

B22 D22

]
ds , (15.46)

and the Hesse matrix ∇∇f (t),

∇∇fk = 2

[
A22 B22

B22 D22

]T [
A22 B22

B22 D22

]
ds , (15.47)
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can be calculated analytically. The increments Δε
(t)
k of mid-plane strain and curva-

ture are:

Δε
(t)
k = −ε

(t)
k − 1

D

[
D22 −B22

−B22 A22

]{
Next

2

Mext
2

}(t)

k

, (15.48)

so that the Newton Method gives the up-date rule:

ε
(t+1)
k = − 1

D

[
D22 −B22

−B22 A22

]{
Next

2

Mext
2

}(t)

k

. (15.49)

As the line loads equilibrating external loading depend on deformations, the up-date
must be improved in iterations. We find rapid convergence of this procedure up to
intermediate stretch values, or deformations, above which the procedure tends to
diverge. This phenomenon is generally caused by the objective function deviating
too far away from a quadratic polynomial so that the minimum-point estimates of
the Newton method become erroneous. The problem is mitigated by the modified
Newton method employing line searches:

ε
(t+1)
k = ε

(t)
k + αΔε

(t)
k (15.50)

where α is the step length minimizing f along the search direction Δε
(t)
k .

15.10.2 Outer Process

In order to let the actual deformed length y
(k)
B converge against the specified value

ŷB , we use the interval section method which is based on the rule of proportion:

N (k+1) = N (k−1) +
(
N (k) −N (k−1)

) (ŷB − y
(k−1)
B

)
(
y
(k)
B − y

(k−1)
B

) (15.51)

The updated length y
(k+1)
B should be closer to the specified stretch than the previous

values: ∣∣∣ΔyB(N
(k+1))

∣∣∣ < min
(∣∣∣Δy

(k−1)
B

∣∣∣ , ∣∣∣Δy
(k)
B

∣∣∣) , (15.52)

where

ΔyB(N
(k+1)) = yB(N

(k+1))− ŷB ; Δy
(k)
B = y

(k)
B − ŷB . (15.53)

If condition (15.52) applies, the line force Nk+1 replaces either Nk or Nk−1 de-
pending on which of the two leads to greater deviation of the actual stretch away
from its specified value.
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Δy
(k−1)
B > Δy

(k)
B

{
true → N (k−1) = N (k+1)

false → N (k) = N (k+1)
(15.54)

15.11 Morphing Simulations

15.11.1 Material, Laminates, and Reference Shape

The sample problem uses a unidirectional laminate of thickness t = 1mm made
from prepregs T300/epoxy where Table 15.1 shows relevant material properties. The
samples include a symmetric laminate [90] and an unsymmetric one [90, 02], both
of thickness t = 1mm. The laminates are formed into corrugations with periodic
length P = 100mm and amplitude c = 93.3mm.

15.11.2 Deformed Configurations

Fig. 15.19 shows plots of the deformed shapes under the specified displacements

Fig. 15.19 Reference and morphed shapes of corrugated laminates [90, 02] (solid lines) and [903]
(dashed lines) with maximum corrugation amplitude; stretches: 2, 3, 4, 5, and 5.2.

mentioned in the figure caption. It appears that the influence of laminate design
increases at higher stretches where the line force gains significance over the line
moment. The strain-bending coupling of the unsymmetric laminate then causes
higher deflections. For verifying the results of the analytical model, the deformations
of the corrugated laminate with symmetric layup, as shown in Fig. 15.19 have also
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been simulated by using a commercial FEM program (ANSYS, 2017), see Fig.
15.20. The curved length of the quarter-unit-cell model is meshed with 100 two-

Fig. 15.20 Deformed configuration for the symmetric laminate obtained with a commercial FEM
program

dimensional finite elements with quadratic shape functions for mapping plain strain
problems. Under a specified displacement at point B of ûy the FEM simulation
yields a position zB = −8.54mm whereas the present analytical model evaluates
zB = −8.48mm. The relative deviation between the two displacements, where the
FEM result is used as reference, is −0.7%. If the vertical displacement is considered
rather than the position, the relative deviation is one order of magnitude smaller.

15.11.3 Stretch-Line-Force Diagrams

The observation, that at higher stretches the line force gains a more significant role
on the deformations, is corroborated with the knee-shape characteristic of global
line-force-stretch diagrams shown in Fig. 15.21(a) where the knee-shape becomes
more pronounced for thinner wall thickness. Fig. 15.21(b) shows the influence of
corrugation amplitude c at the same thickness t = 1mm. The diagrams indicate that
not only the stretch limits reduce quickly but also that the average force required to
approach the respective stretch limits increase significantly with decreasing corru-
gation amplitude.

15.12 Discussion

It can be seen from Fig. 15.19 that, for the relatively moderate stretch value λ = 2 of
a high-amplitude corrugated laminate, the displacement of material points towards
the neutral plane of the corrugated laminate is small, so that the reduction of the
cross-sectional bending moment of inertia remains small as well. Considering the
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a) laminate thickness influence b) corrugation amplitude influence

Fig. 15.21 Influence of laminate thickness (a) and corrugation amplitude (b) on force-stretch
diagrams

potential application as a flexible part embedded in wing skin, the high-amplitude
corrugated laminate could also play the role of a local wing-skin stiffener where
the bending stiffness contribution remains unaffected within moderate morphing
stretches. In addition to its mechanical advantages, the high-amplitude corrugation
shape, where the laminate almost touches itself, causes less aerodynamic roughness
than lower amplitudes (Thill et al, 2010a), where the sketch of a wing skin with
integrated flexible-skin section shown in Fig. 15.1 gives a visual impression.

Other advantages of the high-amplitude corrugated laminate consisting of circular
segments is that bending curvature is smaller than for lower amplitudes or other
corrugation shapes (Thurnherr et al, 2016c) and, by choosing thickness-to-shape-
curvature ratios small enough, bending stresses can be kept below values critical
for fatigue strength. Moreover, there is no need to fully utilize maximum morphing
stretches of high-amplitude corrugated laminates: at stretch λ = 2 (corresponds with
100% structural strain of the flexible-skin section) the deformed shape retains much
of the bending moment of inertia of the reference shape and actuation force as well
as material strains remain small.

15.13 Conclusion

This study has shown that mold-less forming of unsymmetric laminates solves the
problem of manufacturing high-amplitude corrugated laminates where the corruga-
tion shape consist of piece-wise circular sections. Predictions of the mathematical
manufacturing model agree very well with FEM simulations. The manufacturing
process can be used to make corrugated laminates with integrated flat scales to pro-
duce an aerodynamically sufficiently smooth surface for application as flexible skin
in morphing-wing design. Preliminary prototype and corrugated-laminate demon-
strator validate the thermal-curvature predictions of the mathematical modeling. As
tooling, other than necessary for making flat laminates, is not needed, the manu-
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facturing method relying on thermal forming is more economic than other methods
requiring molds or machinery.

A nonlinear morphing model has been developed. The model allows to instan-
taneously create diagrams of structural response to applied stretch or force. The
deformed configuration at specified stretch shows excellent agreement with the re-
sults of commercial FEM software modeling.

Utilizing only a small part of the high stretchability of large-amplitude corrugated
laminates does not change their shape characteristics significantly, so that the cross-
sectional bending stiffness is maintained. All results indicate practical advantages
of the high-amplitude corrugation shape consisting of circular sections over other
corrugation shapes.
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Chapter 16
An FE-BE Method for the Hydroelastic
Vibration Analysis of Plates and Shells Partially
in Contact with Fluid

I. Tugrul Ardic, M. Erden Yildizdag, and Ahmet Ergin

Abstract In this study, a combined finite element (FE)–boundary element (BE)
method is presented to investigate the dynamic characteristics of shell and plate
structures in contact with fluid. The numerical procedure consists of two parts. In
the first part, the dynamic characteristics of structures are obtained under in-vacuo
condition by using the finite element method. Then, in the second part, fluid-structure
interaction effects are computed in terms of generalized added mass coefficients by
using the boundary element method. In analyses, surrounding fluid is assumed ideal,
i.e. inviscid, incompressible and irrotational, in the context of linear hydroelasticity
theory. In order to show the applicability of the proposed method, the dynamic
characteristics of two different structures —a vertical rectangular plate in contact
with fluid on one side and a horizontal cylindrical shell partially filled with fluid—
are investigated and compared with the results obtained with a commercial software,
ANSYS.

16.1 Introduction

Vibration is one of the most important phenomena in engineering, and a broad
range of studies investigating different aspects of vibrating structures can be found
in literature (see, e.g., Alessandroni et al, 2005; Giorgio and Del Vescovo, 2019,
2018; Baroudi et al, 2019; Giorgio et al, 2017; Barchiesi et al, 2018; Abd-alla et al,
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2017; Cazzani et al, 2018; Bersani et al, 2016). Particularly, dynamic interaction
between structures and their surrounding fluid media is of great concern in numerous
engineering problems, e.g. vibration of water retaining structures (i.e. dam, storage
tank, etc.) under earthquake loading, design of internal structures of nuclear reactors,
structural designs in aerospace and shipbuilding industries. For a structure in contact
with a fluid of comparable density, the presence of the fluid strongly affects the
dynamic response behavior of the structure. This is one of the complex engineering
problems, involving the determination of reactive forces due to induced pressure
at fluid-structure interface as a result of transferring structural vibrations into fluid.
As a special engineering discipline, hydroelasticity is known as a branch of science
which is, as expressed in Bishop and Price (1979), concerned with the motion of
deformable bodies through liquids.

Shells and plates have a wide range of applications as structural components in
shipbuilding, aerospace and petrochemical industries. Therefore, accurate estimation
of induced fluid loading on vibrating plates and shells is of practical importance to
assess the reliability of these structural components under different circumstances.
For a freely vibrating plate or shell, effect of interaction forces on the dynamic
characteristics of the structure is relatively weak when the density of surrounding
fluid is low, such as air. However, when the vibrating structure is in contact with
a fluid of comparable density, such as water, fluid loading significantly alters the
dynamic characteristics of the structure from those in vacuo. Therefore, motion of
both the structure and fluid is strongly coupled.

Hydroelastic vibration of plates and shells has been extensively studied by many
researchers. One of the pioneering studies in this field was presented by Warburton
(1961). In his study, dynamic analysis of an infinitely long cylindrical shell sub-
merged into infinitely deep fluid medium and/or filled with liquid was carried out
analytically under the assumption that the mode shapes do not change both in air
and when in contact with water. A fundamental work on fluid-coupled thin plates
was performed experimentally by Lindholm et al (1965), with the aim of obtain-
ing the wet dynamic characteristics (wet natural frequencies and corresponding wet
mode shapes) of clamped rectangular plates submerged into fluid. In the study, the
experiments were conducted to determine the wet dynamic characteristics of rect-
angular plates for different aspect ratios and submergence depths. Meyerhoff (1970)
obtained the dynamic characteristics of a thin rectangular plate submerged in an
incompressible and inviscid fluid by using dipole singularities to model fluid effects.

A number of analytical and semi-analytical methods have been conducted to
predict elastic response of cylindrical shells in contact with fluid. For example,
Chiba et al (1984a,b) and Goncalves and Ramos (1996) investigated the dynamic
characteristics of partially liquid-filled, and clamped vertical cylindrical shells by
using the Galerkin method. In both studies, cylindrical shells are clamped at the rigid
bottom surface. Askari and Jeong (2010) studied a slightly different problem that a
vertical cylindrical shell is clamped at the upper end and free at the bottom edge, and
the dynamic characteristics of the fluid-coupled system was extracted by using the
Rayleigh-Ritz method. Jeong and Lee (1996) carried out an analytical study based
on Fourier series expansion to obtain natural frequencies of both partially liquid-
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filled and partially submerged circular cylindrical shells. Jeong (1999) applied the
same methodology to investigate the dynamic characteristics of cylindrical shells
concentrically or eccentrically submerged in a rigid fluid container. Implementation
of the wave propagation approach to solve acoustic wave equation was first applied
by Zhang (2002) to study the dynamic behavior of submerged cylindrical shells. In
this context, displacement fields of cylindrical shells are defined as traveling waves.
Recently, the same approach was adopted by Zhang et al (2017) to analyze the free
and forced vibration characteristics of fully-submerged elliptic cylindrical shells. In
these studies, fluid medium is assumed to be compressible, inviscid and irrotational,
and thus, the motion is governed by the Helmholtz equation, and shells are assumed to
be infinitely submerged into fluid to neglect the free surface effects. When cylindrical
shells are horizontally in contact with fluid, which is a typical configuration in many
engineering problems, mathematical model become rather complex due to the lack
of axial symmetry. This type of problem was first studied by Amabili and Dalpiaz
(1995) and Amabili et al (1996), using experimental and semi-analytical methods,
respectively. In the semi-analytical study, the solution of fluid problem was obtained
analytically by the method of separation of variables, applying the infinite frequency
limit boundary condition on the free surface. As done in the work of Jeong and Lee
(1996), the radial displacements of the shell was defined by Fourier series expansion.

On the other hand, a lot of attempts have been made to investigate the dynamic
characteristics of plates in contact with fluid using analytical approaches. In ear-
lier studies, substantial simplifications have been made for analyzing rectangular
and circular plates (see, e.g., De Espinosa and Gallego-Juarez, 1984; Kwak, 1991).
Robinson and Palmer (1990) performed the modal analysis of a rectangular plate
floating on the free surface of a stationary fluid under the assumptions of potential the-
ory. Amabili et al (1996) investigated the free vibration of both circular and annular
plates submerged into fluid, bounded with rigid walls and the free surface, including
sloshing effects. Kwak (1997) calculated NAVMI (Non-dimensional Added Virtual
Mass Incremental) factors for circular plates placed in an opening on the infinite
rigid wall and in contact with fluid on one side. Cho et al (2014) investigated the free
vibration characteristics of both bare and stiffened panels vertically in contact with
stationary fluid. In this study, the kinetic and potential energy functionals of the sys-
tem were obtained by superposing the energy components of the plate and stiffener,
and the displacements of the plates were represented by orthogonal polynomials with
Timoshenko beam function properties. The Rayleigh-Ritz method is often used to
solve plate vibration problems due to its inherent advantage of being based on very
general assumptions for obtaining optimal solutions with approximation properties
of the trial spaces (see Amabili et al, 1996; Meylan, 1997; Jeong, 2003; Jeong and
Kim, 2009; Liao and Ma, 2016; Datta and Jindal, 2019). For example, Kwak and
Yang (2013) obtained the virtual added mass matrix of a partially immersed vertical
rectangular plate in elliptical coordinates by using orthogonal Mathieu functions to-
gether with the Rayleigh-Ritz method. A theoretical model was developed by Askari
et al (2013) to investigate the hydroelastic vibration of circular plates immersed in
fluid by using the Rayleigh-Ritz method including the free surface effects. In the
study, the compatibility conditions were satisfied both at the plate-liquid interface
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and between the upper and lower liquid subdomains divided by plate. Then, the total
velocity potential was defined as superposition of velocity potentials induced by the
free surface and deformation of the plate, and the wet mode shapes were obtained
by superposition of a finite number of admissible functions selected as dry mode
shapes of the plate.

For structures with complex geometries such as mono- or multi-hull vessels, air-
crafts, multi-purpose offshore structures and space vehicles, it is not possible to deal
with the problem by using analytical approaches. Thus, alternative computational
methods have been developed for the dynamic response analysis of such complex
structures under the effect of fluid environment. In earlier studies, the finite ele-
ment method (FEM) was recognized as a powerful numerical tool for the solution
of fluid-structure interaction problems. In this direction, Zienkiewicz and Newton
(1969) developed a method to solve fluid-structure interaction problems in which
fluid and structure domains are both modeled with finite elements. In their method,
fluid environment is governed by the acoustic wave equation, and fluid pressure
acts as fundamental unknown in the matrix equations. The main drawback in this
formulation is that the matrices are not symmetric. An alternative FEM formulation,
in which the fluid displacement is main unknown instead of pressure, is developed
by Kalinowski (1974) to take the advantage of symmetric matrices. Following these
two seminal papers, FEM has been successfully applied in hydroelastic vibration
problems, dealing with various structures such as rectangular plates (Marcus, 1978;
Motley et al, 2013), spherical shells (Liang et al, 2001), steelworks in fluid-carrying
vessels (Volcy et al, 1980) and stiffened cylindrical shells (Hsu and Jen, 2010). One
of the major drawbacks in FEM approaches is that, when the structure vibrates in
an unbounded fluid environment, the entire geometry including surrounding fluid
region must be discretized with finite elements. Clearly, this situation leads to a
considerable increase in the number of elements and computation time. In order to
overcome this difficulty, Fu and Price (1987) developed a hybrid model in which the
structural problem is handled by FEM and the fluid problem by the boundary element
method (BEM). Dealing with the fluid problem by using BEM, as discretization is
only performed over the wetted surface of the structure, instead of the entire sur-
rounding fluid, the method provides a substantial advantage in terms of computation
time. In order to take the advantage of this approach, several researchers investigated
hydroelastic vibration problems of different geometries (see Junge et al, 2011; Zheng
et al, 2017). For example, Ergin and Temarel (2002) used a combined FE-BE method
to calculate the free vibration characteristics of thin circular cylindrical shells in con-
tact with internal and external liquid. In this study, it was pointed out that the mode
shapes of the cylindrical shell partially in contact with fluid differed significantly
from those obtained under in-vacuo condition. The same methodology adopted by
Ergin and Uğurlu (2003) to calculate natural frequencies and corresponding mode
shapes of clamped rectangular plates both in-vacuo and in contact with fluid. Re-
cently, Yildizdag et al (2019) examined the hydroelastic vibration characteristics of
the same plate immersed in fluid in vertical and horizontal positions, respectively,
by using an isogeometric FE-BE approach.
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The central theme of this study is to present a general numerical strategy for
investigating natural frequencies and corresponding mode shapes of plate and shell
structures partially in contact with fluid. The fluid environment is considered within
the context of potential theory, i.e., fluid is inviscid, incompressible, and its motion is
irrotational. By assuming that the structure vibrates with a relatively high frequency
and the corresponding fluid pressure is in phase with the structural acceleration,
the linearized fluid-structure interaction system is established, and generalized fluid-
structure interaction forces are derived from the linear form of the Bernoulli equation.
By using this linearized hydroelasticity theory, the fluid-structure interaction problem
may be divided into in-vacuo (dry) and wet parts, and each problem can be analyzed
separately. In the absence of any external force and structural damping, the in-
vacuo part of the analysis is performed by solving the equation of motion with
FEM. The surface normal velocity components of the fluid on the wetted part of
the structure are obtained by applying continuity condition, in other words, the
normal velocities on the wetted surface are expressed in terms of in-vacuo modal
displacements. In the wet part of the analysis, BEM is applied to obtain hydrodynamic
forces associated with each principle mode. The wetted surface is discretized with
boundary elements (hydrodynamic panels), with a point source of constant strength
placed at the geometric center of each panel. In the absence of axial flow, free surface
waves and viscous effects, the interaction between the structure and fluid takes place
only through the inertial effect of fluid (added mass coefficients). Therefore, the total
generalized mass matrix, which is formed by merging the generalized structural mass
and hydrodynamic added mass matrices, is used to solve the eigenvalue problem for
the fluid-structure system. The numerical framework presented here is applied to two
specific geometries: a rectangular plate and a horizontal cylindrical shell, partially
in contact with fluid. In order to assess the validity and accuracy of the method,
wet natural frequencies and corresponding mode shapes are compared with those
obtained by commercially available finite element program, ANSYS (2013).

16.2 Mathematical Model

16.2.1 In-Vacuo (Dry) Structural Analysis

In the absence of structural damping and external forces, motion of the structure can
be defined by

Mẍ(t) +Kx(t) = 0 (16.1)

where M is the structural mass matrix and K is the structural stiffness matrix. Here,
ẍ and x are the acceleration and displacement vectors of the structure, respectively.
By assuming the structure oscillates harmonically in time, a trial solution can be
express as follows
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x = ueiωt (16.2)

where u represents the amplitude vector of the displacements, and ω is the frequency
of oscillation. By using this expression, Eq. (16.1) takes the following form(−ω2M+K

)
u = 0. (16.3)

Eq. (16.3) defines an eigenvalue problem, and the non-trivial solutions of this system
can only be obtained when the following condition is satisfied,

det
[−ω2M+K

]
= 0. (16.4)

Here, Eq. (16.4) is called characteristic equation, or frequency equation. For a
structure having N degrees of freedom, the characteristic equation possesses N
distinct roots, ω2

1 , ω
2
2 , ..., ω

2
n, and the square roots of these quantities represent the

natural frequencies of the structure. For every frequency, ωr, there is a corresponding
vector of amplitudes, ur. The eigenvector ur corresponding to the natural frequency
ωr denotes the r-th principal modal vector.

Based on orthogonality of modal vectors, a vector space consisting of modal
vectors can be formed and the response of the system can be defined by superposition
of the displacements in the principal modes

U =

N∑
r=1

Drpr(t) = Dp(t) (16.5)

where D and p are N × N modal matrix consisting of modal vectors and N × 1
column vector representing the principal modes, respectively. Substituting Eq. (16.5)
into Eq. (16.3) and multiplying by DT , the equation of motion is obtained in terms
of the principal coordinates of the structure(−ω2a+ c

)
p = 0. (16.6)

Here, a and c denote the generalized mass and stiffness matrices, respectively, and
they are a = DTMD and c = DTKD, respectively.

One of the useful and important features of modal vectors is that they are orthog-
onal. This is to say that:

uT
s Kur = 0 if r �= s,

uT
s Kur = ω2

rarr if r = s,

and

uT
s Mur = 0 if r �= s,

uT
s Mur = arr if r = s.
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16.2.2 Wet Analysis

16.2.2.1 Formulation of the Fluid Problem

By assuming the fluid is ideal, i.e. inviscid and incompressible, and its motion is
irrotational, there exists a fluid velocity vector, v(x, y, z), defined as the gradient of
the velocity potential function, φ(x, y, z), satisfies the Laplace’s equation,

∇2φ(x, y, z) = 0. (16.7)

For a system under fluid-structure interaction effects, the Laplace equation defines a
boundary value problem. Therefore, boundary conditions must be defined over the
entire wetted surface of the elastic body and also on the free surface. There is no fluid
transfer in the direction perpendicular to the wetted surface of the elastic structure.
As a result, the normal fluid velocity must be equal to the normal velocity on the
structure and this condition for the r-th modal vibration of the elastic structure in
contact with a quiescent fluid can be expressed as

∂φr

∂n
= ur · n on Sw. (16.8)

Here, n is the unit normal vector on the wetted surface, Sw, and ur is the r-th
modal displacement vector of the median surface of the structure. Furthermore, it
is assumed that the structure vibrates at relatively high frequencies; thus, the effect
of free surface waves due to the modal distortions of the structure is neglected in
the mathematical model. Thus, the free surface boundary condition is simplified and
expressed as follows

φr = 0, on the free surface. (16.9)

In this study, the free surface boundary condition given in Eq. (16.9) is satisfied
by using the image method (Kito, 1970). For this purpose, an imaginary surface is
introduced by mirroring the wetted part of the structure by taking the free surface as
mirror plane, and the modal displacements over the wetted surface are also mirrored,
as described in Fig. 16.1. Hence, by utilizing the image method, the fluid-structure
interaction problem is reduced to classical Neumann problem.

16.2.2.2 Numerical Evaluation of Perturbation Potential

The boundary integral equation formulation for a three-dimensional inviscid flow,
due to time-harmonic oscillating structure, can be expressed by unknown source
strength, φ∗, over the wetted and image surfaces.

cφ(P ) =
�

Sw+Si

q(Q)φ∗(P,Q) ds−
�

Sw+Si

φ(Q) q∗(P,Q) ds (16.10)
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Fig. 16.1 Wetted surface and
its image.

where φ∗ is the fundamental solution for the velocity potential. Here, c is a space-
angle constant and it is 0.5 for constant-strength source panels. The integral equation,
Eq. (16.10), allows us to calculate unknown velocity potential φ(Q) both over the
wetted boundary and inside the fluid domain when the flux q(Q) is known. In this
equation, Q and P represent the field and load points on the wetted and imaginary
surfaces, respectively, and Sw +Si denotes the total wetted and imaginary surfaces.
The fundamental solution of the Laplace operator, φ∗, and the cartesian components
of its gradient, q∗, are given for 3-D case, respectively, as

φ∗(P,Q) =
1

4πr
, (16.11)

q∗x = − r,x
4πr2

, q∗y = − r,y
4πr2

, q∗z = − r,z
4πr2

(16.12)

where r is the Euclidean distance,

r =
√
(xQ − xP )2 + (yQ − yP )2 + (zQ − zP )2, (16.13)

between the source and field points. Here, r,x , r,y and r,z are the projections of the
Euclidean distance, r, on the x, y and z axes, respectively, and expressed as follows

r,x =
xQ − xP

r
, r,y =

yQ − yP
r

, r,z =
zQ − zP

r
. (16.14)

The integral equation in Eq. (16.10) is a Fredholm equation of the second kind, and
it must be satisfied over the wetted and imaginary surfaces of the elastic body. This
equation can be numerically solved by dividing the wetted and imaginary surfaces of
the structure into hydrodynamic panels, and the flux and unknown velocity potential
are taken as constant over each panel. In this framework, the numerical solution
of Eq. (16.10) is satisfied only at the geometric center of each panel. Therefore,
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the surface integrals in Eq. (16.10) may be written as the sum of integrals over N
constant-strength quadrilateral panels

1

2
φi = −

N∑
j=1

q∗ φj +

N∑
j=1

φ∗ qj . (16.15)

In Eq. (16.15), it is assumed that all qj values are obtained from the in-vacuo (dry)
analysis (each column of the matrix D is defined in Eq. (16.5)), and therefore, the
corresponding unknown source strengths at each panel, φj , are calculated from the
solution of Eq. (16.15) for each principal mode shape.

16.2.2.3 Generalized Fluid-Structure Interaction Forces

Generalized fluid-structure interaction forces are calculated by using the pressure
distribution on the wetted surface, obtained by solving the potential flow problem.
The r-th component of the generalized fluid-structure interaction force due to k-th
modal vibration can be obtained by using the following equation

Zrk =
�

Sw

Pkur · n ds. (16.16)

The fluid pressure acting on the wetted surface of the structure due to the k-th modal
vibration can be calculated using the linearized form of the Bernoulli equation,

Pk = ω2ρφk. (16.17)

Thus, the r-th component of the generalized fluid-structure interaction force ampli-
tude due to the k-th modal vibration takes the following form

Zrk =
�

Sw

(ω2ρφk)ur · n ds, (16.18)

and then the generalized added mass term, Ark, can be expressed as follows

Ark =
ρ

ω2

�

Sw

ω2φkur · n ds. (16.19)

If the k-th principal coordinate is in the form of pk(t) = pke
iωt, then the r-th

component of the generalized fluid-structure interaction force can be written as

Zrk = Arkω
2pke

iωt = −Arkp̈k. (16.20)
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16.2.2.4 Calculation of Wet Frequencies and Mode Shapes

Fluid-structure interaction forces acting on a freely vibrating structure in the vicinity
of a free surface vary with frequency. In this study, it is assumed that the structure
vibrates with a relatively high frequency, thus the generalized added mass is constant
and independent of vibration frequency. The generalized equation of motion may
therefore be written as [−ω2(a+A) + c

]
p0 = 0 (16.21)

where c and a denote the generalized structural stiffness and generalized mass
matrices, respectively. The M ×M matrix A represents the frequency-independent
generalized added mass matrix. By solving the eigenvalue problem expressed in
Eq. (16.21), one can obtain each wet natural frequency, ωk, and corresponding
eigenvector p0k = {pk1

, pk2
, ...,pkM

}. The wet mode shapes of the structure can be
defined as superposition of the dry modes, where the contribution of the j-th mode
is represented by pkj ,

qk(x, y, z) =

M∑
j=1

uj(x, y, z)pkj
(16.22)

where M denotes the number of modes considered in the analysis. It should be
noted that the fluid-structure interaction forces associated with the inertial effect of
the fluid do not have the same spatial distribution as those of the in-vacuo modal
forms. As a consequence, this produces hydrodynamic coupling between in-vacuo
modes.

16.3 Numerical Examples

In this section, the presented FE-BE procedure is applied to two different structures
(rectangular plate and cylindrical shell) in contact with fluid, in order to demonstrate
the applicability of the method. In the numerical examples, flat shell elements are
adopted to conduct the in-vacuo analyses. The FEM formulation of flat shell elements
used in this study can be found in Appendix.

16.3.1 Vertical Rectangular Plate in Contact with Fluid on One
Side

The proposed mathematical model is first applied to a rectangular plate partially in
contact with fluid on one side and clamped along its all edges (see Fig. 16.2). The
rectangular plate has the length � = 2.0 m, height h = 1.4 m and thickness t = 10
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mm. The plate is made of steel with the following material properties: Young’s
Modulus, E = 206 GPa, Poisson’s Ratio, ν = 0.3, and density, ρs = 7850 kg/m3.
The density of surrounding fluid is ρf = 1025 kg/m3, and d denotes the submerging
depth.

Fig. 16.2 Vertical cantilever plate in contact with fluid on one side.

In the first part of the analysis (i.e. dry analysis), natural frequencies and corre-
sponding mode shapes under in-vacuo condition are obtained by solving the equation
of motion. The results obtained by the present method are compared with those cal-
culated using a commercial finite element software, ANSYS. In order to show the
convergence of the first six natural frequency values, the structure was discretized
by 300, 588, and 972 elements, respectively. The calculated frequency values are
shown in Table 16.1 for the first six dry modes. The presented results clearly show
that the differences between the calculated values in the 2nd and 3rd idealizations
are negligible.

Moreover, the first six in-vacuo mode shapes of the rectangular plate are shown
in Fig. 16.3. As expected, the complexity of the modal configurations increases with
increasing frequency. These mode shapes may be classified into two groups, as sym-
metric and antisymmetric with respect to the axis passing through the longitudinal
center of the plate. With this respect, the 1st, 3rd, 4th and 6th modes are symmetric,
and the 2nd and 5th modes are antisymmetric. In Table 16.2, S and A stand for
symmetry and antisymmetry, respectively.
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Table 16.1 Convergence of dry natural frequencies (Hz).

Mode This study ANSYS
300 El. 588 El. 972 El. 7500 El.

1 (S) 34.69 34.74 34.76 34.78
2 (S) 55.27 55.43 55.49 55.56
3 (A) 83.65 83.77 83.83 83.83
4 (S) 89.77 90.04 90.16 90.25
5 (A) 102.21 102.68 102.87 103.06
6 (S) 133.96 124.01 135.72 135.72

Fig. 16.3 In-vacuo mode shapes of rectangular plate: (a) 1st mode (34.76 Hz); (b) 2nd mode (55.49
Hz); (c) 3rd mode (83.83 Hz); (d) 4th mode (90.16 Hz); (e) 5th mode (102.87 Hz); (f) 6th mode
(135.29 Hz).

In the second part of the analysis (i.e. wet analysis), wet natural frequencies and
corresponding mode shapes of the rectangular plate are obtained for four different
submerging ratios, namely d/h = 0.25, 0.50, 0.75, 1.00. The results obtained by
the proposed FE-BE procedure are compared with those obtained by ANSYS. In
ANSYS, the rectangular plate is discretized with four-node quadrilateral SHELL181
elements, and the surrounding fluid domain is modeled by FLUID30 elements.
The density and sonic velocity are 1025 kg/m3 and 1507 m/s, respectively. As the
structure vibrates in high-frequency region, the infinite frequency limit condition is
imposed on the free surface of fluid (φ = 0).

In Table 16.2, a convergence study is presented for the wet frequencies obtained by
using the proposed FE-BE procedure. In this study, for each submerging depth ratio
(d/h), three different panel idealizations are adopted, and the results are compared
with those obtained using ANSYS. The number of hydrodynamic panels adopted
over the wetted surface, respectively, is 145, 344 and 580 for d/h = 0.25; 290,
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Fig. 16.4 ANSYS model of
vertical plate in contact with
fluid (d/h = 0.5).

645 and 1160 for d/h = 0.50; 435, 990 and 1740 for d/h = 0.75; 580, 1290 and
2320 for d/h = 1.00. As expected, the wet natural frequencies are lower than the
corresponding in-vacuo frequencies. Difference between in-vacuo and wet natural
frequencies is significant for the submerging depth ratio d/h = 1.00. As it is
observed from Table 16.2, differences between the 2nd and 3rd idealizations for all
submerging depth ratios are negligible. In addition, the converged values compare
perfectly well with those of ANSYS. The maximum differences between the 3rd
idealization and ANSYS which correspond to the first modes are 2.4%, 1.6% and
3.7% for submerging depth ratios d/h = 0.25, 0.50 and 1.00, respectively, while,

Table 16.2 Convergence of wet natural frequencies (Hz) for submerging depth ratios d/h = 0.25,
0.50, 0.75 and 1.00.

Mode This study ANSYS
145 El. 344 El. 580 El. 881000 El.

1 (S) 33.17 33.19 33.19 33.99
2 (S) 54.19 54.21 54.22 54.18
3 (A) 76.23 76.29 76.30 76.33
4 (S) 87.70 87.71 87.71 87.71
5 (A) 94.05 94.06 94.06 93.94
6 (S) 124.09 124.01 123.96 123.67

(a) d/h = 0.25

Mode This study ANSYS
290 El. 645 El. 1160 El. 938000 El.

1 (S) 22.66 22.65 22.63 22.99
2 (S) 37.98 37.91 37.87 37.79
3 (A) 61.07 60.92 60.86 60.51
4 (S) 63.91 63.73 63.65 63.66
5 (A) 80.37 80.22 80.16 80.09
6 (S) 97.75 97.22 96.99 96.80

(b) d/h = 0.50

Mode This study ANSYS
435 El. 990 El. 1740 El. 968000 El.

1 (S) 15.46 15.43 15.41 15.39
2 (S) 28.46 28.37 28.33 28.21
3 (A) 49.18 49.01 48.93 48.11
4 (S) 64.64 64.38 64.26 64.14
5 (A) 0.000 0.000 0.516 0.000
6 (S) 83.20 82.69 82.48 82.38

(c) d/h = 0.75

Mode This study ANSYS
580 El. 1290 El. 2320 El. 1616500 El.

1 (S) 13.28 13.24 13.22 12.73
2 (S) 26.02 25.88 25.82 25.52
3 (A) 42.86 42.53 42.40 41.56
4 (S) 47.73 47.32 47.15 46.59
5 (A) 56.56 56.02 55.80 55.41
6 (S) 79.71 78.73 78.33 77.61

(d) d/h = 1.00
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for submerging depth ratio d/h = 0.75, the maximum difference (1.7%) is obtained
for the 3rd mode.

In Table 16.3, the generalized added mass coefficients, for submerging depth ratios
d/h = 0.25, 0.50, 0.75 and 1.00, are presented for the first 8 distortional mode shapes
(five symmetric and three antisymmetric). The generalized added mass coefficients
are scaled to a generalized mass of 1kg m2. The off-diagonal terms given in the
table represent the hydrodynamic coupling between in-vacuo modes. It is clear that
all the coefficients increase with increasing submerging depth ratio, due to increase
in wetted surface area. It can also be observed that the hydrodynamic coupling is
strong between symmetric modes itselves as well as antisymmetric modes. However,
the coupling between these two mode groups are negligible. In particular, strong
coupling can be observed between 1st and 3rd symmetric as well as 2nd and 5th
antisymmetric modes for submerging depth ratio d/h = 0.50. The diagonal terms
are dominant compared to the off-diagonal terms, especially for submerging depth
ratios 0.75 and 1.00.

Fig. 16.5 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.25.

Figs. 16.5-16.8 show the calculated wet mode shapes and wet frequencies for
d/h = 0.25, 0.50.0.75 and 1.00, respectively. In order to obtain the wet mode
shapes, the generalized added mass matrix is first formed by solving Eq. (16.19).
Then, the eigenvalue problem expressed in Eq. (16.21) is solved for obtaining wet
natural frequencies and corresponding mode shapes. A maximum number ofM = 24
in-vacuo modes was adopted in computations.

It is clear that the differences between in-vacuo and wet mode shapes are notice-
able, especially for higher submerging depth ratios (0.5 and higher). It can also be
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Table 16.3 Generalized added mass coefficients (kg m2) for rectangular plate partially submerged
in fluid.
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(c) d/h = 0.75

M
od

e
1

(S
)

2
(A

)
3

(S
)

4
(S

)
5

(A
)

6
(S

)
7

(A
)

8
(S

)
1

(S
)

5.
59

0.
00

0.
47

0.
70

0.
00

0.
12

0.
00

0.
86

2
(A

)
0.

00
3.

63
0.

00
0.

00
0.

13
0.

00
0.

49
0.

00
3

(S
)

0.
47

0.
00

2.
94

0.
13

0.
00

0.
15

0.
00

0.
28

4
(S

)
0.

70
0.

00
0.

13
2.

76
0.

00
0.

08
0.

00
0.

19
5

(A
)

0.
00

0.
13

0.
00

0.
00

2.
42

0.
00

0.
05

0.
00

6
(S

)
0.

12
0.

00
0.

15
0.

08
0.

00
2.

02
0.

00
0.

06
7

(A
)

0.
00

0.
49

0.
00

0.
00

0.
05

0.
00

2.
12

0.
00

8
(S

)
0.

86
0.

00
0.

28
0.

19
0.

00
0.

06
0.

00
2.

11

(d) d/h = 1.00



282 Ardic, Yildizdag, Ergin

Fig. 16.6 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.50.

Fig. 16.7 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 0.75.



16 An FE-BE Method for the Hydroelastic Vibration Analysis of Plates and Shells 283

Fig. 16.8 Natural frequencies and associated modes of rectangular plate for submerging depth ratio
d/h = 1.00.

said that the maximum difference, compared to those in vacuo, occurs for submerg-
ing depth ratios d/h = 0.5 and 0.75. For all the depth ratios, changes in the first and
second wet modes are insignificant, compared to the higher ones. In general these
two fundamental mode shapes do not show a significant difference, compared to the
corresponding dry ones, but the location of maximum displacement shift slightly in
the vertical direction. It must also be realized that for all the depth ratios, the wet
mode shapes preserve their symmetry or antisymmetry with respect to the vertical
axis passing through the longitudinal center of the plate.

16.3.2 Horizontal Cylindrical Shell Partially Filled with Fluid

In the second numerical example, the hydroelastic vibration analysis of a horizontal
cylindrical shell partially filled with fluid is considered (see Fig. 16.9). The me-
chanical and geometrical properties of the cylindrical shell are: Young’s modulus,
E = 206 GPa, Poisson’s ratio, ν = 0.3, mass density, ρs = 7680 kg/m3, thickness,
t = 1 mm, length, l = 0.664 m, radius, r = 0.175 m. d denotes the filling depth of
fluid, which has a density of ρf = 1025 kg/m3.

The cylindrical shell is sealed with thin circular caps at both ends. These caps
are resistant to radial loads, allowing for forces acting on their normal planes. Zhang
et al (2001) has emphasized that the effect of these end caps on the hydroelastic
vibration of circular shells is negligible. Therefore, in the numerical analysis, it is
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Fig. 16.9 Horizontal cylindri-
cal shell partially filled with
fluid.

assumed that the cylindrical shell is simply supported at both ends, instead of having
caps at the ends.

Firstly, the in-vacuo dynamic response analysis of the cylindrical shell is carried
out to obtain the in-vacuo natural frequencies and corresponding mode shapes, using
the FEM formulation given in Appendix. To assess the accuracy of the obtained
natural frequencies, a convergence study is carried out, and the results are compared
with those obtained by ANSYS. In Table 16.4, the convergence of the first eight
dry natural frequencies are presented for three different idealizations; 1900, 3470
and 7500 elements, respectively. As the number of elements increases, a monotonic
convergence is observed, and the differences between the 3rd discretization and
ANSYS become negligibly small. In Table 16.4, m denotes the number of half waves
in the axial direction while n denotes the number of waves around the circumference.

Table 16.4 Convergence of dry natural frequencies (Hz).

Mode This study ANSYS
(m-n) 1900 El. 3470 El. 7500 El. 7500 El.

1-4 228.37 226.39 225.30 224.42
1-4 228.37 226.39 225.30 224.42
1-5 240.12 236.45 234.06 232.15
1-5 240.12 236.45 234.06 232.15
1-6 316.93 308.52 303.78 299.25
1-6 316.93 308.52 303.78 299.25
1-3 323.71 322.91 322.31 321.86
1-3 323.71 322.91 322.31 321.86
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The calculated mode shapes for the first eight dry natural frequencies are shown in
Fig. 16.10. As in Table 16.4 and Fig. 16.10, for each dry natural frequency, the mode
shapes are obtained in pairs, satisfying the orthogonality condition. It must also be
realized that the fundamental in-vacuo natural frequency does not correspond to the
mode shape with the lowest number of waves around the circumference (n = 2). The
order of modes depends on the internal strain energy and geometrical characteristics
of the cylindrical shell under study.

Fig. 16.10 First eight dry mode shapes of cylindrical shell.

In the second part of the analysis, the hydroelastic vibration characteristics of
the cylindrical shell are investigated for three different filling depth-to-diameter
ratios, d/2r = 0.2, 0.5 and 0.8. In ANSYS, the cylindrical shell is discretized with
four-node quadrilateral SHELL181 elements, and fluid is modeled with FLUID30
elements (see Fig. 16.11).

