
Artificial Neural Networks for the
Estimation of Pedestrian Interaction
Forces

Simone Göttlich and Stephan Knapp

Abstract We present a data fitting approach for the social force model by Helbing
and Molnár using artificial neural networks. The latter are used as a universal
approximation for the unknown interaction forces between pedestrians. We train
the artificial neural network simultaneously with other parameters arising in the
model by utilizing a tailored cost function and stochastic gradient techniques. We
test our approach using real data sets for the unidirectional and bidirectional flow in
corridors and point out the advantages and drawbacks of the proposed approach.

1 Introduction

The modeling of crowd dynamics provides a useful tool for the evacuation or
capacity planning problem. A good overview of existing literature on pedestrian
flow models can be found in [2, 3, 8, 13], where mainly two classes of modeling
approaches, i.e. microscopic and macroscopic models, are distinguished. Micro-
scopic pedestrian models typically rely on Newton-type dynamics, e.g. in [8, 19, 26]
or cellular automata, e.g. in [6, 23, 29], while macroscopic models can be either
derived via limiting processes [8, 10, 15, 24] or phenomenologically, see e.g.
[18, 21, 26, 27]. Starting from a microscopic level, model extensions include, for
example, vision cones [11], shortest-path information [12], and stochastic velocities
[10, 31, 32].

In fact, all kinds of models are typically based on information about the pedestri-
ans’ behavior such as their maximal acceleration, comfort velocity, interaction with
other pedestrians, and obstacles. If these parameters are well-known, the models can
be used to predict reliably the movements of pedestrians. The latter is an important
issue for analyzing capacities of buildings and the detection of safe escape routes.
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Unluckily, it is hard to obtain good approximations of the modeling parameters and
the parameters should be estimated using real data from studies about pedestrian
dynamics.1 Real data should be used carefully since behavior of humans may
additionally depend on further influences, i.e. cultural aspects or panic. A good
overview of issues concerning parameter estimation can be found in [1, 22, 30].

In this contribution, we aim to estimate the pedestrian interaction forces for
the unidirectional and bidirectional flow in corridors for a microscopic pedestrian
model. In contrast to [7, 14], where a Bayesian probabilistic method has been
applied for the estimation, we focus on artificial neural networks [4]. In a very recent
result by Tordeux [33], artificial neural networks have been used for the estimation
of pedestrian speed in corridors and bottleneck situations. In our case, the artificial
neural network is a building block in a physically motivated model, the so-called
social force model, and is used as a function approximation. The application is non-
classical in the sense that we do not intend to match a given input with the outcome
of the artificial neural network. More precisely, the compared output depends on
unknown parameters which we aim to find during the training of the model. Due to
this structure, we have to deal with a non-classical cost function and the parameter
identification gets more involved. Since parameter estimation for pedestrian flow
models is an emerging research area, in particular in combination with real data, it
opens new challenging questions from a theoretical and computational viewpoint.
We try to address those while presenting our numerical results.

2 Parameter Estimation

This section is devoted to the application of artificial neural networks for parameter
estimation in the pedestrian flow model by Helbing and Molnár. To do so, we
first introduce the modeling details and explain the mathematical framework of the
artificial neural network. Since our intention is to estimate the interaction between
pedestrians, the crucial point will be the computation of weights for the artificial
neural network.

Inspired by the social force model [19], our investigations are based on Newton-
type microscopic equations which describe the movement and acceleration of every
pedestrian due to obstacles, destinations, and interaction forces. Let us consider
i = 1, . . . , N,N ∈ N, pedestrians having positions Xi(t) ∈ R

2 and velocities
Vi(t) ∈ R

2 at time t ≥ 0. This means that we look from top on to pedestrians, which
are represented by their center of mass Xi(t) and their direction of movement Vi(t).
In general, the model can be written as

d

dt
Xi(t) = Vi(t), (1)

d

dt
Vi(t) = 1

τ
(Di(Xi(t))vc−Vi(t))+F(Xi(t), Vi(t), X−i (t), V−i (t))

+ Fw(Xi(t), Vi(t)),

1http://ped.fz-juelich.de/database/.

http://ped.fz-juelich.de/database/
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where τ > 0 denotes a relaxation time describing how fast pedestrians achieve
their comfort velocity, Di is the unit vector towards the destination, and vc > 0
is the comfort velocity. The forces F and Fw describe the acceleration caused by
interaction with other pedestrians, where z−i = (z1, . . . , zi−1, zi+1, . . . , zN), and
the acceleration caused by walls or obstacles, respectively.