Fig. 16.11 ANSYS model of
horizontal cylindrical shell
partially filled with fluid
(d/2r = 0.50).
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Table 16.5 Convergence of wet natural frequencies (Hz) for filling ratios d/2r = 0.20, 0.50 and
0.80.

Mode This study ANSYS
1350 El. 2195 El. 3190 El. 536400 El.

1 112.23 111.05 110.68 114.23
2 113.41 111.98 111.54 114.59
3 175.87 173.43 172.77 180.85
4 185.55 183.95 182.94 191.19
5 241.21 241.13 241.05 239.42
6 242.65 242.31 242.07 240.18

(a) d/2r = 0.20

Mode This study ANSYS
952 El. 1710 El. 3752 El. 673400 El.

1 101.04 99.33 98.80 97.85
2 101.76 100.07 99.45 98.99
3 134.73 132.32 131.65 127.89
4 135.23 133.03 131.78 130.92
5 185.41 181.39 180.53 180.08
6 187.12 184.18 183.64 181.68

(b) d/2r = 0.50

Mode This study ANSYS
1360 El. 2430 El. 1740 El. 968000 El.

1 97.47 96.01 95.58 94.02
2 97.96 96.45 96.02 94.92
3 115.21 113.13 112.47 110.04
4 116.96 115.09 114.34 113.08
5 141.30 139.21 138.46 136.38
6 148.16 145.20 144.77 143.53

(c) d/2r = 0.80

In order to check the convergence of the wet natural frequencies of cylindrical
shell, for each filling ratio, three different idealizations are adopted, and the results
are compared with those obtained by ANSYS. The number of hydrodynamic panels
(boundary elements) over the wetted surface is 1350, 2195 and 3190 for d/2r = 0.20;
952, 1710 and 3752 for d/2r = 0.50; and 1360, 2430 and 5360 for d/2r = 0.80,
respectively. As can be seen from Table 16.5, for all the filling ratios, results exhibit
monotonic convergence, and the differences between the results of the 2nd and 3rd
idealizations are negligibly small. Moreover, the predicted natural frequencies for the
3rd idealization compare very well with those obtained by ANSYS, and differences
are in the range of 0.1% and 4.7%. As expected, the wet natural frequencies are
lower than their in-vacuo counterparts, due to increasing inertia of the system, and
the differences become significant with increasing filling ratio.

In Table 16.6, the generalized added mass coefficients for the first twelve dis-
tortional mode shapes are presented for filling ratios d/2r = 0.20, 0.50 and 0.80,
respectively. These values are normalized to a generalized structural mass of 1 kgm2.
It is observed that the diagonal terms of the added mass matrices are considerably
larger than the off-diagonal terms, which represent the hydrodynamic coupling be-
tween in-vacuo modes. Furthermore, the generalized added mass coefficients become
larger for higher filling ratios due to increasing wetted surface area of the structure.



16 An FE-BE Method for the Hydroelastic Vibration Analysis of Plates and Shells 287

Table 16.6 Generalized added mass coefficients (kg m2) for the horizontal cylindrical shell
partially in contact with fluid.

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 1.40 0.03 -0.32 1.11 0.13 -0.70 -1.33 0.10 -0.21 0.02 -0.12 -0.01
1-4 0.03 1.46 -1.03 -0.32 0.61 0.13 0.10 1.38 0.02 -0.20 0.01 -0.12
1-5 -0.32 -1.03 1.20 0.01 -0.90 -0.01 0.03 -0.82 0.03 0.53 -0.01 -0.21
1-5 1.11 -0.32 0.01 1.26 0.01 -0.94 -0.79 -0.03 -0.51 0.02 0.20 -0.01
1-6 0.13 0.61 -0.90 0.01 0.97 0.00 -0.01 0.28 -0.02 -0.90 0.02 0.49
1-6 -0.70 0.13 -0.01 -0.94 0.00 0.96 0.31 0.01 0.87 -0.03 -0.45 0.02
1-3 -1.33 0.10 0.03 -0.79 -0.01 0.31 1.84 -0.02 -0.11 -0.03 0.24 0.00
1-3 0.10 1.38 -0.82 -0.03 0.28 0.01 -0.02 1.93 0.03 0.20 0.00 -0.30
1-7 -0.21 0.02 0.03 -0.51 -0.02 0.87 -0.11 0.03 0.81 0.01 -0.65 -0.03
1-7 0.02 -0.20 0.53 0.02 -0.90 -0.03 -0.03 0.20 0.01 0.85 0.03 -0.67
1-8 -0.12 0.01 -0.01 0.20 0.02 -0.45 0.24 0.00 -0.65 0.03 0.72 -0.01
1-8 -0.01 -0.12 -0.21 -0.01 0.49 0.02 0.00 -0.30 -0.03 -0.67 -0.01 0.69

(a) d/2r = 0.20

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 2.36 -0.05 -1.57 0.41 -0.20 0.01 -0.11 1.73 0.39 0.03 0.05 0.00
1-4 -0.05 2.50 -0.43 -1.55 -0.01 0.17 1.66 0.11 -0.03 0.36 0.00 -0.04
1-5 -1.57 -0.43 2.04 -0.03 -0.99 -0.33 -0.03 -0.23 0.08 0.01 -0.24 0.15
1-5 0.41 -1.55 -0.03 1.95 -0.35 -0.93 -0.25 0.03 -0.01 0.09 -0.17 -0.23
1-6 -0.20 -0.01 0.99 -0.35 1.64 0.04 -0.12 -0.36 1.06 -0.04 0.03 -0.09
1-6 0.01 0.17 -0.33 -0.93 0.04 1.68 -0.45 -0.09 -0.04 -0.99 -0.08 0.03
1-3 -0.11 1.66 -0.03 -0.25 -0.12 -0.45 2.85 0.03 -0.03 0.14 -0.28 -0.12
1-3 1.73 0.11 -0.23 0.03 0.36 -0.09 0.03 2.93 -0.09 0.03 -0.11 0.32
1-7 0.39 -0.03 0.08 -0.01 1.06 -0.04 -0.03 -0.09 1.41 0.03 0.17 -0.86
1-7 0.03 0.36 0.01 0.09 -0.04 -0.99 0.14 0.03 0.03 1.36 0.84 0.19
1-8 0.05 0.00 -0.24 -0.17 0.03 -0.08 -0.28 -0.11 0.17 0.84 1.20 0.03
1-8 0.00 -0.04 0.15 -0.23 -0.09 0.03 -0.12 0.32 -0.86 0.19 0.03 1.18

(b) d/2r = 0.50

m-n 1-4 1-4 1-5 1-5 1-6 1-6 1-3 1-3 1-7 1-7 1-8 1-8
1-4 3.55 0.00 -1.23 -0.03 -0.02 -0.70 -1.51 -0.03 0.00 -0.14 -0.23 -0.01
1-4 0.00 3.40 0.03 -1.22 -0.67 0.02 0.03 -1.60 -0.14 0.00 -0.01 0.24
1-5 -1.23 0.03 2.75 0.00 -0.02 -1.01 -0.71 -0.01 -0.01 -0.51 0.09 0.01
1-5 -0.03 -1.22 0.00 2.90 -0.96 0.02 0.01 -0.74 -0.51 0.01 0.01 -0.11
1-6 -0.02 -0.58 -0.02 -0.96 2.37 0.00 0.00 -0.09 -0.83 0.00 0.02 -0.47
1-6 -0.70 0.02 -1.01 0.02 0.00 2.37 -0.11 0.00 0.00 -0.78 0.44 0.02
1-3 -1.51 0.07 -0.71 0.01 0.00 -0.11 4.50 0.01 0.00 0.22 -0.28 -0.01
1-3 -0.03 -1.61 -0.01 -0.74 -0.09 0.00 0.01 4.25 0.26 0.00 -0.01 0.31
1-7 0.00 -0.04 -0.01 -0.51 -0.83 0.00 0.00 0.26 1.96 0.00 0.03 -0.70
1-7 -0.14 0.00 -0.51 0.01 0.00 -0.78 0.22 0.00 0.00 2.03 0.67 0.03
1-8 -0.23 -0.02 0.09 0.01 0.02 0.44 -0.28 -0.01 0.03 0.67 1.69 0.00
1-8 -0.01 0.24 0.01 -0.11 -0.47 0.02 -0.01 0.31 -0.70 0.03 0.00 1.72

(c) d/2r = 0.80
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Fig. 16.12 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.20.

The first six wet natural frequencies and associated mode shapes are shown in
Figs. 16.12, 16.13 and 16.14, for d/2r = 0.20, 0.50 and 0.80, respectively. All the
wet modes shown have one longitudinal half wave (m = 1) along the longitudinal
axis, and only the circumferential mode shapes are presented. In contrast to mode
shapes under in-vacuo condition, the wet mode shapes do not occur in pairs, and they
are simply numbered with increasing frequency. For all the filling ratios, mode shapes
are either symmetric or antisymmetric, with respect to the axis passing through the
center of the cylinder and perpendicular to the free surface. In general, the predicted
mode shapes compare very well with those obtained by ANSYS.

16.4 Conclusions

In this study, a FE-BE method is presented for the hydroelastic vibration analysis of
plates and shells partially contact with fluid. In order to show the applicability of
the method, two different numerical examples-a vertical rectangular plate in contact
with fluid on one side and a horizontal cylindrical shell partially filled with fluid-are
studied. The predicted results by the present method are also compared with those
obtained by ANSYS-a commercial software. It can be concluded that the presented
numerical procedure is suitable to investigate relatively high-frequency vibrations
of elastic structures partially in contact with fluid.
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Fig. 16.13 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.50.

Fig. 16.14 Natural frequencies and associated mode shapes of cylindrical shell for d/2r = 0.80.
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In the numerical examples, idealizations in both in-vacuo and wet analyses are
independent from each other, and both depend on the complexity of the structure and
the convergence. For both the rectangular plate and the horizontal cylindrical shell,
the convergence studies (see Tables 16.1, 16.2, 16.4 and 16.5) show that differences
are in an acceptable range. Also, the predicted frequencies compare very well with
the results obtained by ANSYS.

The present work demonstrates the versatility of the proposed method by studying
two different structures partially in contact with fluid. Moreover, the numerical
framework can be adopted to analyze more complex structures such as materials
exhibiting higher-gradient effects (for example, see those presented in dell’Isola and
Seppecher, 1995; Alibert et al, 2003; dell’Isola et al, 2012; Cuomo et al, 2016; Abali
et al, 2017; Barchiesi et al, 2019; Vangelatos et al, 2019c,b,a; dell’Isola et al, 2019a,b;
Eremeyev et al, 2018; Rahali et al, 2020; Eremeyev and Turco, 2020; Chróścielewski
et al, 2020). Application of the presented framework for such complex materials is
currently under investigation by the authors. Also, the free surface effects should be
taken into account to have a better understanding of the phenomenon.

Appendix

In this study, flat shell elements are used to conduct the in-vacuo analyses. In
the formulation of this shell element, it is assumed that bending and in-plane force
resultants are independent from each other. Therefore, the problem is considered as a
combination of 2-D plane stress and plate bending problems. Then, element stiffness
and mass matrices of each problem are combined in a suitable manner to define
total element stiffness and mass matrices. In this study, the plane stress problem is
formulated with bilinear displacement rectangular elements, and the plate bending
problem is modeled with MZC (Melosh-Zienkiewicz-Cheung) rectangular element
formulation (see Fig. 16.15).

Plane Stress Formulation

There is a wide number of elements developed based upon the assumptions of two-
dimensional elasticity. Among the formulations available, the bilinear displacement
rectangle element, developed by Melosh (1963) is preferred in this study to model
plane stress field of flat shell elements. A geometric configuration of this type of
element with a thickness t is given in Fig. 16.15. The dimensionless centroidal
coordinates are defined as follows

ξ =
x

a
, η =

y

b
(16.23)

where 2a and 2b are width and height, respectively. For plane stress elements, the
displacement field is defined with translations in the plane, formed by local x and y
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Fig. 16.15 Flat shell element.

coordinates. The first node is placed lower left corner, and the consecutive nodes are
designated in counterclockwise direction. The nodal displacement vector is written
as

q = {q1, q2, ..., q7, q8} = {u1, v1, ..., u4, v4}. (16.24)

For the displacement field, which is bilinear in ξ and η, the displacements are defined
as

u = c1 + c2ξ + c3η + c4ξη, (16.25)
v = c5 + c6ξ + c7η + c8ξη. (16.26)

By using these displacement functions, the geometric matrix, G, is introduced as
follows:

G =

[
1 ξ η ξη 0 0 0 0

0 0 0 0 1 ξ η ξη

]
(16.27)

The geometric matrix is evaluated at each node to obtain the following matrix:
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H =

⎡⎢⎢⎢⎢⎣
g1

g2

g3

g4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16.28)

where gi is a 2 × 8 matrix evaluated at ith node (i = 1, 2, 3, 4). Then, the matrix
formed by displacement shape functions, N = GH−1, is written as:

N =

[
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

]
(16.29)

where

N1 =
1

4
(1− ξ)(1− η), N2 =

1

4
(1 + ξ)(1− η),

N3 =
1

4
(1 + ξ)(1 + η), N4 =

1

4
(1− ξ)(1 + η).

Next, in order to define the linear differential operator formed by the derivatives with
respect to cartesian coordinates, chain rule is applied as follows:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

1

a

∂

∂ξ
,

∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
=

1

b

∂

∂η
.

Then, the differential operator, Dp, is written as:

Dp =

⎡⎢⎣
∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤⎥⎦ =

⎡⎢⎣
1
a

∂
∂ξ 0

0 1
b

∂
∂η

1
b

∂
∂η

1
a

∂
∂ξ

⎤⎥⎦ . (16.30)

For isotropic materials, the stress-strain operator is defined as follows:

E =
E

(1− ν2)

⎡⎢⎣1 ν 0

ν 1 0

0 0 1−ν
2

⎤⎥⎦ (16.31)

where E and ν represent Young’s modulus and Poisson’s ratio, respectively. Finally,
element stiffness matrix, K, and mass matrix, M, are calculated as follows:
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Kp = abt

+1∫
−1

+1∫
−1

BTEB dξdη (16.32)

Mp = ρabt

+1∫
−1

+1∫
−1

GTG dξdη (16.33)

In the expressions given in Eqs. 16.32 and 16.33, the matrix B is defined as

B = DG =
1

ab

⎡⎢⎣0 b 0 bη 0 0 0 0

0 0 0 0 0 0 a aξ

0 0 a aξ 0 b 0 bη

⎤⎥⎦ . (16.34)

The element stiffness and mass matrices given in Eqs. 16.32 and 16.33 have a
dimension of 8 × 8. To combine these matrices with those of the plate bending
problem, it is convenient to divide these matrices as follows:

Kp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Kp

11

]
[
Kp

21

] [
Kp

22

]
Sym.[

Kp
31

] [
Kp

32

] [
Kp

33

]
[
Kp

41

] [
Kp

42

] [
Kp

43

] [
Kp

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×8

, (16.35)

Mp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Mp

11

]
[
Mp

21

] [
Mp

22

]
Sym.[

Mp
31

] [
Mp

32

] [
Mp

33

]
[
Mp

41

] [
Mp

42

] [
Mp

43

] [
Mp

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×8

, (16.36)

where
[
Kp

ij

]
and

[
Mp

ij

]
are 2 × 2 sub-matrices of the element stiffness and mass

matrices, respectively (i, j = 1, 2, 3, 4). The superscript p denotes the in-plane
effects.

Plate Bending Formulation

In this study, MZC rectangular element, originally developed by Melosh Melosh
(1963), is used to model plate bending contributions of flat shell elements. As seen
from Fig. 16.15, this element has only one generic displacement, w, and rotations,
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θxi
and θyi

, with respect to the local axes x and y. For this type of plate element, the
following nodal displacement vector is introduced

q = {q1, q2, ..., q12} = {w1, θx1
, θy1

, ..., w4, θx4
, θy4

} (16.37)

and the displacement function is expressed as

w = c1 + c2ξ + c3η + c4ξ
2 + c5ξη + c6η

2

+ c7ξ
3 + c8ξ

2η + c9ξη
2 + c10η

3 + c11ξ
3η + c12ξη

3. (16.38)

The matrix formed by displacement shape functions is derived as

Ni = [Ni1Ni2Ni3 ]

where

Ni1 =
1

8
(1 + ξ0)(1 + η0)(2 + ξ0 + η0 − ξ2 − η2)

Ni2 =
−1

8
ηi(1 + ξ0)(1− η0)(1 + η0)

2

Ni3 =
1

8
ξi(1− ξ0)(1 + η0)(1 + ξ0)

2

and

ξ0 = ξiξ, η0 = ηiη, (i = 1, 2, 3, 4)

The differential operator (curvature matrix) for the plate bending problem is defined
as follows:

Db = { ∂2

∂x2
,
∂2

∂y2
,
2∂2

∂x∂y
}. (16.39)

By utilizing the curvature matrix and shape functions, one can obtain strain-
displacement matrix as follows

Bb
i = DbNi =

⎡⎢⎣ Ni1,xx Ni2,xx Ni3,xx

Ni1,yy Ni2,yy Ni3,yy

2Ni1,xy 2Ni2,xy 2Ni3,xy

⎤⎥⎦ (i = 1, 2, 3, 4), (16.40)

The local strain-displacement matrix is a 3× 12 matrix, and it is formed as

Bb =
[
Bb

1 Bb
2 Bb

3 Bb
4

]
3×12

(16.41)

In particular, Bb
1 is calculated as
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Bb
1 =

1

4a2b2

⎡⎢⎣ 3ξ(1− η)b2 0 (1− 3ξ)(1− η)ab2

3(1− ξ)ηa2 −(1− ξ)(1− 3η)a2b 0

(4− 3ξ2 − 3η2)ab (1− η)(1 + 3η)ab2 −(1− ξ)(1 + 3ξ)a2b

⎤⎥⎦
(16.42)

For an isotropic and homogeneous material, the generalized bending constitutive
matrix is given as

Eb =
Et3

12(1− ν2)

⎡⎢⎣1 ν 0

ν 1 0

0 0 1
2 (1− ν)

⎤⎥⎦ . (16.43)

Finally, the element sitffness matrix, Kb, and the mass matrix, Mb, for plate bending
elements are calculated as follows

Kb = ab

1∫
−1

1∫
−1

BbTEbBb dξ dη, (16.44)

Mb = ρtab

1∫
−1

1∫
−1

NTN dξ dη. (16.45)

The element stiffness and mass matrices of bending element given in Eqs. 16.44
and 16.45 have dimensions of 12 × 12. Again, for convenience, these matrices are
divided into sub-matrices to show the contributions to each degree of freedom as
follows

Kb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Kb

11

]
[
Kb

21

] [
Kb

22

]
Sym.[

Kb
31

] [
Kb

32

] [
Kb

33

]
[
Kb

41

] [
Kb

42

] [
Kb

43

] [
Kb

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×12

(16.46)

Mb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Mb

11

]
[
Mb

21

] [
Mb

22

]
Sym.[

Mb
31

] [
Mb

32

] [
Mb

33

]
[
Mb

41

] [
Mb

42

] [
Mb

43

] [
Mb

44

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
12×12

(16.47)
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where
[
Kb

ij

]
and

[
Mb

ij

]
are 2 × 2 sub-matrices of the element stiffness and mass

matrices, respectively (i, j = 1, 2, 3, 4). The superscript b denotes the bending
effects.

Derivation of Combined Stiffness and Mass Matrices of Flat Shell Element

As mentioned before, in-plane and bending counterparts of the mass and stiffness
matrices are combined to get the total stiffness and mass matrices in local coordinate
system. The total stiffness matrix is given as follows

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kp
11

0 0

0 0

0 0

Kb
11

0 0 0 0 0 0

Kp
21

0 0 0

0 0 0

0

0
Kp

22 SYM

0 0

0 0

0 0

Kb
21

0

0

0

0 0

0 0

0 0

Kb
22

0 0 0 0 0 0 0 0 0 0 0 0

Kp
31

0 0 0

0 0 0

0

0
Kp

32

0 0 0

0 0 0

0

0
Kp

33

0 0

0 0

0 0

Kb
31

0

0

0

0 0

0 0

0 0

Kb
32

0

0

0

0 0

0 0

0 0

Kp
33

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kp
41

0 0 0

0 0 0

0

0
Kp

42

0 0 0

0 0 0

0

0
Kp

43

0 0 0

0 0 0

0

0
Kp

44

0 0

0 0

0 0

Kb
41

0

0

0

0 0

0 0

0 0

Kb
42

0

0

0

0 0

0 0

0 0

Kp
43

0

0

0

0 0

0 0

0 0

Kb
44

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
24×24

(16.48)

In a similar manner, the mass matrix, M can be obtained. There are two important
points to emphasize here. First, as can be seen from Eq. (16.48), the displacements
resulting from in-plane forces have no effect on bending deformations, and vice
versa. Second, the rotational deformation, θzi is not included in the problem.
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The derived mass and stiffness matrices in the local coordinates must be trans-
formed into an identified reference coordinate system. All the transformations are
accomplished by a simple process. The displacements of a node are transformed
from global to local coordinates by the following transformation matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ 0 0 0 0 0

0 Λ 0 0 0 0

0 0 Λ 0 0 0

0 0 0 Λ 0 0

0 0 0 0 Λ 0

0 0 0 0 0 Λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16.49)

with Λ being a 3× 3 matrix of direction cosines between the two sets of axes given
by

Λ =

⎡⎢⎢⎣
cos(ξ, x) cos(ξ, η) cos(ξ, z)

cos(η, x) cos(η, η) cos(η, z)

cos(ζ, x) cos(ζ, η) cos(ζ, z)

⎤⎥⎥⎦ (16.50)

where cos(ξ, x) is the cosine of the angle between ξ andx axes. Thus, the stiffness and
mass matrices of an element in global coordinates are computed with the following
transformation

K̄ = TTKT, (16.51)
M̄ = TTMT (16.52)

where K̄ and M̄ are the global stiffness and mass matrices. Once the stiffness
matrices of all the elements have been determined in a common global coordinate
system, the assembly of the elements follow the standard solution pattern.
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Chapter 17
A Multimodal Approach for Automation of
Mechanical Design

Klaus Hoschke, Konstantin Kappe, Werner Riedel, and Stefan Hiermaier

Abstract A multimodal approach for the automation of mechanical design is pro-
posed. It is based on nonlinear programming incorporating topology optimization
(TO) and multiple modes of mechanical analysis of the structure. The material plas-
tification, large strain and transient failure behavior of interim optimized designs are
evaluated in a nonlinear analysis. As a result, early stage validation of results from
topology optimization (TO) and automatic design iteration are achieved.
A design approach is implemented, which is based on generative design and aims
for safety and lightweight construction under the aspects of structural ductility and
fail-safe behaviour in overstraining. The scheme is developed with a high degree
of automation, such that effective weighting of technical design criteria can be
achieved and design optimization results can be directly manufactured. The applica-
tion is demonstrated in simulation analysis as well as through experimental testing
of 3D printed structures.

17.1 Introduction

The mechanical design of functional components is a multidisciplinary task. For effi-
cient virtual product development, the intelligent handling of engineering knowledge
in multidisciplinary tools and automated design iteration is crucial. To achieve this
aim, mathematical programming is for example incorporated in design optimization
procedures. Specifically, topology optimization (TO) has proven to be a powerful
tool for finding layouts of lightweight parts that efficiently withstand mechanical
loads. Nevertheless, the modeling and the optimization procedure must be applica-
ble to the individual design problem, and validation in high fidelity procedures as
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well as costly iterations are often necessary.
Most mechanical design steps are undertaken today in a virtual environment. The
interconnection and management of data and knowledge in procedures have been
elaborated on ever since. Currently, various guidelines and processes have been estab-
lished in different industries or product classes. Specific technologies for distributed
work and design automation have been proposed (Sandberg et al, 2016). Master
models are a kind of basis concept for parallel and distributed design work. Ap-
proaches for reusing of design solutions can be product configurations or platforms
that use concepts of modularization, building blocks and derived product designs.
Automated design iterations and the implementation of knowledge into models by
implementation of mathematical programming and parametrization strategies for
multidisciplinary design optimization (MDO) have been discussed (see, e.g., Her-
skovits, 2012). Knowledge-based engineering (KBE) is a broader technological ap-
proach to the intelligent capture and reuse of knowledge in product development by
trying to establish a language-based framework for all before-mentioned approaches
(see, e.g., La Rocca, 2012).
Regardless, several different expertise and laborious coordination are still neces-
sary for the mechanical design of a functional part. Although managed intelligently
and virtually, results need to be regularly harmonized, collectively validated and
changes are iterated several times. In this work, a multimodal approach related to
the frameworks of KBE and MDO is proposed for mechanical part design. It aims to
automate the procedures as far as possible by integrating different domains, particu-
larly modes of mechanical description and analysis, in an intelligent design scheme,
which is based on topology optimization.
A common approach to lightweight mechanical design is the following, as inter-
preted from Dubbel and Davies (2013): 1) The construction material as well as the
manufacturing technology are predetermined according to technical specifications.
2) The loading conditions (operational loads and event loads) are modeled based on
an approximated number of load cycles during the service life and mapped on to the
admissible stress state of the material. 3) A first design is drafted based on topology
optimization (TO) or experience and conservative assumptions on the structural siz-
ing 4) High fidelity simulation analysis and mockup testing are applied for validation
and the design is iterated until it meets the technical specification.
The aspect of this scheme limiting effectiveness and automation, is the significant
discrepancy between first design drafts and validated, engineered results in steps 3)
and 4). The latter most often require many costly iterations. In a TO based approach,
one major drawback is the insufficient capability of modeling and efficiently solving
complex nonlinear mechanical design problems, as will be further discussed. The
resulting lack of dependability of topology-optimized results will require manual
interpretation and elaborate revision.
The most common objective for lightweight design is the optimization of the stiffness-
to-weight ratio. This approach can be modeled as a TO problem of minimizing the
mean compliance of the structure subject to a mass constraint and is elaborated
further in this monograph. The solid isotropic material with penalization (SIMP) is
the most common approach to the parametrization of this optimization problem, as
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discussed in Bendsoe and Sigmund (2013) and an extensive overview of TO methods
is given in Sigmund and Maute (2013). SIMP is widely implemented in commercial
software and already applied to large scale problems, although largely restricted to
static and linear-elastic tasks. It is a very effective method to optimize for stiffness
of a structure. In the classical approach, it disregards local stress concentrations and
material plastification. However, singular loading events that might be the result of
misuse or an impact and which lead to overstraining and material failure are very
important for the sizing of components for a safe service life (Dubbel and Davies,
2013).
For the purpose of more reliable topology results, new single mode methods in
the field of topology optimization have been described recently, namely the fail-
safe topology optimization (FSO) and the redundant topology optimization (RTO)
(Jansen et al, 2014; Zhou and Fleury, 2016; Mohr, 2011). FSO is based on a local
damage model in a multiple-model topology optimization (MMO) aiming for more
resilient designs in case of material failure with random location. Some of its aspects
will be adapted in this work and a new MMO formulation is developed. Nonlinear
material behavior as well as transient loading are disregarded so far in FSO and RTO,
as well as in the well-developed robust- (RTO) and reliability-based (RBTO) TO
methods for robustness against uncertainties. The implementation of material and
geometrical non-linearities in topology optimization methods has been addressed in
the past (see, e.g., Abdi et al, 2018; Schwarz et al, 2001; Li et al, 2018) but has not
yet been applied to large scale problems or found their way into commercial soft-
ware. This is mainly due to the path-dependent property of the sensitivity analysis,
which makes the latter elaborate and computationally unduly costly. Desmorat and
Desmorat (2008) avoids this in a TO aiming for fatigue resistance by using a damage
law for cyclic elasto-plasticity on an energetic basis. In doing so, the otherwise nec-
essary evolution relations are circumvented in this specific application. Nonlinear
and transient response was addressed by methods like the equivalent static loads
method (ESLM) or by hybrid cellular automata (HCA), and applied particularly in
crashworthiness design or multi-body dynamics (see Ahmad et al, 2017; Duddeck
et al, 2016). Still, material failure and graceful degradation related design constraints
like fail-safe behavior and redundancy have not been considered with those methods.
Of the aforementioned, ESLM and HCA are the only multimodal and most well-
known approaches for applications with nonlinear problems. The multimodal design
scheme proposed in this work can be described as more general and differences as
well as possible integration of the latter methods will be discussed later on.
Apart from the multitude of methods and approaches to the robustness and safety
of optimized structures, efficient solving of associated design problems still remains
an underdeveloped issue in the field of TO, especially in the regime of industrial
applications. In this monograph, a multimodal design scheme for safe, lightweight
design is proposed, that can be applied with commercially available software, takes
nonlinear material behavior and failure into account, and is suitable for transient
mechanics. It will be formulated as a generative design model in the KBE frame-
work. The approach combines and advances available methods of TO, namely SIMP,
FSO and MMO and aims at providing design engineers with an automated design



304 Hoschke, Kappe, Riedel, Hiermaier

tool to generate lightweight and also safe design solutions. The approach is so far
implemented in 2D and highly automated incorporating commercial software. The
potential of the approach is shown in an example problem and validated in 3D
printing of optimized structures and mechanical testing.

17.2 Theoretical Framework

In the following, the description of the mechanical analysis modes and numerical
approach as well as the theoretical background of the applied TO model are presented.

17.2.1 Linear, Elastic, and Static Problem Description

For the design of a mechanical part, it is initially assumed that the loading condition
is static and resulting deformations are sufficiently small and reversible. The consti-
tutive relation is assumed to be well approximated by a Cauchy-elastic material. The
governing equations for this case are the relations of static elasticity, described e.g. in
Hughes (2012), which can be derived from the conservation laws in the equilibrium
condition. The strain measure being the kinematic relation of displacements u and
strains ε can be derived from an infinitesimal element in the geometrically linearized
form.

"ε =
1

2

(
(∇"u)T +∇"u

)
or "ε = "L"u (17.1)

L is a differential operator that will be used for shortness in the description later
on. The compatibility condition of Saint-Venant of a linear elastic continuum domain
that deforms without gaps or overlaps reduces the number of differential equations
of (17.1) to six. The constitutive relation associating strains with stresses for a linear-
elastic, homogeneous and isotropic material, which is a reasonable assumption for
most metals, is described by Hooke’s law. The elasticity tensor E is then a function
of only two independent scalars, for example Young’s modulus Y and Poisson’s ratio
ν.

"σ = "E : "ε, "E = f (Y, ν) (17.2)

To find approximated solutions for the displacements, strains and stresses due
to loading conditions, the finite element method is used. For the derivation of the
specific relations, the principle of the minimum of the potential energy is utilized in
the weak form, which states: The best solution as well as the approximated solution
of the displacement field u that fulfills the conservation laws results in the minimum
of potential energy. Consequently, for the variation of the potential energy Π one
can write
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δΠ("u, "Lu) = 0 (17.3)

Using the weak form and implementing the relations of linear elasticity yields

δΠ =

∫
Ω

(
δ"uT "LT

)
"E
(
"L"u
)
dΩ −

∫
Ω

"uT "fdΩ −
∫
Γσ

"uT "̂tdΓ = 0 (17.4)

(17.4) formulates the variation of the potential energy as a functional of u elim-
inating the stress and strain relations. f are the volume forces and t̂ the traction
vector of prescribed stresses. To solve a discrete set of node displacements in a finite
element discretization, the elastic potential in the weak form is discretized spatially
with ansatz functions and differentiated in the discrete node displacements ũ, see
Hughes (2012) for more details. The discrete form can be written in the well-known
form

dΠ

d"̃u
= "K"̃u− "r = 0 (17.5)

The global stiffness matrix K is composed of the element stiffness matrices and
depends on the quantities of material, geometry and discretization. The vector of
node values r contains the prescribed boundary conditions. In this linear, elastic and
static design problem, the nodal displacements can be directly received by solving
the linear set of equations of (17.5).

17.2.2 Nonlinear, Plastic, and Transient Problem Description

Secondly, assume a design problem, where the loading leads to the material re-
sponding with irreversible plastic deformation and eventually to total failure due
to rupture. The stress-strain relation then becomes nonlinear and the assumptions
of linear elasticity and Hooke’s law cannot be applied. In addition, other forms of
non-linearity as well as the time dependence should be considered depending on the
particular problem. The here presented description is based on references Hiermaier
(2007); Hughes (2012); Sanchez (2018).

Nonlinear Geometry

For large displacements, the geometric relations in the governing equations need to
be described with a nonlinear theory that is not based on the linearized deformation
of an infinite element. In addition, other strain measures might be more suitable to the
modeling of observed deformations. Large displacements might occur in problems
with linear-elastic materials, small deformations and small strains, e.g. for ropes or
shell structures, but often appear for large strains in plastic deformation. In general
terms, the deformation gradient F describes the transformation of a deformed "X and
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an undeformed line segment "x of the material, as in (17.6). From this geometrical
description, suitable measures for stress and strain can be derived for the constitutive
relations.

Nonlinear Material

For nonlinear material behavior, the stress and strain measure as well as the stress-
strain constitutive relation need to be modeled according to the material observations.
The common approach for technical materials like metals is to describe the kine-
matics of plasticity by decomposition of the elastic and plastic contributions to the
deformation. It is illustrated here using the deformation gradient tensor

"F =
d"x

d "X
, "F = "F e · "F p (17.6)

The selection of a constitutive model is based on practical aspects. A popular
example used in this work for metals and often utilized in transient engineering ap-
plications with strain-rate dependency is the Johnson-Cook constitutive and damage
model. It uses a logarithmic strain measure (true strain) and assumes that plastifica-
tion is initiated when the material stress state exceeds the elastic limit, also referred
to as the yield stress. A yield criterion is specified in dependence of the von Mises
stress state σM in the form of an isotropic yield function F . It additionally depends
on a set of history variables γ that are evolved in time.

F = F (σM , γ) (17.7)

In a similar way, the Johnson-Cook damage model introduces a damage history
variable to the yield function to indicate material that has lost its load carrying
capability. The requirement F = 0 is the consistency condition for the plasticity
model. When F < 0, the material is assumed to behave elastic, otherwise the plastic
strain increments are solved from the plastic model. For a more detailed description
of plastic material modeling and the Johnson-cook models, the reader is referred to
Hiermaier (2007); Sanchez (2018).

Nonlinear Boundary Conditions

The set of conditions on the boundary nodes of the spatially discretized domain are
clustered into Neumann boundary conditions purporting stress states, or Dirichlet
boundary conditions purporting displacements, respectively. Those relations can
vary in time or become nonlinear, when they depend on the displacement of the
boundary of the body. Additionally, new nonlinear boundary conditions can appear,
e.g., by material rupture or contact events.
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Nonlinear, Transient Solution Method

To solve a nonlinear, transient problem, the finite element system of equations needs
to be extended to the conservation laws of transient dynamics and the dependence
of the relations from the displacement field as well as its derivatives in time. The
momentum balance in discrete form reads

"M"̈̃u+ "C"̇̃u+ "K"̃u− "r = 0 (17.8)

In (17.8) "M and "C are the mass and damping matrix of the system. All relations
in (17.8) potentially evolve in time and depend on the displacement field. There are
generally two solution strategies that use a time integration process in a discretized
time domain. The time is typically discretized by a finite difference method and the
increments are calculated on the basis of stability criteria of the numerical approach.
An implicit time integration scheme will approximate the progression of the state
variables in time and solve a transformed system of nonlinear but time-independent
equations that is a function of known and unknown state variables. Instead, an
explicit time integration scheme will solve the unknown state variables directly from
the extrapolation of the known state variables in time. The time integration scheme is
chosen based on the dynamic character of the analysis problem. Usually, the explicit
method is more suitable when small time steps need to be utilized for the description
of the system response, e.g. in high-speed impact scenarios or strong non-linearities,
e.g. in rupturing events. It has the drawback that the numerical stability of the
time stepping scheme depends on the information transport of wave propagation
through the discretized spatial domain. The step-size can only be increased up
to a limited extent by non-physical manipulations, e.g. by manipulating the nodal
material density. The stability of an implicit scheme depends on the invertibility of
matrices in (17.8) and the extent of nonlinearity in the solution that needs to be
well-approximated and can potentially allow much larger time steps.
In the solution strategy of the multimodal approach, both time integration schemes
can generally be utilized, depending on the particular problem, and the reason for
the method of choice in the implemented design problem will be explained later on.

17.2.3 Topology Optimization

For the implementation of intelligent design iterations with the TO method, the de-
sign problem needs to be transferred into a mathematical description of a structural
optimization problem. For this purpose, an objective function as a relation of design
criteria (e.g. stiffness, weight, cost) is specified in dependence of design variables.
The objective function is then gradually minimized with respect to the set of feasible
design solutions and typically, a set of constraint functions. The latter can be natural
bounds or consistency constraints. For topology optimization, the design variables
are a modeling approach of the material distribution, respectively the topology of
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the structure. The TO problem becomes the search for the best material distribution
in a material domain Ωmat as part of a bigger design space Ω, for which the bound-
ary conditions are specified. For the common parametrization of this distribution
problem, the stiffness tensor is utilized as being non-homogeneous

"E = "E("x) = ρ("x) "E0, ρ("x) =

{
1 if x ∈ Ωmat

0 if x ∈ Ω \Ωmat

(17.9)

This problem is also named the discrete TO problem of finding the discrete
distribution of the stiffness tensor "E( "x) respectively its indicator function ρ("x),
being the design variable. A very effective TO objective for lightweight is the
minimization of the structure’s mean compliance subject to a mass constraint. This
description can be directly related to the common criteria of maximizing the stiffness
to weight ratio of a lightweight construction. It is the optimization problem that is
utilized in this work and described further on in more detail.
The mean compliance C, according to Schumacher (2005), is understood as the work
performed by the applied external stresses and volume forces on the displacements,
minus the internal energy increment necessary for the prescribed displacements in
the equilibrium state

C =

∫
Γt̂

"uT "̂tdΓ +

∫
Ω

"uT "fdΩ −
∫
Γû

"̂uT"tdΓ (17.10)

And the approximated mean compliance c̃ can be solved by

c̃ = "̃uT"r (17.11)

In the case of exclusively prescribed loads, the mean compliance of the static
problem can also be derived from the variation of the total potential energy as twice
the strain energy or twice the work of the external loads against the corresponding
displacements at equilibrium

Cσ̂ =

∫
Ω

"σ : "εdΩ (17.12)

One can conclude from (17.12) that a minimization of Cσ̂ for prescribed external
forces minimizes the domain integral of the strain energy density. Consequently, the
minimization of the compliance also minimizes the mean stress level in the struc-
ture. The difficulty of minimizing the maximum stress in the structure as part of
the objective function, which would be beneficial from an engineering standpoint,
was mentioned in the introduction. It is generally preferred to use an objective func-
tional of non-localized variables that are integrated over the domain (Schumacher,
2005). This is due to the potential delocalization or degeneration of the objective
phenomenon from one optimization iteration to the next. A highly nonlinear and lo-
calized objective such as the local stress can generally lead to non-convergence of the
optimization or ill-posedness of the optimization problem (Bendsoe and Sigmund,
2013).
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In the discrete form, the optimization problem of the mean compliance can be
written as follows

min
�Ee, �̃u

"̃uT"r (17.13)

subject to : "K( "Ee)"̃u = "r, "Ee ∈ "Ead (17.14)

(17.14) is the discrete equality condition of the linear-elastic and static problem
that needs to be fulfilled in every iteration of the optimization and "Ead is the set
of admissible stiffness tensors. In the iteration process, the compliance should be
minimized in respect to the design variable fields "Ee and "̃u, which represent the
material distribution and the solution of the displacement field by a finite element
analysis. For completeness, a mass or volume constraint is necessary, which is
depicted in (17.16). Otherwise, the full design domain would be utilized with material
for minimum compliance, contradicting the material distribution objective.

The optimization problem of (17.13)-(17.14) can be identified as a distributed,
integer valued problem in the element stiffness tensors. Consequently, it has a high
number of design variables, which is not beneficial to the solution process (Bend-
soe and Sigmund, 2013). For this reason, a very common approach, most popular
within the SIMP method, is the representation of the material distribution through
a continuous artificial density field function as the material indicator function. The
formulation is as follows

"Ee("x) = ρ("x)p "E0, p > 1 (17.15)

∫
Ω

ρ("x)dΩ ≤ V ; 0 ≤ ρ("x) ≤ 1, x ∈ Ω (17.16)

Ee,ijkl(ρ = 0) = 0; Ee,ijkl(ρ = 1) = E0
e,ijkl (17.17)

The SIMP approach is therefore solving a continuous topology problem, where
the domain is discretized by finite elements and the density field, which becomes
the design variable, is a continuous field function in the bounds of 0 and 1. This
non-physical density can be related to the volume occupied by material as can
be seen in (17.16) and used for the definition of the before mentioned volume
or mass constraint. The density field interpolates between the material properties
represented by the stiffness tensor. For density values of 0 and 1, the performance
can be evaluated by the correct physics of the material. To circumvent non-physical
intermediate densities in the design domain, the SIMP method utilizes a punishment
strategy by using the penalty factor of p > 1 to steer the design to a 0 and 1
solution. As stated in Bendsoe and Sigmund (2013), the SIMP method generally
leads to differentiable and good-behaved descriptions that can be efficiently solved
by gradient-based optimization algorithms.
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17.3 Multimodal Approach for the Mechanical Design

The multimodal approach to mechanical design proposed in this work can be de-
scribed in the context of the known concepts of knowledge based engineering (KBE)
and multidisciplinary design optimization (MDO). Following the KBE description
of La Rocca (2012), the MDO formulation of the multimodal design scheme can be
viewed as a generative model of the mechanical design, which automatically gener-
ates an engineered solution from the input data derived from technical specifications.
For the topology design of mechanical parts, an MDO description can become very
complex. This is due to the geometric complexity and number of possible design so-
lutions that makes the simultaneous evaluation and optimization of multiple physical
quantities challenging. Also, the automatic generation of high fidelity CAD models
for design iteration and validation becomes important (see, e.g., Amadori et al, 2012).
The particular involvement of topology optimization and interconnection with the
direct validation of results in a high fidelity analysis mode is therefore novel in the
multimodal approach. In Fig. 17.1, the overview of the design scheme is illustrated.

Fig. 17.1 Overview of the
multimodal mechanical de-
sign scheme as a generative
model in the KBE framework

Technical 
requirements

MDO formulation

Mechanical 
design

Topology 
Optimization

(reduced analysis
model)

Validation 
(high fidelity 

   analysis model)

Update design variables of MDO

Generative model 

Input Output

In the mode conversion from the TO mechanical description to the validation,
an automated CAD generation is clearly preferred to enable a higher accuracy of
the computation e.g. with mesh refinement. The MDO formulation of the mul-
timodal scheme then describes the problem of finding the optimized mechanical
design, which should be a comparatively mature solution, when the validation result
matches the design requirements and constraints, and additionally the optimization of
performance criteria is converged. Until then, the design variables and optimization
parameters are updated by a nonlinear programming scheme. In the next section, it
can be seen that such a generative model can be assembled for specific applications,
respectively design problems.
Due to some similarities, here follows a discussion of other known multimodal ap-
proaches to nonlinear design problems in relation to the proposed design scheme.
Reviewed representatives are the ESLM and HCA nonlinear topology optimization
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approaches. Both are multimodal approaches and HCA has been specifically de-
signed for crashworthiness applications (see, e.g., Duddeck et al, 2016). In both
methods, initially a high fidelity model, e.g. a nonlinear and transient analysis, is run
on the design to solve the displacement field and design criteria in an outer loop. In
ESLM for the design iteration, equivalent static loads (ESL) are calculated globally
or for a selection of time steps using the linear finite element stiffness matrix of a
reduced model. The ESLs are then applied to a multiple load TO formulation on that
reduced model in an inner loop. In contrast, a common HCA approach is the use
of an empiric local update rule in the inner loop that tries to homogenize the strain
energy for the nonlinear loading.
Both of the methods are tailored to specific applications. As noted in Duddeck et al
(2016) they have both difficulties of handling strong non-linearities like material
rupture or buckling. In addition, the spatial discretization of the high fidelity model
is not independent from the reduced model in those approaches due to the nodal
character of the ESL calculation and the local update rule in HCA. This can be a
drawback in the validation quality of the high fidelity model. Anyway, both meth-
ods could be potentially integrated in a generative model of the presented general
multimodal scheme of Fig. 17.1 by addition of an additional high fidelity validation
of the converged nonlinear topology optimization result. The latter then becomes an
interim result and the design can be automatically iterated according to an MDO
strategy.

17.4 Save, Lightweight Design Scheme

The multimodal approach is discussed hereafter by means of its application to a safe,
lightweight design (SLD) scheme. The safety of lightweight optimized structures
is ensured by enhancing the capabilities of graceful degradation in overstraining by
worst-case events and simultaneously optimizing for stiffness. Matters of uncertainty
e.g. leading to spatially random material failure are not discussed here but could be
included in the future.
Worst-case events usually have a much lower cycle number than operating loads and
thus are allowed a higher stress state or even plastic deformation. They are typically
approximated by worst-case assumptions of static loads only allowed for linear-
elastic deformations, which is also the common approach of implementing them in
a SIMP topology optimization formulation. In the SIMP approach, they are possibly
the loads that lead to the highest compliance of the structure. Thereby, they can
overreachingly steer the design solution and lead to unnecessary high safety margins
for the topology result. The multimodal approach applied in this safe, lightweight
design scheme aims for more efficient but reliable design solutions for such worst-
case scenarios.
In Fig. 17.2, an overview of the design scheme, including procedures and interactions,
is given with illustrations of a cantilever beam under a bending load.
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Fig. 17.2 Overview of the save, lightweight design scheme and procedures (left) and illustration of
a cantilever design problem (right).

The scheme consists of a standard min. compliance SIMP topology optimization
and a subsequent nonlinear optimization, with the goal of enhancing the structural
ductility by elastic-plastic energy absorption and fail-safe behavior of the stiffness-
optimized topology for a worst-case scenario. For this purpose, a local damage model
is used in a multiple-model topology optimization (MMO) approach for generating
redundant load paths. In contrast to the FSO approach discussed in Jansen et al
(2014); Zhou and Fleury (2016), no random local damage model is used, but in-
stead, the damage model for the MMO is generated from a SIMP topology result and
density distribution. In that way, potentially a much smaller number of models (here
only two) needs to be evaluated in the MMO. Also, knowledge about potentially
critical sections in the worst-case can be applied. The MMO has then the goal to
find alternative load paths with a structural redundancy in the resulting topology.
The MMO models are weighted with a characteristic parameter, which is the design
variable for the nonlinear programming scheme.
The MMO based TO is solely based on the linear, elastic and static analysis mode
of the structure. Additionally, the nonlinear, plastic and transient analysis mode is
introduced in the nonlinear optimization strategy. The latter is automatically gener-
ated from the MMO boundary conditions and density distribution result, as will be
described in 17.5.2 and 17.5.3. In the optimization, a safety measure is evaluated,
which is parametrically optimized based on characteristic values of the deformation
energy and fail-safe behavior in the validation by the nonlinear analysis.
The complete generative design model is automated to a high degree. So far, the
critical manual and empirical steps are the derivation of the models for the MMO,
as described in the next section, as well as the initial definition of conversion aspects
of boundary conditions between the low and high fidelity analysis modes.
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17.5 Implementation and Demonstration

The implementation of the SLD scheme is described in the following example of a
tension cantilever beam supported on one side and loaded by a unidirectional and
uniformly distributed tension force. This example is chosen because the numerical
results can be easily tested in a tension test experiment. The material is a 3D printing
aluminum alloy (AlMgSc). The material properties are assumed homogeneous and
isotropic and the following characteristic mechanical values are taken. They have
been derived from tensile test measurements on 3D printed specimen without heat
and surface treatment are Young’s modulus Y = 59 GPa, yield stress Rp0,2 =
210 MPa, ultimate tensile strength Rm = 319 MPa and density ρ = 2, 7 g/cm3. The
design problem and SIMP topology result solved in a commercial code are illustrated
in the upper model (0) of Fig. 17.3.

17.5.1 Multiple-Model Topology Optimization

The MMO approach to fail-safe behavior proposed here is a new concept but based
on the basic idea of a local damage model in FSO of Jansen et al (2014); Zhou
and Fleury (2016). From the density result (0) in Fig. 17.3, where black regions
represent fully dense material, multiple domains are derived for the MMO model
definition. The areas are filtered empirically for the description of the local damage
model by a weakening of the local element stiffness through the Young’s modulus.
This procedure will most probably lead to the assignment of a low density value
to the weakened elements, due to the low mechanical effectiveness. The derived
two models for the MMO are illustrated in the bottom of Fig. 17.3. Model (1) is
weakened in the areas where the topology result of (0) has dense material. For this
reason, alternative load paths are to be found in optimizing the compliance of this
model. The distribution of weakened elements for Model (2) is similar to the inverse
of the density of the topology result of (0) and thus will lead to a similar result.
The support (I) and load application areas (III) are equally defined as non-design
space with a Young’s modulus of Y 0 for both derived models (1) and (2). Areas (II)
are filtered empirically by a search algorithm to allow for intersections of the not
weakened domains in the individual model.

The min. compliance objective for the MMO is defined as the weighted compli-
ance of the two models suspect to a volume constraint, as in (17.18) and (17.19).

min
ρ,�̃u

c̃(ρ) = αc̃1(ρ) + c̃2(ρ) (17.18)∫
Ω

ρ(x)dΩ ≤ V ; 0 ≤ ρ(x) ≤ 1, x ∈ Ω (17.19)

In (17.18) c̃ is a combined weighted compliance value, whereas c̃1 corresponds
to model (1) and c̃2 to (2). For the individual model, the equilibrium condition of
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Y=Ymin

Y=Ymat

(0)

(1) (2)

I IIIII

Fig. 17.3 Generation of models for MMO from the density result of the min. compliance
optimization.

(17.14) holds as well as the SIMP parametrization of (17.15) and (17.17) for the
areas Y = Ymat. For the areas where Y = Ymin holds Ymin(x) = ρ(x)pY 0

min with
an arbitrary weakened Young’s modulus Y 0

min.
The models are weighted with the characteristic parameter α, which is to be deter-
mined in the nonlinear optimization. The simultaneous minimization of the compli-
ance in both models with local damage areas, when suitably determined, is supposed
to lead to the formation of redundant load paths in the resulting design.

=0.1 =0.5 =3 =20 

Fig. 17.4 Topology results of the MMO depending on the characteristic parameter α.

In Fig. 17.4, the MMO results for the described configuration from Fig. 17.3 are
illustrated. For values of α below 0.5 and more significantly below 0.1 the second
model has higher weighting and the density result converges to a result similar to
the stiffness optimized SIMP topology of the initial design problem. For increasing
values of α, the alternative model (1) has a higher impact on the MMO result.
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17.5.2 Conversion of Analysis Modes

In the multimodal SLD scheme, both the linear-elastic and static analysis mode as
well as the nonlinear, plastic and transient analysis mode are used. The first one
is utilized for fast iterations in the topology optimization. The nonlinear, plastic
and transient analysis is used as a validation of the topology design and iteration
of the nonlinear optimization by evaluating the safety measure objective function.
For a graceful degradation in overstraining design goal, both should be modeling
approaches of the same mechanical design problem. The conversion as well as the
information value are to be discussed for the particular problem, as will be done for
the implementation of the worst-case validation hereafter. The following mechanical
mode conversions are composed for the SLD scheme:
Constitutive relation:
linear-elastic, Hooke’s law ⇒ nonlinear, plastic model of Johnson-Cook
Loading boundary condition (LBC):
Neumann LBC of prescribed static load ⇒ Dirichlet LBC of prescribed linear in-
creasing displacement
Time dependency:
static problem ⇒ time-dependent material state variables and boundary conditions

In the SLD scheme implementation, both modes are designed to have preferably
concordant information value when no or insignificant plastic deformation occurs.
For this purpose, the nonlinear, time-dependent problem is designed to be quasi-
static, also matching the experimental setup, as will be seen later. From Hooke’s law
it can be derived that in the static problem, the displacement increases linearly with
the prescribed force or likewise the reaction force increases linearly with a prescribed
displacement. The external work in the static problem can be denoted as follows

Wext,stat =
1

2
"uT "̂

F = −1

2
"̂uT "FR; (17.20)

For a single point load or point displacement, the external energy as well as
the stress and strain fields of both analysis modes would match for concordant
prescribed loads and displacements in the linear elastic regime. It is to be noted that
the distribution of local stresses and strains can be significantly different between the
modes for distributed loads or displacements, due to the differences in local stiffness
of the structure, as is illustrated in Fig. 17.5.

The nonlinear analysis should validate the performance of the structure by over-
straining in a disproportionate worst-case scenario. For this purpose, a preferably
equivalent LBC is applied to both analysis modes but with an overloading character-
istic in the nonlinear analysis. Initially, a time-dependent LBC is chosen such that the
energy from external forces, and the strain energy of both analysis modes match in
the linear elastic deformation regime. For this purpose, a prescribed displacement is
applied to increase linearly with time (with a constant, but sufficiently small velocity
to match the quasi-static condition). It will result in a linearly increasing reaction
force of the structure, as long as no plastification occurs and the material relation



316 Hoschke, Kappe, Riedel, Hiermaier

Fig. 17.5 Comparison of prescribed distributed loads (left halft) respectively displacements (right
half) and consecutive structural response

can be assumed as being linear-elastic. While the latter holds true, the work done
by the external loading condition then matches for both analysis modes. This is a
simplification as local plastic strains can appear also for small loads or displace-
ments depending on the local stress state. The overloading scenario emerges, when
the further increasing displacement leads to a significant plastic deformation and
subsequently to rupture of structural members.
The same accordance could be achieved for a prescribed force matching the static
Neumann LBC but linearly increases in time. This condition would have benefits in
matching local stress distributions of the two modes in the linear elastic regime. Still,
this prescribed overstraining force condition is not preferred here for the nonlinear
analysis, as the transition from elastic to plastic behavior and ultimately failure of the
material would happen in a very short time interval, making it improper for evalua-
tion of the plastic deformation and graceful degradation capabilities of the structure.
However, for a prescribed linearly increasing displacement, the deformation energy
also in the plastic and failure regime can be suitably evaluated by the analysis of the
structure and by measuring of the reaction forces, as will be seen in the numerical
and experimental results.

17.5.3 Conversion of the Analysis Domain and Spatial
Discretization

The topology result of the MMO is a continuous density field. Therefore, filtering
with a density threshold and a geometrical smoothing operation are applied to obtain
a discrete geometry.

Me,nl = {Me ∈ Ω|ρe > ρl} (17.21)

Me,nl in (17.21) is the set of elements considered for the geometry reconstruction
for the high fidelity model. All elements are considered with a density ρe greater than
a defined threshold ρl, which should be in accordance with the volume constraint
but should also lead to a consistent geometry with smooth transitions of structural
members.

Fig. 17.6 illustrates the automated geometry reconstruction and remeshing of
the design domain. This process enhances the flexibility of the proposed scheme as
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Fig. 17.6 Spatial transformation and discretization conversion between the analysis modes

the descriptions of both analysis modes become as independent as intended for the
particular problem. Moreover, the accuracy as well as computational efficiency of the
validation step can potentially be increased significantly. Thus, when the nonlinear
optimization converges and the validation meets the acceptance criteria, the design
is expected to be comparatively mature.

17.5.4 Nonlinear Analysis and Nonlinear Optimization

The objective of the nonlinear optimization is to find the best value ofα, for which the
design has an optimized performance in the worst-case scenario. Here it is assumed
that the safety of the structure in overloading can be enhanced by increasing the
load carrying capacity, structural ductility and energy absorption capabilities before
and after material rupture or collapse of the structure. More complex or conflicting
safety objectives, which are known e.g. from crashworthiness design problems, are
not considered here. A safety measure for energy absorption and fail-safe behavior
in the worst-case scenario is defined as follows

S(α) = EV
nl,tot(α) + βEV

nl,rup(α) (17.22)

The safety measure S(α) is defined as a relation of the deformation energy in the
nonlinear analysis. The latter is a function of α, as the geometry for the nonlinear
analysis depends on the weighting parameter in the MMO. While EV

nl,tot denotes
in (17.22) the total volume specific deformation energy, EV

nl,rup corresponds to the
portion between first rupture of one structural member until global failure. The scalar
parameter β is a weighting factor that can be used to put emphasis on the fail-safe
behavior of the structure and will be neglected for the example problem.
As the failure behavior is potentially highly nonlinear and multiple ruptures should
be resolved accurately, a nonlinear analysis with explicit time-integration is preferred
in the shown example and has shown more stable results than the implicit approach.
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The LBC in the nonlinear analysis of a constant tension velocity was described in
the last section and its value in the simulation was chosen to match the traverse
speed of 1.0 mm/s of the experimental tension testing setup. In Fig. 17.7, the stress
distribution in the nonlinear, transient analysis directly before the first rupture is
compared between the standard topology result of the SIMP method and the Design
b), which was optimized with the SLD scheme. Both designs fail at different times
and prescribed displacements, as will be seen in the summary graphs of Fig. 17.10.
The markers and numbering indicate the position and sequence of the ruptures. The
star marks a simultaneous rupture of members in design a), which can be seen as a
cascading behaving leading to a total collapse and is clearly not fail-safe.

a) b)

1

3

2

1*

1*

0 365 [MPa]

Fig. 17.7 Stress distribution before first rupture (at a different time and prescribed displacement) of
the standard SIMP topology of design a) and the design b); the latter optimized with the SLD
scheme

The nonlinear optimization is performed with a golden-section search and the op-
timized value of α that has been found after 7 iterations in the nonlinear optimization
for the described design problem is αopt = 17.23.

17.6 Experimental Validation by Testing of 3D Printed
Structures

For experimental validation, the two configurations of Fig. 17.7 are designed for 3D
printing with equal mass and tested in tension.

An AlMgSc aluminum alloy is used with approximated mechanical values de-
scribed in the last section. At the current stage, the analysis does not consider that
the mechanical properties for the 3D printed material can be inhomogeneous with
possibly included material defects, and can depend on the cross sectional dimension.
Each specimen is fixed on the left side of Fig. 17.8 and loaded axially with a uniform
traverse speed of 1.0 mm/s on the other side. The applied force raised by the machine
for impinging the uniform speed on the specimen is measured in the experiment.
In Fig. 17.9 and the graphs of Fig. 17.10, the tensile test results are illustrated. The
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a) b)

Fig. 17.8 CAD models for 3D printing of designs a) and b) with equal mass, thickness and
clamping area

rupture areas and sequence of rupture are marked in white and by numeration. The
SIMP design a) shows a collapsing failure directly when the first rupture occurs, due
to the simultaneous breaking of the two marked beams. On the contrary, the config-
uration b) optimized by the proposed design scheme shows the intended structural
ductility and fail-safe behavior. First, the beams with smaller cross section rupture,
followed by the larger beam. The whole structure collapses at a higher level of tensile
displacement, as shown in Fig. 17.10.

a) b)

1*

1*

1

2

1

Fig. 17.9 3D printed specimen after tensile testing; left: design a) with indication of simultaneous
rupture locations; right: design b) optimized with the SLD scheme with indication of fail-safe
rupture sequence.

Table 17.1 Summary of simulation and experimental data of the compared designs a) and b);
Fmax indicates the maximum force applied by the test machine, respectively the maximum
reaction force in the nonlinear analysis. The experimental data are mean values of three
experiments, respectively, in which the standard deviation has been small.

Design Fmax kN Etot J Erup J

Design (a) Sim. 42.6 122.9 0
Design (b) Sim. 46.8 307.3 40.3
Design (a) Exp. 42.97 191.87 0
Design (b) Exp. 47.87 312.17 52.33
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Fig. 17.10 Nonlinear analysis and experimental testing of 3D printed specimen; left: design a)
from standard SIMP topology optimization; right: design b), result with αopt = 17.23 from the
SLD scheme.

Fig. 17.10 and Tab. 17.1 compare the results of the measured and simulated
applied force for the impinged displacement during the tensile test. The stiffness
in the elastic regime differs between experiment and simulation. This is typically
observed due to the settling of the clamped system and the stiffnesses of machine
and mounting system and should not be of greater concern for the significance of
the measurement. The simulation and experimental results are in good agreement
and the same characteristic behavior can be observed. However, the data for the
SIMP topology in a) differs slightly in the plastic regime. The latter could be due to
the geometrical assumptions for the CAD models, complexity of the local shapes,
the topology and notch effects, as well as modeling discrepancies of the plastic
behavior of the material. Future, more detailed observation of the local damage
behavior should be supported by extended digital image correlation, as described in
Réthoré et al (2008). Nevertheless, the overall characteristic of the simulation and
the successful optimization is validated with the experiments. The energy absorption
as well as the maximum load carrying capacity before breakage are significantly
improved for the overstraining scenario. Also, fail-safe behavior was successfully
implemented for the SLD optimized design.

17.7 Conclusion

A multimodal scheme was proposed, described as a generative model in a KBE
framework for automation of mechanical part design. By utilizing multiple modes
of mechanical modeling and automated conversion, the potential shortcomings of
the singular description should be circumvented. A specific scheme was presented
for the application of safe, lightweight design (SLD), improving the structural duc-
tility, energy absorption and fail-safe behavior of topology-optimized structures in
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a worst-case overloading scenario. The common singular model approach to TO is
based on the linear, elastic and static mechanical description of the design problem
and cannot deal with the potential nonlinear, plastic and transient response of the
structure due to substantial loading. The multimodal SLD scheme presented here was
successfully implemented to overcome this deficiency. It was demonstrated on the
numerical example of a cantilever beam under tensile loading. The design solution
was 3D printed and validated in comparison to the result of the standard method in
a tensile test experiment.
Embedded in the SLD scheme, a new MMO approach to fail-safe design was de-
veloped. It differs from the known FSO approach for random location of failure by
using SIMP stiffness-optimized topology result for derivation of the MMO models.
Thereby, a much smaller number of models is necessary. In the demonstrated exam-
ple, only two models were used because the local damage model is applied to the
optimized material domain instead of many localized areas of the complete design
domain. This significantly enhances computational effectiveness of the MMO. It
could be demonstrated for the example problem that redundancy of load paths is
added to the structure and the energy absorption capabilities were improved sub-
stantially. The design optimized with the SLD scheme and new MMO approach was
furthermore able to withstand significant loads after the first rupture and thus failed
in a safe manner. This particular result has the potential of enhancing safety margin
and safety factor assumptions in mechanical design.
The findings demonstrate the high potential of the multimodal scheme in improving
the topology of the mechanical designs and design maturity, due to high fidelity
validation. It was demonstrated in the SLD scheme, putting an additional focus on
the nonlinear, plastic structural response as opposed to solely optimizing for linear,
elastic stiffness. The SLD scheme is implemented in an automated way on the basis
of commercial software tools. Still, there are manual and empirical design steps in the
conception that need further improvement and automation. The derivation of mod-
els for the MMO is especially critical for the success of the optimization approach.
Also, the correlation of boundary conditions in the linear analysis and the nonlin-
ear analysis needs further investigation. For now, the SLD scheme is conceived for
two-dimensional design problems with unidirectional loads. The extension to three
dimensions and more complex boundary conditions in commercial applications will
be the topic of future research.
Another prospect is the interconnection of the presented approach with the design
of mechanical metamaterials. The latter can have exotic and compelling mechan-
ical properties (Barchiesi et al, 2019). From the perspective of enhancing energy
absorption and structural ductility pantographic lattices have shown very interesting
qualities in withstanding large deformations before breaking (dell’Isola et al, 2016;
Barchiesi et al, 2020). In addition, such metamaterials have many redundant load
paths and can thus be expected to show an intrinsic fail-safe behavior. As the design
with metamaterials is a very complicated task, it could on the other hand benefit of
the automated high fidelity validation in a multimodal scheme. The latter could also
be the case for other complex design problems that depend on elaborate analysis,
e.g., in multi-discipline or impact engineering.
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Chapter 18
Forced Longitudinal Fractional Type Vibrations
of a Rod with Variable Cross Section

Katica R. (Stevanović) Hedrih

Abstract Forced longitudinal creep vibrations of a fractional type rheological rod
with variable cross section are investigated. Partial fractional order differential equa-
tion and particular solutions for the case of forced creep longitudinal fractional
type vibrations of the rod of creep material of a fractional type are determined.
Corresponding eigen amplitude functions, from author’s earlier published reference,
containing expressions for different boundary conditions (rod with free ends, can-
tilever rod with weight on the free end, rod with weights at the both free ends)
and different forms of variable cross sections (conical-shape rod, exponential-shape
rod, catenary shape rod) as well as series of corresponding eigen values and natu-
ral circular frequencies of longitudinal creep fractional type vibrations are used for
composing new determined general and particular solutions for describing forced
longitudinal fractional type vibrations of the rod with variable cross section and
presented in this paper.
Also, in this paper, the series of the eigen time-functions, for corresponding eigen
amplitude functions, for forced longitudinal fractional type oscillations of a rod with
variable cross section are determined. For solving ordinary fractional order differ-
ential equations and determination of the particular integral, Laplace transform and
properties of three functions in convolution are used.
Energy analysis of the system of longitudinal fractional type oscillations in the rod
with fractional type dissipation of mechanical energy is presented. The rate of the
fractional type dissipation of mechanical energy of the rod’s longitudinal vibrations
as well as for its free and its forced fractional type modes is determined. On the basis
of previously produced energy analysis, two theorems of change total mechanical en-
ergy of the rod’s oscillations and of the free and also of forced modes of longitudinal
fractional type vibrations of rod are defined. Normalized values of the kinetic and
potential energies and normalized generalized function of fractional type dissipation
of mechanical energy of free and also forced modes of longitudinal vibrations of
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a fractional type rod with variable cross section are expressed and introduced for
energy analyses.

Keywords: Forced vibrations · Fractional order derivative · Variable cross section
· Series of eigen time functions · Energy analysis

18.1 Introduction

Mechanics of hereditary material is being intensively developed and filled up with
new research monographs (Rabotnov, 1977; Goroshko and Hedrih (Stevanović),
2001). This field of mechanics of hereditary medium is previously presented in
scientific literature by monographs and papers as in Goroshko and Puchko (1997);
Slonimsky (1961); Stojanovic (1965); Savin and Ruschisky (1976); Abali (2017) and
is widely used in engineering analyses of strength and deformability of constructions
made of new construction materials.

Actuality of that direction of development of mechanics is conditioned by en-
gineering practice with utilizing the new construction materials on synthetic base,
the mechanical properties of which often have pointed creep rheological character
(Slonimsky, 1961; Abali, 2017).

The university books by Rašković (1965) obtain the classical theory of longitudi-
nal oscillations of homogeneous rods and beams, and in Bishop (1952) we can find
mathematical theory of corresponding partial differential equations. Bishop (1952)
demonstrates some results on longitudinal waves in beams and Cohen and Whitman
(1977) present research concerning waves in elastic rods. The effect of an arbitrarily
mass on the longitudinal vibrations of a bar is investigated by Cutchins (1980).

As presented by Hedrih (Stevanović) and Filipovski (1995, 1999, 2002a,b), studies
in nonlinear oscillations of longitudinal vibrations of an elastic and rheological rod
with variable cross section are of interest in engineering systems applications such
as ultrasonic transducers and ultrasonic concentrator as in Abramov et al (1984).

In Hedrih (Stevanović) and Filipovski (2002a), longitudinal creep vibrations are
examined in a fractional type rheological rod with a variable cross section. Partial
differential equation and particular solutions for the case of natural free longitudinal
fractional type vibrations of the rod are derived. For the case of natural free fractional
type vibrations, eigen amplitude function and eigen time-functions are determined
for different examples of boundary conditions. Different boundary conditions are
analyzed and series of natural circular frequencies and eigen values of fractional
rod properties of longitudinal creep fractional type vibrations are obtained, their
values are compiled in tables. By using MathCad software tools a series of graphical
presentation of the time-function particular modes is presented. Among others,
Bačlić and Atanacković (2000) is one of first published in the Serbian scientific
literature in the field of fractional order derivative applied in vibrations of rod with
constant cross sections. Also, we refer to Atanacković et al (2014) as a scientific
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reference containing mathematical foundation of fractional calculus for applications
in mechanics of continuum media with fractional type properties of materials.

In Hedrih (Stevanović) (2005, 2014b,c) and also Hedrih (Stevanović) (2014a,
2018); Hedrih (Stevanović) and Machado (2015), the generalized function of frac-
tional type dissipation of the system energy and extended Lagrange differential
equations in matrix form and for discrete fractional type system as well as dynamics
of hybrid fractional type discrete continuum system dynamics are investigated and
new results are presented. In a review reference (Rossikhin and Shitikova, 2010) se-
ries of applications of fractional calculus for dynamic problems of solid mechanics:
novel trends and recent results are presented.

18.2 Fundamentals of Mechanics of Hereditary and Fractional
Type Materials and Systems

The notions hereditary elasticity and viscoelasticity are equivalent in the material
scientific literature. Rabotnov (1977), also in papers of V. Volter, claims that the
notion hereditary elasticity is more adequate such that we give a better description
on the essence of this phenomenon. This term expresses the ability of rheological
body to specifically “remember” the history of loading (stretching). Viscoelastic
body possesses the particularity of deforming:

• for the short-time-loading, fast form (shape) reconstruction of the body form
after unloading occurs;

• for the long-time-loading, establishing of the form (shape) needs necessarily
a long-time period after unloading, i.e. viscous-elastic bodies “remember” or
“memorize”, which is reflexed in term “hereditary elasticity”

18.3 Constitutive Relation of the Fractional Type Material of the
Rod

We assume that the rod is made of creep rheological material with fractional type
properties. Taking into account that material of the rod is with fractional type
dissipation of energy, the constitutive normal stress-strain relation of rod’s material
is defined by fractional order derivative in the form:

σ(z, t) = −{E0ε(z, t) + EαD
α
t [ε(z, t)]} , α ∈ (0, 1) , t ∈ (0, b) , (18.1)

whereDα
t [·] is the differential fractional order operator of αth fractional order deriva-

tive, in the following form:
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Dα
t [ε(z, t)] =

1

Γ (1− α)

d

dt

t∫
0

ε(z, τ)

(t− τ)α
dτ , α ∈ (0, 1) , t ∈ (0, b) , (18.2)

and σ(z, t) normal stress for the plane cross section A(z), and εz(z, t) =
∂w(z,t)

∂z is
dilatation of the line element in direction orthogonal to the rod’s cross section and
in direction of rod’s axis z.

Taking that strain, εz(z, t), of an elementary linear element in rod’s axial direction
is in the form: εz(z, t) = ∂w(z,t)

∂z , previous constitutive fractional type stress-strain
relation in axial direction (18.1) is in the following form:

σ(z, t) = −
{
E0

∂w(z, t)

∂z
+ EαD

α
t

[∂w(z, t)

∂z

]}
, α ∈ (0, 1) , t ∈ (0, b) .

(18.3)

18.4 Partial Fractional Order Differential Equation of
Longitudinal Fractional Type Vibrations of a Rod with
Variable Cross Section

Let us consider a deformable rod of a fractional type material properties, presented
in Figure 18.1 (left), and with variable cross section A(z), whose axis is straight
and in the direction z. Figure 18.1 (right) shows an infinitesimal element of length

Fig. 18.1 Drawing of the system to be analyzed. Left: Rod with variable cross section and two
weights on both ends; Right: An elementary part of length dz.

dz with variable cross section A(z), where z denotes coordinates along rod’s axis
starting on the left end of the rod.

Normal axial surface force acting on the left cross sections A(z) at the distance z
measured from left end of the rod, directed in negative direction of the axis z reads

N(z, t) = −A(z)σ(z, t) , (18.4)

while its value in cross section on distance z + dz is
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N(z + dz, t) = A(z)σ(z, t) +
∂

∂z

〈
A(z)σ(z, t)

〉
dz , (18.5)

where t is time, and σ(z, t) is normal stress in the points of cross section at the
distance z that is constant on the cross-section according to introduced assumption.
Moreover deplaning of cross section is neglected considering that all points have the
same axial displacement determined by coordinate w(z, t) of axial displacements.

According to the D’Alambert’s principle of dynamical equilibrium of all forces,
following equation could be written for dynamical equilibrium of forces acting on
rod’s element:

ρA(z) dz
∂2w(z, t)

∂t2
=−N(z, t) +N(z + dz, t) + q(z, t)A(z) dz

=
∂N(z, t)

∂z
dz + q(z, t)A(z) dz ,

(18.6)

where ρ is rod material’s mass density, and q(z, t) is a distributed volume force in
axial direction. Substituting expressions (18.4) and (18.5) into equation (18.6) leads
to

∂2w(z, t)

∂t2
− 1

ρA(z)

∂

∂z

[
A(z)σ(z, t)

]
=

1

ρ
q(z, t) . (18.7)

Introducing previous fractional type constitutive stress-strain relation (18.3) into
dynamic equation (18.7) of forced longitudinal fractional type vibrations, following
partial fractional order differential equation can be written

∂2w(z, t)

∂t2
− E0

ρA(z)

∂

∂z

[
A(z)σ(z, t)

]
=

=
Eα

ρA(z)

∂

∂z

[
A(z)Dα

t

[∂w(z, t)

∂z

]]
+

1

ρ
q(z, t) .

(18.8)

If we introduce c20 = E0/ρ and c2α = Eα/ρ, then the partial fractional order
differential equation (18.8) gets the following form:

1

c20

∂2w(z, t)

∂t2
− 1

A(z)

∂

∂z

[
A(z)σ(z, t)

]
=

=
c2α

c20A(z)

∂

∂z

[
A(z)Dα

t

[∂w(z, t)

∂z

]]
+

1

E0
q(z, t) .

(18.9)
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18.5 Solution of Partial Fractional Order Differential Equation

18.5.1 Free Longitudinal Fractional Type Oscillation

For free longitudinal fractional type vibrations proposing solution in the form
w(z, t) = Z(z)T (t), as in Hedrih (Stevanović) and Filipovski (2002a), partial frac-
tional order differential equation is separated in system of two independent equations:
first is ordinary differential equation along eigen amplitude function Z(z) of the co-
ordinate z as an argument and second is one ordinary fractional order differential
equation along eigen time function T (t) of the time t as argument, in the following
forms:

Z ′′(z) +
A′(z)
A(z)

Z ′(z) + k2Z(z) = 0 ,

T̈ (t) + ω2
0T (t) + ω2

αD
α
t

[
T (t)

]
= 0 ,

(18.10)

where ω2
0 = k2c20 is introduced.

In Hedrih (Stevanović) and Filipovski (2002a) eigen amplitude functions Zs(z),
s = 1, 2, 3, . . . ,∞ are determined for different variable cross sections (conical-shape
rod, exponential-shape rod, catenary shape rod) of the rod and for different boundary
conditions (rod with free ends, cantilever rod with weight on the free end, rod with
weights at the both free ends), (for details see Hedrih (Stevanović) and Filipovski,
2002a)) with their corresponding characteristic numbers. Also, eigen time functions
Ts(t), s = 1, 2, 3, . . . ,∞ for each of infinite number of eigen amplitude functions
Zs(z), s = 1, 2, 3, . . . ,∞ are determined as solution of ordinary fractional order
differential equation (18.10)2.

Eigen amplitude functions Zs(z), s = 1, 2, 3, . . . ,∞ satisfy orthogonality con-
ditions. Characteristic numbers are: ω2

0s = k2
sc

2
0, ω2

αs = k2
sc

2
α, s = 1, 2, 3, . . . ,∞.

Generalized family solutions, which satisfies the boundary conditions is in the form
for free fractional type longitudinal vibrations

w(z, t) =

∞∑
s=1

Zs(z)Ts(t) . (18.11)

In previous solution (18.11) of the partial fractional order differential equation (18.9)
for free longitudinal fractional type vibrations for q(z, t) ≡ 0 , it is possible in each
of the time functions from set Ts(t), s = 1, 2, 3, . . . ,∞ to separate two particular
approximate solutions, as fractional type modes, which look like cosine and look like
sine, for details see Atanacković et al (2014); Hedrih (Stevanović) (2014a, 2018);
Hedrih (Stevanović) and Machado (2015), as follows:

Ts(t, α, ω0s, ω(α)s) = Ts(0)ξcos,s(t, α, ω0s, ω(α)s) + Ṫs(0)ξsin,s(t, α, ω0s, ω(α)s)
(18.12)

where Ts(0) and Ṫs(0) are integration constants determined by the initial conditions.
The first particular integral in the solution (18.12) is a cosine like, fractional order

particular solution (particular mode) for free cosine fractional type vibration mode
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ξcos,s(t, α, ω0s, ω(α)s) =

∞∑
k=0

(−1)kω2k
(α)st

2k
k∑

m=0

(
k

m

)
ω−2m
(α)s t−αm

ω2m
0s Γ (2k + 1− αm)

,

(18.13)
where α ∈ (0, 1) and t ∈ (0, b). For α = 0 is the particular solution—particular
mode is pure linear and periodic—in the form

ξcos,s(t, α, ω0s, ω(α)s)
∣∣
α=0

= cos
(
t
√

ω2
0s + ω2

(α=0)s

)
. (18.14)

For α = 1 is the particular solution linear and dissipative in the form

ξcos,s(t, α, ω0s, ω(α)s)
∣∣
α=1

= exp
(
− 1

2
ω2
(α=1)st

)
cos
(
t

√
ω2
0s +

1

4
ω4
(α=1)s

)
.

(18.15)
The second particular integral in the solution (18.12) is a sinus like, fractional order
as follows:

ξsin,s(t, α, ω0s, ω(α)s) =

∞∑
k=0

(−1)kω2k
(α)st

2k+1
k∑

m=0

(
k

m

)
ω−2m
(α)s t−αm

ω2m
0s Γ (2k + 2− αm)

,

(18.16)
where α ∈ (0, 1) and t ∈ (0, b). For α = 0 is the particular solution once more
linear and periodic

ξsin,s(t, α, ω0s, ω(α)s)
∣∣
α=0

= sin
(
t
√

ω2
0s + ω2

(α=0)s

)
. (18.17)

For α = 1, the particular solution reads

ξsin,s(t, α, ω0s, ω(α)s)
∣∣
α=1

= exp
(
− 1

2
ω2
(α=1)st

)
sin
(
t

√
ω2
0s +

1

4
ω4
(α=1)s

)
.

(18.18)

18.5.2 Forced Longitudinal Fractional Type Oscillation

For forced longitudinal fractional type vibrations of a rod with variable cross sec-
tions, described by partial fractional order differential equation (18.9), we propose
previous form of a general solution as in (18.11) using eigen amplitude functions
Zs(z), s = 1, 2, 3, . . . ,∞ as being the same as in the case of the corresponding lin-
ear longitudinal oscillations of rod satisfying corresponding form of variable cross
section A(z) (conical-shape rod , exponential-shape rod, catenary shape rod) and
corresponding boundary conditions (rod with free ends, cantilever rod with weight
on the free end, rod with weights at the both free ends), we refer to Hedrih (Ste-
vanović) and Filipovski (2002a). We propose that eigen time functions Ts(t) are
considered as unknowns to be determined by condition that the general solution
(18.11) satisfies partial fractional order differential equation (18.9).
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Then, for that reason, after introducing the proposed previous general solution
(18.11), into partial fractional order differential equation (18.9), and taking into
account that eigen amplitude functions Zs(z) satisfy ordinary differential equations
(18.10) such that it can be written

1

c20

∂2
∑∞

s=1 Zs(z)Ts(t)

∂t2
− 1

A(z)

∂

∂z

[
A(z)

∂
∑∞

s=1 Zs(z)Ts(t)

∂z

]
=

=
c2α

c20A(z)

∂

∂z

[
A(z)Dα

t

[
∂
∑∞

s=1 Zs(z)Ts(t)

∂z

]]
+

1

E0
q(z, t)

(18.19)

or in the form
∞∑
s=1

〈
1

c20
Zs(z)T̈s(t) + k2

sZs(z)Ts(t)

〉
=−

[
c2α
c20

∞∑
s=1

Dα
t

[
Ts(t)

]
k2
sZs(z)

]
+

+
1

E0
q(z, t)

(18.20)
or in the form

∞∑
s=1

Zs(z)
〈
T̈s(t) + k2

sc
2
0Ts(t) + k2

sc
2
αD

α
t

[
Ts(t)

]〉
=

c20
E0

q(z, t) . (18.21)

Next, let us multiply the previous equation (18.21) by Zr(z) dz leading to

∞∑
s=1

A(z)Zs(z)Zr(z) dz
〈
T̈s(t) + k2

sc
2
0Ts(t) + k2

sc
2
αD

α
t

[
Ts(t)

]〉
=

=
c20
E0

q(z, t)A(z)Zr(z) dz .

(18.22)

By integrating previously obtained equation (18.22) along length of rod in interval
z ∈ (0, �) between left and right end of rod it can be written following:

∞∑
s=1

∫ �

0

A(z)Zs(z)Zr(z) dz
〈
T̈s(t) + k2

sc
2
0Ts(t) + k2

sc
2
αD

α
t

[
Ts(t)

]〉
=

=
c20
E0

∫ �

0

q(z, t)A(z)Zr(z) dz ,

(18.23)

and taking into account that eigenamplitude functions Zs(z), s = 1, 2, 3, . . .∞ sat-
isfied ordinary differential equation (18.10) and orthogonality conditions, it follows:∫ �

0

A(z)Zs(z)Zr(z) dz =

{
0 for s �= r

ms for s = r
(18.24)

follows system of the ordinary fractional order differential equations in the form:
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T̈s(t) + ω2
0sTs(t) + ω2

(α)sD
α
t

[
Ts(t)

]
=

c20
msE0

∫ �

0

q(z, t)A(z)Zs(z) dz , (18.25)

with s = 1, 2, 3, . . .∞. After using

hs(t) = h0sfs(t) =
c20

msE0

∫ �

0

q(z, t)A(z)Zs(z) dz (18.26)

the following system of the ordinary fractional order differential equations follows:

T̈s(t) + ω2
0sTs(t) + ω2

(α)sD
α
t

[
Ts(t)

]
= hs(t) = h0sfs(t) , s = 1, 2, 3, . . .∞

(18.27)
describing eigen time functions Ts(t), s = 1, 2, 3, . . .∞ for each from the set of
eigen amplitude function Zs(z), s = 1, 2, 3, . . .∞ for forced longitudinal fractional
type vibrations of rod with variable cross sections satisfying corresponding form
of variable cross section A(z) (conical-shape rod , exponential-shape rod, catenary
shape rod) and corresponding case of the boundary conditions (rod with free ends,
cantilever rod with weight on the free end, rod with weights at the both free ends).