The component Di(Xi(t))vc describes the desired velocity vector given that there
are no pedestrians and walls around pedestrian i. Hence, 1

τ
(Di(Xi(t))vc − Vi(t)) is

an acceleration along the direction of the desired velocity vector of pedestrian i.
Assuming that Di(Xi(t)) = Di is independent of the position then, in the absence
of other pedestrians and walls, we get

d

dt
Vi(t) = 1

τ
(Divc − Vi(t)) (2)

with solution Vi(t) = Divc + e− t
τ (Vi(0) − Divc). That means, 1

τ
is the decay

rate of the initial deviation away from the desired velocity vector vcDi . Regarding
the interaction acceleration function F, it seems unpromising estimating this high
dimensional function, i.e. for large N , by using data. Therefore, we assume the
following structure of F :

F(Xi(t), Vi(t), X−i (t), V−i (t)) =
N∑

k=1,k �=i

G(Xi(t) − Xk(t), Vi(t) − Vk(t)).

(3)

In fact, this means that we assume identical reactions of every single pedestrian
given the other pedestrians. Common choices for G in the literature are potentials
[15, 28] equipped with a vision cone [11]. In [28], the repulsive forces are given by
a parameterized (Morse-type) potential and the parameters are estimated using data
to solve a minimization problem with quadratic costs. Reasonable assumptions are
made but the shape of the function G has to be proposed. However, we will assume
that Eq. (3) holds and our goal is to recover G : R4 → R

2 using data for an artificial
neural network as an approximation tool.

The acceleration at boundaries given by the function Fw is crucial since obstacles
and walls can be assumed as solid objects and these objects represent a reflective
boundary. This fact can be only incorporated into Fw by considering unbounded
accelerations, which makes the system (1) very hard to solve. One way out of this
has been introduced in [15], where the boundary is incorporated by manipulating
the realized velocity d

dt
Xi(t) = V(Xi(t), Vi(t)). Then, Vi(t) can be interpreted as

the desired, but maybe not realized, velocity in the presence of obstacles. For this
reason, we neglect the wall forces in the rest of this manuscript and comment on
boundary treatment individually in examples.
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Summarizing, we need a general tool to fit the function G appropriately. If we
assume a potential again, e.g. a Morse potential, and try to find the parameters,
we assume too much and could be wrong. Therefore, we choose an artificial
neural network as function approximation for the function G. For completeness,
we introduce artificial neural networks in the following and state relevant results for
our purpose.

2.1 Artificial Neural Network as Universal Function
Approximation

Unlike existing contributions for the parameter estimation in pedestrian models
[7, 14, 28], we focus on artificial neural networks for the parameter estimation.
Motivated by recent works for neural networks applied to ordinary differential
equations [5, 16], we will now embed our parameter estimation problem into this
context.

2.2 Setting Up an Artificial Neural Network

We consider feed forward artificial neural networks here, which means that the input
given into the input layer is fed forward through the network only, i.e. there exists
no connections backwards. More detailed, let L be the number of layers including
the input and hidden layer (Fig. 1).

The value of the so-called neurons a
(l)
k in layer l and neuron k is computed as

follows:

Input Layer

a
(1)
1 = 1, a

(1)
k = xk−1 (4)

for k ∈ {2, . . . , n(1) + 1}, where x ∈ R
n(1)

is the input (feature) and n(1) is the
number of neurons without the bias unit a

(1)
1 .

Hidden Layers

a
(l)
1 = 1, a

(l)
k = g(l)

⎛

⎝
n(l−1)+1∑

k̃=1

θ
(l−1)

k̃,k
a

(l−1)

k̃

⎞

⎠ (5)

for l ∈ {2, . . . , L − 1} and k ∈ {2, . . . , n(l) + 1}.
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Output Layer

a
(L)
k = g(L)

⎛

⎝
n(L−1)+1∑

k̃=1

θ
(L−1)

k̃,k
a

(L−1)

k̃

⎞

⎠ (6)

for k ∈ {1, . . . , n(L)}. One has to recognize that the output layer does not contain
a bias unit, i.e. where a fixed value is set to 1. The entry θ

(l)
i,j of the matrices θ(l) ∈

R
n(l−1)×n(l)

describes the weight from neuron a
(l−1)
i to the value of the neuron a

(l)
j .

Example 1 We consider the case of a single hidden layer in this example, i.e. L = 3.
Further, we assume an output layer size of n(L) = 1 here. Then, we can write

a(3) = g(3)

⎛

⎝
n(2)+1∑

k̃=1

θ
(2)

k̃,1
a

(2)

k̃

⎞

⎠

= g(3)

⎛

⎝
n(2)+1∑

k̃=1

θ
(2)

k̃,1
g(1)

⎛

⎝
n(1)+1∑

s=1

θ
(1)

sk̃
a(1)
s

⎞

⎠

⎞

⎠

= g(3)

⎛

⎝θ
(2)
1,1 +

n(2)+1∑

k̃=2

θ
(2)

k̃,1
g(1)

⎛

⎝θ
(1)

1,k̃
+

n(1)+1∑

s=2

θ
(1)

sk̃
xs−1

⎞

⎠

⎞

⎠ .