Let us consider the special case of external excitation force, and in reduced form
hs(t) = h0sfs(t) = h0s sin(Ω0t)

T̈s(t) + ω2
0sTs(t) + ω2

(α)sD
α
t

[
Ts(t)

]
= h0s sin(Ω0t) , s = 1, 2, 3, . . .∞ (18.28)

and after applying a Laplace transformation L{·} to the previous ordinary fractional
order differential equation, we obtain

L{T̈ (t)}+ ω2
(α)sL

{
Dα

t

[
Ts(t)

]}
+ ω2

0sL{Ts(t)} = h0L{sin(Ω0t)} , (18.29)

with s = 1, 2, 3, . . .∞. By using the following Laplace transformations:

L{T̈s(t)} = p2L{Ts(t)} − [pTs(0) + Ṫs(0)] ,

L
{
Dα

t [Ts(t)]} = pαL{Ts(t)} − dα−1

dtα−1
Ts(0) ,

(18.30)

for
dα−1

dtα−1
Ts(0) = 0 , (18.31)

we acquire

L
{
Dα

t [Ts(t)]} = pαL{Ts(t)} , L
{
sin(Ω0t)} =

Ω0

p2 +Ω2
0

, (18.32)

where p is a complex variable, with real and imaginary parts, the solution L{Ts(t)}
of the equation (18.29) is in the following form:
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L{Ts(t)} =
[pTs(0) + Ṫs(0)]〈

p2 + ω2
(α)sp

α + ω2
0s

〉 + Ω0h0s

(p2 +Ω2
0)
〈
p2 + ω2

(α)sp
α + ω2

0s

〉 .

(18.33)
Then, it is necessary to determine the general solution of eigen time function Ts(t) =
L−1L{Ts(t)}{ξ} of the ordinary fractional order differential equation (18.28).

The solution along L{Ts(t)} in the form (18.33) is possible to separate in two
terms:

• The first term in solution (18.33) corresponds to the solutionTs,free(t, α, ω0s, ω(α)s),
s = 1, 2, 3, . . .∞ of ordinary fractional order differential equation (18.29) for
h0s = 0, and describes free fractional type vibrations and analytical approx-
imate solution Ts,free(t, α, ω0, ω(α)), s = 1, 2, 3, . . .∞ is in the form (18.11)
in which modes (18.12) and (18.16) are included (see Hedrih (Stevanović) and
Filipovski, 2002a, 1995), where Ts(0) and Ṫs(0) are integral constants.

• The second term in solution (18.33) corresponds to a particular solution

Ts,part(t, α, ω0s, ω(α)s, Ω0) , s = 1, 2, 3, . . .∞

of the ordinary fractional order differential equation (18.28) and describes one
forced mode of a longitudinal fractional type forced vibrations.

Let us take into account that Laplace transformation of two functions, f1,s(t) and
f2,s(t) are

L{f1,s(t)} =
Ω0h0s

(p2 +Ω2
0)

= h0sL{sin(Ω0t)} , s = 1, 2, 3, . . .∞

L{f2,s(t)} =
1〈

p2 + ω2
(α)sp

α + ω2
0s

〉 = L{Tsin,s(t)}

L{Tsin,s(t)} ≈L
{ ∞∑

k=0

(−1)kω2k
(α)st

2k+1
k∑

m=0

(
k

m

)
ω−2m
(α)s t−αm

ω2m
0s Γ (2k + 2− αm)

}
(18.34)

furthermore, Laplace transform of product of the two functions,L{f1,s(t)f2,s(t)} =
L{f1,s(t)}L{f2,s(t)}, is equal to product of their Laplace transforms determined by
expressions (18.34)1,2 such that it equals the second term in the solution (18.33).

Particular solution, corresponding to one of the modes of forced longitudinal
fractional type vibrations, and it is in the form of the function f3,s(t) with its Laplace
transform L{f3,s(t)} given by L{f1,s(t)}, L{f2,s(t)}, and L{f1,s(t)f2,s(t)} =
L{f1,s(t)}L{f2,s(t)}. These functions f1,s(t), f2,s(t), f3,s(t) are in comvolution
(denoted by ∗), if they satisfy,

f3,s(t) =

∫ t

0

f1,s(t− τ)f2,s(τ)dτ =

∫ t

0

f1,s(τ)f2,s(t− τ)dτ , s = 1, 2, 3, . . .∞
(18.35)

Then, the particular solution Ts,part(t, α, ω0s, ω(α)s, Ω0), s = 1, 2, 3, . . .∞ of the
ordinary fractional order differential equation (18.28) corresponds to one forced
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mode of fractional type vibrations under the external volume sinusoidal excitation
h0 sin(Ω0t) in the form:

Ts,part,sin(t, α, ω0s, ω(α)s, Ω0) =
〈
h0s sin(Ω0t)

〉 ∗ ξsin,s(t, α, ω0s, ω(α)s) ,
(18.36)

or in the expanded form:

Ts,part,sin(t, α, ω0s, ω(α)s, Ω0) =
〈
h0s sin(Ω0t)

〉∗
∗
〈 ∞∑

k=0

(−1)kω2k
(α)st

2k+1
k∑

m=0

(
k

m

)
ω−2m
(α) st−αm

ω2m
0s Γ (2k + 2− αm)

〉
,

s = 1, 2, 3, . . .∞

(18.37)

or in the form

Ts,part,sin(t, α, ω0s, ω(α)s, Ω0) =

∫ t

0

〈
h0s sin

(
Ω0(t− τ)

)〉×
×
〈 ∞∑

k=0

(−1)kω2k
(α)sτ

2k+1
k∑

m=0

(
k

m

)
ω−2m
(α)s τ−αm

ω2m
0s Γ (2k + 2− αm)

〉
dτ .

(18.38)

Taking into account previous analysis general approximate solutions for eigen time
functions Ts(t), s = 1, 2, 3, . . .∞, which corresponds to the eigen amplitude func-
tions Zs(z), s = 1, 2, 3, . . .∞, we obtain

Ts(t, α, ω0s, ω(α)s, Ω0) = Ts,free(t, α, ω0s, ω(α)s) + Ts,part(t, α, ω0s, ω(α)s, Ω0) ,
(18.39)

or in the expanded form

Ts(t, α, ω0s, ω(α)s, Ω0) = Ts(0)

∞∑
k=0

(−1)kω2k
(α)st

2k×

×
k∑

j=0

(
k

j

)
(∓1)jω−2j

(α)st
−αj

ω2j
0sΓ (2k + 1− αj)

+ Ṫs(0)

∞∑
k=0

(−1)kω2k
(α)st

2k+1×

×
k∑

j=0

(
k

j

)
(∓1)jω−2j

(α)st
−αj

ω2j
0sΓ (2k + 2− αj)

+

∫ t

0

〈
h0s sin(Ω0(t− τ))

〉×
×
〈 ∞∑

k=0

(−1)kω2k
(α)sτ

2k+1
k∑

m=0

(
k

m

)
ω−2m
(α)s τ−αm

ω2m
0s Γ (2k + 2− αm)

〉
dτ ,

(18.40)

with α ∈ (0, 1), t ∈ (0, b), s = 1, 2, 3, . . .∞.
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18.6 Energy Analysis

Taking into account that material of the rod is with fractional type dissipation of
the mechanical energy, constitutive normal stress-state relation of rod’s material is
defined by fractional order derivative in the form (18.3) and that dilatation is in the
form εz(z, t) =

∂w(z,t)
∂z , elementary work of a rod’s element with volume dA(z)dz

is in the form: dA = 1
2σ(z, t)εz(z, t)dA(z)dz or in the form:

dA = −1

2

{
E0

∂w(z, t)

∂z
+ EαD

α
t

[∂w(z, t)

∂z

]}∂w(z, t)

∂z
dA(z)dz (18.41)

and in order to obtain the total work of the rod during the longitudinal vibrations,
we must integrate on the cross section and along rod’s axis

A = −
∫ �

0

∫
A

1

2

{
E0

∂w(z, t)

∂z
+ EαD

α
t

[∂w(z, t)

∂z

]}∂w(z, t)

∂z
dA(z)dz (18.42)

and the following expression reads

A =− 1

2
E0

〈
T (t)

〉2 ∫ �

0

(∂Z(z)

∂z

)2
A(z)dz−

− 1

2
EαT (t)D

α
t [T (t)]

∫ �

0

(∂Z(z)

∂z

)2
A(z)dz ,

(18.43)

or in the transformed form along one mode as follows:

A = −1

2

〈
E0

〈
T (t)

〉2
+ EαT (t)D

α
t [T (t)]

〉∫ �

0

(∂Z(z)

∂z

)2
A(z)dz . (18.44)

Previously obtained expression depends of eigen amplitude functions Zs(z), s =
1, 2, 3, . . .∞ for free and forced longitudinal fractional type vibrations of rod with
variable cross sections satisfying corresponding form of variable cross section A(z)
(conical-shape rod, exponential-shape rod, catenary shape rod) and corresponding
case of the boundary conditions (rod with free ends, cantilever rod with weight on
the free end, rod with weights at the both free ends).

In expression (18.43) and (18.44), the first term presents deformation work in
area of elastic deformation and is the potential energy stored in deformed rod,
and second term presents work because of fractional type dissipative forces during
rod’s deformation and corresponds to fractional type dissipation rod’s energy during
longitudinal vibrations.

Elementary kinetic energy of rod’s element with the volume dA(z)dz is in the
form:

dEk =
1

2
ρA(z)dz

[∂w(z, t)

∂t

]2
, (18.45)

and in order to obtain the total kinetic energy of the rod during the longitudinal
vibrations must be integrated on the cross section and along the rod resulting in the
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following form:

Ek =
1

2
ρ
[∂T (t)

∂t

]2 ∫ �

0

A(z)
[
Z(z)

]2
dz . (18.46)

Work of the external volume force applied to the rod in axial direction is

A =

∫ �

0

∫
A

1

2
q(z, t)

∂w(z, t)

∂z
dAdz =

1

2

∫ �

0

q(z, t)
∂w(z, t)

∂z
A(z)dz . (18.47)

Relation between total mechanical energy (sum of kinetic and
potential energies) of the system and generalized function of
fractional type energy dissipation carried on a eigen time function
in one eigen amplitude function

Let us consider an ordinary fractional order differential equation from the system
(18.28) along eigen time functions Ts(t), s = 1, 2, 3, . . .∞. Each of these ordinary
fractional order differential equations presents an independent forced fractional type
mode of longitudinal fractional type oscillations of rod with a variable cross section.
Also, each of these ordinary fractional order differential equations presents a partial
fractional type oscillator with one degree of freedom and with generalized coordi-
nate Ts(t), s = 1, 2, 3, . . .∞, see Figure 18.2. Expressions of the normalized kinetic

Fig. 18.2 Mechanical fractional type oscillator with one degree of freedom corresponding to one
eigen time function Ts(t) fractional type mode

Ẽk,s and normalized potential Ẽp,s energies and normalized generalized function
Φ̃α,s,0<α<1 of fractional type dissipation of system energy of the mechanical frac-
tional type oscillator with one degree of freedom, as presented in Figure 18.2, are as
follows:

Ẽk,s =
1

2

〈
Ṫs(t)

〉2
, Ẽp,s =

1

2
ω2
0s

〈
Ts(t)

〉2 (18.48)

and
P̃ α,s,0<α<1 =

1

2
ω2
(α)s

{
Dα

t

[
Ts(t)

]}2

, s = 1, 2, 3, . . .∞ (18.49)
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Unit mass particle is considered as a fractional type oscillator loaded by the
following normalized active and fictitious forces: Fs(Ts(t),D[Ts(t)])—a restitu-
tive force in the form: Frest,s(Ts(t),D[Ts(t)]) = −〈ω2

0sTs(t) + ω2
(α)sD

α
t [Ts(t)]

〉
,

Fs(t) = hos sin(Ω0t + ϑ0)—external active force with an amplitude hos and
circular frequency Ω0, phase ϑ0, and a normalized fictitious force of inertia
Finer,s(T̈s(t)) = −T̈s(t). Based on the principle of dynamical equilibrium of mass
particle, one can write the ordinary fractional order differential equation in the form
(18.28).

Let us start from the matrix fractional order differential equation (18.28)

d

dt

∂Ẽk

∂{Ṫs(t)}
− ∂Ẽk

∂{Ts(t)} +
∂Ẽp

∂{Ts(t)} +
∂P̃ α

∂(Dα
t {Ts(t)}) +

∂Φ̃

∂{Ṫs(t)}
=

= {h0s} sin(Ω0t+ ϑ0) ,

(18.50)

with an explicit notation for matrix columns {Ts} =

⎛⎜⎜⎝
T1

T2

...

⎞⎟⎟⎠ as well as matrix rows

(
Ts

)
=
(
T1, T2, . . .

)
and by using

Ẽk =

s=n∑
s−1

Ẽk,s =
1

2

s=n∑
s−1

〈
Ṫs(t)

〉2
, Ẽp =

s=n∑
s−1

Ẽp,s =
1

2

s=n∑
s−1

ω2
0s

〈
Ts(t)

〉2
,

P̃ α =

s=n∑
s−1

P̃ α,s,0<α<1 =
1

2

s=n∑
s−1

ω2
(α)s

{
Dα

t [Ts(t)]
}2

,

(18.51)
and

Φ̃ =

s=n∑
s−1

Φ̃s =
1

2

s=n∑
s−1

bs

〈
Ṫs(t)

〉2
, (18.52)

with s = 1, 2, 3, . . .∞. Coefficient of the normalization is in the form:

Ms =

∫ �

0

A(z)[Zs(z)]
2dz , s = 1, 2, 3, . . .∞ . (18.53)

Next, let us multiply by the matrix (Ṫs(t)), at the left side, each term of the matrix
equation (18.50) such that

(
Ṫs(t)

) d

dt

∂Ẽk

∂{Ṫs(t)}
− (Ṫs(t)

) ∂Ẽk

∂{Ṫs(t)}
+
(
Ṫs(t)

) ∂Ẽp

∂{Ṫs(t)}
+

+
(
Ṫs(t)

) ∂P̃ α

∂(Dα
t {Ts(t)}) +

(
Ṫs(t)

) ∂Φ̃

∂{Ṫs(t)}
=
(
Ṫs(t)

){h0s} sin(Ω0t+ ϑ0) ,

(18.54)
Taking into account the latter products, we obtain the following relations:
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(
Ṫs(t)

) d

dt

〈
∂Ẽk

∂{Ṫs(t)}

〉
=

d

dt

〈(
Ṫs(t)

) ∂Ẽk

∂{Ṫs(t)}

〉
− (T̈s(t)

) ∂Ẽk

∂{Ṫs(t)}
,

(
Ṫs(t)

) ∂Ẽk

∂{Ṫs(t)}
= 2Ẽk ,

(18.55)
as well as〈(

T̈s(t)
) ∂Ẽk

∂{Ṫs(t)}
+
(
Ṫs(t)

) ∂Ẽk

∂{Ṫs(t)}

〉
=

dẼk

dt
,
(
Ṫs(t)

) ∂Ẽp

∂{Ts(t)} =
dẼp

dt
,

(
Ṫs(t)

) ∂Φ̃s

∂{Ṫs(t)}
= 2Φ̃s ,

(
Ṫs(t)

) ∂P̃ α

∂
(
Dα

t {Ts(t)}
) =

(
Ṫs(t)

)
C̃α

{
Dα

t {Ts(t)}
}
,

(18.56)
for α �= 0 and 0 < α ≤ 1. Finally by using the last relations in equation (18.54),
we obtain the following relation between rate of decreasing of the normalized sum
Ẽk + Ẽp of kinetic and potential energies and normalized generalized function P̃ α

of fractional type system energy dissipation and normalized Rayleigh function Φ̃ and
external excitation, as follows:

d
〈
Ẽk + Ẽp

〉
dt

= −2Φ̃− (Ṫs(t)
) ∂P̃ α

∂
(
Dα

t {Ts(t)}
) + (Ṫs(t)

){h0s} sin(Ω0t+ ϑ0) ,

(18.57)
for α �= 0 and 0 < α ≤ 1. By taking into account that system’s normalized total
mechanical energy, Ẽ = Ẽk + Ẽp, the last relation is rewritten

dẼ

dt
= −2Φ̃− (Ṫs(t)

) ∂P̃ α

∂
(
Dα

t {Ts(t)}
) + (Ṫs(t)

){h0s} sin(Ω0t+ ϑ0) . (18.58)

For the case of generalized function of fractional order system with the total energy
dissipation in the form (18.8), previous relations (18.11) and (18.12) are obtained as
follows:

d
〈
Ẽk + Ẽp

〉
dt

= −2Φ̃− (Ṫs(t)
)
C̃α

{
Dα

t {Ts(t)}
}
+
(
Ṫs(t)

){h0s} sin(Ω0t+ ϑ0) ,

(18.59)
and

dẼ

dt
= −2Φ̃− (Ṫs(t)

)
C̃α

{
Dα

t {Ts(t)}
}
+
(
Ṫs(t)

){h0s} sin(Ω0t+ ϑ0) .

(18.60)
On the basis of previously obtained relation (18.60) between systems of normalized
total mechanical energy and normalized Rayleigh function and normalized gener-
alized function of fractional type system energy dissipation for considered forced
independent modes of the fractional type longitudinal vibrations of rod with variable
cross section system dynamics, it is possible to formulate a theorem of system total
mechanical energy degradation in the following form:
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Theorem 18.1. For a class of fractional order no conservative free and forced
modes of longitudinal fractional type vibrations of a rod with variable cross section
system dynamics, with infinite degrees of freedom, and defined by: matrix of inertia
properties, Ã =

(
ãkj
)↓k=1,2,...∞
→j=1,2,...∞; ãkk = 1, matrix of rigidity properties, C̃ =(

c̃kj
)↓k=1,2,...∞
→j=1,2,...∞, c̃kj = 0, c̃kk = ω2

0k, matrix of viscoelastic creep fractional type

properties, C̃ε =
(
c̃(α)kj

)↓k=1,2,...∞
→j=1,2,...∞, c̃(α)kj = 0, c̃(α)kk = ω2

(α)k, and matrix of

viscous linear material with properties B̃ =
(
b̃kj)

)↓k=1,2,...∞
→j=1,2,...∞, b̃kj = 0, b̃kk = b̃k,

rate of fractional type system normalized total mechanical energy, Ẽ = Ẽk + Ẽp,
degradation, in the system of eigen time functions, Ts(t), s = 1, 2, 3, . . .∞, which
corresponds to the system of eigen amplitude functions, Zs(z), is equal to sum of
negative double Rayleigh function, 2Φ̃, and matrix product between velocity,

(
Ṫs(t)

)
,

and first partial derivative,
∂P̃ α

∂
(
Dα

t {Ts(t)}
) , of normalized generalized function of

fractional type dissipation of energy of longitudinal fractional type vibrations of a rod
with variable cross section with respect to the fractional order derivative Dα

t {x} for
free vibrations and for forced vibrations plus power of the work of external excitation
along time functions derivative

(
Ṫs(t)

)
, s = 1, 2, 3, . . .∞, mathematically described

by relation (18.58).

Also, it can be written in the following form:

dẼ

dt
= −2Φ̃−

s=n∑
s=1

r=n∑
r=1

Ṫs(t)
∂P̃ α

∂
(
Dα

t [Ṫr(t)]
) + s=n∑

s=1

r=n∑
r=1

Ṫs(t){h0r} sin(Ω0t+ ϑ0) ,

(18.61)
for α �= 0 and 0 < α ≤ 1. From previously obtained results, we conclude that
energy relation expressed by eigen time functions, Ts(t), as system’s longitudinal
vibration main coordinates, which correspond to eigen amplitude functions, Zs(z),
is possible to be applied for determining analogous energy relations for each of the
free or forced fractional type mode along eigen time functions. Next, for that reason,
taking into account expressions (18.29)-(18.34), and introducing energy relations
(18.51), (18.52), we obtain the following relation:

s=n∑
s=1

〈
d

dt

〈
Ẽkin,s + Ẽpot,s

〉
+ 2Φ̃s + Ṫs(t)

∂P̃ α

∂
(
Dα

t [Ts(t)]
)〉 = 0 , 0 < α ≤ 1 ,

(18.62)
and in final form of relation between normalized kinetic, Ẽkin,s, and potential,
Ẽpot,s, with s = 1, 2, . . . n, energies carried at one of sth independent eigen main
fractional type free and forced mode of longitudinal fractional type vibrations of a
rod, and Φ̃s and P̃ α �=0,s, s = 1, 2, . . . n, respectively. These are functions of a linear
and fraction type rod with longitudinal vibrations at one sth eigen main fractional
type mode is possible to write in the following form:
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d

dt

〈
Ẽkin,s + Ẽpot,s

〉
=− 2Φ̃s − Ṫs(t)

∂P̃ α

∂
(
Dα

t [Ts(t)]
)+

+ Ṫs(t)h0s sin(Ω0t+ ϑ0) ,

(18.63)

with 0 < α ≤ 1, s = 1, 2, . . . n.
On the basis of previously obtained relation (18.63) between eigen main frac-

tional type mode total mechanical energy, Ẽs = Ẽk,s + Ẽp,s, s = 1, 2, . . . n, and
corresponding Rayleigh function Φ̃s and generalized function P̃ α of fractional type
energy dissipation, for the considered class of the fractional type longitudinal vibra-
tions of a rod with variable cross section, it is possible to formulate the following
theorem of rod eigen main fractional type mode total mechanical energy degradation.

Theorem 18.2. A class of fractional type no conservative free and forced modes of
longitudinal fractional type vibrations of a rod with variable cross section described
by ordinary fractional order differential equations with infinite degrees of freedom

T̈s(t) + ω2
0sTs(t) + ω2

(α)sD
α
t [Ts(t)] = h0s sin(Ω0t) , s = 1, 2, 3, . . .∞ (18.64)

is defined by following matrices: matrix of inertia properties Ã =
(
ãkj
)↓k=1,2,...∞
→j=1,2,...∞;

ãkj = 0, ãkk = 1, matrix of rigidity properties C̃ =
(
c̃kj
)↓k=1,2,...∞
→j=1,2,...∞, c̃kj =

0, c̃kk = ω2
0k, matrix of viscoelastic creep fractional type properties, C̃ε =(

c̃(α)kj
)↓k=1,2,...∞
→j=1,2,...∞, c̃(α)kj = 0, c̃(α)kk = ω2

(α)k, and matrix of viscous linear ma-

terial with properties B̃ =
(
b̃kj)

)↓k=1,2,...∞
→j=1,2,...∞, b̃kj = 0, b̃kk = b̃k, rate of fractional

type system normalized total mechanical energy, Ẽs = Ẽk,s + Ẽp,s, degradation,
in the system of eigen time functions, Ts(t), s = 1, 2, 3, . . .∞, which corresponds to
the system of eigen amplitude functions, Zs(z), being equal to the sum of negative
double Rayleigh function, 2Φ̃, and product between velocity,

(
Ṫs(t)

)
, and first partial

derivative,
∂P̃ α

∂
〈
Dα

t [Ts(t)]
〉 , of normalized generalized function of fractional type dis-

sipation of energy of corresponding mode of longitudinal fractional type vibrations
of a rod with variable cross section with respect to the fractional order derivative
Dα

t [Ts(t)] for free vibrations and for forced vibrations plus power of the work of
external excitation along time functions Ts(t), s = 1, 2, 3, . . .∞, mathematically
described by relation (18.63).

Also, it can be written in the following form:

dẼs

dt
= −2Φ̃s − Ṫs(t)

∂P̃ α

∂
(
Dα

t [Ts(t)]
) + h0sṪs(t) sin(Ω0t+ ϑ0) , (18.65)

for α �= 0, 0 < α < 1, s = 1, 2, 3 . . .∞ or in the form:

dẼs

dt
= −2Φ̃s − c̃α,ssṪs(t)D

α
t [Ts(t)] + h0sṪs(t) sin(Ω0t+ ϑ0) , (18.66)
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for α �= 0, 0 < α < 1, s = 1, 2, 3 . . .∞. Based on previously derived relations,
we conclude that no interactions appear between energy carried on the independent
eigen time fractional type modes.

18.7 Concluding Remarks

In this work, in the first part, main original results of theory of forced longitudinal
fractional type vibrations of a rod, with variable cross section, and graded material
with fractional type properties are presented. This theory about independent forced
fractional type eigen main modes described by corresponding independent ordinary,
fractional order differential equations along eigen time functions in corresponding
eigen amplitude forms must consider coupling with results related to determined
forms of eigen amplitude function of longitudinal vibrations of a rod with different
variable cross sections and different boundary conditions, presented by Hedrih (Ste-
vanović) and Filipovski (1999, 2002a).

In the second part, forced longitudinal creep vibrations of a fractional type rhe-
ological rod with variable cross section are investigated. Partial fractional order
differential equation and particular solutions for the case of forced creep longitudi-
nal fractional type vibrations of the rod of creep material of a fractional type are
determined.
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Chapter 19
Comparative Numerical Analysis of Composites
in the Aspect of Contact Algorithm

Agnieszka Derewonko

Abstract Node-to-segment and segment-to-segment contact algorithms are the most
popular methods implemented in FEM-based engineering software. The article
presents the differences in formulation of these algorithms and a comparative as-
sessment of the numerical analysis results for a compressed composite specimen.
A contact problem is employed to determine a contact area. The results of the nu-
merical analyses are presented in the form of three-dimensional graphs obtained in
the Matlab environment for selected external load values. Percentage errors of strain
and stress are calculated in order to compare the results of numerical analysis and
experimental tests.

Keywords: Contact problem · Composite · Finite element method

19.1 Introduction

Contact problem is a highly non-linear phenomenon involving enormous compu-
tational effort. The correct choice of the appropriate calculation algorithm enables
reduction of this inconvenience, while maintaining reliable analysis results. Mod-
ern simulation techniques for contact problems, using the finite element method,
are based on a theory of nonlinear continuum mechanics. The most important of
these methods include those concerning the discretization of the contact region
(Zavarise and De Lorenzis, 2009; Gonzalez et al, 2014; Paggi and Wriggers, 2016)
and the schemes for formulating and solving the incremental equilibrium equations
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(Oliver et al, 2009; Hartmann et al, 2009; Zavarise and Wriggers, 2011; Zavarise and
De Lorenzis, 2012; Cavalieri, 2012; Sauer and De Lorenzis, 2013; Panagiotopoulos
et al, 2018) for them. The foundations of contact algorithms, presented in Chapter 2,
are based on works (Wriggers, 2006, 1995; Laursen and Simo, 1993a; Simo and
Laursen, 1992; Simo et al, 1985; Zavarise et al, 1995, 1998).

The effect of the applied contact algorithm on the size of the contact area cal-
culated by the program for a single node is presented. Two sets of nodes form two
contact surfaces. The comparison was carried out with the use of numerical analysis
of the compression test of a multi-layer composite. It is a fragment of the sensi-
tivity analysis of the model carried out as a preliminary stage of work aiming at
developing the numerical method for predicting the adhesive joint failure initiation.
Assumptions and genesis of the method are presented in paper (Derewonko, 2018).

Aspects, such as a more comprehensive orthotropic model as the one proposed
in (Giorgio et al, 2018; Spagnuolo et al, 2020), dissipation is not considered due to
friction of the fibers (Nadler and Steigmann, 2003; Giorgio and Scerrato, 2017) and
damage model as in (Placidi et al, 2018; Placidi and Barchiesi, 2018).

19.2 The Contact Problems

The basic condition of contact algorithms is non-penetration of the contacting sur-
faces. In the case of large deformations, the Lagrange description is used to formulate
this criterion. In the current configuration, the distance between two points with the
same initial coordinates belonging to two separated contact surfaces is verified. In the
mathematical aspect, non-penetration of those points is a limiting condition based on
a micro mechanical approach. It is implemented as the distance function minimiza-
tion of both surfaces in the natural coordinate system and the current configuration.
The distance function, gN , fulfilling the orthogonality condition is defined as the
distance between the point belonging to one surface and its projection into the ref-
erence surface. The basic condition of non-penetration is described by the general
formula

gN =
[
x1 − x̂2

t (ξ̂
1, ξ̂2)

] · nnn2 ≥ 0 , (19.1)

where (ξ̂1, ξ̂2) is the minimizer of the distance function for point belonging to one
contact surface x1, x̂2

t (ξ̂
1, ξ̂2) is the tangent vector and nnn2 denotes the normal vector

to the reference surface.
The relative movement of two contacting bodies in the tangential direction is

considered as a relative slip (velocity) and is related to the change of the solution
point (ξ̂1, ξ̂2) of the minimal distance problem.

Normal contact stresses follow either from constraint equations or from constitu-
tive interface equations. In the first case, the contact problem is treated as constraint
optimization. The Kuhn-Tucker condition is formulated for frictionless contact prob-
lems in the following forms
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gN ≥ 0, pN ≤ 0, pNgN = 0 , (19.2)

where pN is the normal component of the stress vector.
In the second case, the micromechanical behavior of the contact area is checked

taking into account, e.g., the roughness of both contact surfaces. Local constitutive
equations for pressure and tangential stress on the surface at point x1 relative to the
reference surface are formulated. The general form of the constitutive law can be
written in one of the following forms

pN = f(d) or d = h(pN ) , (19.3)

where d is the current mean plane distance, pN is the contact pressure and f and h
are non-linear functions.

In the case of non-existence of relative movement of both contact surfaces, the
relative distance between the corresponding points of both surfaces in the tangential
direction, gT , is equal to zero. This is a stick condition. The stick condition is
implemented by introducing a non-linear equation of constraint on tangent motion
in the contact interface. This limitation is usually associated with the Lagrange
multiplier, λT , which corresponds to the reaction force.

Constitutive equations for contact with friction are mostly formulated within
elastoplasticity. Two states, slick and slip, are described.

It is assumed that the surface deformations generated in the stick state vanish after
removing the external load, and the resulting shear stresses, tT , are described by the
following formula

tT = cT g
e
T , (19.4)

where cT is a material parameter and geT is a sticking part of the movement.
This type of algorithm is called adhesive contact.
The slip criterion function depends on contact pressure pN and material parameter

μ
f̂s(tT ) = ‖tT ‖ − μpN ≤ 0 , (19.5)

where f̂s(tT ) is the tangent component of the contact force.
In general, the contact problem is treated as a boundary value problem. For

mathematical description of this type of problem, a weak form of the local momentum
equation for the solid, boundary conditions for deformation and stress field, constraint
equations in the form of gN ≥ 0 and nonlinear constitutive equations are used.

A general form of the obtained variational inequality is a function of variables such
as virtual displacement, η, body forces, f̄γ , Kirchhoff stress, τγ . Another variables
are boundary conditions for deformations, ϕγ , and stress fields, t̂γ .

The integration of such formulated inequality is performed in the reference con-
figuration. However, the stress tensor and the gradient operator are evaluated in
relation to the current coordinates.

The algorithms for solving variational inequalities, based on the finite element
method, use methods well-known from the optimization theory. These include active
set strategies, commonly implemented in existing computer aided design programs.



348 Derewonko

The advantage of this method is the formulation of variational inequality as the
equation for a single increment of the external load

2∑
γ=1

{ ∫
Ωγ

τττγ ·grad ηηηγ dV−
∫
Ωγ

f̄γ· ηηηγ dV−
∫
Γγ
σ

t̄γ· ηηηγdA
}

+ “contact contribution”= 0 .

(19.6)

Virtual displacement is also a test function, the value of which is zero at the
boundary of the contact surface. Formulation of a weak form of the interface for two
bodies in contact with surface Γc is dependent on the applied method.

In the Lagrange multipliers method, the weak form of the interface has the form
of ∫

Γc

(
λN · δgN + λλλT · δgggT

)
dA (19.7)

where λN is the Lagrange multiplier, which corresponds to the contact pressure pN .
When relative tangential slip gT is zero in the stick state, a constraint equation, in

whichλT corresponds to the reaction force, is formulated. In the slip state, expression
λT · δgT takes the form of tT · δgT where tT is the tangential stress vector.

Also, in the penalty function method, two states, stick and slip, are distinguished.
In the first case, the weak form of the interface takes the form of∫

Γc

(
εN · gN · δgN + εT · gggT · δgggT

)
dA (19.8)

with limitations on the value of the penalty function in the normal and the tangent
direction εN > 0, εT > 0.

However, in the case of a slip state, a tangential stress vector tT is implanted
instead of quotient εT · gT in equation (19.8),∫

Γc

(
εN · gN · δgN + tttT · δgggT

)
dA (19.9)

In both methods, the weak form of the interface equilibrium equation is a function
of increments of the distance between the contact nodes, in the both normal and
tangent direction to its surface. The tangential stress vector is usually determined by
friction laws.

A serious problem with application of the Lagrange multipliers method and
the penalty function is ill-conditioning of the system of equations. Therefore, both
methods were combined with the augmented Lagrangian formulation (Oden, 1981;
Simo and Taylor, 1985), in which the variation of the total energy of two bodies Π
is described by the following formula

δΠp = δΠ +

∫
Γc

[
λNδgN + δλN

(
gN − 1

εN
λN

)]
dΓ → STAT (19.10)
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STAT is an abbreviation for stationary value (maximum or minimum) at the actual
displacement, since solution for displacement is obtained by finding a stationary
value of the total potential energy.

The second part of equation (19.10) leads to the constitutive law, evaluated
locally, in the form of λN = εNgN that links the penalty function with the Lagrange
multiplier.

In this approach, Lagrange multiplier λ̄N is introduced and remained constant
during the iteration loop to solve equation (19.6), which is non-linear with respect
to ϕγ deformation.

The description of variables in FEM is a shape function, NI , of the finite elements
used. In the Lagrange approach (19.7), both a change in the distance between nodes
δgN and the Lagrange multiplier λN are discretized in the local coordinate system.

λh
N =

∑
K

MK(ξ)λNK and δghN =
∑
I

NI(ξ)δgNI (19.11)

Interpolations are selected to satisfy the Ladyshenskaya–Babuska–Brezzi condi-
tion (Kikuchi and Oden, 1988).

In the case of the penalty function, only displacements are discretized, also in the
local system

ghN =
∑
I

NI(ξ)gNI and ghN =
∑
I

NI(ξ)δgNI (19.12)

The most commonly implemented discretization procedures in CAE programs are
node-to-segment (NTS) and the segment-to-segment (STS). In the NTS procedure,
the distance between the contact surfaces is defined as the distance between the center
node of one surface and its projection into the reference surface. In the STS procedure,
the corner nodes of the segment of one contact surface are projected onto the segment
of the other contact surface. However, there are different variants of both procedures
implemented in CAE programs. For example, in the MarcTM program, for finite
elements with a linear shape function, in the NTS procedure, the normal vector and
projection are calculated based on the piecewise linear representation of the element.
However, in the STS procedure, a number of auxiliary points are determined. Then,
the auxiliary points are projected onto the segment of the second contact surface
instead of corner nodes. This approach allows definition of a larger number of
normal vectors at the adjacent contact segments and more accurate determination
of the actual contact surface (MSC Software Corporation, 2013). Details for both
procedures of discretization, both for small and large deformations, can be found,
among others, in (Simo et al, 1985; Wriggers and Simo, 1985; Wriggers et al, 1990;
Papadopoulos and Taylor, 1992). Matrix formulation of equation (19.6) based on
FEM is dependent on a shape function of the finite element, NI , and labeled as G.

In the case of the penalty function method, the general matrix formulation of
weak equation (19.6) in the form of a discrete system of equations, has the form of

Gp
c(v) = GGG(v) + ∪nc

s=1G
c
s(v) = 000 (19.13)
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where GGG(vvv) is the contribution of the contacting bodies depending on the shape
function.

GGGc
s(vvv) depends on the discretization procedure for s associated with an active

contact element, i.e., a node or a segment.
The system of equations in the case of the Lagrange multipliers is defined for

both surfaces (1, 2) and takes the form of

GGG1
c(vvv,λλλ) = GGG(vvv) + ∪nc

s=1CCC
l
s(vvv)

Tλs = 000 (19.14a)
GGG2

c(vvv,λλλ) = ∪nc
s=1CCC

g
s(vvv) = 000 (19.14b)

where matrix CCCl
s(vvv) is a function of change δgs and CCCg

s(vvv) is a matrix dependent on
the distance gs. Both matrices also depend on the chosen discretization procedure.

The solutions of both systems of equations using Newton-Raphson method re-
quires taking into account a change of the normal vector to the contact surface
(Laursen and Simo, 1993a; Curnier and Alart, 1988; Laursen and Simo, 1993b).

Algorithms for solving the contact problem are divided into global algorithms,
necessary to define an appropriate number of active constraint equations, and into lo-
cal algorithms for determining the contact stresses. For solving systems of equations
(19.13) and (19.14a) in global algorithms, the Newton-Raphson method is usually
used. Since it is difficult to estimate the parameters of the equations, additionally,
the augmented Lagrangian technique is usually applied together with Uzawa type
algorithms, i.e., algorithms for solving problems with saddle points. This leads to an
inner loop for the contact and outer loop for the update the Lagrangian parameters
(Bertsekas, 1984; Glowinski and Le Tallec, 1984; Laursen and Simo, 1991). In the
local algorithm, stress is updated using a return algorithm based on objective (Euler’s
backward) integration.

19.3 Research Object

The analyses concerned a fourteen-layer composite made of the prepreg CE 8201-
245-45/120, i.e. the KDK8042 carbon fabric saturated with E201 epoxy resin. Ma-
terial of each layer (lamina) is characterized by the same volume fraction and me-
chanical properties of fibers in the warp and the weft directions.

The object of considerations is the compression test carried out as a step in exper-
imental determination of properties of the composite defined above. The specimens
were loaded linearly with increasing force, with a maximum value of 25,000 N. In
order to limit the number of variables in numerical analyses, the maximum value of
compressive force is lower than the average failure force determined in laboratory
tests.

The specimen size, was adopted in accordance with ASTM D 3410
Method A (ASTM Committee D-30, 1990), however, to avoid buckling phenom-
ena, short specimens were used (Fig. 19.1).
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Fig. 19.1 Boundary conditions and loads: (a) in xy plane, (b) in xz plane, (c) part of a specimen
model created from elements of the Hex type.

The boundary conditions in experimental tests and numerical simulation are the
same.

All translational degrees of freedom are removed from the nodes forming the
upper and the lower surfaces of the left grip. For the right grip, displacement along
the direction of the applied load (x-axis) is possible (Fig. 19.1a). In the other two
directions, translational degrees of freedom are removed also from the nodes forming
the upper and the lower surfaces of the grip (Fig. 19.1b). Displacement along x-axis
is caused by the shear load applied to both surfaces of the right grip (Fig. 19.1a). The
value of the maximum force (24,938 N) is divided into a double value of the area
of the upper surface of the grip (Fig. 19.1a) to determine the shear load. A linear
function of the shear load with a maximum value of 17.5 N/mm2 is formulated. The
body forces, due to gravity, are also modeled.

Hex type three-dimensional eight-node finite elements with linear shape func-
tions, with eight integral points, are used to represent the geometry of the specimen
(Fig. 19.1c). Model of a single lamina with thickness of 0.27 mm is created from
one layer of finite elements.

Material constants are summarized in Table 19.1.

Table 19.1 Mechanical properties of composite material

E1 MPa E2 MPa E3 MPa G12 MPa G31 MPa G23 MPa ν12 ν31 ν23

53258 53258 9759 3494 2581 2581 0.0237 0.5356 0.5356

The elastic model of isotropic material, with Young modulus of 6800 MPa and
Poisson’s ratio of 0.27, is used to describe the material constitutive model for grips.

In order to determine the interface stress between individual laminates, an ad-
hesive type contact algorithm is used. The same type of a contact algorithm is
introduced between the grips and the specimen.

The augmented Lagrange method is used to formulate the contact conditions
(contact constraints and constitutive equations) as part of the incremental step (Simo
and Laursen, 1992; Alart and Curnier, 1991; Pietrzak and Curnier, 1999). To prevent
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the nodes penetration of one surface in other one, the Iterative Penetration Check-
ing Procedure is applied, which allows for simultaneous fulfilment of the contact
constraints and global equilibrium in iteration. The Newton–Raphson procedure is
used. To solve contact problems, the Additive Decomposition Updated Lagrange
procedure is introduced. This formulation uses Cauchy stress and true strain and is
suitable for analyses with large elastic and plastic strain. True strain is energetically
conjugated with a strain measure. A geometric stiffness matrix and an initial stiffness
matrix, based on the current deformed configuration, are calculated when Updated
Lagrange formulation is chosen. The Additive Decomposition procedure divides
the deformation increment into elastic and plastic parts. This results in a constant
value of volumetric strain for von Mises plasticity in lower-order solid elements
(e.g. Hex type), which prevents locking this type of a finite element. The Coulomb
bilinear friction model is introduced in the NTS procedure. In the STS procedure,
the Augmentation options based on a bilinear penetration field is used.

19.4 Validation of Numerical Models

Shear tests are carried out for a composite specimen of the shape and dimensions
shown in Fig. 19.1. The specimens for testing are cut from a sheet of prepreg and
E201 epoxy resin in accordance with the pre-impregnation manufacturer’s recom-
mendations. The basic purpose of the tests is to determine the elastic modulus of
compression Eis, compression strength (failure) Ris and failure deformations εis
in the plane perpendicular to the force direction. The load of the specimens is carried
out at a constant speed of the traverse (10 mm/min). The mean value of the failure
force obtained in the laboratory tests is approximately 26,885 N. The models are
validated by comparison values from experimental tests and numerical analyses of
strain and stress in the load direction. For this purpose, the strain and stress per-
centage errors of the numerical analyses are determined according to the following
dependencies

eε =
εex − εnu

εex
· 100% (19.15a)

eσ =
σex − σnu

σex
· 100% (19.15b)

where εex and σex are reference strain and stress measured in experimental tests, εnu
and σnu are component of strain and stress in the x-axis direction from numerical
analyses.

The values of x component of strain and stress obtained in the analyses are read
in the node whose coordinates correspond to the location where the strain gauge is
attached.

The percentage errors of strain (Fig. 19.2) and stress (Fig. 19.3) in a function
of the external load are presented in the form of column graphs. To distinguish the
results of the subsequent analyses, the following rules were applied. The letters ns
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Fig. 19.2 Percentage errors of strain.

and ss refer to the NTS and STS discretization procedures, a and di refer to the
analytical and discrete description of the contact geometry, while numbers 50 and
100 indicate the number of the external load increments.

The maximum percentage error is less than 18% for strain and less than 5.3%
for stress, which means a slight influence of the contact problem solving method on
the results of analyses. Local tips on both graphs are noticed for the initial phase of
calculation.

19.5 Results of Numerical Simulations

The consequence of the specimen compression is large deformation of its middle
part (Fig. 19.4a).

During numerical analysis, the contact forces are obtained directly from the finite
element solution, whereas the contact stress is derived from the contact force divided
by the area around the node. A contact area is calculated with the use of a shape
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Fig. 19.3 Percentage errors of stress.

function. Therefore, a contact area for a linear finite element is found by dividing the
contact force by contact stress.

This option was used to assess the size of the contact area depending on the number
of iterations, description of the contact surface geometry (analytic and discrete) and
a type of discretization (NTS and STS). For each node belonging to both contact
surfaces of the first (l1) and the second (l2) lamina, the contact surface area was
determined.

The percentage value of the relative contact area, rdcat for the node, is specified
as the relative contact area for the results of one type of analysis with respect to
another analysis

rdcat =
Acat −Acr

Acr
· 100% (19.16)

The lower indices cat are the designations of the compared analyses, where cr is
the reference analysis.



19 Comparative Analysis of Composites 355

0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

7,00E-01

8,00E-01

9,00E-01

2 7
1
2

1
7

2
2

2
7

3
2

3
7

4
2

4
7

5
2

5
7

6
2

6
7

7
2

7
7

8
2

8
7

9
2

9
7

1
0
2

1
0
7

1
1
2

1
1
7

1
2
2

1
2
7

1
3
2

1
3
7

1
4
2

1
4
7

1
5
2

1
5
7

1
6
2

1
6
7

1
7
2

1
7
7

1
8
2

1
8
7

1
9
2

1
9
7

2
0
2

2
0
7

2
1
2

2
1
7

2
2
2

2
2
7

2
3
2

2
3
7

2
4
2

2
4
7

2
5
2

2
5
7

2
6
2

2
6
7

2
7
2

2
7
7

2
8
2

2
8
7

2
9
2

Le
n
g
th
o
f
e
le
m
e
n
t
e
d
g
e
[m
m
]

Edge num ber

Length of elem ent edge in x direction [m m ]

k135 k161 k295k1

k125 k170

Fig. 19.4 (a) Specimen deformation for the maximum compressive force, (b) edge numbering, (c)
specimen model, (d) distribution of edge lengths of finite elements along x axis.

The results of the analyses as a function of the external load are presented in
spatial diagrams created for nodes lying across the subsequent edges from this area
(Fig. 19.4c). The specimen measurement area, along with the numbers of the selected
edges, are shown in Fig. 19.4b. Figure 19.4d also shows the distribution of edge
lengths of the finite elements along the x-axis. The numbers on the horizontal axis
correspond to the edge number. The horizontal plane of the graphs forms the external
load axis (F ) perpendicular to the coordinate axis of the nodes in the direction of
the specimen (z) width. The percentage value of the relative contact area is on the
axis normal to this plane.

The first comparisons are related to an influence of the number of external load
increments on the percentage values of the relative contact area, rdassi and rddissi,
which are determined in accordance with dependence (19.16). The values are cal-
culated for the corresponding levels of the external load on the basis of the results
obtained in the analyses assuming its division into fifty and into a hundred incre-
ments. The reference values are the contact areas obtained in the analyses with fifty
external load increments.

In the case of the STS procedure, both for the analytical (ass) and discrete (diss)
description of the contact geometry, the percentage value of the relative contact area
does not depend on its contact surface, i.e. l1 or l2. However, there are differences
in the nature and the maximum of the percentage value of the relative contact area.
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The results are presented for the edges lying in the area of the left grip (k130 and
k131), for edges at the beginning of the measurement region (k135 to k138) and for
the edge where a rapid change in the nature of the distribution occurs. Edge k148 is
in the middle of the specimen measurement area, whereas k161 is last edge in this
region. In Fig. 19.5 there are presented distributions of the percentage value of the
relative contact area for analytical analysis (ass) and for discrete analysis (diss) for
the selected edges.

The influence of the number of external load increments and the discretization
procedure on distributions of the percentage value of the relative contact area (dansi)
in the case of analyses using the analytical NTS (ans) procedure is shown in Fig. 19.6.
The graphs present the results for the upper (l1) and lower (l2) lamina of the analyzed
contact surface. The results are presented for the same edges as in Fig. 19.5.

The influence of the contact geometry description is important mainly for nodes
belonging to the boundaries of the contact area. Application of the analytical de-
scription of the contact surface geometry in the case of the STS procedure reduces
the local “jumps” caused inaccuracies of the coordinates corresponding to nodes. In
the discrete description of geometry, the object deformation causes local standard
discontinuities to the contact area.

To compare the impact of the NTS (ns) and STS (ss) discretization procedure, the
percentage value of the relative contact area is calculated according to the expression

rdanss =
Aass −Aans

Aans
· 100% (19.17)

The area for the NTS (ns) procedure was assumed as the reference value. Graphs
for analyses with fifty load increments for both contact surfaces and for edges inside
the measurement region are presented in Fig. 19.7.

19.6 Summary and Conclusions

The mapping of the adhesive contact between two bonded layers enables determina-
tion of their local delamination, especially in the case of compression of a multi-layer
composite. However, the correct selection of the contact problem algorithm is im-
portant.

The calculation of the percentage value of the relative contact area allows de-
termining the influence of three parameters of contact algorithms, discretization
procedure, description of the contact surface geometry and the number of load in-
crements on the results of calculations. An influence of other parameters of the
model, such as the type and size of finite elements, have not been considered.

The presented results of numerical analyses of six model variants showed that
the effect of the segment-to-segment discretization procedure (STS) is a lack of
dependence of the contact area size on the node belonging to the contacting surface.
However, the analytical description of the contact surface geometry for this procedure
is vital in the initial phase of the load and for the nodes forming the outer edges along
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Fig. 19.5 Distributions of percentage value of the relative contact area for analytical analysis and
for discrete analysis for selected edges.
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l1
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Fig. 19.6 Distributions of percentage value of the relative contact area for analytical NTS
procedure analyses for selected edges.
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Fig. 19.7 Distributions of percentage value of the relative contact area of analytical STS and
analytical NTS procedure for fifty increments, for both contact surfaces.
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the length of the bonding interface, especially in the case of the load acting in this
direction. The use of the node-to-segment discretization procedure (NTS) results in
differentiation of the size of the contact areas, depending on the node belonging.

The number of load increments is mainly relevant for contact areas around the
nodes belonging to the specimen outer edges lying along the length of the specimen.
This is the result of using the Simpson’s method to numerically integrate the surface
area. The use of finite elements with linear shape functions, such as Hex elements,
makes the accuracy of the results independent of the length of the integration step, i.e.
the number of load increments. Local jumps of the percentage value of the relative
difference in the contact area may result, for example, from a lack of correspondence
of pairs of nodes in the contact area.

The paper proves that the optimal method for solving numerical analysis of a static
problem with the contact problem is the algorithm with the segment-to-segment
procedure, the discrete geometry description (smoothing the contact surfaces) and
with the bilinear Coulomb’s friction model. To solve the contact equations, a large
strain method in the updated Lagrange description should be used.

This is the preliminary stage of work towards development of a numerical method
for predicting failure initiation of the adhesive joint and the load causing it.

Acknowledgements The research has been funded from Ministry of Science and Higher Education
within statutory activities 2019.
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Chapter 20
Vibration Analysis Based Spalling Defect
Severity Assessment of Spur Gearbox Using a
Dynamic Model

Vishwadeep C. Handikherkar & Vikas M. Phalle

Abstract Gears are toothed mechanical elements used in the industries for changing
speed, increasing/decreasing torque and transmitting power between two shafts.
Due to variable loads harsh operating conditions faults develop in the gears such as
pitting, spalling, crack and broken tooth. Spalling is the most common fault observed
on the gear tooth, these are the deeper cavities developed from subsurface defects.
Over a period of time these faults grow, and the health of the system continues to
degrade causing system breakdown and economic loss. Therefore, early detection
of fault is of utmost importance. Vibration analysis is the most widely used fault
diagnosis technique in the rotating machinery. When fault develops on the gears its
gear mesh stiffness reduces and resulting into the change in the vibration response
of the gearbox. In this paper, the time varying mesh stiffness for healthy (gear tooth
without fault) and tooth having spall fault of varying severity is evaluated using the
potential energy method. Further, a dynamic model of one stage spur gearbox is
presented to obtain the vibration response of the healthy and faulty gearbox to study
the influence of fault and fault severity by using time domain and frequency domain
features.

Keywords: Spur Gear · Dynamic Model · Spall defect · Severity Assessment

20.1 Introduction

Gears are the subsystems of the rotating machineries, these are used in many in-
dustrial machines, wind turbine, automotive applications, locomotives, ships and
airplanes etc. for changing speed, torque and transmitting power. These gears op-
erate with different load and speed conditions, bad lubrication, and manufacturing
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or installation problem. Due to variable loads and harsh operating conditions faults
such as pitting, spalling, crack and broken tooth develop in the gears. Spalling is
formation of deeper cavities that are mainly developed from subsurface defects and
is one of the common defects on the gear tooth (Saxena et al, 2016). Al-Meshari et al
(2012) found in his gearbox failure investigation that spalling of gear tooth is one
of the major causes of gearbox failure. Therefore, early indication of spalling is an
important task to avoid system shutdown and economic loss. The various methods
for fault diagnosis are oil debris analysis, acoustic analysis; vibration signal analysis
etc. out of this vibration analysis is the most widely used fault diagnosis technique
for the fault detection in rotating machinery. Kankar et al (2012) used a vibration
data collected from the rotor bearing system for the rotor and bearing fault classifi-
cation.Engine fault classification using the multi sensor vibration data was carried
out by Jafarian et al (2018). Andreaus et al (2017) presented a beam crack detec-
tion method using the wavelet analysis based on the displacement data collected at
various points.

Vibration in gears are caused due to external excitations such as fluctuation of
applied load, input speed and internal excitations such as time varying mesh stiffness,
transmission error etc. Therefore, calculation of time-varying gearmesh stiffness
is important for obtaining a vibration response. There are different methods of
evaluating the gearmesh stiffness such as Finite Element Analysis, Potential Energy
Method, Square Waveform Method and Experimental Method (Liang et al, 2018).
Yang and Lin (1987) developed a gearmesh stiffness calculation method based on
the potential energy method. It includes energy stored in the tooth due to Hertzian
Contact, Bending, and Axial compressive. Further, Tian et al (2004) extended this
model by including shear energy for evaluation of the gearmesh stiffness. Numerous
gear dynamic models have been proposed for the dynamic analysis of the gearbox.
The different methods of gearbox dynamic modeling techniques were reviewed by
Liang et al (2018). Bartelmus (2001) developed 8 DoF dynamic model having both
torsional and lateral motions as well as considering the friction.

Liang et al (2016) have modelled a gear tooth pitting growth using circular pits
and evaluated the influence of tooth pitting of the mesh stiffness of external gears.A
single degree of freedom model for a low contact ration spur gear was developed
considering the time varying gear-mesh stiffness and viscous damping proportional
to the TVMS by Amabili and Rivola (1997). The model helps in studying the stability
characteristics and steady state response of the system. Abouel-seoud et al (2012)
presented a dynamic response of wind turbine gearbox using a 12 degree of freedom
dynamic model of gearbox. In this they have considered three tooth faults viz.
cracking, spalling and breakage. Amabili and Fregolent (1998) proposed new method
for the identification of the natural frequency, damping and tooth profile errors in
the spur gear pair. Mohammed et al (2015) developed a 12 DOF dynamic model of
one stage spur gearbox including the gyroscopic effect. The simulations were carried
out for different crack sizes and the vibration response was obtained. Time domain
features such as RMS, kurtosis and the crest factor were extracted from the vibration
response for fault detection. Omar et al (2012) developed a 9 DoF dynamic model
considering the gear size, transmission errors and gear crack, this model is then
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validated with the experimental test rig. Tian et al (2012) investigated the sensitive
indicators for crack propagation level assessment using statistical indicators and
the discrete wavelet transform (DWT). Sharma and Parey (2016) have provided a
different condition indicators used for the gear fault diagnosis.

In the present paper, gear-mesh stiffness for healthy and spalled gear have been
calculated using the potential energy method. This gear-mesh stiffness values were
utilized to obtain the dynamic response of the system using a 6-DoF dynamic model.
Later time domain statistical features were calculated for the early indication of spall
fault.

20.2 Evaluation of Gear-Mesh Stiffness

In this paper, gear-mesh stiffness is evaluated based on the potential energy method
proposed by Yang and Lin (1987) and further refined by Tian et al (2004) for the
calculation of the gear-mesh stiffness. Figure 20.1 shows the geometry of the single
tooth used for the calculation of stiffness. The total mesh stiffness can be obtained
by the equation (20.1) for single pair of teeth in contact and equation (20.2) for the
two pairs of teeth in contact.

Fig. 20.1 Geometry of the
tooth
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The expressions of Hertzian stiffness, axial compressive stiffness, shear stiffness
and bending stiffness components are shown in equations (20.3) to (20.6) respectively

Hertzian stiffness (Kh)

Kh =
ΠELs

4(1− ν)
(20.3)

Axial compressive stiffness Ka

1

Ka
=

∫ α2

−α1

Rb sin
2 α1(α2 − α) cosα

2EAs
dα (20.4)

Shear stiffness Ks

1

Ks
=

∫ α2

−α1

1.2Rb(1 + ν) cos2 α1(α2 − α) cosα

2EAs
dα (20.5)

Bending stiffness Kb

1

Kb
=

∫ α2

−α1

R3
b [(1 + cosα1)((α2 − α) sinα− cosα)]2(α2 − α) cosα

2EAs
dα

(20.6)
Spall fault is considered as the rectangle as shown in Figure 20.2. In equation

(20.3) and (20.6) the values of Ls, As and Is will vary according to the equations
(20.7) and (20.9)

Fig. 20.2 Geometry of spalled
tooth

Ls =

{
Ls For healthy region.
Ls − ls For spalled region.

(20.7)

As =

{
2hxL For healthy region.
2hxL− hsls For spalled region.

(20.8)
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3
sls] For spalled region.

(20.9)

The gear-mesh stiffness of spur gear having gear parameters as given in Table 20.1
is evaluated for different spalling fault sizes as given in Table 20.2.

Table 20.1 Gear parameters

Gear Parameter Value
Number of teeth on Pinion/Gear Np=19, Ng=48
Pressure angle 20 deg

Diametrical pitch P=0.2032 m−1

Width of teeth L=0.16 m
Contact ratio Cr = 1.6456
Young’s modulus E = 2.068 × 1011 Pa
Poisson’s ratio ν=0.3
Mass of the Pinion/Gear mp = 0.96 kg, mg = 2.88 kg
Mass moment of inertia of the Pinion Ip = 4.3659× 10−4 kg m2

Mass moment of inertia of the Gear Ig = 8.3602× 10−4 kg m2

Mass moment of inertia of the motor Im = 0.0021 kg m2

Mass moment of inertia of the load Ib = 0.0105 kg m2

Input shaft frequency f1 = 30 Hz
Mesh frequency fm = 570 Hz
Input motor torque M1 = 11.9 Nm
Output load torque M2 = 48.8 Nm
Torsional stiffness of the coupling kp = kg = 4.4× 104 Nm/rad
Damping coefficient of the coupling cp = cg = 5.0× 105 Nm/rad
Radial stiffness of the bearing k1 = k2 = 6.56× 107 Nm/rad
Damping coefficient of the bearing c1 = c2 = 1.8× 105 Nm/rad
Base circle radius of Pinion/Gear Rb1 = 0.02834 m, Rb2 = 0.0716 m

The gear-mesh stiffness was evaluated for healthy and tooth having spall faults for
the gear parameters tabulated in Table 20.1 and for different spalling size as given
in Table 20.2. The gearmesh stiffness for the one revolution of pinion is represented
for healthy and faulty gear are represented in Figure 20.3 and 20.4 respectively.

20.3 Dynamical Model and Simulation

For obtaining a vibration response a dynamic model developed by Bartelmus (2001)
having both torsional and lateral motions have been utilized (Figure 20.5). It is a
8 degree of freedom mass-spring-damper dynamic model with M1 input torque by
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Table 20.2 Different sizes of spall fault

No. As (m) Ws (m) Hs (m)
1 0 0 0
2 0.00071 0.016 0.001
3 0.0014 0.032 0.001
4 0.0021 0.048 0.001
5 0.0029 0.064 0.001
6 0.0036 0.080 0.001
7 0.0043 0.096 0.001
8 0.0050 0.112 0.001
9 0.0057 0.128 0.001

Fig. 20.3 Gearmesh stiffness of healthy gearbox

Fig. 20.4 Gearmesh stiffness of gear with spalled tooth

motor and M2 output torque. Two flexible coupling is used one to connect the motor
with the input shaft carrying pinion and second to connect shaft carrying gear and
load. The pinion and gear shafts are mounted on the rolling element bearings and
these bearings are then mounted on the gearbox casing. The equations of motion are
given as follows (Equations (20.10)–(20.17)):

m1ÿ1 + c1ẏ1 + k1y1 = −Fk − Fc (20.10)

m2ÿ2 + c2ẏ2 + k2y2 = Fk + Fc (20.11)
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Fig. 20.5 8 Degree of free-
dom dynamic model

I1θ̈1 = kp(θm − θ1) + cp(θ̇m − θ̇1)−Rb1(Fk + Fc) (20.12)

I2θ̈2 = kg(θb − θ2) + cg(θ̇b − θ̇2) +Rb2(Fk + Fc) (20.13)

Imθ̈m = M1 − kp(θm − θ1)− cp(θ̇m − θ̇1) (20.14)

Ibθ̈b = −M2 + kg(θ2 − θb) + cg(θ̇2 − θ̇b) (20.15)

Fk = kt(Rb1θ1 −Rb2θ2 + y1 − y2) (20.16)

Fc = ct(Rb1θ̈1 −Rb2θ̈2 + ÿ1 − ÿ2) (20.17)

where,
Im/Ib = Mass moment of inertia of rotor/load
I1/I2 = Mass moment of inertia of pinion/gear
M1 = Input Motor Torque
M2 = Output torque from load
m1/m2 = Mass of pinion/gear
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Rb1/Rb2 = Base circle of pinion/gear
kp/kg = Torsional stiffness of flexible coupling Input/Output
cp/cg = Torsional damping of flexible coupling Input/Output
k1/k2 = Vertical Radial stiffness of bearing Input/Output
c1/c2 = Vertical Radial viscous damping coefficient of bearing Input/Output
y1/y2 = Linear displacement of Pinion/Gear in the y-direction
θm = Angular displacement of Motor
θb = Angular displacement of Load
θ1/θ2 = Angular displacement of pinion/gear
and,
Fk – stiffness inter-tooth force,
Fc – damping inter-tooth force,
Fu – internal stiffness force of input bearing,
Fuc – internal damping force of input bearing,
Fl – internal stiffness force of output bearing,
Flc – internal damping force of output bearing,
Mpk – stiffness moment of input couplings,
Mpc – damping moment of input couplings,
Mgk – stiffness moment of output couplings,
Mgc – damping moment of output couplings,
kt – total mesh stiffness,
ct – mesh damping coefficient

We pay our attention to the y-direction vibration since this direction is along the
direction of gear dynamic force. As the equations (20.10)–(20.15) are combination
of torsional and lateral vibration the analytical solution is not possible therefore,
these equations are solved simultaneously in the MATLAB using ODE15s solver
with sampling frequency of 100000. The vibration response was obtained for various
conditions given in Table 20.2. Table 20.3 shows the figures for result of vibration
response for different conditions given in Table 20.2 for 0.1 s.

20.4 Results and Discussion

The potential energy method has been utilized for calculating the time varying gear-
mesh stiffness for various conditions presented in Table 20.2. The gear parameters
used in this study are given in table 20.1. Figure 20.3 shows the TVMS for the
no fault or healthy condition and Figure 20.4 depicts the TVMS for the higher
severity condition of spall fault. The figure clearly shows that there is a decrease in
the TVMS when the spalled tooth pair is coming in contact. As the spall severity
increases the value of TVMS decreases for contacting gear tooth pair. Variation
in the TVMS causes the change in vibration response of gearbox for healthy and
faulty case. 6-DoF dynamic model was utilized to obtain the vibration response for
each condition. These equations of motion are solved in MATLAB using ODE15s
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Table 20.3 Vibration response

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

solver. Table 20.3 figures (a-i) shows the vibration response of the gearbox for
various conditions given in Table 20.2 for the duration of 0.1 s. For different spall
severity level there is an increase in the vibration and different vibration response is
obtained as shown in the table 20.3 figures (a-i). Further these time domain signals
are converted in to the frequency domain using the FFT, these results are presented
in figures (a-i) in table 20.4 . Figures clearly show that as the severity increases the
amplitude of 6th harmonic of gear-mesh frequency increases also the side bands
associated this increases. Also, 12 time domain features (Clearance Factor, Crest
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Table 20.4 FFT

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)
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Table 20.5 Variation of time domain features

(a) (b)

(c) (d)

(e) (f)

Factor, Energy Ratio, Impulse Factor, Kurtosis, Maximum, Peak to Peak, Root Mean
Square (RMS), Shape factor, Skewness, Standard Deviation and Variance) were
obtained for the early indication of the fault severity. The variation of these features
for different severity conditions is depicted in Tables 20.5, 20.6. Except Kurtosis,
Shape Factor and Skewness all other features are showing increase in the value as
the spall severity increases. Out of these features Energy ratio, Standard Deviation,
RMS and Variance shows the small change up to 50% severity and then shows the
considerable increase. Remaining features Clearance Factor, Crest Factor, Impulse
Factor, Maximum show considerable increase in the value as the severity increases.

20.5 Conclusion

This paper deals with the spall fault severity assessment of gearbox using simulated
vibration signals. TVMS for healthy as well as spalling defects of different severity
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Table 20.6 Variation of time domain features

(g) (h)

(i) (j)

(k) (l)

was calculated using the potential energy method and a 6-DoF dynamic model has
been employed to obtain the simulated time domain vibration signals.FFT results
show that the 6th harmonics of gear-mesh frequency and its side bands show consid-
erable change for different spall size. Time domain features Clearance Factor, Crest
Factor, Impulse Factor, Maximum shows the variation in the values for different spall
severity hence they are good indicators of spall fault severity.
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Chapter 21
Simulation of Self Compensating Hydrostatic
Bearing Using Finite Element Analysis

Sumit J. Patil, Abhishek N. Khairnar, Vikas M. Phalle, and Praveen K. Limaye

Abstract Self-compensating hydrostatic bearings provide higher stiffness and
straightening characteristics than ordinary journal bearings. The high end as well
as precision applications, such characteristics are desirable. The design we discuss
(Patil et al, 2018) is such a self-compensating hydrostatic bearing used in actuators.
The self-compensation principle is used by connecting opposite pockets of hydro-
static journals in a specific way to achieve greater stiffness. Extending our work
(Patil et al, 2018) to model the flow of lubricant in one dimension, in this paper we
use finite element method to numerically solve a 2-D Reynolds Equation that models
the lubricant flow in bearing under study. Use of Finite Element Method over Finite
Difference Method is also defended in this study based on the non-linear nature of
governing equation and ease of computation. We have modified the generalized 2-D
Reynolds Equation to represent the flow in bearings for actuators. Then we have
used Galerkin Approach to formalize the FEA for Reynolds Equation. Appropriate
boundary conditions are set for the problem according to necessary assumptions
and design. The pressure over bearing surface is set as an independent variable and
the solution thus obtained is the pressure distribution over bearing surface. This is
further used to calculate the weight carrying capacity of bearing. The results ob-
tained from numerical simulation helped design the geometry of bearing for desired
stiffness and weight carrying capacity. The future scope for refining the assumptions
and eventually, the numerical simulation is also discussed in this paper.

Keywords: Hydrostatic bearings · Finite element method · Self compensating jour-
nal bearings
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21.1 Introduction

This paper emphasizes the extension of one of the approaches taken in our work
(Patil et al, 2018) in which we have briefly discussed solutions of Reynolds equation
using FEM. For the particular case emphasized in the work, its boundary conditions
have also been discussed depending upon steady or transient situations. Our idea
is to use the grooves over the bearing surface to connect opposite lands on pockets
that create self-compensating action, thus saving the space required for piping and
leakage prevention on holes.

We mainly focused on designing a mathematical model which precisely replicates
the fluid domain inside self-compensating hydro-static bearing and its effect. In this
paper, we have worked on the finite element method applied to model the flow of fluid
lubricant in the bearing we have designed. Previously, the results of using analytical
methods to optimize the design have been published. This work aims at refining
assumptions and using FEM for better modeling.

FEM is a powerful numerical technique having advantages in terms of compu-
tational efficiency over other numerical techniques. Though memory requirements
are more for FEM than other numerical techniques such as FVM (due to more de-
grees of freedom per node). It is useful in fluid problems too because of the ease in
the modelling of complex geometries, the consistent treatment of differential-type
boundary conditions and the possibility to be programmed in a flexible and general-
purpose format (Donea and Huerta, 2003). We will see how it can be formulated
for a fluid flow between two circular surfaces (Modeled as Reynolds Equation) in a
hydrostatic bearing application with actuating motion. The problem has been solved
in 2 dimensions.

Prior to solving this problem in 2-dimensions, it has been formulated and coded
in 1-dimension for convenience in computer implementation and understanding. The
2-D case presented in this paper has been implemented by doing appropriate changes
in the code for 1-D implementation. The 1-D formulation is left out of the paper as
the 2-D case is presented in detail. For computer implementation, MATLAB is used
and the functions written are explained in detail in the paper.

The Finite Element Method has been used in literature by Nagaraju et al (2002);
Sharma et al (2011, 2012) in very similar kinds of problems. Zuo et al (2013) have
used the second approach by deriving Reynolds Equation for the flow between shaft
and bearing, solving that PDE using Finite Element Method (FEM), and getting
the pressures and other parameter values at each pocket. The finite element method
and its application in fluid flow problems (especially in fluid lubrication) have been
covered extensively by Thornton et al (1982) in Chapter 7 of ‘Finite Element Methods
for Engineers’.

For computer implementation, Finite Element Analysis in Thermofluids by Sert
(2014), his online lecture notes have been referred. A readily available mesh generator
written in MATLAB called ‘mesh2d’ has been used for mesh generation. It can freely
be downloaded at http://github.com/dengwirda/mesh2d (Engwirda, 2014). It can be
used to generate meshes of triangular elements over 2D domains. Even Thornton
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et al (1982) has separate sections as guidance for computer implementation of the
Finite Element Method in fluid lubrication problems.

Fig. 21.1 Bearing cross-
section and geometry over
which flow is modelled.

21.2 Methodology

1. Begins with writing down the Reynolds equation for one’s case and formulate
FEM for the differential equation.

2. Discretize the problem according to geometry.
3. Apply proper boundary conditions.
4. Apply Galerkin criteria or Variational principle to get an integral functional that

has to be minimized.
5. Minimize the functional or residual in local coordinate system.
6. Get local matrix equations using fluidity matrices for individual elements.
7. Write a global equation that can be solved by an iterative procedure.

21.3 Steps in Implementation of FEM

Following subsections cover steps listed in methodology.

21.3.1 Step 1 - Setting up the Governing Equation

Reynolds equation has a very generalized form for application to hydrodynamic and
hydrostatic bearings (Rowe, 2012). Derived from Navier-Stokes equations, it is a
PDE which governs the phenomena of fluid lubrication. It is given as-
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(21.1)
where, h is the clearance between shaft and bearing. U1, U2, and V1, V2 are fluid
velocities in x and y direction at the shaft surface and at the bearing surface respec-
tively.

Making suitable assumptions by keeping in mind our design, we can derive the
specific PDE that governs fluid ow in this bearing. To reduce this general Reynolds
equation to obtain governing equation, following are the assumptions:

1. Division of the fluid supplied is only in the axial direction
2. No fluid crosses pocket lands in the circumferential direction
3. Squeezing effect is negligible
4. Viscosity is constant
5. The shaft has zero rotational speed and is in a strictly actuating motion

Above assumptions let us neglect last time-dependent term in generalized
Reynolds equation and also U1 = U2 = 0 and V1 = 0 (no-slip boundary con-
dition). We keep only the V2 term because the bearing is to be used in actuator
application where the shaft will have this one velocity in axial direction.

Considering these assumptions, the Reynolds equation for the design becomes-
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2
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h
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= 0 (21.2)

For implementing FEM, it has been assumed that the pressure inside the pocket
remains constant. Also, for the analysis purpose, only two pockets have been assumed
on the bearing. The domain is as given in fig. 21.2

Fig. 21.2 Domain of the solution after neglecting inner lands in pockets

Also, the domain has been shown as spread out rectangle that is originally a
cylindrical bearing. The co-ordinates show dimensions of the bearing used in the
calculations.
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21.3.2 Step 2 - Mathematical Formulation of FEM

The foremost requirement for the formulation of finite element method is a govern-
ing equation, which we has been derived in the previous section. For any general
governing equation of the form-

Φ(a)− f = 0 (21.3)

where Φ is any operator (a differential or combination of several operators) acting
on an independent variable a which one wishes to find (pressure or velocity in
fluid problems) and f being any function, FEM formulation is about identifying the
solution domain and discretizing it into smaller elements and obtaining values of ‘a’
at nodes of each element using numerical techniques and then approximating them
using interpolation shape functions inside the element.

Comparing Eq. (21.2) and Eq. (21.3), the independent variable is P whereas the
operator Φ and f are:

Φ =
∂

∂x
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2
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h

]
(21.5)

For simplicity of notation, the formulation and integrals are shown on the represen-
tative Eq. (21.3) instead of lengthy original Eq. (21.2).

Starting with a single element fig. 21.2, the value of pressure inside the element
is given in terms of values of pressure at nodes P1, P2, P3, and P4 using shape
functions as interpolators.

P (x, y) =

4∑
i=1

NiPi = [Ni][Pi]
′ (21.6)

here, N is a shape function whose choice depends on the judgement and nature of the
problem one deals with. Now the solution P (x, y) will be an approximate solution
because we have just interpolated the node values to get the value inside the element.
If we put that approximate value in governing equation, we get an error, which we
call Residue (21.7).

Φ(P̂ )− f = R (21.7)

where P̂ is an approximate value of P.
Now the Galerkin’s criteria will give∫

(Φ(P̂ )− f)NidA = 0 (21.8)
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Fig. 21.3 Single 4-noded
element in the local co-
ordinate system.

We may write residual minimizing integrals at each node of an element considered
separately– one by one. In this way we obtain 4 integral equations, they can be
written as 4 linear algebraic equations in 4 node variables P1, P2, P3, and P4. To
make the system of these equations solvable, boundary conditions of flow have to be
incorporated at each node on the boundary. Then these equations can be represented
in matrix form, a 4× 4 matrix equation for the element in fig. 21.3.

[KP ]4×4 [P ]4×1 + [Kv]4×4[V2]4×1 = [Q]4×1 (21.9)

where KP and Kv are called fluidity matrices and 4x1 matrices P and V2 are
matrices with variable P and V2 values at nodes 1, 2, 3 and 4. Matrix [Q] is a flow
matrix.

The elements of fluidity matrices and flow matrix are as follows

KPi,j = −
∫
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Qi =

∫
qNids (21.12)

Every single element in the domain will have such a 4 × 4 matrix equation
in its local co-ordinate system. All such single elemental matrix equations can be
assembled in a global co-ordinate system to obtain one Global Matrix equation for
the entire domain under study.
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The right way to club the elemental matrix equations in global co-ordinates can
be found in any text on finite element method such as (Chandrupatla et al, 2002).
The size of the global matrix equation depends on the number of nodes in the mesh
imposed on the discretized solution domain. Hence finer the mesh, smaller will be
the elements and more will be the number of equations. Global matrix equation of
the following form (with n nodes in total)

[KP ]n×n [P ]n×1 + [Kv]n×n[V2]n×1 = [Q]n×1 (21.13)

can be solved using direct methods like Gauss Elimination. Code for the same can be
written for computer implementation. The solution obtained is pressure distribution
over the solution domain at each node.

21.3.3 Step 3 - Meshing of the Solution Domain

The meshing is an important factor in FEM to get good quality solutions that
converge. In the code for computer implementation, the domain shown in previous
subsections fig. 21.2 has been used for meshing. There is a room for controlling the
meshing density in the code.

For meshing, a MATLAB package called MESH2D has been used. It is readily
available on the GitHub. The package has been used effectively in the main code.
Different shapes of elements can be set using this package but we have proceeded
with triangular elements for their effectiveness in capturing fluid behaviour better
than other elements.

Following is a sample mesh generated using the code

Fig. 21.4 Computer gener-
ated mesh on the solution
domain.
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Fig. 21.5 Boundary conditions over the domain.

21.3.4 Step 4 - Boundary Conditions on the Solution Domain

Over the domain shown in the previous subsection, fig. 21.5 shows the boundary
conditions at each boundary.

1. The inner pockets have uniform pressure equal to supply pressure Ps at all the
boundaries.

2. The axial ends of the bearing are open to atmosphere, hence these two edges
have P = 0.

3. The edges formed by splitting cylinder to form this rectangular domain will have
the same pressure P ′.

These boundary conditions are very important in computer implementation and
while writing code. These will be specified explicitly at each edge and/or boundary.

21.3.5 Step 5 - Computer Implementation

The coding for computer implementation is done in MATLAB and it consists of two
main sets of code. One is an input file generator code and second is the main code
that implements FEM.

Following functions are coded and called as per their functionality in the order
that algorithm 1 depicts.

21.4 Results

Using the above steps to implement FEM and using the computer code to execute it,
results are obtained in terms of pressure distribution over the domain for which we
have solved the Reynold’s equation.
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Algorithm 1: Computer implementation of FEM
FUNCTION Steady 2D
{Main function that calls all other functions}
function setupProblem
{User provides necessary input values here}
function generateMesh
{Generate 2D mesh}
function setup
{Generate variables for GQ - Gauss Quadrature points and weights}
function calcShape
{Evaluate shape functions and their derivatives at GQ points}
function calcGlobalSys
{Calculate global K and F (Fluidity Matrices)}
function calcElemSys
{Calculate elemental Ke and Fe (Fluidity Matrices)}
function assemble
{Assemble elemental systems into a global system}
function applyBC
{Apply BCs to the global system of equations}
function solve
{Solve the global system of equations}
function postProcess
{Plot the approximate solution}

We can control number of nodes in the code to control fineness and coarseness
of mesh. Following are two results fig. 21.6 and fig. 21.7– one with coarse mesh and
one with fine mesh–

Fig. 21.6 Result with coarse
mesh (185 Nodes)

But we need to see if the solution converges for the increasing fineness of mesh
and hence if the solution is valid or not. Fig. 21.8 shows how the average pressure
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Fig. 21.7 Result with coarse
mesh (2465 Nodes)

value converges to a single value with increasing mesh fineness, thus indicating
convergence.

Fig. 21.8 Average pressure
value converging with fineness
of mesh

The misalignment of the bearing shaft due to loading and its effect on clearance
and the varying gap is taken into account too. With the general code to implement
FEM on the Reynolds Equation for hydrostatic bearing, only a model of clearance
variation is needed to carry out the entire calculations. Hence we consider different
functions ‘h(x, y)’ in the equation.

Some of the common misalignments and the clearance distributions they cause
have been modelled as follows

1. Radial misalignment of the shaft by eccentricity ‘e’
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h = h0 − e cos
(x
r

)
(21.14)

2. Shaft inclination due to loading (function of y only)

h = 2h0

(
1− y

L

)
(21.15)

3. Combined Misalignment, h (x, y)

h(x, y) = h0 − 2h0

(
1− y

L

)
cos
(x
r

)
(21.16)

where r and L are bearing inner radius and length respectively. These functions of
h can be directly given as input to the FEM code. The computer code is general
enough to handle these (fig. 21.9).

Fig. 21.9 Solution for pres-
sure distribution in combined
type misaligned of the bearing
shaft.

21.5 Conclusion

Finite element method has been successfully applied to this fluid flow problem. The
bearing performance can be easily predicted with this model and FEM solution by
directly evaluating load carrying capacity using pressure distribution we get over
the area. Effect of various misalignments can also be modelled into the problem as
illustrated in the previous section.

Still there is following future scope for this work:

• The full might of this program has not yet been utilized, as more generalized
functions (even non-linear) can be incorporated in modeling.

• Assumptions like neglecting the inner lands have been made, which when in-
corporated in FEM, can better model the self-compensation action.
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• Authors aim at modeling the fluid flow in the time-dependent domain and also
at incorporating the turbulence and other effects.
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Chapter 22
An Experimental-Numerical Procedure for the
Determination of “True” Stress-Strain Tensile
Curve in Ductile Materials

Anatoliy M. Bragov, Aleksander Y. Konstantinov, and Andrey K. Lomunov

Abstract The present work describes experimental-numerical procedure, which
allows constructing the full true stress-strain curve considering plastic strain local-
ization or stress inhomogeneity due to the specimen shape feature. The input data
are the force F (t) acting on the specimen and the rate of change of specimen gauge
length V (t) over time. The true deformation diagram is constructed using iterative
process, which is sequential correction of material’s stress-strain curve to get match-
ing between experimental and obtained from numerical simulation integral forces.
Some examples based on data obtained using Split Hopkinson Tension Bar are given.

Keywords: True stress · Deformation curve · Necking · Strain localization · Inverse
analysis

22.1 Introduction

Tension experiments (including high strain rate tests) hold a special place in the
system of basic experiments, used for identification of material behavior. This kind
of tests allows determining deformation diagrams as well as ultimate fracture char-
acteristics, which are necessary for prediction of strength of the structures. However,
tensile tests have a number of features, which have to be taken into account while
planning an experiment and interpreting its results. A specially shaped specimen is
usually used. Specimens should have a gauge area and areas for their fixing in an
experimental setup. Areas for fixing might affect stress and strain fields in gauge area
(Fig. 22.1). These effects can be minimized by increasing the length of gauge area.
This method is employed for static experiments. In case of dynamic loading there are
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some length limitations for gauge area due to the wave effects. Therefore, influence
of fixing areas can be significant. Moreover, strain localization and necking process
cause difficulties in obtaining true strength and strain characteristics of material. In
this case, plastic deformation becomes inhomogeneous in the working part of the
specimen. The stress state in the neck becomes volumetric, due to a change in the
geometry of the sample (Shen and Jones, 1993). There are two main approaches to
determining the true stress-strain curve in this case. The first is based on analytical
(Malinin and Rzysko, 1981; Bridgman, 1955; Davidenkov and Spiridonova, 1946)
or semi-empirical (Mirone, 2004; Gromada et al, 2011) models for estimating the
components of the stress tensor in the neck. To do that, information on the geometry
of the specimen in the localization zone (the radius of the minimum cross-section in
the neck and the radius of curvature of the neck) is also used in addition to the integral
force measured in the experiment. In recent years, many research efforts have been
carried out to develop a more accurate and reliable method to extract the true stress-
strain curve beyond necking by utilizing finite element method (FEM). Cabezas and
Celentano (2004) produced an experimental and numerical analysis of the tensile test
using sheet specimens and received correction factors for sheet specimens. Zhano
and Li (1994) and Joun et al (2008) proposed an iterative approach to obtain the
true stress-strain curve of a cylindrical sample up to fracture based on experimental
F-dL curve and FEM simulations. Recently, a new experimental measurement tool
of the high-resolution digital camera was employed by some researchers (Scheider
et al, 2004; Dan et al, 2007) to overcome the difficulties in tracing the change in
the geometry of the specimen. However, the problem in using this tool in dynamic
testing is that the spatial resolution of the camera decreases sharply with increasing
frequency of shooting. Therefore, it is difficult to obtain the necessary resolution both
in space and in time at the same time. This paper describes an iterative procedure
for constructing a true deformation curve based on the integral force history and
the elongation law, which quickly converges and is easily integrated into the finite
element program.

Fig. 22.1 Influence of fixing
parts of specimen
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22.2 Split Hopkinson Bar Technique

One of the most widely used loading techniques at high strain rates is the split
Hopkinson pressure bar (SHPB) or the Kolsky method developed by Kolsky (1949).
There are some review works (Field et al, 1994; Kolsky, 1949; Bacon and Lataillade,
2001; Gama et al, 2004) that describe a historical background of SHPB method.
Classical compressive SHPB method has good theoretical justification and it is fairly
well explored. But some practically important characteristics of materials cannot be
determined from this type of experiment, namely ultimate strength and ultimate
plastic strain. Moreover deformation diagram may be stress state dependent, that is
the stress-strain curve obtained in tensile experiments may differ from compression
one. Therefore, determination of deformation diagram in tension is an important
independent problem. Some schemes of high rate tensile testing which use measuring
bars technique can be found in works (Hauser, 1966; Eskandari and Nemes, 2000;
Lindholm and Yeakley, 1968; Nicholas, 1981; Caverzan et al, 2012; Jiang and Zhang,
2006; Bragov et al, 2018). The main difference of these schemes is the way they
generate tension pulse. The schemes with tube strikers used for impact tensile loading
are very popular of late. This class of setups is known as the Split Hopkinson Tension
Bar (SHTB) technique. In Harding (1992) such experimental device was used to
investigate dynamic properties of composite materials. Similar loading schemes
were employed in Arthington et al (2012); Chen et al (2002); Gerlach et al (2012);
Hasenpouth (2010); Huh et al (2002); Noble and Harding (1994); Smerd et al (2005);
Taniguchi et al (2007); Yokoyama (2003); Young (2015); Bragov et al (2018). In the
present work, the Split Hopkinson Tension Bar method (Bragov et al, 2018) was used
to register the processes in the samples during high-strain rate tension experiments.

22.3 True Stresses and Strains in the Tension Experiments

The determination of true stresses and true strains in static and dynamic tension
experiments is complicated by localization of deformation (necking process) that
violates uniformity and homogeneity of stress-strain state. Calculation of stresses
and strains in a specimen on the basis of measured in the experiment integral
force and elongation become challenging under these conditions. In addition, strain
localization affects strain rate history, which increases dramatically in the neck
zone. These interpretation features are considered in works (Mirone, 2013; Mirone
et al, 2016). The appropriate correction of deformation diagram is required after
the necking point (Bridgman, 1955). To evaluate effective true stresses a number
of methods have been proposed by Alves and Jones (1999); Dietrich et al (1970);
Gromada et al (2011); La Rosa et al (2003); Ling (1996); Malinin and Rzysko (1981);
Mirone (2004); Zhang et al (1999); Bridgman (1955); Davidenkov and Spiridonova
(1946). The strain threshold of the initiation of localization can be determined by
the following conditions:
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dσ0

dε
= 0 or

dσ

dε
=

σ

1 + ε
or

dσ

de
= σ (22.1)

here σ and σ0 are true and engineering stresses respectively, e and ε are true (loga-
rithmic) and engineering strains, respectively.

The main complexity of Bridgmen’s method (and similar approaches) is caused
by the necessity of precise determination of minimum radius of the neck section
and neck curvature. Another technique of deformation diagram correction, based
on universal (material independent) polynomial was proposed by Mirone (2004).
The coefficients of the polynomial are derived by generalization of a large amount
of experimental data. Mirone (2004) has showed that the proposed procedure is
material independent and allows the proper determination of effective stress with
account for strain localization. The effective true stress after necking prediction by
Mirone’s procedure exhibits an error of about 5 % for quasistatic elasto-plasticity
(Mirone, 2013). The high rate video registration was used in Gilat et al (2009);
Kajberg and Wikman (2007); Li and Ramesh (2007) to obtain the specimen minimum
radius history. In Bazhenov et al (2013); Ling (1996); Sasso et al (2008) numerical
simulation was used to reconstruct the true deformation diagram based on tensile
experimental data. The integral forces acting on the specimen and the specimen gauge
elongation are determined during the test. In the traditional method an assumption
of stress and strain fields uniformity is introduced to calculate stresses and strains
based on forces and size changes. Therefore, it is only applicable till the moment of
plastic strain localization (necking). This leads to losing a large part of stress-strain
curve after the necking process. Time histories of neck radius and neck curvature
during the whole tension process are to be used in the above analytical models, this
being a challenging task for high rate experiments. The common approach for true
stress-strain curve construction is an extension of the curve before necking using a
fracture point. The plastic strain on fracture and effective true stress on fracture are
determined using the minimum radius of the specimen in neck (a) and the radius
of curvature of the neck profile (R), measured after testing the specimen. The main
problem is the accurate determination of integral force acting on the specimen at
the moment of its rupture. The shape of transmitted pulse, by which the force is
measured, can be changed due to dispersion effect when using the Kolsky method
(Bragov et al, 2019).

The sharp decrease in force occurs when specimen is fractured. Then propagating
along measuring bar such a signal is blurred due to dispersion effect as shown in
Fig. 22.2. In Fig. 22.2 the blue line corresponds to the initial signal (force in the
specimen) and the orange one to the dispersed signal after the propagation in the
measuring bar (force in the strain gauges position). The accurate determination
of fracture force becomes essential. Moreover, it is necessary to know conditions
(strain rate, stress state, temperature) under which the material characteristics are
determined. The strain rate may increase significantly when deformation is localized.
It is impossible to estimate the strain rate at fracture without the history of neck
geometry.

The other method allowing true stress-strain curve construction including strain
localization is the reverse identification method. It is based on numerical modeling
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Fig. 22.2 Force blurring
illustration

of tension process. The main advantages of this approach are: there is no need for
registration of specimen geometry during experiment and the method takes into
account all features of the process and specimen (non-uniformities of stress and
strain fields, complexity of geometry, inertia effects and so on).

22.4 Experimental and Numerical Procedure of Construction a
True Strain Curve According to Experiment on High-Speed
Tension

In this paper, the restoration algorithm of a true material strain curve is realized on
the basis of experimental results on dynamic tension of specimens. The algorithm
is similar to the procedure described in (Bazhenov et al, 2013). An experimentally
measured integral force acting on the specimen during tension Fexp(t) as well as
time dependence of a specimen’s gauge elongation V (t) are used as input data. When
using the Kolsky method for the high-speed tension these data can be calculated by
formulas:

V (t) = cI · (εI(t)− εR(t))− cT · εT (t) (22.2)

Fexp(t) = ET · ST · εT (t) (22.3)

where cI , cT are bar sound speeds of the incident (subscript I) and the transmission
(subscript T) bars,ET andST are Young modulus and cross section area of output bar,
εI , εR and εT are incident, reflected and transmitted pulses registered in measuring
bars.
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The following iterative procedure for determination of the true diagram is to be
used:

1. The initial approximation of the material deformation diagram is selected (for
example, it can be a diagram obtained by extrapolation of a logarithmic curve,
or an ideal-plastic model) as a table.

2. Process of dynamic tension of a specimen is simulated according to the
scheme provided in Fig. 22.3, where boundary conditions at the top are
Vy(t) = V (t), Vx(t) = 0. Axial speed of the upper boundary V (t) is calculated
by formula 22.2.

3. The integrated reaction force Fcalc(t) on the fixed side is to be obtained.
4. Values (εip, σi

m) are determined for a discrete set of times ti in a finite element
in which the maximum effective plastic strain is realized (a finite element on
a specimen’s axis in a minimum section). Here εip is an effective plastic strain
in the specified finite element, σi

m is von Mises stress in the specified finite
element.

5. Tabular curve (εip, σi
m · Fexp(ti)

Fcalc(ti)
) is accepted as an approximation of a true strain

curve.
6. Steps 2-5 are repeated until the acceptable compliance of experimental and sim-

ulated forces is obtained or diagram at the next step stops changing significantly.

Fig. 22.3 Numerical simula-
tion problem statement

This iterative procedure is illustrated in Fig. 22.4. The experimental force and
forces obtained on various iterations are shown on the left of the figure, while on the
right, the history of diagram changing during consecutive adjustments is presented.
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It should be noted that the specified algorithm converges quickly enough, even with
a not very successful choice of the initial approximation of the deformation curve
(the model with a constant flow stress was used in the example).

Fig. 22.4 Convergence of iterative procedure of definition of a true strain curve with the use of
numerical modeling. On the left – comparison of forces, on the right – material diagrams for
various iterations (number of iteration is shown in a legend)

Firstly, the procedure was tested on virtual experiments for materials with different
strain hardening laws and gauge part geometries. Fig. 22.5 compares true curves
(used in virtual experiments models-black dashed lines) with the curves constructed
using the implemented procedure (markers). Figures 22.1 and 22.3 correspond to
“hard” material with linear strain hardening. Figures 22.2 and 22.4 correspond to
“soft” material with non-linear strain hardening. The gauge length of specimens in
figures 22.1 and 22.2 was 10 mm, in figures 22.2 and 22.4 5 mm. The diameters of
all specimens was 5 mm. The curves exhibit quite good agreement in a wide range
of strains.

Secondly, the procedure was used to construct the true stress-strain curves for
real materials. The data from SHTB experiments was used. Experiments with the
following features were selected (Fig. 22.6):

1. High rate tension tests of short (gauge length 5 mm, diameter 6 mm) specimen
made of copper M1 were performed. Non-uniformity of stresses and strains in
working part occurs due to closure of fixing parts.

2. High rate tension of iron alloy. The deformation of working part is mainly
uniform until fracture occurs.

3. High rate tension of aluminum alloy 1575 was carried out. Pronounced strain
localization occurs.

The diagrams obtained for specimens described above (orange markers) are shown
in Figs. 22.7-22.9. They are compared with curves constructed using the traditional
procedure which does not account for strain localization (solid blue lines). Dashed
lines in both cases (blue - traditional experiment processing, orange - experimental-
numerical procedure) correspond to strain rate histories (left vertical axis). For short
copper specimen (Fig. 22.7), the curves strongly differ even at small strains. The



398 Bragov, Konstantinov, Lomunov

Fig. 22.5 Testing procedure on virtual experiments

Fig. 22.6 Tested specimens: from left to right – cupper M1, EP-718 alloy, aluminum alloy 1575

local strain rate exceeds twice the averaged strain rate estimated without localization
influence.

For iron alloy (Fig. 22.8), the stress-strain curves constructed with different meth-
ods coincide quite well. Taking localization into account allows to slightly extend
the diagram to strains of about 35%. For aluminum alloy 1575 (Fig. 22.9) the curve
constructed considering necking covers twice wider interval of strains.

Figure 22.10 demonstrates the shapes of specimens in real experiments and virtual
tests. They are very similar.

22.5 Conclusions

The review of the current state of high rate tension experiment shows that the most
popular technique for testing materials at strain rates, ranging from 102 to 104 s−1

is the Kolsky method or the Split Hopkinson Pressure Bar method and its numerous
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Fig. 22.7 High rate tension
diagram of cupper M1

Fig. 22.8 High rate tension
diagram of iron alloy

Fig. 22.9 High rate tension
diagram of aluminum alloy
1575

modifications. However, there are a number of features intrinsic to high rate tension
of visco-plastic specimens including stress and strain fields non-uniformity due to
the closure of fixing parts of sample and strain localization (necking). Numerical
analysis of high rate tension process proves that the true stress-strain curve can be
accurately constructed on the basis of the history of neck geometry during tension.
If the neck geometry data is unavailable, one can apply numerical simulation and
reverse analysis technique to obtain true dynamic diagram. Such procedure has been
implemented and tested in the present work.
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Fig. 22.10 Specimen shapes
in real and virtual experi-
ments: 1 - M1, 2 - Ep718, 3 -
1575
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Chapter 23
Experimental Study of the Dynamic Properties
of Concrete under Compressive Load

Anatoliy M. Bragov, Mikhail E. Gonov, Andrey K. Lomunov,
and Vladimir Vl. Balandin

Abstract The report presents a study of the deformation and fracture of concrete
under dynamic loads using the Kolsky method. Presented on the main technological
method of manufacturing concrete samples for dynamic testing. The purpose of the
test is to study the high-speed deformation and destruction of fine concrete. This
article presents the results of tests of concrete for compression at deformation rates
ranging from 4 · 102 s−1 to 2 · 103 s−1.

The conducted dynamic test of fine concrete for compression consisted of 35 test
shots. Concrete was tested at 7 different speeds. Each test mode consisted of 5 test
shots. 3 modes were carried out using copper pulse shapers.

Copper pulse shapers were used for research purposes. It is assumed that the
pulse shaper improves the quality of the basic premise of the Kolsky method on the
homogeneity of the intensely deformed state in a sample. The results of dynamic tests
with pulse formers were compared with the results of tests without pulse formers.

The verification of the uniformity of the stress-strain state in the sample is per-
formed using the formula εI + εR = εT , where εI - is the incident pulse, εR - is the
reflected pulse, εT - is the transmitted pulse.

Keywords: Concrete · Dynamic test · Kolsky method · Compression · Dynamic
strength
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23.1 Introduction

Currently, the study of the properties of brittle materials such as concrete and its
varieties is relevant. This is due to the fact that concrete is a heterogeneous mate-
rial. This article presents a study of the deformation and fracture of concrete under
compressive dynamic loads using the Kola method. Periodic dynamic tests of con-
crete complement and expand the overall picture of the deformation and fracture of
concrete at high speed loads.

The relevance of the study of the dynamic properties of brittle materials is as-
sociated with impact and explosive effects. Impacts include natural disasters such
as earthquakes, hurricanes, landslides, meteorite falls. This is largely due to climate
change on our planet. Also shock and explosive impacts include civil and industrial
disasters, man-made disasters. Today, there is also the threat of terrorist acts, the
blasting of various explosive devices.

The studies were carried out using the Kolsky method using a Split-Hopkinson
pressure bar and its modifications (Bragov A.M., 2015, 2017, 2018; Bragov and Lo-
munov, 1995; Lindholm, 1964; Davies and Hunter, 1963; Placidi et al, 2018; Placidi
and Barchiesi, 2018; Scerrato et al, 2016; Giorgio and Scerrato, 2017; Scerrato et al,
2014).

In order to obtain dynamic characteristics and deformation diagrams during com-
pression, fine-grained concrete of class B22.5 with a filler fraction of 1− 5 mm was
tested. Directly tested samples of circular cross section, with a diameter of 20 mm
and a thickness of half less than 10 mm. Fine-grained concrete was tested to avoid
large-scale effects due to the small diameter of the measuring rods equal to 20 mm.

23.2 The Method of Manufacturing Concrete Samples

At the beginning of the experiment, the test sample is installed between two precisely
located and coaxial measuring rods (Figure 23.1). In this regard, a number of high
requirements are imposed on the samples, such as: homogeneity of the material,
accuracy and uniformity of the diameter and length of the sample; the parallelism of
two faces of the sample and their smoothness (the presence of a plane), verticality,
that is, the absence of eccentricity that causes bending.

Thus, the sample should be a geometrically accurate cylinder with a diameter to
length ratio of 1 to 2. The optimal length of the sample should be half its diameter
to reduce the effect of inertia and friction. In a compression test, the diameter of the
sample shall not exceed the diameter of the measuring rods (Figure 23.2).

For self-production of samples, a technique was developed in our laboratory,
which consists in drilling samples from pre-cut concrete plates of the required
thickness. Rectangular or cubic samples of fine-grained concrete, in our case of
class B22.5, are fixed with clamps on a stone-cutting machine Cedima CTS − 57
G and cut into plates of the required thickness (Figure 23.3). Next, the plates are
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Fig. 23.1 Photo of experimental installation by the Kolsky method.

Fig. 23.2 Requirements for geometric parameters of samples

mounted on a NS − 12M drilling machine and a concrete sample is drilled using a
diamond crown at low speeds (Figure 23.4)

Fig. 23.3 Stone cutting machine Cedima CTS-57 G
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Fig. 23.4 Bench Drilling
Machine

23.3 Test Results of Samples of Fine-Grained Concrete under
Compressive Load

The performed dynamic compression test cycle consisted of 35 test shots. Before
testing, the samples were sorted, measured and numbered (Figure 23.5).

Fig. 23.5 Sample preparation
for testing
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Concrete was tested at seven different speeds. Each mode consisted of five shots.
Three modes were performed using copper pulse shapers. The strain rates ranged
from 400 to 2000 s−1 (inverse seconds). Copper pulse shapers were used to study
and compare results. The reason for using copper formers is to check the higher
quality fulfillment of the basic premise of the Kolsky method on the uniformity of
the stress-strain state in the sample. Thus, it can be seen that the equality of forces
at the ends of the bars is performed more qualitatively when a pulse shaper is used
(Figure 23.6, 23.7).

Fig. 23.6 Diagram pulses at a
strain rate 1100 s−1 without
the use of a pulse shaper

Fig. 23.7 Diagram pulses at
a strain rate 1250 s−1 using
pulse shaper

The loading was performed using a cylindrical striker. The striker accelerated
with a gas gun. The loading rate was regulated by various pressures in the gas gun
chamber. Below are the test diagrams of concrete samples according to the Kolsky
method. The diagrams show that the initial sections of the obtained diagrams are
linear. The falling down branch of the deformation diagram and the inspection of the
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sample indicate that the sample was destroyed during the experiment. In mode n.1
(Figure 23.8), the average speed of the striker corresponds to 14 m/s. The pressure
in the chamber is 1.5 atmospheres. As the average strength, we can take the value of
75 MPa. The average strain rate is 700 s−1.

Fig. 23.8 Stress and strain
curve for mode n.1

In mode n.2 (Figure 23.9), the average speed of the striker corresponds to 18m/s.
The pressure in the chamber is 2.0 atm. As the average strength, we can take the
value of 90 MPa. The average strain rate is 1000 s−1. In mode n.3 (Figure 23.10),
the average speed of the striker corresponds to 26 m/s. The pressure in the chamber
is 3 atmospheres. As the average strength, we can take the value of 100 MPa. The
average strain rate is 1700 s−1.

In mode n.4 (Figure 23.11), the average speed of the striker corresponds to 31
m/s. The pressure in the chamber is 4 atmospheres. The average strength can be
taken as 110 MPa. The average strain rate is 1900 s−1.

In mode n.5 (Figure 23.12), a copper pulse former was used. The average speed
of the striker corresponds to 19 m/s. The pressure in the chamber is 2 atmospheres.
The average strength can be taken as 60 MPa. The average strain rate is 500 s−1.

In mode n.6 (Figure 23.13), a copper pulse former was also used. The average
speed of the striker corresponds to 36 m/s. The pressure in the chamber is 5 atmo-
spheres. The average strength can be taken as 70 MPa. The average strain rate is
800 s−1.

In mode n.7 (Figure 23.14), a copper pulse former was also used. The average
speed of the striker corresponds to 61 m/s. The pressure in the chamber is 20
atmospheres. The average strength can be taken as 80 MPa. The average strain rate
is 1200 s−1.
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Fig. 23.9 Stress and strain
curve for mode No 2

Fig. 23.10 Stress and strain
curve for mode No 3

The nature of the destruction of concrete samples after dynamic testing in accor-
dance with the test mode can be seen in Figure 23.15.

23.4 Conclusion

The report presents the main method of making concrete samples for dynamic tests
according to the Kolsky method.
Requirements for samples were considered. The used instrumental installations, such
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Fig. 23.11 Stress and strain
curve for mode n.4

Fig. 23.12 Stress and strain
curve for mode n.5

as a stone-cutting machine and a drilling machine, are considered.
The results of a series of experiments show that the samples obtained are useful for
conducting dynamic tests using the Kolsky method.
This article presents the results of tests of concrete for compression at strain rates
ranging from 400 to 2000 s−1. Dynamic strength is in the range from 60 to 110 MPa.
With increasing strain rate increases the dynamic strength of concrete.
The use of a copper pulse shaper, which improves the uniformity of the stress-strain
state in the sample, is investigated. However, the pulse shaper reduces the strain rate.

Acknowledgements The method of manufacturing concrete samples for dynamic testing was
developed with the financial support of the RFBR (grant 19-38-90225). The experimental in-
vestigations were supported by the grant of the Government of the Russian Federation (contract
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Fig. 23.13 Stress and strain
curve for mode n.6

Fig. 23.14 Stress and strain
curve for mode n.7
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Chapter 24
FE-Analysis of Deformation and Failure of
Structural Elements under Quasistatic
Multifactor Effects

Vasilii Gorokhov, Dmitrii Zhegalov, Dmitrii Kazakov, Sergei Kapustin,
and Yuriy Churilov

Abstract Description of the numerical modeling technique within the framework
of the damaged medium mechanics approaches to the processes of deformation and
destruction of structures under quasi-static multifactor influences is presented. The
results of finite element modeling of crack formation and development in structures
under the following conditions: elastoplastic deformation, high-temperature creep,
influence of aggressive corrosive medium are given.

Keywords: Plasticity · Creep · Crack · Corrosion · Finite element method · Me-
chanics of the damaged medium

24.1 Introduction

Operating conditions of modern structures are characterized by multiparametric
effects of external fields of different nature. This leads to the degradation of the
strength properties of the material and, ultimately, to the exhaustion of the design
resource. Evolving damage strongly affects the mechanical characteristics of the
material and, in particular, is the main reason for the loss of bearing capacity of
materials with viscous types of fracture. This leads to the need to take into account the
mutual influence of deformation and damage effects when formulating the equations
of state of materials, which allow describing the influence of defects developing in
the material on the mechanical behavior of the damaged material with the help of
appropriate macroscopic parameters.
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The introduction of such a macroscopic parameter was first proposed in Rabotnov
(1966); Kachanov (1974) in the study of the processes of destruction of materials in
the conditions of creep as a measure of damage ω, which is a measure of reducing
the effective areas of action of stresses in relation to their initial undamaged value.
Currently, in most practical applications, the damage measure ω is assumed to be a
scalar value varying from ω = 0 for undamaged material to ω = 1 for completely
destroyed material. Some theoretical and applied aspects of the development of ap-
proaches to the mechanics of the damaged medium (MDM) are presented in Bondar
et al (1979); Murakami (1983); Lemaitre (1985); Shevchenko and Mazur (1986);
Chaboche (1987); Beh and Korotkikh (1989); Kapustin (1989); Ju (1989); Bondar
(1990); Kazakov et al (1999); Volkov and Korotkikh (2008); Kapustin et al (2015);
Placidi et al (2018b,a); Placidi and Barchiesi (2018).

Modern theoretical and experimental studies of fracture phenomena make it
possible to consider it as a multistage process of occurrence and development of
irreversible defects in the material, determined by the entire kinetics of the stress-
strain state of structures in the process of their loading (Kazakov et al, 1999; Fedorov,
1985; Mitenkov, 2007). According to this representation, three main stages of the
material destruction process are successively developed. Within the limits of the
first stage of development there is a need for more scattered on volume material
of every kind in the form of micropores and microdefects which does not bring
to appreciable influence of these on physical and mechanical characteristics of a
material. The second stage is characterized by a further development and by the fact
that the emerging issues are of critical importance, corresponding to the infringement
of the continuity of the material at the point in question and its increasing influence
on the physical and mechanical character of the material. With approach of this
stage the intensive interaction of the damages defined by various mechanisms of
destruction begins. The end of the stage corresponds to the appearance in the domain
of macroscopic crack. In the limits of the third stage there is a merge of the formed
macrodefects in one or several cracks leading to splitting into parts (fragmentation)
of the considered element of a design.

Taking into account the above mentioned stages in the models used to describe
the processes of damage accumulation in structural materials allows to expand
the scope of application of the damaged medium mechanics relations, to explain
the interaction of different damage mechanisms and the phenomenon of nonlinear
damage summation.

24.2 Technique of Numerical Modeling of Deformation and
Accumulation of Damages in Structural Elements under
Quasi-Static Loading

In the proposed variant of the model of hierarchical model of the damaged material
it is assumed that the additivity of the elastic Δeeij and irreversible components of
Δeirrij changes in the deformation tensor (plasticity of Δepij and thermal creep of
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Δecij) and incompressibility of the material under the conditions of plasticity and
creep are valid.

It is also assumed that the influence of different types of damage on the deforma-
tion process is carried out by means of the scalar function introduced by Kachanov
and Rabotnov.

The direct influence of damage on the deformation process is taken into account
in the equations of equilibrium by introducing the dependence of the elastic charac-
teristics of the material on the current value of the function ω. In this regard, when
formulating a compound model of the damaged material, two stress characteristics
were introduced into consideration: effective σij acting on the damaged areas and
reduced σ∗

ij statically equivalent to the first, but referred to intact areas. The former
appear in all partial models that determine the state of the material at the point of the
body, while the latter are used at the level of design description in the formulation
of equilibrium equations and static boundary conditions.

Taking into account the comments made, specific equations of the compound
model of the damaged material, which establish a link between the changes of the
reduced stresses Δσ∗

ij and deformations Δeij at the elementary step of the change
of external influences, as well as the parameters characterizing the current state of
the material, can be written in the form:

Δσ∗
ij = 2G(Δeij −Δdij) + δij(K − 2

3
G)(Δeii −Δdii) ,

Δdij = Δe∗ij + ω(Δeij −Δe∗ij) ,

Δe∗ij = Δepij +Δecij −
ΔG∗σ̄′

ij

2G∗Ḡ∗ + δij

(
Δ(αT )− ΔK∗σ̄

3K∗K̄∗

)
,

ΔG∗ = G∗ − Ḡ∗, G∗ = (1− ω)G, Ḡ∗ = (1− ω̄)Ḡ ,

ΔK∗ = K∗ − K̄∗,K∗ = (1− ω)K, K̄∗ = (1− ω̄)K̄ ,

Δ(αT ) = αT − ᾱT̄ .

(24.1)

where K̄ = K(T̄ ),K = K(T ), Ḡ = G(T̄ ), G = G(T ) - modules of bulk and
shear deformation of intact material, referred to the temperature level in the initial
(at the beginning of the step) and current (at the end of the step) states; ᾱ = α(T̄ ),
α = α(T ) - values of temperature expansion coefficients; σ̄′

ij , σ̄- values of deviator
and volumetric components of the stress tensor in the initial state. The values of
change of plasticity Δepij and creep Δecij deformations appearing in (24.1) are
described by the corresponding particular models.

Particular models of plasticity, creep, and damage accumulation, implemented as
part of the considered model of damaged material, are based on variants of thermo-
plasticity and thermal creep models, as well as various variants of kinetic equations
describing damage accumulation for various fracture mechanisms. In particular, to
describe the processes of elastoplastic deformation, a variant of the thermoplasticity
model with combined hardening, proposed in Kazakov et al (1999); Volkov and Ko-
rotkikh (2008) and a modified version of this model (Kazakov et al, 1999; Kapustin
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et al, 2015) were employed. To describe the processes of thermal creep as a part
of the general model of damaged material, a number of creep models based on the
hypothesis of the existence of a creep surface and the gradient to it of the creep strain
vector ėcij (Kazakov et al, 1999; Kapustin et al, 2015, 2008) have been implemented.

The processes of damage accumulation within the used model are described on
the basis of the assumption that the damage at a point in the material occurs when the
critical W = WR value is reached at this point by some energy W . The specific form
of this energy is determined by the mechanism of the failure under consideration.

The ψ damage function is a normalized analogue of energy W (Kazakov et al,
1999; Kapustin et al, 2015). For undamaged material ψ = 0, the ψ value increases
to a limit value of ψ = 1 during fracture. When several types of damage develop
simultaneously in the material, the ψk function is used to describe each species.
In the developed variant of the compound model the kinetic equations of damage
accumulation are realized, which are conditioned by the development of plasticity
deformations (on the basis of plastic loosening energy), creep deformations (on the
basis of creep dissipation energy), and also on the basis of the criterion of brittle
fracture (Kapustin et al, 2015; Gorokhov et al, 2010).

The change in the damage measure of each Δωk species is in turn related to the
accumulated ω̄ value as well as the change in the damage function of the respective
Δψk species.

The stage of damage accumulation is taken into account by introducing a variable
that determines the completion of the first stage. This variable is the ψa

k value
determined for each k-th damage type by the value of the above mentioned damage
function by the end of the first stage. The dependence of the change in the Δωk

damage measure on the change in the Δψk damage function is taken as (Kazakov
et al, 1999; Kapustin et al, 2015):

Δωk = qω̄
q−1
q Δψ0

k ,

Δψ0
k =

Δψk

1− ψa
k

when ψk > ψa
k ,

Δψ0
k = 0 when ψk ≤ ψa

k .

(24.2)

where q = q(T ) is a function of the material.
Research of behavior of designs on the basis of the considered physical relations

is carried out by means of the combined step-by-step scheme in which steps of
each level bear different functional loading, thus their sizes are defined for various
reasons.

At the top level steps, called load steps, the task is linearized externally. The
actual loading path is represented as a piecewise linear curve in the space of loading
parameters and is approximated by a set of straight-line sections, the value of which
is determined only from the conditions of satisfactory approximation of the real
loading paths. The solution of nonlinear problems at the stages is carried out in the
form of the method of initial stresses by iterative refinement of the equilibrium state
for the current deformed configuration of the structure.
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To calculate the changes in irreversible deformations and damage measures within
a step, the latter is broken down into a series of lower level steps. On the internal
steps all calculations are made independently for individual points of the structure
without correction of equilibrium equations.

At each stage of loading, a non-linear boundary value problem is solved for the
corresponding change of external influences, taking into account the entire previous
history of irreversible deformation and accumulated damage to the material. The
linearization of the problem at the loading stage is carried out in the form of the
initial stress method. Numerical solution of linearized problems is carried out on the
basis of FEM with the use of isoparametric square-law FE.

For the problems concerning estimation of durability of designs the analysis of
performance of corresponding criterion conditions is made. The first one, associated
with a local violation of strength, is determined by the condition that one or more
adjacent physical nodes achieve an acceptable value of the damage measure ωf

ω ≥ ωf . (24.3)

The second criterion determines the condition of exhaustion by the design of its
bearing capacity. Moreover, a small change in external influences of a given type leads
to large changes in displacements and deformations, which increase rapidly with
increasing load parameter, i.e. there is a loss of stability of irreversible deformation.
Verification of this state of the structure is carried out by changing the determinant
of the system of algebraic equations at the loading stages, as well as by analyzing
changes in the vector of nodal displacements of the nonlinear part of the solution of
the problem at the current stage in the process of successive approximations.

24.3 Technique of Modeling the Processes of Nucleation and
Propagation of Cracks

In the majority of works devoted to application of MDM methods for analysis of
structural failure, the study of the process ends with the moment of appearance of
one or several macro-defects. However, the appearance of such macro-defects in
individual points of the material cannot be a sign of structural failure, which usually
occurs as a result of their subsequent merger into a crack and the propagation of
this crack to a certain limit size. Therefore, the approaches that allow predicting
the development of defects in the material from the moment of their origin to the
maximum crack opening within the framework of MDM relations are of particular
interest for the evaluation of structural strength.

In accordance with the above model ideas, in the process of step-by-step solution
of the problem in separate zones of the structure material, the damage zones may
appear and evolve, the intensity of which is characterized by the measure of damage
ω. The increase in measure ω in the physical node of the construction leads to a
decrease in the elasticity of the material (G and K modulus) in this node and thus
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to a decrease in its resistance. At the same time in the area of such nodes there is a
redistribution of stresses on the volume of material.

By the time the limit value ω = ωf is reached in the node (in calculations
the limit value of the damage measure is taken equal to ωf = 0.99), the material
in the area of such node ceases to resist further deformation, redistributing the
perceived load on the nearest physical nodes. In the process of further evolution of
the damage the following nodes are destroyed. At the same time, the interpolation
of the damage functions between the neighboring destroyed nodes forms the line
ω = ωf , which corresponds to the trajectory of the studied crack propagation
(Kapustin et al, 2015; Gorokhov et al, 2010). The implementation of this approach
eliminates the need to rebuild the FE mesh of the partition of the studied area, and,
therefore, change the topology and structure of information arrays for each case of
local strength failure, without violating the conditions of the equilibrium state in the
local damage zone and the structure as a whole. In this case, the process of successive
destruction of neighboring nodes during loading can be considered as a process of
crack propagation and continue calculations without changing the initial topology
of the studied area.

To illustrate the possibility of using the proposed methodology in studying the
nucleation and propagation of cracks, examples of numerical modeling of fracture
processes of structural elements in various modes of quasistatic loading are consid-
ered below.

24.4 Numerical Modeling of Elastoplastic Fracture of a Flat
Specimen with a Notch under Conditions of Plane Bending

The test sample is a rectangular prism with a length l = 65 mm, a width b = 20
mm and a height h = 10 mm, having in the middle section a transverse notch with
a depth δ = 4 mm constant over the entire width of the sample. The sample is made
of AK-4 aluminum alloy and pivotally supported on two rigid supports. The loading
of the sample was carried out by moving the grips of the testing machine through an
indenter installed along the width of the sample in its central section.

Experimental studies related to the construction of the material functions of the
material and to the study of the destruction process of such a sample were carried out
by L.N. Kramarev. The material functions of the models of deformation and fracture
of the AK-4 alloy, necessary for further calculations, are constructed from the results
of tests of a series of standard samples under uniaxial tension. The verification
of the obtained functions was carried out on the basis of numerical simulation of
the process of destruction of a standard cylindrical sample of this material in an
axisymmetric formulation.

In a numerical study, real loading was modeled by vertical displacements applied
through a compensating spacer along a narrow strip on the upper face of the sample.
Similar compensating gaskets were also installed in the area of supports to exclude
the occurrence of undesirable plastic deformations during numerical studies.
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Numerical modeling of the processes of deformation and fracture of the sample
was carried out in a spatial setting for the symmetric 1/4 of its part, limited by the
planes of symmetry in the longitudinal and transverse directions, using twenty-node
isoparametric finite elements.

The load step size was selected on the basis of preliminary calculations from the
condition of a satisfactory description of the P − V curve (P is the force applied to
the sample, V is the vertical displacement of the upper point of the central section
of the sample), which characterizes the fracture of the sample.

Fig. 24.1 shows a picture of the crack propagation in the cross-section of the
sample and a picture of the sample destroyed as a result of the experiment.

Fig. 24.1 Photograph of the sample destroyed in the experiment and a picture of the crack
propagation based on the results of numerical modeling.

Fig. 24.2 shows a graph of the force P dependence on the displacement of the
controlled point V , based on the results of numerical modeling, in the form of a
dotted line and the results of the experiment indicated by a solid line.

Fig. 24.2 Dependence of
force P on the displacement
of the controlled pointV (solid
line - experiment, dotted line -
numerical modeling).

The given results allow us to judge that the results of numerical modeling of the
fracture process on the basis of the above algorithm are in good agreement with
the experimental data. The maximum force P , which differs from the experimental
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value by 3%, is achieved in the calculation and experiment with displacements that
differ by no more than 3.6%.

24.5 Numerical Modeling of the Crack Propagation Process in a
Cylindrical Specimen with a Notch in the High-Temperature
Creep

For the purpose of illustration of application of the technique considered above for
modeling of processes of destruction of elements of designs in the conditions of creep
below results of numerical research of laws of formation and propagation of cracks
in the continuous cylindrical sample of circular cross-section, with the concentrator,
at an axial tension, in the conditions of high-temperature creep are presented.

The shape of the concentrator in the sample is chosen in the form of a sharp
incision without any rounding. According to the theory, the stress concentration
coefficient (SCC) in such a cut should strive for infinity. However, according to
Neiber (1947), the SCC in the acute incision is finite and corresponds to the value
of such a coefficient in the rounded incision, the radius of which is determined by
the structure of the material.

A numerical study was carried out in an axisymmetric formulation for the sym-
metric half of the fragment of the working part of the sample. The calculated region
and the loading scheme of the symmetric fragment of the working part of the sample
with the concentrator under consideration are shown in the form of an angular section
shown in Fig. 24.3. The figure shows: x axis - axis of symmetry, y axis - plane of
symmetry, sample length ED = 7 mm, sample radius CD = 5 mm, notch depth
BF = 1 mm, notch width AF = 0.5 mm.

Fig. 24.3 The design scheme
of the sample fragment.
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The sample is made of a heat-resistant alloy, for which the material functions
used to implement the above-mentioned models of ductility, creep, and damage
accumulation were obtained and verified in Kapustin et al (2008). The process
of loading the sample was carried out in three stages: stage 1 - warming up to
temperature T = 850◦C; stage 2 - stretching by axial forces with intensity p,
distributed over the ends of the sample; stage 3 - holding the loaded sample for 40
hours.

The destruction of the sample is considered as viscous due to the development
of creep deformations, without taking into account the possible effects of brittle
damage.

Numerical studies were carried out on a number of calculation options, differing
in the value of tensile forces p, sampling FE parameters with constant sample sizes
and shape, and the values of stress concentration factors in the region of the notch
due to the sampling scheme used.

For the level of tensile stresses p = 100 MPa, several variants of problems have
been calculated with various finite-element discretization schemes of the computa-
tional domain.

Fig. 24.4 shows the calculated curves of the dependence of the crack length l on
the time of its steady propagation t for some of the considered options, indicated
by numbers, characterizing the number of partitions n and the stress concentration
coefficient value Kσ: 1) n = 12,Kσ = 4.15; 2) n = 15,Kσ = 5.21; 3) n =
20,Kσ = 5.22; 4) n = 32,Kσ = 6.075.

Fig. 24.4 The dependence
of the crack length on the
time of its propagation for
different values of the stress
concentration coefficient.

In all the considered variants, a uniform grid step was taken along the axis y.
In addition, for all elements located along the AE line, the same aspect ratio of the
mesh cells was assumed to be hx = hy .

The influence of the level of applied load p on the patterns of crack propagation in
the specimen was also considered. Five variants of loads are considered: 1) p = 140
MPa; 2) p = 120 MPa; 3) p = 100 MPa; 4) p = 90 MPa; 5) p = 80 MPa. In all the
considered variants, the n = 20 finite-element discretization scheme was used.

Fig. 24.5 presents the dependence of the crack length l on the exposure time. In
the figure, the figure corresponds to the considered variant of the load level p.
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Fig. 24.5 The dependence of
the crack length on time for
different stress values.

The results show that an increase in tensile load leads to a decrease in time to the
moment of crack formation, an increase in speed and a reduction in the time of its
steady growth. For option load 1 (p = 140 MPa), the sample was destroyed almost
immediately after the formation of a crack; for option 5 (p = 80 MPa), a crack
was formed, but during the 40-hour holding period, the sample did not practically
propagate into the sample.

Thus, as a result of the studies, the possibility of numerical modeling based on
the FEM of the processes of the appearance and propagation of cracks in structural
elements under high-temperature creep has been demonstrated. The regularities of
crack initiation and development in a cylindrical sample with a concentrator subjected
to axial tension under high-temperature creep conditions are established based on
the assumption of viscosity of sample failure. The dependence of the calculation
results on the FE parameters of the sample discretization in the region of the crack
development path is shown. The dependences of the times of formation, steady
growth, and the rate of crack propagation on the value of the stress concentration
coefficient in the notch and the tensile stress intensity are established.

24.6 Numerical Modeling of Corrosion Failure of a Tubular
Specimen under axial Tension

One of the important factors that significantly affect the physicomechanical charac-
teristics of metals is the environment in which the structures under study or their
individual elements are located.

The liquid or gas medium surrounding the metal can act on the surface layer
of metals and, when it comes into physical or chemical interaction with it, harden
or soften it. As a result of this interaction, the deformation and strength properties
of metals change significantly. The long stay of loaded structures in an aggressive
environment often leads to corrosion of the metal.
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In Kapustin et al (2013), a modeling technique was developed on the basis of the
ratios of the mechanics of the damaged medium of stress corrosion cracking (SCC)
processes.

In order to check the efficiency of the proposed technique the numerical modeling
of the process of corrosion destruction of a thin-walled tubular sample is performed.
The results of experimental study of the destruction of such samples and the in-
fluence of various operational factors (stress level, temperature, composition of the
environment) on the resistance against SCC steel X18H10T are given in Sandler and
Kozin (1984).

Numerical modeling was carried out for a sample fragment (its working part)
- a thin-walled cylindrical shell with a length of L = 26 mm, having an internal
diameter of D = 10 mm, and a wall thickness of h = 1.5 mm.

The left part of the sample (along the length of the working part L = 13 mm)
was immersed in a liquid chlorine-containing medium 0.5% NaCl solution), heated
to a temperature of T = 150◦C. The temperature distribution was assumed constant
over the thickness of the sample.

The temperature distribution graph along the generatrix of the sample fragment
and the variant of its FE discretization are shown in Fig. 24.6.

Fig. 24.6 Temperature dis-
tribution along the sample
fragment.

The specimen was tensioned by the axial force q, evenly distributed over its right
end-face with subsequent holding under load until it is destroyed. In the simulation,
the process of loading the sample was carried out in two stages. At the first stage, an
instantaneous application of axial force was performed; at the second, exposure under
load was performed. The calculations of the SCC of the sample were performed for
a number of different axial force intensities: q = 75, 100, 125, 150, 200 MPa.

The numerical solution of the problems was carried out on the basis of the FEM
in axisymmetric and spatial formulations using isoparametric finite elements with a
quadratic law of variation of the displacement functions for two variants of sample
fragmentation. The first discretization option in axisymmetric and spatial settings is
shown in Fig. 24.6 and Fig. 24.7, respectively.

In the second variant, the number of FEs doubled both in thickness and in length
of the fragment. Due to the good agreement between the results of numerical studies
obtained for these options, more detailed discretization of the sample fragment was
not required.

The material functions of the SCC models, the values of which were used to obtain
the results presented below, were obtained on the basis of experimental data on the
dependence of the fracture time on the stress level and a number of assumptions
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Fig. 24.7 Variant of FE
discretization of a sample
fragment in a spatial formula-
tion.

about the duration of the various stages of the SCC process, which were further
refined in the process of numerical simulation.

The distribution pattern of the ω damage measure over the sample volume for a
moment of time close to the moment of failure for the load case q = 100 MPa is
shown in Fig. 24.8

Fig. 24.8 Distribution of
damage measure ω over
the sample volume for load
q = 100MPa.

A similar picture of the evolution of SCC processes was observed for other load
cases. Based on the analysis of the results of numerical studies, it was found that
the destruction of the sample for all the considered load cases occurs in the region
of the interface between the corrosive medium and the air. The nature of the zones
destroyed as a result of the SCC and the sequence of their development in time for
all considered load cases qualitatively coincide. Moreover, the calculation results
obtained on various types of grids within each load case are in good agreement with
each other both qualitatively and quantitatively.

Fig. 24.9 shows the dependence of the fracture time of the sample on the level
of the applied load obtained on the basis of experimental data (solid line) and the
results of numerical simulation (points).

The given materials show that the results of numerical modeling are good quality
(coincidence of the fracture zone along the length of the sample) and quantitatively
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Fig. 24.9 Dependence of the
failure time of the tR sample
on the applied load level q.

(the difference in the estimation of the time of complete fracture of the sample does
not exceed 13%) are consistent with the experimental data.

24.7 Conclusion

The possibility of numerical modeling on the basis of FEM within the framework of
the relations of mechanics of the damaged medium of the processes of occurrence
and propagation of cracks in the elements of structures under the conditions of elasto-
plastic deformation, high-temperature creep and influence of aggressive corrosive
medium is demonstrated.

It is shown that the results of numerical modeling of the process of destruction of
a sample with a concentrator, obtained on the basis of simultaneous consideration
of plastic and brittle damages in the process of destruction, are in good agreement
with the experimental data.

The regularities of occurrence and development of cracks in a cylindrical spec-
imen with a concentrator under axial tension under conditions of high-temperature
creep in the assumption of viscous fracture of the specimen are established. The
dependence of the results of calculations on the parameters of FE-discretization of
the sample in the area of the crack propagation trajectory is shown. The dependences
of formation times, stable growth and crack propagation rate on the value of stress
concentration coefficient in the notch and tensile stress intensity are determined.

It is shown that the results of numerical modeling of the SCC process of the
sample under study are in good agreement with the experimental data. The predicted
failure zone of the sample coincides with the actual one. The predicted failure times
of the sample for all load variations are well consistent with the experimental values.
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Chapter 25
Numerical Analysis of Permeability Coefficient
Influence on Dynamic Responses in
Poroviscoelastic Solids Using BEM

Leonid A. Igumnov, Aleksander A. Ipatov, and Svetlana Yu. Litvinchuk

Abstract In the present paper wave propagation in poroviscoelastic solids is studied.
Research is dedicated to modeling of a slow compressional wave in poroviscoelastic
media by means of boundary-element method. Poroviscoelastic formulation is based
on Biot’s model of fully saturated poroelastic media with a correspondence principal
usage. Standard linear solid model is employed in order to describe viscoelastic
behavior of the skeleton in porous medium. The boundary-value problem of the three-
dimensional dynamic poroviscoelasticity is written in terms of Laplace transforms.
Modified Durbin’s algorithm of numerical inversion of Laplace transform is used to
perform solutions in time domain. The problem of the load acting on a poroelastic
prismatic solid is solved by means of developed software based on boundary element
approach.

25.1 Introduction

Wide range of natural and artificial materials can be treated as a porous media, for
example rocks, soils, biological tissues, foams, ceramics, etc. Porous medium is a
solid with pore system, filled with a liquid or gas. Wave propagation in saturated
porous media is an important issue of engineering sciences, such as geophysics,
geomechanics, seismic prospecting, bioengineering etc. Satisfactory accuracy of the
results of such studies cannot be achieved using elastic or viscoelastic models of the
material and requires the development of effective tools, methods and models. Thus,
the problem of mathematical methods development and their application in wave
propagation investigation in nonhomogeneous viscoelastic, poroelastic and poro-
viscoelastic solids appears. The poroelasticity theory was developed and nowadays
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is important to engineering applications. However, in addition to the macroscopic
effects, there exist many other time-dependent physical mechanisms. For example,
the rock mass itself without fluid can exhibit creep behavior. These phenomena can
be modeled as apparent viscoelastic mechanisms at the macroscopic level.

Studying of the dynamic processes in porous media began from the discovery of
the experimental law of liquid filtration in a porous medium, made by Darcy (1956).
In Frenkel (1944) developed full set of dynamic equations that describes acoustics
of isotropic poroelastic media. The theory of two-phase porous material, which con-
sists of elastic skeleton and fluid, was introduced by Biot (1956b,c). Biot theory is
a generalization of classical theory of elasticity on saturated porous medium. The
implementation of the solid viscoelastic effects in the theory of poroviscoelasticity
was also first introduced by Biot (1956a). The dynamic interaction analysis involv-
ing poroelastic/poroviscoelastic media is extensively studied in literature (de Boer,
1996; Schanz, 2001; Detournay and Cheng, 1993; Giorgio et al, 2019). Some recent
results regarding porous materials such as visco-poroelastic and partially saturated
porous media can be found in Madeo et al (2013); Giorgio et al (2016). There are
two major approaches to dynamic processes modeled by means of boundary ele-
ment method (BEM): solving boundary integral equation (BIE) system directly in
time domain or in Laplace or Fourier domain followed by the respective transform
inversion (Goldshteyn, 1978; Bazhenov and Igumnov, 2008). Durbin developed an
approach, namely fast Laplace inverse transform (FLIT) for numerical evaluation of
the integrals (Durbin, 1974). Some modifications were recently proposed by Zhao
(2004) in order to overcome a drawback of constant integration step in FLIT.

Biot’s model correctly describes processes of deformation of an elastic porous
medium and fluid flow in it. It is assumed that the space containing poroelastic
medium is filled with a two-phase material, and one phase corresponds to the elastic
skeleton, and the another one to the fluid in pores. Both phases are present at each
point of the physical space, and the phase distribution in space is described by
macroscopic quantities such as porosity. The fundamental property of a poroelastic
saturated medium, following from Biot’s theory, is the existence of two longitudinal
waves in such media, fast and slow, and also a shear wave. The fast longitudinal wave
and the transversal wave are similar in their nature to waves in an elastic medium,
whereas the slow longitudinal wave is characteristic of a porous medium. The slow
wave is more difficult to detect, as its amplitude is considerably smaller than that
of the fast longitudinal wave. In present paper we demonstrate viscosity parameter
influence on dynamic responses in poroviscoelastic solid and also in case of slow
longitudinal wave modeling.
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25.2 Mathematical Model

25.2.1 Poroelastic Formulation

Homogeneous body Ω in three-dimensional Euclidean space R3 is considered, with
the boundary Γ . It is assumed, that body Ω is isotropic poroviscoelastic. The set of
differential equations of poroelasticity for displacements ūi and pore pressure p̄ for
Biot’s model of fully saturated poroelastic continuum in Laplace domain take the
following form Schanz (2001):

Gūi,jj +

(
K +

1

3
G

)
ūj,ij − (ψ − β) p̄,i − s2 ($− β$f) ūi = F̄i , (25.1)

β

s$f
p̄,ii − φ2s

R
p̄− (ψ − β) sūi,i = āi, (25.2)

where K and G are the elastic moduli of the porous material, p is the porous pressure
of the filling material, F̄i is volume force density. Coefficient ψ is determined as

ψ = 1− K

Ks
, (25.3)

where Ks is bulk modulus of the skeleton grains. In (25.2) R is parameter charac-
terizing the relation between the solid body and the liquid:

R =
φ2KfK

2
s

Kf(Ks −K) + φKs(Ks −Kf)
(25.4)

β =
κ$fφ

2s2

φ2s+ s2κ($a + φ$f)
.

where $ = $s(1− φ) + φ$f , $s is density of the skeleton grains, κ is permeability,
$f is density of the filling material, Kf is the bulk modulus of the liquid.

A generalized unknown vector, which contains displacements and pore pressure
and a generalized force vector are additionally introduced as

ū("x, s) = (ū1, ū2, ū3, p̄) "x ∈ Ω, Ω ⊂ R3 , (25.5)

t̄("x, s) = (t̄1, t̄2, t̄3, q̄) "x ∈ Ω, Ω ⊂ R3 , (25.6)

Equations (25.1) and (25.2), supplemented with boundary conditions:

u("x, s) = ũ, "x ∈ Γ u , (25.7)

t("x, s) = t̃, "x ∈ Γσ , (25.8)

where Γ u is the Dirichlet’s boundary and Γ σ is the Neumann’s boundary, where
corresponding generalized displacements and generalized tractions are prescribed.
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25.2.2 Poroviscoelastic Formulation

Poroviscoelastic solution is obtained from poroelastic solution by means of the
elastic-viscoelastic correspondence principle, applied to skeleton’s constants K and
G in Laplace domain. Forms of functions K̄(s) and Ḡ(s) are depends on chosen
viscoelastic model. Material functions for Standard linear solid model are:

K̄(s) = K∞ ·
[
(θ − 1)

s

s+ γ
+ 1

]
(25.9)

Ḡ(s) = G∞ ·
[
(θ − 1)

s

s+ γ
+ 1

]
(25.10)

Parameter γ characterize viscosity. The equilibrium and instantaneous values of
the relaxation function associated with material modules are connected as follows:

θ =
K0

K∞ =
G0

G∞ (25.11)

Equilibrium and instantaneous values are denoted by «∞» and «0» respectively.

25.3 Solution Method

25.3.1 Boundary-Element Approach

Boundary-value problem (25.1)–(25.8) is solved using the direct boundary element
method (BEM), based on a combined use of integral Laplace transform and BIE’s
of the 3D isotropic theory of poroelasticity:

"C("y)"u("y, s) +

∫
Γ

"T ("x, "y, s)"u("x, s)dΓ =

∫
Γ

"U("x, "y, s)"t("x, s)dΓ

where "x, "y ∈ Γ, "U("x, "y, s) and "T ("x, "y, s) are matrices of fundamental and singular
solutions, respectively, "x is an integration point, "y is an observation point. The
values of the coefficients of matrix "C are defined by the geometry of boundary Γ. A
procedure for obtaining BIE’s, based on the weighted residual method can be found
in Schanz (2001). Some of the problems of the arising kernels of BIE’s are discussed
in Schanz (2009).

Equations (25.12) comprise singular integrals in the sense of Cauchy, which are
quite difficult to compute. Use of the boundary properties of retarded potentials
makes it possible, based on Ugodchikov and Hutoryanskii (1986), to write down a
regular representation of equation (25.12):
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Γ

(
"T ("x, "y, s)"u("x, s)− "T 0("x, "y, s)"u("y, s)− "U("x, "y, s)"t("x, s)

)
dΓ = 0 ,

where "T 0("x, "y, s) is singularity matrix and "x, "y ∈ Γ. Using Equation (25.12), it is
possible to construct a boundary-element solution of the BIE.

In the result of spatial discretization, boundary Γ is represented with a set of KE

quadrangular eight-node boundary elements. The geometry of each element EK is
defined by biquadratic functions of form Nm and the global coordinates of nodes
"xk
m, related as (Bazhenov and Igumnov, 2008)

"x(ζ) =
8∑

m=1

Nm(ξ)"xk
m , k = 1..K (25.12)

where ξ = (ξ1, ξ2) ∈ (−1, 1) × (−1, 1) are local coordinates. According to cor-
related interpolation model Goldshteyn (1978), displacements are described using
bilinear elements with the related bilinear functions of form Rl(ξ), and surface
generalized forces are described with constant boundary elements:

"u(ξ) =

4∑
l=1

Rl(ξ)"u
k
l , (25.13)

"t(ξ) = "tk , (25.14)

where "uk
m and "tk are nodal values of displacements and tractions, respectively, over

element Ek .
A discrete representation of BIE’s written at the nodes of the approximation of

boundary functions "yi , using the collocation method and accounting for (25.12)–
(25.14), is of the following form:

KE∑
k=1

4∑
m=1

Δ"T k
mi"u

k
m =

K∑
k=1

Δ"Uk
mi

"tk , (25.15)

Δ"Uk
mi =

∫ 1

−1

"U("xk(ξ), "yi, s)Jk(ξ)dξ , (25.16)

Δ"T k
mi =

∫ 1

−1

(
Rm(ξ)"T ("xk(ξ), "yi, s)− "I · "T 0("xk(ξ), "yi)

)
Jk(ξ)dξ , (25.17)

where "I is unit matrix, Jk is Jacobian of the local coordinates into global ones.
The elements of matricesΔ"Uk

mi,Δ"T k
mi are computed using numerical integration

schemes depending on the kind of integral (nonsingular or singular). Nonsingular
integrals arise, when the collocation point does not belong to the element. Here,
standard Gaussian-type formula is used in combination with a hierarchical subdivi-
sion of the elements (Ugodchikov and Hutoryanskii, 1986). Singular integrals arise,
when the collocation point is situated on the element being integrated over. In this
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case, new local coordinates are introduced, making it possible to avoid a singularity
in the integrand and to use Gaussian integration.

25.3.2 Laplace Transform Inversion

The inverse of Laplace transform is defined as the following contour integral:

L−1{f̄("x, s)} = f("x, t) =
1

2πi

α+i∞∫
α−i∞

f̄("x, s)est ds (25.18)

whereα > 0 is the arbitrary real constant greater than the real parts of all singularities
in f̄("x, s). When values of f̄("x, s) are available only at the sample points, analytical
evaluation of integral in Eq. (25.18) is impossible. Supposing s = α+iω we have the
following expressions (for convenience the spatial variable "x is omitted hereinafter):

f(0) =
1

π

∞∫
0

Re[f̄(α+ iω)] dω (25.19)

f(0) =
eαt

π

∞∫
0

[
Re[f̄(α+ iω)] cos(ωt)−

Im[f̄(α+ iω)] sin(ωt)
]
dω, t > 0. (25.20)

Durbin (1974) developed an approach, namely fast Laplace inverse transform
(FLIT) for numerical evaluation of the integrals in Eqs. (25.19) and (25.20). In this
section, we briefly review a modifications recently proposed by Zhao (2004) in order
to overcome a drawback of constant integration step in FLIT. Let R be large real
number so we can rewrite Eqs. (25.19) and (25.20) as follows:

f(0) =
1

π
lim

R→∞

R∫
0

Re[f̄(α+ iω)] dω (25.21)

f(0) =
eαt

π
lim

R→∞

R∫
0

[
Re[f̄(α+ iω)] cos(ωt)−

Im[f̄(α+ iω)] sin(ωt)
]
dω, t > 0. (25.22)
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Defining the nodes as 0 = ω1 < ω2 < · · · < ωn < ωn+1 = R we approximate
Eqs. (25.21) and (25.22) as

f(0) ≈ 1

π

n∑
k=1

ωk+1∫
ωk

Re[f̄(α+ iω)] dω (25.23)

f(0) ≈ eαt

π

n∑
k=1

ωk+1∫
ωk

[
Re[f̄(α+ iω)] cos(ωt)−

Im[f̄(α+ iω)] sin(ωt)
]
dω, t > 0. (25.24)

In each segment [ωk, ωk+1], k = 1, n the real and imaginary parts of f̄(s) are
approximated with linear functions as follows

Re[f̄(α+ iω)] ≈ Fk +
Fk+1 − Fk

ωk+1 − ωk
(ω − ωk) (25.25)

Im[f̄(α+ iω)] ≈ Gk +
Gk+1 −Gk

ωk+1 − ωk
(ω − ωk) (25.26)

where Fk = Re[f̄(α + iωk)], Gk = Im[f̄(α + iωk)]. Substituting Eq. (25.25) and
(25.26) into Eqs. (25.23) and (25.24) and making direct integration we obtain

f(0) ≈
n∑

k=1

[ (Fk+1 − Fk)Δk

2π

]
(25.27)

f(t) ≈ eαt

πt2

n∑
k=1

[ (Fk+1 − Fk)

Δk
(cos(ωk+1t)− cos(ωkt)) +

(Gk+1 −Gk)

Δk
(sin(ωk+1t)− sin(ωkt))

]
(25.28)

where t > 0, Δk = ωk+1 − ωk.

25.4 Numerical Results

25.4.1 Test Example

Following problem is considered: three-dimensional poroelastic prismatic body is
clamped at its left end, and subjected to uniaxial and uniform impact loading t2 =
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t∗2H(t), t∗2 = −1N/m2 at the right end Fig. 25.1, H(t) is a Heaviside step function.
The remaining surfaces are traction free.

Fig. 25.1 Problem statement.

Poroelastic material parameters are (soil): K = 2.1 · 108 N/m2, G = 9.8 ·
107 N/m2, Ks = 1.1 · 1010 N/m2, Kf = 3.3 · 109 N/m2, ρ = 1884 kg/m3, ρf =
1000 kg/m3, φ = 0.48, κ = 3.55 · 10−9 m4/(N · s).

In this example, we consider Durbin’s method and its modification. A boundary-
element mesh of 1152 quadrangular elements is employed in computations.

Algorithm 1. : Inverse Laplace transform of frequency domain Analytical solution
of the problem with large number of sampling frequencies.
Algorithm 2. : Inverse Laplace transform of numerical boundary-element solution;
constant step by ω, Δk = 0.5, k = 1, 2, . . . , 400, ωmax = 200; integration time is
2093.3 seconds.
Algorithm 3. : Inverse Laplace transform of numerical boundary-element solution;
variable integration step with following relation of its to produce Δk = ωk+1 − ωk

(Zhao’s algorithm): ωk = e(kx)
m − 1, where m = 0.8, k = 1, 2, . . . , 400 and

x =
1

k
(ln(ωmax + 1))1/m, with ωmax = 200, integration time is 2094 seconds.

Figures 25.2 and 25.3 shows the displacement u2(t) and pore pressure p2(t) at
the point with coordinates (0.5, 1.5, 0.5).

Proposed approach is proved to be an accurate and efficient method. We may
observe that modified algorithm gives more accurate results with the same time cost.
Further computations are obtained with inverse Algorithm 3.

25.4.2 Poroviscoelastic Solutions

The 3D poroelastic column loaded by a Heaviside-type function is considered as
example to study the behavior of transformation method. The width of the column is
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Fig. 25.2 Displacements
u2(t) in case of different
Laplace transform inversion
algorithms.
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Fig. 25.3 Pore pressure p(t)
in case of different Laplace
transform inversion algo-
rithms.

−0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

x10
−2

p
, 
N

/m
2

t, s

Solution 1

Solution 2

Solution 3

1m, the height 3m. The column has zero displacements on one end and prescribed
normal force on the other end. A boundary-element mesh of 1152 quadrangular ele-
ments is employed in computations. The problem statement is presented in Fig. 25.1.
The parameters of the fully saturated porous material corresponds to the soil:
K = 2.1 · 108 N/m2, G = 9.8 · 107 N/m2, Ks = 1.1 · 1010 N/m2,
Kf = 3.3 · 109 N/m2, ρ = 1884 kg/m3, ρf = 1000 kg/m3, φ = 0.48,
κ = 3.55 · 10−9 m4/(N · s).
The principal differences may be observed when slow longitudinal wave is mod-
eled. This wave has a large dispersion and is difficult to identify, so for its detection
by numerical-analytical methods, it is necessary to artificially set a high values of
permeability coefficient. On Fig. 25.4–25.5 calculation results with different perme-
ability coefficients are presented.

On Fig. 25.4–25.5 calculation results with different permeability coefficients are
presented.

For poroviscoelastic analysis standard linear solid model is employed. Standard
linear solid model parameters are: θ = 10, γ = 10, 1 and 0.1.
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Fig. 25.4 Displacements
u2(t) with different perme-
ability coefficient value.
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Fig. 25.5 Pore pressure p(t)
with different permeability
coefficient value.
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Fig. 25.6 Displacements
u2(t) with different value of
viscosity parameter.
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Fig. 25.7 Pore pressure p(t)
with different value of viscos-
ity parameter.
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An influence of material viscosity on transient responses of displacements and
pore pressure is presented. On Fig. 25.6–25.7 the effect of the transition from in-
stantaneous to equilibrium moduli in case of the standard linear solid model is
presented.

Fig. 25.8 Pore pressure p(t)

at the middle of the column
for the increased permeability
κ = 3.55 · 10−7 with different
value of viscosity parameter.
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On Fig. 25.8–25.9 presented poroviscoelastic solutions in case of increased of
permeability coefficient and different values of viscosity parameter.

25.5 Conclusion

The results of numerical modeling of the poroviscoelastic medium are presented.
The poroviscoelastic media modelling is based on Biot’s theory of porous mate-
rial in combination with the elastic-viscoelastic corresponding principle. Boundary
integral equations method and boundary element method are applied in order to
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Fig. 25.9 Pore pressure p(t)

at the middle of the column
for the increased permeability
κ = 3.55 · 10−5 with different
value of viscosity parameter.
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solve three dimensional boundary-value problems. Viscous properties are described
Standard linear solid models. A Laplace domain BEM formulation based on inte-
gral representations of the fundamental solutions has been presented for the analysis
of three-dimensional poroviscoelastic problems. The boundary-element scheme is
based on boundary integral equations for dynamic poroelasticity applied with time-
step method of numerical Laplace transform inversion. The modified Durbin’s meth-
ods were used to invert solution to the time domain. Numerical results comparison
provided on the example of the problem about Heaviside-type load acting on the
poroelastic column. Significant differences between numerical results are observed
in case of slow longitudinal wave modeling. An influence of viscoelastic param-
eters on displacement responses is demonstrated on the example of a problem of
the prismatic poroviscoelastic solid under Heaviside-type load. Proposed approach is
proved to be an accurate and efficient method particularly well suited for the dynamic
problems of the linear poroviscoelasticity.
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Chapter 26
Deformation and Destruction at Deformation
Rate of Order 103 s−1 in Wood of Hardwood
Trees

Anatoliy Bragov, Mikhail Gonov, Aleksander Konstantinov, Andrey Lomunov,
and Tatiana Yuzhina

Abstract Tests on birch and aspen with different directions of cutting samples
relative to the location of the fibers were performed. The tests were carried out on
the installation with a Split Hopkinson Pressure Bar (SHPB) that implements the
Kolsky method. The angles between the direction of application of the load and the
direction of the location of the fibers were 0◦, 30◦, 45◦, 60◦ and 90◦. The experiments
were carried out at temperatures of −40◦C, +20◦C and +60◦C. The strain rate was
of the order of 103 s−1. Dynamic stress-strain diagrams were obtained. The greatest
steepness of the load branches and the greatest destructive stresses were observed
for samples with a cutting angle of 0◦. The smallest values of these parameters are
noted at 90◦ cutting angle. It is noted that as the temperature of the test decreases,
the magnitude of the stresses at which the specimens are destroyed increases for
all the cutting angles of the specimens. There is a tendency to a decrease in the
diagrams at a temperature of +60◦C compared with the results at room temperature
for almost all tested wood batches. At the same time, both the modules of the loading
and unloading branches and the limiting (destructive) stresses decrease.

Keywords: Wood · Dynamic testing · Split-Hopkinson Pressure Bar · Cyclic com-
pression · Shock loading

26.1 Introduction

In recent years, the number of shipments of nuclear waste, components of nuclear
weapons, a wide range of toxic substances, etc. has increased, as well as grew up with
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safety requirements during transportation. Calculations of the stress-strain state and
strength of containers in which the above materials are transported are of particular
importance. The problems of analyzing possible emergency situations are becom-
ing more urgent. They are possible during transportation, may be accompanied by
intense dynamic effects in the fall of containers, terrorist acts, man-made disasters,
etc. Wood of different species can be used as one of the materials damping shock or
explosive loading (Buchar et al, 2000; Adalian and Morlier, 1998; Eisenacher et al,
2013). It can mitigate the effects of such effects on containers and their contents. To
reliably calculate the behavior of containers with similar damping materials under
shock effects, data on the properties of wood are necessary. In particular, the dynamic
stress-strain diagrams. Wood is a natural polymer composite material that has been
used throughout history in wide technical applications (Johnson, 1986; Neumann,
2009). Timber has many advantages, including low weight, environmental friendli-
ness and renewability. Knowledge of mechanical properties is the basis of theoretical
models and engineering analysis. In wood, grain structure, density, moisture, annual
rings and other natural factors are variable, but they must be taken into account when
developing models of wood behavior, including dynamic effects. A composite model
of wood has been studied over the years and has made significant progress. New mod-
els can consider the influence of temperature and strain rate, and in most cases can
satisfy the requirements for wooden structures under impact loadings. However, the
complexity of wood means that no model can be used for all purposes, and different
models must be used to solve various specific problems. Simple theoretical models
have been developed and continue to be developed to describe the consequences of
phenomena that are caused by inertial effects active on the scale of the cellular struc-
ture of wood, i.e. microinertial effects. From the point of view of materials science,
these models are based on the assumption that the tree is insensitive to speed, and
the increase in destructive stresses is explained by the influence of inertial effects,
and not the effects of viscoelasticity or viscoplasticity. In Reid et al (1993); Reid
and Peng (1997); Harrigan et al (2005), a wood model was proposed that takes into
account precisely the inertial effects. Misra suggested treating wood as a viscoelastic
material that undergoes damage using the granular micromechanics approach (Misra
and Singh, 2013; Misra and Poorsolhjouy, 2015, 2016; Giorgio et al, 2019). This
approach assumes that the material has a granular mesostructure and is considered as
a discrete or a particulate system. A micro-mechanical model devoted to study large
deformations of cohesive granular media subjected to quasi-static external actions
is presented and discussed (Turco, 2018). In recent years, scientists have focused on
studying the effect on the mechanical properties of wood of its density, moisture,
structure, cutting angle and type of stress-strain state (Widehammar, 2004; Allazadeh
and Wosu, 2012; Zhao et al, 2016; Wouts et al, 2016). In these works, for a number
of wood species, the most important characteristics were obtained, such as dynamic
strain diagrams, ultimate strength and deformation characteristics, fracture energy,
and the dependences of these characteristics on the strain rate were constructed.
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26.2 Experimental Methods and Investigated Samples

Fig. 26.1 Scheme of the set-up for compressive tests implements the Kolsky technique

The installation, which implements the Kolsky technique with a split Hopkinson
pressure bar (figure 26.1) was used to study the dynamic properties of wood under
compression (Bragov and Lomunov, 1995).

The Kolsky method (Kolsky, 1949) is based on the one-dimensional theory of
the propagation of elastic waves in long thin bars. Traditionally, a system for testing
under uniaxial compression consists of two long bars (loading and supporting) with
sufficiently high yield strength as well as a thin sample in the form of a tablet located
between their ends. Using a compact gas gun, an elastic compression pulse with
amplitude proportional to the velocity of the impactor is excited in the loading bar.
The measurement of elastic strain impulses in measuring bars is performed using
low-base strain gauges glued on the lateral surface of measuring bars. During the
test, the loading strain pulse εi(t) is recorded, the shape, amplitude and duration of
which are determined by the choice of the length, material and speed of the striker
accelerated in the barrel of the gas gun. The monitoring of this impulse allows one to
evaluate the identity of the loading conditions of the test sample (in order to reveal the
dispersion of properties), or to reveal the influence of any loading parameter on the
dynamic behavior of the material under study. In addition, the reflected εr(t) from
the sample and the transmitted εt(t) through it strain pulses are recorded, which are
the “responses” of the material to the applied load and make it possible to construct a
dynamic σ(ε) diagram of the test specimen under uniaxial stress condition (Kolsky,
1949).

The split-Hopkinson pressure bar had a diameter of 20 mm, made of aluminum
alloy D16T. When testing wood, foam and loose soils there is a big difference in the
acoustic impedances ρC (ρ and C are the material density and the sound velocity
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in it, respectively) of the measuring bars and the specimen. The amplitude of the
reflected pulse can reach 90% of the amplitude of the loading wave. In this case,
the specimen is exposed to several loading cycles. To reliably record repeated loads
during one experiment, it is necessary to exclude the effect on the loading process
in the second and subsequent cycles of the pulse transmitted through the sample and
then reflected from the back end of the supporting bar in the form of a tensile wave.
For this to be achieved, the length of the supporting bar must be increased compared
with the length of the loading bar (Bragov et al, 2001). The length of the supporting
bar is increased by as many times as the loading cycles need to be registered. In this
series of experiments, the loading bar had a length of 1.5 m, a supporting bar was
4.5 m, which made it possible to record one main and two additional loading cycles
(figure 26.2).

Fig. 26.2 Picture of wave
propagation in the SHPB
system during the registration
of three sample loading cycles.

The mechanical properties of wood depend on the density, moisture, and even for
one species are not the same, this is a consequence of different growing conditions
of trees. In addition, the mechanical characteristics, such as elastic moduli, tensile
strength and compression, can be significantly affected by the variability of properties
in different parts of the trunk, different moisture, porosity, width of annual rings, etc.
Some static characteristics of aspen and birch at a moisture of ∼ 15% are presented
in the table 26.1.

Specimens of air-dry birch and aspen (figure 26.3) for testing were fabricated in
the form of tablets with a diameter of ∼ 20 mm and a height of ∼ 10 mm at different
cutting directions relative to the axis of the tree trunk. The moisture content of the
specimens was ∼ 10%. The moisture content of the samples was determined by the
difference in mass of the sample in the initial state and after drying in an oven at
a temperature of 100◦C for 6 hours. To assess the degree of anisotropy, the angles
between the direction of application of the load and the direction of the location of
the fibers were 0◦, 30◦, 45◦, 60◦, and 90◦ for each material. The tests were carried
out under uniaxial stress conditions. Since containers can be transported in different
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Table 26.1 Static properties of the test woods

Wood
species

Density,
g/cm3

Moisture,
%

Compressive modulus Strength along

along the
fibers, MPa

across the
fibers, MPa

at stretch-
ing, MPa

under com-
pression,
MPa

Birch 0.62 15 16660 1124 120 45
Aspen 0.50 15 - - 111 37

Fig. 26.3 a) Aspen specimen, b) Birch specimen

climatic conditions, the tests were carried out at room temperature, as well as at
temperatures of +60◦C and −40◦C.

For testing specimens at elevated temperatures (+60◦C) a miniature oven was
used. It has a tubular structure. The tube oven is put on the ends of the measuring
bars and the specimen located between them. For testing specimens at a temperature
of −40◦C, a detachable foam container was made. It contained a metal cuvette
with liquid nitrogen. The test temperature was regulated by decreasing or increasing
the gap between the lower and upper container halves. Samples before experiments
were kept at the required temperature for several hours due to the very low thermal
conductivity of the wood.

As an example, figure 26.4 shows diagrams σ∼ ε of birch specimens with differ-
ent directions relative to the wood grain orientation at different temperatures. Each
group is represented by two diagrams: one is characteristic of “elastic” deformation
of samples at a low strain rate (600 ... 800 s−1) and preserving their integrity. The
other characterizes the behavior of materials in the event of their destruction (at
strain rates of 1500 ... 3000 s−1). For each diagram, the dotted lines show the strain
rates histories, the corresponding axis is on the right. The diagrams are located on
the deformation axis conditionally with separation along the deformation axis. This
allows you to more clearly assess the effect of strain rate. It is better to consider the
initial sections of the diagrams, since they do not overlap each other.
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Fig. 26.4 Test results of birch specimens

The well-known tendency of a reduction in the strength properties of wood as a
function of increasing sectioning angle to the wood grain is well demonstrated in the
data presented (Bol’shakov et al, 2001; Bragov and Lomunov, 1997; Bragov et al,
2006). The largest values of the modules of the loading branches and failure stress
are inherent in the specimens for all wood species with a cutting angle of 0◦ to the
fiber orientation. The smallest values were for specimens with a cutting angle of
90◦. Significant stress relaxation is seen for small cutting angles. A decrease in the
bearing ability of the wood is seen for an increase in the degree of deformation. For
the cutting angle 90◦, the bearing capacity not only does not decrease, but, on the
contrary, the material exhibits a certain hardening property.

A similar set of diagrams was obtained when testing aspen (figure 26.5).
It is interesting to compare the properties of different wood species under the

same conditions. This is necessary to select the optimal breed for use in a protective
structure. You need to choose the material that has the greatest strength and damping
properties. As an example, Figure 26.6 shows a comparison of the properties of
two wood species at room temperature. The energy absorption of the material was
calculated as the area under the stress-strain curve. Sets of curves at different angles
of cutting are also located on the strain axis conditionally for convenience of consid-
eration. It is seen that birch has a higher strength properties and energy absorption,
both along and across the fibers. The strength of both tested wood species along the
fibers is an order of magnitude higher than across the fibers.

Quantitative assessment of the dynamic properties of wood will be used to equip
the developed forecast models with parameters. Such models are necessary for
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Fig. 26.5 Test results for aspen specimens

Fig. 26.6 Comparison of the strength properties and energy intensity of two wood specimens at
room temperature

numerical modeling and optimization of structures using different species of wood
as a damping material.

26.3 Conclusion

Dynamic testing of birch and aspen in a wide temperature range has been performed.
The long duration of the specimen unloading process is noted. It exceeds the duration
of the loading pulse several times. The entire unloading process of the specimen
cannot be recorded due to insufficient length of the measuring bars.
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There is a strong anisotropy of the properties of materials. Specimen with the
direction of the fibers along the direction of the load had the greatest strength. The
smallest across the direction of the load. The module of the load branch of the
diagrams is nonlinear and, as a rule, smaller than the module of the discharge branch
(while maintaining the integrity of the sample). The average value of the birch load
branch with an angle of 0◦ has the largest value in the temperature range studied. The
magnitude of the modules of the load branches of almost all batches of specimens at
low temperature is higher than at normal temperature. The nature of the deformation
and destruction of specimens strongly depends on the angle of cutting materials.

In this series of experiments with an angle of 30◦, after exhaustion of the material
the bearing ability, a section of relaxation was noted for both types of wood. This
area smoothly passes into the area of ideal “plasticity” (or even a small “hardening”)
until the end of the load. On the one hand, the reason for this behavior can be the
destroying of relatively weak bonds between obliquely spaced annual cylindrical
layers and the mutual displacement of these layers. On the other hand, the presence
of friction on the ends of the sample and a sufficiently small angle of “reinforcement”,
which limits this process and causes the fibers themselves to be included in the work.

With a decrease in the temperature of the test, the magnitude of the stresses at
which the destruction of the specimens occurs increases for all the tested rocks for
all the cutting angles of the specimen.

The obtained dynamic properties of wood will be used in the future to carry out
numerical calculations of the behavior of protective containers under conditions of
high-speed loading and the choice of their optimal design.
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Chapter 27
Effect of Shape Uncertainties on the Collapse
Condition of the Circular Masonry Arch

Nicola Cavalagli, Vittorio Gusella, and Riccardo Liberotti

Abstract Heritage buildings, worldwide, are marked by the presence of masonry
structural elements often affected by shape irregularities if compared with their
initial condition. The trigger factors of such geometrical uncertainties can be ascribed
to the over centuries deformation processes, to environmental factors or upstream
to the constructive methods. The aim of the present paper is the evaluation of
the influence of shape irregularities on the collapse condition of circular masonry
arches in presence of horizontal seismic actions. In order to take into account a
more reliable estimation of the arches bearing capacity a random generative model
is developed considering shape uncertainties. A limit analysis based procedure,
referring to Heyman’s theory, is used in order to evaluate the horizontal loads
multiplier. Then the collapse condition is studied through a probabilistic approach,
by analysing the statistical moments up to second order of the results obtained by a
Monte Carlo simulation.

Keywords: Unreinforced arch · Masonry structures · Shape uncertainties · Genera-
tive modelling · Limit analysis

27.1 Introduction

Masonry arch is one of the most diffused constructive system over architectural
heritage buildings and infrastructures (Breccolotti et al, 2018; Galassi and Tempesta,
2015) and even now studied with several approaches (Andreaus, 1990; Cazzani et al,
2016b,a; Stockdale et al, 2018; Grillanda et al, 2019; Tempesta and Galassi, 2019) not
only to increase the knowledge about its behaviour in relation to the structural safety,
including the use of new materials for strengthening (Autuori et al, 2017; Bertolesi
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Fig. 27.1 Monastery Of Hosios Loukas in Greece. In dashed white lines the circular arc with
nominal thickness and radius.

et al, 2018; Simoncello et al, 2019), but also for the purpose of conservation of its
historical value. It is well known that the shape of historical structures is generally
affected by irregularities (Ochsendorf, 2006; Cavalagli and Gusella, 2015; Aita et al,
2016; Pepi et al, 2017; Zampieri et al, 2018) due to several reasons: the weathering
of materials, the action of long term deformation phenomena, local/global damages
occurred over time, as well as the imperfections of the construction process, and
more (Fig. 27.1).

In this framework, in addition, the scientific literature presents a lack of studies
about the influence of such geometrical uncertainties on the bearing capacity of ma-
sonry structures, with the exceptions of specific contributions where the geometric
features of the arches were deeply studied (De Arteaga and Morer, 2017), or where
the damage pattern was described as deterministic or parametric variables (Zampieri
et al, 2016, 2019). In previous papers (Cavalagli et al, 2016, 2017; Severini et al,
2018), the effects of geometrical uncertainties on the structural behaviour of ma-
sonry arches have been evaluated respectively with static and dynamic simulations.
In those studies the uncertainties have been related to the voussoirs stereometry
and size while deterministic characteristics were assumed for arch typology. Those
first outcomes highlighted that for a certain magnitude of uncertainties the drop of
strength cannot be neglected, as already pointed by several authors throughout the
results of experimental tests (Ochsendorf, 2006; Romano and Ochsendorf, 2010;
Zampieri et al, 2018).
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Fig. 27.2 (a) Construction of a masonry vault by means of centrings; (b) Example of geometrical
description of a centring as a polycentric arc.

Differently, the present contribution is aimed at proposing a probabilistic approach
to assess the influence of the shape uncertainties described as the variation from a
nominal geometry. That peculiarity is ascribed to the constructive methods related
to the employment of the wooden frames, known as centrings, designed according
to ancient empirical rules. In order to take into account such features, a parametric
model of a polycentric arch is developed, allowing to obtain random geometries
starting from a deterministic nominal one, through the generation of different circu-
lar arcs modelled according to a family of input variables and connected together
ensuring the tangent continuity.

By referring to Heyman’s theory, a limit analysis based procedure was developed
in order to evaluate the horizontal loads multiplier of the arches subject to horizontal
seismic action. Then, by means of Monte Carlo simulation, the collapse condition
was studied, whose statistical moments up to second order and probability density
functions was rated for different levels of uncertainties. The comparison between
the results for the nominal geometry and those obtained studying the reconfigured
random arches outlined the influence of that shape uncertainties towards the bearing
capacity of those masonry structures.

27.2 Generative Modelling of Masonry Arches with Uncertain
Shape

27.2.1 Geometrical hypotheses

The arched structures are one of the most ancient load-bearing systems used already
in the IV millennium b.C. This constructive technique foresees the use of a temporary
shoring: the centrings (Fig. 27.2(a)). Those elements are essential to prop up the
voussoirs until they became a self-supporting masonry structure. The design of
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such wooden frames envisages the union of different arc sectors with a view to
outline the intrados corresponding with the designed arch (Veihelmann and Stefan,
2015). It is conceivable that such a construction process may result in geometrical
imperfections affecting the final arch shape, so that, in this paper, this topic is
ascribed as a-priori source of uncertainties and therefore investigated. A first attempt
useful to describe the centrings design, conceived by composition of several arc
sectors, was the geometrical descriptive approach, i.e. the graphic construction of the
polycentric arch, which is chosen as the reference shape for the following modelling
implementation (Figure 27.2(b)).

27.2.2 The Random Defined Polycentric Arch

In literature Veihelmann and Stefan (2015) reported that the number of the arc
sectors which constitute a centring is related to the vernacular constructive customs
and to the project-size of the pursued arch. Without loss of generality in the method
presentation, in this work polycentric arches composed by five arc sectors were
studied, since it results a recurring circumstance for mildly sized arches. In order to
achieve a simulation of the constructive method closer to the real one, the modelling
procedure of the polycentric arches was addressed with a probabilistic approach by
means of input random variables, which allow to obtain asymmetrical and irregular
2D random arches, starting from a nominal deterministic geometry. Five arcs are
generated according to the values of the aforementioned parameters and assembled
sequentially maintaining the tangent continuity all along the polycentric arch. The
centre of every sector was forced to be on the line connecting the end point of the
previous arc with its centre, ensuring the same tangent between adjacent arc sectors
(Figure 27.3).

The circular arch has been selected as nominal geometry and it is defined by the
following geometrical parameters{

α = 180◦ − 2β = 157.5◦

t/rn = 0.15
(27.1)

being α the angle of embrace, β the angle at the springer, rn the radius and t the
thickness. In the proposed model the angles, respectively of embrace (α̃i) and at the
springer (β̃i), and the radius of each single sector (r̃i) are defined as random variables
of whom the values are extracted starting by uniform probability density functions,
referred to the nominal features for the mean values and to a priori tolerance values
(ζ,χ,ε) for the lateral bounds delimiters (Figure 27.4)

β̃i = E[β̃i] + ζβp̃βi
= β(1 + ζp̃βi

) (27.2)

r̃i = E[r̃i] + χrp̃ri = r(1 + χp̃ri) (27.3)

α̃i = E[α̃i] + εα/nsp̃αi
= α/nsp̃αi

= α/ns(1 + εp̃αi
) (27.4)
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Fig. 27.3 Generation of the random polycentric arch: (a) location of C2 on the line joining the
previous sector’s end point and its C1; (b) the new arc sector is created according to the random
amplitude of its angle of embrace and to the length of its radius.

Fig. 27.4 Uniform probability density functions of the random angle at the springers β̃i (a), radius
r̃i (b) and angle of embrace α̃i (c) of the arc sectors defining the irregular polycentric arch.

in which ns indicates the number of arc sectors outlining the polycentric arch. The
introduction of the parameter β̃i entails that the centre C1 falls on a position not
belonging to the line joining the C0 and the first point of the polycentric arch. On the
other hand, the thickness (t) and the span (l) are defined with their nominal values
(Figure 27.5).

The deterministic value of the span represents a geometrical constraint necessary
to make sets of arch samples comparable according to the ratio l/t. Moreover, this
condition finds confirmation in the assumption that, usually, the span between the
two piers is a predefined property, independently from the uncertainties related to the
construction process. Considering the established geometrical rules, the probabilistic
model generates the curved line passing through the centres of the joints. Since the
thickness is a constant feature, its offsets outline the extrados and the intrados of the
final arch profile. As mentioned, all the analyses have been conducted for a number
of arc sectors (ns) equal to five. The random parameter values were extracted from
their own probability density functions (Figure 27.4) according to the equations
(27.2), (27.3) and (27.4) producing 1000 samples of polycentric arches according
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Fig. 27.5 (a) Nominal circular arch. (b) A generic sample of the random polycentric arch.

to the span constraint. The magnitudes of the uncertainties have been fixed at 0.10
for χ and ε, and 0.05 for ζ. This last range has been estimated following statistical
evaluations deriving from a first attempt of modelling.

27.3 Limit Equilibrium Analysis

A limit analysis based procedure, referring to Heyman’s theory, finalized at the
evaluation of the in-plane collapse condition of the masonry arch was developed.
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Fig. 27.6 Generic four-hinges collapse mechanism for an arch involved by vertical and horizontal
loads.

The following hypotheses were considered: i) equilibrium condition (the line of
thrust must be in equilibrium with the external loads), ii) resistance criterion (infinite
compressive strength and no-tensile material, so that the thrust line fits everywhere
within the thickness of the arch) and iii) mechanism condition (no slip can occur
between the blocks). The arch is discretized in n voussoirs, resulting in n+1 joints,
not representing a specific stereotomy but only for the numerical resolution of the
problem. A loads system considering the self-weight and the inertial horizontal
actions, which were assumed to be directed from left to right, was applied. In the
framework of such limit analysis, the horizontal actions were assumed as proportional
to the dead loads through a multiplicative factor k. Being γm the masonry specific
weight, it follows that the vertical (Fi) and horizontal (FSi

) forces applied to the
barycenter Gi of the area of the Ai of the ith voussoir (Figure 27.6) are defined as

Fi = γm Ai d FSi
= k Fi (27.5)

It’s well known as in presence of horizontal loads the collapse mechanism of a
circular arch is characterized by four hinges, which occur alternatively at the intrados
and at the extrados. According to this approach, once the arch’s geometry has been
generated, the position of the collapse hinges M , Q, T and U (Figure 27.6) and
the corresponding horizontal load multiplier have been calculated by the iterative
procedure which is articulated as follows. A first attempt configuration of the hinges
is assumed; by denoting with VU and HU the vertical and horizontal internal forces
at the hinge U , the momentum equilibrium around the remaining hinges gives

HU (yh−yU )+VU (zh−zU )−
nhU∑
i=1

Fi(zh−zGi)−k

nhU∑
i=1

Fi(yh−yGi) = 0 (27.6)

where h = T,M,Q qualifies the generic remaining hinge and nhU represents the
number of voussoirs comprised between the corresponding hinges. The resolution
of the system of three equations deriving from the equation (27.6) leads to the three
unknowns VU , HU and the k. By means of simple calculations, the internal forces
involving each joint have been obtained
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Nj = Hj cosφj ± Vj sinφj

Mj = VU (zU − zPj ) +HU (yU − yPj )∓
njU∑
i=1

Fi(zGi − zPj )∓ k

njU∑
i=1

Fi(yGi − yPj )

(27.7)
with φj the angle between the line perpendicular to the jth joint and the horizontal
one and

Hj = HU ∓ k

njU∑
i=1

Fi

Vj = −VU ±
njU∑
i=1

Fi

(27.8)

Finally, the line of thrust is obtained by linking the centres of pressure of the
normal forces evaluated in each joint, defined by the eccentricity

ej =
Mj

Nj
(27.9)

where j denotes the generic joint. In addition the line of thrust must be contained
between the intrados and extrados line order to satisfy the resistance criterion, i.e.
the following condition must be satisfied at each joint

− t

2
≤ ej ≤ t

2
(27.10)

It should be highlighted that the symbol of equality holds only for the hinges M ,
Q, T and U . Usually, the first trial hinges configuration is not the right one, so that
the hinges have to be moved over to other positions and the equilibrium must be
imposed again, until equation (27.10) is satisfied.

27.4 Analysis of the Results

Within this section the results obtained for the random polycentric arches, mainly in
terms of the collapse load multiplier k, are reported and compared with the value
corresponding to the nominal geometry. In Figure 27.7 the overlapping of 1000
samples of arches affected by shape uncertainties (black lines) and the arch having
nominal geometry (red line) is shown. In particular, each curve represents the line
of axis of the corresponding arch. The generic random arch is compared with the
nominal geometry through a radial distance parameter ρ referred to the centre of the
nominal arch (Figure 27.8), which has been introduced to obtain a measure of the
shape uncertainty. In the application of the aforementioned numerical procedure,
each arc sector was discretized into an equal number of voussoirs (ni = 30), so that
the total number of voussoirs allows to reach an almost exact solution (Figure 27.8).
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Fig. 27.7 Graphical comparison between 1000 samples of random arches (black line) and the
nominal geometry (red line).

Fig. 27.8 Discretization detail of the random polycentric arch (e.g. resulting partitions of the first
sector α̃1) and graphical definition of the distance parameter ρ on the second sector.

In Figure 27.9 the statistical analysis of the generated samples is represented. In
particular, Figure 27.9(a) shows the ρ̃ random parameter distance from the nominal
axis line in function of the dimensionless curvilinear abscissa ξ of the generic arch,
with the overlapping of the mean values of them (ρ̄(ξ)) evaluated in each joint
(thick black line). At the same time, in Figure 27.9(b) the standard deviation of the
random parameter σ(ρ̃) is plotted along the development of the arch. The results
of the geometrical modelling highlight that the work hypotheses (ε = χ = 0.1 and



464 Cavalagli, Gusella, Liberotti

Fig. 27.9 Probabilistic modelling of the random polycentric arch: trend of ρ̃ parameter with mean
values highlighted in black thick line (a) and standard deviation (b) in function of the dimensionless
curvilinear abscissa ξ

β = 0.05) determine maximum values of the ρ parameter around 0.05, due to the
particular construction procedure of the polycentric random arch.

In order to take into account the asymmetry of the random arch configuration, the
collapse condition was evaluated in both the directions of the horizontal forces, i.e.
from left to right (k̃l) and from right to left (k̃r). Then, the minimum value (k̃min)
of the collapse load and the related mechanism were assumed as ultimate condition
associated to the analysed sample. From the results obtained by the Monte Carlo
simulation, the probability density functions of the random variables k̃l, k̃r and k̃min
was estimated. These results are reported in Figure 27.10 and indicated through a
dashed black line, a dot-dashed black line and a continuous red line respectively. In
terms of mean values it should be noted as the introduction of uncertainties affects
the bearing capacity of the arches, even if it depends by the level of irregularities and
by their relation with the main nominal geometrical parameters, such as the radius,
the angle of embrace and the thickness.
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Fig. 27.10 Results of the probabilistic analysis and estimation of the probability density functions
of k̃l (dashed black line), k̃r (dot-dashed black line) and k̃min (continuous red line).

27.5 Conclusion

In the present contribution, aiming at the assessment of the behaviour of masonry
structures with irregular shapes, the limit conditions of a random polycentric arch af-
fected by horizontal forces have been investigated. Among the plausible and multiple
reasons of such deformed structural configurations, the consequences directly related
to the uncertainties of construction work have been studied. By means of a probabilis-
tic approach, based on a Monte Carlo simulation, the influence of those irregularities
on the collapse load multiplier and the related mechanisms was evaluated. The results
in terms of the reduction of the collapse load highlights a penalizing effect of such
features regarding the seismic safety. Therefore the outcomes are promising encour-
aging further investigations on the items of this ongoing research indeed, given the
versatility of the proposed procedure, the opportunity of applications with regard to
the behaviour of different typology of arched structures is envisaged. Furthermore,
the negative effects highlighted could take on a greater impact if combined with
other classes of uncertainties considering, for example, the quality of the masonry
texture and the stereometry of the voussoirs.
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Chapter 28
Challenging Mathematical Insights into
Masonry Domes over the Centuries

Raffaella Pavani

Abstract We focus on masonry domes which are considered architectural landmarks
either in different historical periods and in different cultural contexts. From a math-
ematical point of view, an approximation of a dome is provided by a rotation solid
whose cross-section gives the generating curve. Obviously, a frequent generating
curve is the semicircumference, but here we want to highlight the role of parabola
and catenary used as generating curves to make the structural load lighter. At the
present they are well-studied different curves, but until the 17th century, they were
considered the same curve, even though they significantly differ from the point of
view of structural properties. Actually, catenary is the curve of a hanging chain,
which exhibits a tension strength only. When it is “frozen” and inverted it exhibits
a compression strength only, which means that it supports itself. Parabola does not
exhibit such structural property, but catenary may differ from a convenient parabola
very slightly so that building approximation makes a catenary appear as a parabola
and this parabola is so close to a catenary that it approximately retains its struc-
tural properties, point by point. Here, we investigate the mathematical connection
between catenary and parabola in masonry dome structure, referring in particular to
Brunelleshi’s dome in Florence, Saint Peter’s dome in Rome and San Gaudenzio’s
dome in Novara.

Keywords: Catenary · Funicular surface · Masonry domes · Renaissance domes

28.1 Introduction

Currently, we are accustomed to see buildings with curvilinear roofs of any material,
of any curvature, of any regular or irregular shape. In the ancient centuries, instead,
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curvilinear coverings were provided by masonry domes only. They were ideally
generated by the rotation of an arch around its vertical symmetry axis. In this
way, cross-sections become curves, mainly parabolas and catenaries (aside from,
obviously, semicircumferences).

The most ancient still standing example of the curve (we now call) catenary,
used as a cross-section of a masonry vault, goes back to the so-called Ctesiphon
arch (3rd century A.D., Taq Kasra – Iraq). Previously, corbelled domes appeared in
Minoan civilization about 1500 B.C., but true masonry domes were found at ancient
Ur (in the present Iraq) and are dated back to 2500 B.C. (Chant and Goodman,
1999). This would place knowledge of true masonry dome long before the rise of
Roman Empire. Even though the true dome was not a Roman invention, Romans
were the first civilization to overcome the challenges associated with the true dome
and perfect the form, enlarging the span of dome they could build (e.g. Caracalla’s
Baths and Diocletian’s Baths). It is worth mentioning the Pantheon dome which has
been a landmark in Rome panorama since the 1st century B.C.; remarkably, it is not
a true dome, but a corbelled dome.

Here we consider parabolas and catenaries as cross-sections of ancient domes
and from a mathematical point of view we will discuss features of the two curves
when used in architecture. We add that when a surface is generated by the rotation
of a catenary around its symmetry axis, it is also called funicular surface.

We remind that the relevance of catenary in architecture and structural engineering
was firstly introduced by Hooke’s studies on inverted chain and its stability properties,
which will be treated in the next Section. We notice that our analytical-numerical
approach has to be inserted in the more general geometrical approach which, more
recently, was strengthened by Heyman’s “safe theorem” (Heyman, 1995). According
to this theorem, if by an elastic analysis a thrust line can be found which lies within
the wall thickness of an arch in equilibrium, then this is sufficient to guarantee that the
structure is stable under the given loading. Since mathematically the equilibrium of
an arch is given by a convenient catenary, it is clear that such analytical curve is really
significant to architecture. Within this context, we suggest to refer to (Cazzani et al,
2016a,b; Grillanda et al, 2019) for different efficient numerical methods, detailed
discussions and significant examples.

28.2 Parabola vs. Catenary

The parabola curve is the graphic of any analytical function which is a polynomial
of degree two. From the point of view of classical geometry, any parabola can be
built as a conic section, as it is known since the 4th century B.C. by the Greek
mathematician Menecmus. From the point of view of architecture, parabola has no
stability property.

Instead, catenary has excellent stability properties, but its equation is more com-
plicated, involving a hyperbolic cosine. This curve represents the shape of a hanging
chain (or inextensible cable) of uniform mass, fixed at the ends and subject to its



28 Challenging Mathematical Insights into Masonry Domes over the Centuries 471

own weight only. This means that analytical expression of catenary is the solution
of the differential equation providing the equilibrium of a hanging chain (or cable).

Suppose a cable with tension T . Let To be the tension in the cable at its lowest
point. Let the origin be at this point. The horizontal force on the cable at that point
is then To. Suppose we isolate a piece of the cable extending from the origin to the
point (x, y) where the tension is T. Let ϑ be the tangent angle at (x, y).Then for
horizontal equilibrium we have To = T cos(ϑ).

Let s be the arc length from the origin up to the point (x, y). Let w be the
weight of the cable per unit arc length. Then for the vertical equilibrium we have
ws = T sin(ϑ). Hence

dy

dx
= tan(ϑ) =

T sin(ϑ)

T cos(ϑ)
=

ws

T0
(28.1)

Differentiating, we get

d2y

dx2
=

ws

T0

ds

dx
=

1

a

√
1 + (dy/dx)2 (28.2)

Solution of this equation provides the equation of catenary

y(x) = a cosh(x/a) , (28.3)

where a = To/ws is the catenary constant. For increasing values of a, catenary
exhibits increasing span.

If the lowest point of the curve is in (x0, y0) then the catenary equation becomes

y(x) = a cosh(
x− x0

a
) + (y0 − a) (28.4)

If catenary is “frozen” and inverted, the chain (or cable) exhibits a compression
strength only, which means that it supports itself. In 1671 Robert Hooke announced
at the Royal Society in London he had found the shape of the optimal arch. In 1676 he
published a book where he stated “Ut continuum pendet flexible, sic stabit continuum
rigidum inversum,” i.e. as a flexible cable hangs, so, inverting it, a rigid body stands
still. In Figure 28.1 we report a catenary and the corresponding inverted catenary.
Then the inverted catenary, with the highest point in (0, h), has the following equation

y(x) = −a (cosh(x/a)− 1) + h (28.5)

Given h and the intersection x with the axis of abscissas, we found the value of a by
a numerical method which computes zeros of nonlinear functions.

Hooke did not provide any proof nor the analytical equation of the catenary. His
assessment was based on experimental evidence only. However the topic was so
interesting that the greatest contemporary mathematicians of that century (Leibniz,
Huygens and Bernoulli brothers) studied the catenary curve in details, competing
with each other, and succeeded in providing a complete mathematical description
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Fig. 28.1 Catenary and in-
verted catenary

of the properties of this curve related to its static equilibrium. It is worth noticing
that it would impossible to get such results by the previous classical approach of
mathematics. The new analytical approach allowed mathematics to enlarge its field:
the analytical geometry was born. Later in (Gregory, 1697), it was investigated how
the catenary form is the real shape of a stable arch, when it can be drawn within its
section, since catenary can sustain itself.

Even though the parabola fails to exhibit the structural properties of catenary, the
two curves are closely related from a mathematical point of view.

Firstly, from a geometrical point of view, the curve traced on the plane by the
focus of a parabola rolling along a straight line, is exactly a catenary.

Then, from the analytical point of view, the equation of a catenary developed in
power series provides a polynomial with even terms which provides a parabola, if
the series is truncated at the second term. In more details, we have

a cosh(x/a) = a+
1

2a
x2 +

1

24a3
x4 +O

(
x6
)

(28.6)

Moreover, we notice that even the polynomial p(x) = a + 1
2ax

2 + 1
24a3x

4 can be
viewed as a parabola when the variable change t = x2 is introduced. In order to
enlighten this behavior, in Figure 28.2 the catenary through points (0, 34), (26, 0) is
reported (in this case a = 13.4496) together with the approximating parabola p(x)
given above and plotted with respect to

√
t. In Figure 28.3 the same catenary is

reported together with parabola interpolating at the maximum point and endpoints.
In the first case the maximum relative error between the two curves is 3% and in
the second case is 7% (in infinity norm). This means that, in some circumstances,
a parabola can be a very good approximation of a catenary. So, in practice, given
a catenary it is always possible to find a parabola which, point by point, resembles
such catenary and its structural properties.

This result supports the hypothesis that a particular parabola was used in any
masonry dome built before the 17th century in such a way that the parabolic cross-
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Fig. 28.2 Catenary and ap-
proximating parabola

Fig. 28.3 Catenary and inter-
polating parabola

section of the rotation surface was actually resembling a catenary and its stability
properties. Indeed, it is clear that the correct dimensioning of domes and arches
was the result of empirical observations over a long period of time, when actually
parabolas could be easily computed and built.

Moreover, there is experimental evidence that still in 19th century, catenaries as
cross sections of rotation surfaces and vaults were not computed using the analytical
approach (reported above) but using an analogical approach by oval curves, as
pointed out in (Lluis-i Ginovart et al, 2017), referring to Spanish context.

Sometimes it may be hard to distinguish between a parabola and a catenary. In
(Huylebrouck, 2007) a couple of significant examples are reported. In particular,
here we present the example referring to Gaudi’s Collegio Teresiano, reported in
Figure 28.4.

In the cross-sections of those arches we can seen either catenaries or parabolas.
As it was reported in Huylebrouck (2007), data are taken so that the top becomes
the minimum in (0, 1), for increasing x and y: a least squares fitting provides
the (weighted) catenary y = −0.7468 + 1.75 cosh(2.8x) with R2 = 99.988%.
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Alternatively, the parabola y = 0.985 + 7.63x2 fits with R2 = 99.985%. The
method used in (Huylebrouck, 2007) was a pseudo-inverse algorithm; he concludes
that "No naked eye can catch the difference" between catenary and parabola. Actually,
the relative error between fitted parabola and catenary is 0.6%.

Here we used a “trust-region-reflective” method by the function lqscurvefit
provided by MATLAB. We found as a fitting (weighted) catenary y = −0.9462 +
1.95 cosh(2.6684x) and as a fitting parabola y = 1.0111− 0.2771x + 8.2194x2.
Figure 28.5 reports our fitting catenary in solid line, the experimental data by circles
and our fitting parabola in dotted line. In both the cases the norm of the residual is
equal to 0.4% , as well as the relative error between fitted catenary and parabola.

Again we can conclude that “No naked eye can catch the difference” between
catenary and parabola. We remark that a fitting with a classical form of catenary
does not provide good results.

Moreover, it is worth noticing that, in spite of appearance, our fitting parabola in
practice overlaps the already published parabola in Huylebrouck (2007). This is due
to the fact that both parabolas are close to the best approximation.

We remark that a parabola can be distinguished from a catenary by resorting also
to geometric properties of parabola itself. In particular, one of these properties states:

Fig. 28.4 Arches by Gaudi in
Collegio Teresiano
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Fig. 28.5 Fitting experimental
data by catenary and parabola

if a parabola has several parallel chords, their midpoints all lie on a line which is
parallel to the axis of symmetry. Now, consider Gaudi’s Paelle Guel as an example:
the profile of the gate has to be considered as a catenary curve, since all the midpoints
of parallel chords lie on a curve, which differs from a line parallel to the symmetry
axis (e.g. see Ghione, 2009).

28.3 Case Study: Santa Maria del Fiore in Florence

The church of Santa Maria del Fiore was built according to a project by Arnolfo
di Cambio, started in 1296 and grew up during a long period in the 14th century.
The dome was built between 1420 and 1436 by Filippo Brunelleschi, who never
described his method of building.

It is made up by eight membranes, based on an octagon at 55m from the ground,
so any horizontal section is octangular. However, within the thick octagonal dome,
we can imagine a dome having circular section at every horizontal level; so safely
the imaginary dome can be considered a possible thrust surface for the real structure
(Heyman, 1995). The inner diameter of the dome is 45m, the outer one is 54m (e.g.
see Como, 2017). Indeed the dome is built up by two shells with an inner space large
about 1.2 m in between. The maximum height of intrados is 32.2m and the maximum
height of extrados is 35.75m. The average height is 34m over a 55m high drum.
These numbers remember the Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, . . . which are characterized by property that the ratio of two consecutive
number tends to the golden ratio (that is about 1.618034) as they increase. But
Brunelleschi did not refer to Fibonacci numbers, even though he certainly knew
them, because, obviously, he did not use a meter as a unit of measure. Actually, he
used the Florentine arm = 0.5836m. So the inner diameter is 77 arms. The diameter
was then divided into 5 parts (each of them 15.4 arms = 8.98m long); so that centers
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of the inner two curves of the intrados were found in order to have a ”pointed fifth”
arch as a cross-section. For the extrados, instead, it was used a “pointed fourth”
arch. Figure 28.6, provided by (Conti, 2014), enlightens the building method of the
cross-section of the dome.

Fig. 28.6 Pointed arches

Here we propose that in the case of Brunelleschi’s dome, between the intrados,
built by pointed fifth arch, and the extrados, built by pointed fourth arch, it is always
possible to make a catenary run. Focusing on the masonry arch which represents
the approximated cross-section of this dome, equilibrium can be visualized using a
thrust line.

This theoretical line represents the path of the resultants of the compressive forces
through the stone structure and has the shape of the inverted catenary discussed
above. For a pure compression structure, equilibrium implies a thrust line that lies
entirely within the masonry section. In Milankovitch (1907) it is provided an excellent
mathematical treatment of this concept which was recently resumed and again studied
in deep at MIT (Ma, USA), where new computational interactive equilibrium tools
were produced (Block et al, 2006). In Figure 28.7 and Figure 28.8 we present
our results about two possible catenaries running between intrados and extrados of
Brunelleschi’s dome. Here we do not intend to study the optimal thrust line, but
we aim just at presenting how thrust line (i.e. catenary) can be drawn by analytical
formulas and approximated by convenient parabolas. Figure 28.7 reports catenary
through (0, 35), (24, 0); Figure 28.8 reports catenary through (0, 33.5), (27, 0). In
Figure 28.7 an Figure 28.8 catenary is given in solid line, the interpolating parabola
through three points (the maximum and the ends points) is given in dashed line,
whereas the approximating parabola from the series development is given in dotted
line; its equation is

y(t) = a+
1

2a
t+

1

24a3
t2 (28.7)
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where t = x2.
The maximum relative error between this second parabola and related catenary

is 4% in Figure 28.7 and 2% in Figure 28.8. Again this means that we can find
a parabola which completely overlaps related catenary. We remark that in Figure
28.7 the interpolating parabola through three points runs outside the wall thickness;
instead the approximating parabola y(t) always runs within the wall thickness and
resembles the structural property of the catenary, point by point. From a numerical
point of view, the approach by the approximating parabola is characterized mainly
by two features: i) the computation of the catenary constant a solving numerically a
nonlinear equation where a is the unknown; ii) the computation of y(t) by a change
of variable t = x2 and then plot y vs

√
t.

Obviously, Brunelleschi did not follow this approach. However the Brunelleschi’s
choice was really effective even though he did not know catenary jet. He probably
built and tested parabolas very close to a convenient unknown catenary and by
intuition and experience he found very nice structural stability properties of his
cross-section. Over the centuries Brunelleschi’s dome substantially maintained a
stable configuration (exhibiting a few minor structural problems only) and became a
landmark of soundness and beauty.

28.4 Some More Ancient Masonry Domes

28.4.1 St. Peter’s Dome in Rome

It was planned by Michelangelo, who worked on the construction of the renewed
basilica beginning in 1547. The dome was concluded by Giacomo Della Porta,
Michelangelo’s disciple, in 1590. The dome has a double shell (following the example

Fig. 28.7 Catenary through
(0, 35), (24, 0)
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Fig. 28.8 Catenary through
(0, 33.5), (27, 0)

of more ancient Brunelleschi’s dome) with an inner diameter of 42.56m.; the height
from the base to the top is 136.57m.

As well as Brunelleschi, Michelangelo did not write anything about his project
and this was a great disadvantage when by the end of the 17th century the dome
started to show a serious chance of collapsing. In 1743 the Pope assigned to Giovanni
Poleni the task of studying the structure and solving the problem. At that time Poleni
was a famed engineer and mathematician and he knew very well the role of catenary
in structure stability; he built small models in scale of the catenary running between
the two shells of the dome.

His conclusion was that the shape of the Michelangelo’s dome was satisfactory.
So the structure was simply strengthened and even now we can admire the efficiency
of that action based on the use of catenary as a mathematical model.

This was the very first example of conscious and documented use of catenary in
Architecture. Indeed, many original drawings of catenaries referring to St. Peter’s
dome can be found in (Poleni, 1748).

28.4.2 St. Gaudenzio’s Dome in Novara

The latest masonry dome in Italy was the St. Gaudenzio’s Dome in Novara, built
and designed by A. Antonelli between 1841 and 1878. It has a height from the floor
level of the church to its top of 125 m, an internal diameter of 14 m and an external
diameter of 22 m. Again we find two shells in the dome structure, but in this case the
whole building exhibits a daring complex constructive system, astonishingly light.
Unfortunately, the structure experienced many serious stability problems since the
beginning of its life.

Nevertheless, investigations conducted on the structure of the dome had shown
that the shape of thrust line is perfectly contained within the masonry section of
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the dome, with minimal variations. In fact, the shape of the arch of the internal
cross-section becomes very similar to that of a catenary, with the difference of an
average quadratic deviation well below 1% (Corradi et al, 2009).

28.5 Conclusions

Firstly, within the context of mathematics, we investigated numerical and analytical
relations between parabola and catenary and we have shown that, given a catenary,
it is always possible to find a parabola very close to the catenary which inherits the
stability property of catenary, point by point.

Then, within the context of building structures, the Brunelleschi’s dome was in-
vestigated in some details, using just the mathematical concepts previously provided.
At last, some dedicated comments were presented relating St. Peter’s dome and San
Gaudenzio’s dome.

Our results enlighten how good were the ancient builders in managing mathemat-
ical concepts, both consciously and intuitively.

References

Block P, DeJong M, Ochsendorf J (2006) As hangs the flexible line: Equilibrium of masonry arches.
Nexus Network Journal 8:13–24

Cazzani A, Malagu M, Turco E (2016a) Isogeometric analysis: a powerful numerical tool for
the elastic analysis of historical masonry arches. Continuum Mechanics and Termodynamics
28(1-2):139–156

Cazzani A, Malagu M, Turco E, Stochino F (2016b) Constitutive models for strongly curved beams
in the frame of isogeometric analysis. Mathematics and Mechanics of Solids 21(2):182–209

Chant C, Goodman D (1999) Pre-Industrial Cities and Technology. Routledge, London
Como M (2017) Statics of Historic Masonry Constructions. Springer
Conti G (2014) La matematica nella cupola di santa maria del fiore a firenze. Itacha:Viaggio nella

Scienza 4:5–11
Corradi M, Filemio V, Trenetti M (2009) Antonelli’s dome for san gaudenzio: Geometry and statics.

Nexus Network Journal 11(2):243–56
Ghione F (2009) Una non parabola: la catenaria. Quaderni di Laboratorio Universitá di Roma
Lluis-i Ginovart J, Costa-Jover A, Coll-Pla S, Lopez-Piquer M (2017) Layout of catenary arches in

the spanish enlightenment and modernism. Nexus Network Journal 19:85–99
Gregory D (1697) Catenaria. Philosophical Transactions of the Royal Society 19:637–652
Grillanda N, Chiozzi A, Bondi F, Tralli A, Manconi F, Stochino F, Cazzani A (2019) Numerical

insights on the structural assessment of historical masonry stellar vaults: the case of santa maria
del monte in cagliari. Continuum Mechanics and Termodynamics pp 1–24

Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge
University Press

Huylebrouck D (2007) Curve fitting in architecture. Nexus Network Journal 9:59–70
Milankovitch M (1907) Theorie der druckkurven. Zeitschrift fur Mathematik und Physik 55:1–27
Poleni G (1748) Memorie istoriche della gran cupola del tempio vaticano. Stamperia del Seminario

di Padova



Chapter 29
Innovative Voxel Approach for Homogenized
Out-of-Plane Analysis of Non-Periodic Masonry
Walls

Simone Tiberti & Gabriele Milani

Abstract This paper presents a MATLAB-based procedure for the derivation of
out-of-plane homogenized failure surfaces for masonry elements. The procedure
follows a so-called “voxel approach” that allows the creation of a 3D finite element
mesh directly from the sketch of a masonry element. This approach is implemented
into a dedicated MATLAB script. The validation of the procedure is performed by
extracting homogenized out-of-plane failure surfaces for a stretcher bond masonry
cell. These are compared to those available in literature for an analogous cell,
obtained with a different model. The correspondence between the two models is
satisfying, confirming the reliability of the presented procedure. Eventually, the
behavior under out-of-plane actions is investigated for two single and one double
curvature masonry cells. Homogenized out-of-plane failure surfaces and relevant
failure modes are extracted for all the different cases and compared to those obtained
for the flat case. The results for the curved masonry cells show an increase in out-
of-plane resistance for one of the single curvature cases and for the double curvature
case. Moreover, the deformed shapes at collapse are consistent with the expectations.

Keywords: Masonry curved elements · Homogenization · Upper bound limit anal-
ysis · Out-of-plane behavior

29.1 Introduction

Masonry is one of the most challenging materials to model. Its composite nature
must be properly addressed in every mechanical model aiming at simulating its
global behavior. For example, a dedicated failure criterion must be devised (An-
dreaus, 1996), or its complexity can be reduced by considering it as a no tension
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material (Cuomo and Ventura, 2000). Also, specific models are to be conceived
when considering curved masonry elements (Cazzani et al, 2016). In fact, the tech-
nique known as homogenization has been extensively used in the last three decades
to obtain the global mechanical behavior and characteristics of masonry from its
constituents (units and mortar). It is grounded on the possibility to identify a basic
cell called Representative Element of Volume (REV), which recreates the original
masonry pattern if translated. Homogenization is sometimes coupled with a limit
analysis approach to assess the structural behavior at collapse of masonry elements.
Common applications are devoted to assessing the behavior of in-plane loaded ma-
sonry bonds displaying a periodic arrangement of the units such as stretcher bond
masonry: see in this regard Milani et al (2006a), Stefanou et al (2015), and Godio
et al (2017). Some more works seek to investigate the behavior under out-of-plane
loads, for instance Milani et al (2006b) and Cecchi et al (2007). Furthermore, only
a few applications deal with curved masonry elements (Milani et al, 2009), leaving
this field of application largely unexplored.

The application of homogenization in deriving the characteristics of masonry in
historical buildings seems to be rather appealing. However, these structures often
consist of masonry where the units (bricks and/or stones) are randomly arranged
in the walls, forming the so-called “rubble masonry.” This apparently prevents the
successful identification of a REV. A method to overcome this issue is described in
Cavalagli et al (2018) that is based on the concept of SEPUC (Statistically Equiva-
lent Periodic Unit Cell). Conversely, a multiscale approach employing mixed FEM
analyses is introduced in Tedesco et al (2017).

This paper presents a procedure developed in MATLAB that aims at deriving
out-of-plane homogenized failure surfaces of masonry elements. The code is based
on a voxel approach that allows the generation of a 3D finite element mesh directly
from the outline of a masonry panel. The validation of the procedure is performed
on a flat stretcher bond masonry cell, and two different out-of-plane homogenized
failure surfaces are extracted and compared to those resulting from a previous work
(Milani and Taliercio, 2016). Eventually, the procedure here presented is applied
to several curved masonry cells displaying distinct curvatures around their in-plane
axes. Out-of-plane homogenized failure surfaces are extracted for different values of
the curvature radius and compared to the flat case. Also, a double curvature case is
investigated and critically commented.

29.2 Voxel Procedure for Homogenized Out-of-Plane Failure
Surfaces

The 3D FE mesh is generated in MATLAB from the rasterized sketch of the consid-
ered masonry element. Each pixel of the picture is first turned into a tridimensional
entity (called “voxel”), then is transformed into a single finite element. This is flagged
as being part of either unit or mortar by extracting the RGB triplet of the original
pixel. Specifically, the “red” value of the triplet is assessed and compared to a thresh-
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old that determines the physical nature of the finite element. Each element is then
given a centroid, whose coordinates belong to a reference system originated at the
center of the test-window (Fig. 29.1). The overall dimensions of the cell are set as
inputs by the user and exploited to create the eight nodes of each finite element,
which is a solid brick. The transversal layout of the finite element mesh is simply
obtained through extrusion of the in-plane configuration.

Fig. 29.1 Voxel procedure for the creation of the 3D finite element mesh of the considered masonry
element.

The mesh obtained through this script represents the basis for calculating the out-
of-plane homogenized failure surfaces of the considered masonry element. These
are extracted as results coming from the solution of an upper bound limit analysis
problem combined with a homogenization approach. This problem is written into
another MATLAB script as a linear programming problem (specifically, a mini-
mization one) formulated in standard form. The rotation rate of each finite element is
neglected so that the unknowns of the problem are reduced. The out-of-plane kine-
matics of the finite elements is regulated via a Kirchhoff–Love plate model; also,
they are considered as rigid elements, so that dissipation solely takes place on the
interfaces of adjoining elements. The only active interfaces within the considered
masonry elements are those between mortar finite elements and between one mortar
and one unit finite element. A Mohr–Coulomb failure criterion is used to address
the velocity jumps across the active interfaces. Eventually, the kinematics of unit
finite elements is governed by that of the masonry unit to which they belong; this
is achieved through ad-hoc master-slave relations that connect the velocities of each
unit finite element to those of the centroid of its related master masonry unit. In the
linear programming problem as formulated for this application, equality constraints
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are to be enforced: they come from the velocity jumps due to dissipation, from the
master-slave relations, from the periodicity conditions on the lateral boundaries of
the considered masonry element (as required by the homogenization approach), and
from the normalization of the dissipated external power (which is needed for finding
a single solution in terms of deformed shape at collapse). Two different failure sur-
faces are extracted: one in the Mxx-Myy plane and the other in the Mxx-Mxy plane,
where Mxx is the vertical bending strength, Myy the horizontal bending strength,
and Mxy the torsional bending strength.

29.3 Numerical Validation of the Voxel Procedure

The validation of the proposed procedure is carried out by extracting out-of-plane
homogenized failure surfaces for a stretcher bond masonry cell and comparing
them with those obtained by Milani and Taliercio (2016) for the same cell. This
stretcher bond masonry cell is made of standard Italian bricks whose dimensions are
25×12×5.5 cm3, with mortar joints of 1 cm (Fig. 29.2a); two finite element meshes
are created for this validation, a finer one with 260000 elements (48 over the thickness,
Fig. 29.2b) and a coarser one with 17000 elements (12 over the thickness, Fig. 29.2c).
The Mohr–Coulomb failure criterion in this application employs a cohesion of
0.132MPa and a friction angle of 27◦.

Fig. 29.2 (a) Stretcher bond masonry cell; (b) finer mesh; (c) coarser mesh.

Fig. 29.3 shows the homogenized out-of-plane failure surfaces obtained for the
present model with the two meshes, compared against the ones resulting from Milani
and Taliercio (2016). Both surfaces are in good agreement with the results coming
from the aforementioned work, with only some negligible differences in the Mxx-
Mxy plane that are likely due to the different kinematics assumed in the two models.
Also, the use of a coarser mesh does not have a significant impact on the results,
causing only a tiny reduction of the two failure surfaces (which moreover is on the
safe side). Therefore, the coarser mesh will be used in all the following applications.

Fig. 29.4 shows the failure modes extracted for the finer mesh, which are associated
to single out-of-plane load conditions - namely, the three moments Mxx, Myy ,
Mxy . It can be seen that all of them are consistent with the expected deformed
configurations at collapse for these three cases. In particular, the vertical overturning
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Fig. 29.3 Comparison of homogenized out-of-plane failure surfaces: (a) Mxx-Myy plane; (b)
Mxx-Mxy plane.

bending moment Mxx originates cracks in both the head and the bed joints, and the
horizontal overturning bending moment Myy causes only horizontal cracks in the
bed joints.
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Fig. 29.4 Failure modes for relevant out-of-plane actions: (a) Mxx; (b) Myy ; (c) Mxy .

29.4 Application of the Voxel Procedure to Single Curvature
Masonry Cells

In this section, the voxel procedure is applied to two single curvature masonry
cells; specifically, the coarser mesh of the stretcher bond masonry cell presented in
Fig. 29.2c is slightly modified to simulate a single curvature cell. Two meshes are
then extracted: one displays a single curvature around axis X (Fig. 29.5a), the other

Fig. 29.5 Single curvature masonry cells: (a) curvature around axis X; (b) curvature around axis Y .

a single curvature around axis Y (Fig. 29.5b), both with the same curvature radius
of 1.5m. It must be remarked that in Fig. 29.5 the curvature is visually enhanced for
a better display of the curved configuration. Also here the Mohr–Coulomb failure
criterion employs a cohesion of 0.132MPa and a friction angle of 27◦.

Figure 29.6 shows the homogenized out-of-plane failure surfaces obtained for
the two single curvature cells, compared against the ones obtained in the previous
section for the coarser mesh (from now on referred to as the “flat case”). It can be
easily seen that the cell with single curvature around axis Y undergoes an increase of
its out-of-plane strength, since both its failure surfaces are larger than those obtained
for the flat case. Also, both the failure surfaces start losing their double symmetry
in the Mxx-Mxy plane, which is to be expected due to the different behavior of
the intrados and the extrados of the curved cell, as noted in Milani et al (2009).
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Fig. 29.6 Comparison of homogenized out-of-plane failure surfaces for curvature around axes X
and Y: (a) Mxx-Myy plane; (b) Mxx-Mxy plane.

Conversely, no discernible differences can be noted for the cell with single curvature
around axis X .

Figure 29.7 shows three relevant failure modes for the two single curvature cells:
those for the cell with curvature around axis X are displayed in Fig. 29.7a-c,while
those for the cell with curvature around axis Y are displayed in Fig. 29.7d-f. While
all the deformed configurations at collapse are consistent with the expectations, it
must be remarked that those associated to Mxx are different for the two cases. In
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fact, the failure mode for the curvature X cell displays splitting in correspondence of
the interfaces between the bricks and the same head joint (Fig. 29.7a), whereas the
one for curvature Y displays an in-between splitting of the head joints that lie above
the central brick (Fig. 29.7d).

Eventually, a sensitive analysis is performed on the two curved cells to investigate
the influence of the curvature radius on the dimension of the homogenized failure
surfaces. Three different values of the curvature radius are investigated for each
cell, respectively equal to 1 m, 1.5 m, and 2 m. Fig. 29.8 and Fig. 29.9 show the
resulting out-of-plane homogenized failure surfaces for curvature around axis X
and Y, respectively. Once again, no significant differences are observed for the two
surfaces of the cell with curvature around axis X , whereas for decreasing values of
the curvature radius the dimensions of both surfaces increase in the case of the cell
with curvature around axis Y , which entails an increase of its out-of-plane strength.

29.5 Application of the Voxel Procedure to a Double Curvature
Masonry Cell

As a final application, the voxel procedure is applied to a double curvature stretcher
bond masonry cell, depicted in Fig. 29.10. The curvature radius around axis X is
1 m, while the one around axis Y is 1.5 m; again, both curvatures are visually
enhanced in the figure for a better display of the curved configuration. Fig. 29.11
shows the out-of-plane homogenized failure surfaces for the double curvature cell
compared against those obtained in the flat case. It is possible to notice that both
surfaces are larger than those of the flat case, which means that a double curvature

Fig. 29.7 Failure modes for relevant out-of-plane actions: (a) curvature X, Mxx; (b) curvature X,
Myy ; (c) curvature X, Mxy ; (d) curvature Y, Mxx; (e) curvature Y, Myy ; (f) curvature Y, Mxy .
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Fig. 29.8 Homogenized out-of-plane failure surfaces from sensitivity analysis for different
curvature radii around X: (a) Mxx-Myy plane; (b) Mxx-Mxy plane.

masonry structure displays a higher resistance to out-of-plane actions with respect
to a flat one. Finally, Fig. 29.12 shows the three relevant failure modes for the double
curvature cell; the deformed configurations at collapse more closely resemble those
obtained for the single curvature cell with curvature around axis Y .
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Fig. 29.9 Homogenized out-of-plane failure surfaces from sensitivity analysis for different
curvature radii around Y: (a) Mxx-Myy plane; (b) Mxx-Mxy plane.

29.6 Conclusion

A procedure set through a MATLAB code for deriving out-of-plane homogenized
failure surfaces of masonry elements is presented. The outline of a masonry cell
is transformed into a 3D FE mesh; then, an upper bound limit analysis problem
employing a homogenization approach is solved to draw the homogenized failure
surfaces. Two different out-of-plane homogenized failure surfaces are extracted for a
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Fig. 29.10 Double curvature masonry cell.

single masonry element, exploring two sets of moment conditions. A stretcher bond
masonry cell is investigated, for which the two failure surfaces and three relevant
failure modes are extracted. The resulting failure surfaces for this sample cell are
consistent with those obtained in a separate work using a different method; the
failure modes are also consistent with the expectations, confirming the validity of
the homogenized limit analysis problem as formulated in this application. Also, the
procedure here presented is applied to two single curvature masonry cells, as well
as to a double curvature masonry cell. It is found that, when the curvature radius
is considered around the vertical axis of the curved cell, the out-of-plane strength
domain increases more than in the opposite case (curvature around the horizontal
axis). Also, smaller curvature radii imply an increase of the out-of-plane resistance.
Eventually, some relevant failure modes are extracted for the investigated curved
cells, all consistent with the expectations.

Future works will further refine the mesh generating procedure; namely, imple-
menting a subroutine will be implemented to reduce the mesh size when dimensions
of the source image are too big. In fact, this would result in a huge number of finite
elements and, consequently, in an increase of the computational times needed for the
numerical analysis. Moreover, the range of application of this MATLAB code will
be expanded to investigate flat and curved cells of rubble masonry elements.
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