1

x1

x2

x3

x4

1

a (2)
2

a (2)
3

a (2)
4

a (2)
5

a (2)
6

a (3)
1 Output 1

a (3)
2 Output 2

Hidden
layer

Input
layer

Output
layer

Fig. 1 Graphical representation of a feed forward artificial neural network with one hidden layer
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Hence, the output a3 is a nested sum of weighted evaluations of functions of the
input x. A quite common choice is g(L)(z) = z as the identity. This representation
allows for an increasing size of the hidden layer n(2) that we can profit from a special
class of approximation functions. Indeed, this is the result of the so-called universal
approximation theorems:

Theorem 1 ([9, 20])

1. Let f be a continuous function on [0, 1]n(1)
and ε > 0 as well as the

activation function g(1) is assumed to be a continuous sigmoid function, i.e.
limt→∞ g(1)(t) = 1 and limt→−∞ g(1)(t) = 0. Then, there exists an artificial
neural network in the form of

a(3)(x) =
n(2)+1∑

k̃=2

θ2
k̃,1

g(1)

⎛

⎝θ
(1)

1,k̃
+

n(1)+1∑

s=2

θ1
sk̃

xs−1

⎞

⎠

such that

‖a(3) − f ‖∞ < ε.

2. Let f ∈ Lp(μ), where μ is a finite measure on R
n(1)

and ε > 0 as well as
the activation function g(1) is assumed to be unbounded and nonconstant. Then,
there exists an artificial neural network in the form of

a(3)(x) =
n(2)+1∑

k̃=2

θ2
k̃,1

g(1)

⎛

⎝θ
(1)

1,k̃
+

n(1)+1∑

s=2

θ1
sk̃

xs−1

⎞

⎠

such that

(∫

Rn(1)
|a(3)(x) − f (x)|pμ(dx)

) 1
p

< ε.

Theorem 1 implies that we can find an artificial neural network with one single
hidden layer such that a function is approximated appropriately in this way.

In order to obtain the weights for approximating functions we use a minimization
problem. To do so, let hθ (x) = (a

(L)
k ) be the output of the network for a given input

x. Then, we define the cost function as

J (θ) = 1

m

(
m∑

i=1

C(hθ (x
(i)), y(i)) + λR(θ)

)
, (7)
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where C : Rn(L) ×R
n(L) → R describes the cost of the difference between the feature

value x(i) and the measured output y(i), λ ≥ 0, and R : R(n(1)+1)×(n(2)+1) × · · · ×
R

n(L−1)+1×n(L) → R is a regularization of the parameters θ .
Typical choices are quadratic costs

C(z, y) = 1

2
‖z − y‖2

2

and

R(θ) = 1

2

L−1∑

l=1

n(l)+1∑

i=2

n(l+1)+1∑

j=1

(
θ

(l)
i,j

)2
, (8)

where the bias units θ
(l)
1,j are not considered in the regularization R(θ).

In order to obtain an approximation for a given function f : Rn(1) → R
n(L)

, we
use a training set x(i) ∈ R

n(1)
, i ∈ {1, . . . , m} with m ∈ N samples and define the

output as y(i) = f (x(i)). Then, we solve

min
θ

J (θ)

to obtain an optimal value θ∗ such that the artificial neural network approximates
the function f well in the sense of the costs J . It is clear that the cost function J

might have several local minima leading to difficulties in finding the global solution.
We briefly comment on the choice of activation functions g(l). Although there

exist various choices, it is quite common to choose g(L)(z) = z as the identity and
the other g(l) as the sigmoid function g(l)(z) = 1

1+e−z , as the rectified linear unit

(ReLU) g(l)(z) = max(z, 0) or as the smoothed version of the latter, i.e. the softplus
or SmoothReLU function g(l)(z) = ln(1 + ez). The identity g(L)(z) = z in the last
layer allows the space R as the image of the artificial neural network because the
output is then given as linear combination of the previous layer. Sigmoid activation
functions g(l)(z) = 1

1+e−z can be basically used to mimic decisions (true or false)

due to their shape. The rectified linear unit g(l)(z) = max(z, 0) is bio-inspired, see
e.g. [17] and has been used successfully in artificial neural networks for a faster
training of the network. Due to the lack of differentiability at z = 0 smoothed
versions like the SmoothReLU mentioned above are common alternatives.
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2.2.1 Gradient Descent and Related Algorithms

In order to minimize the cost function (7), we use a descent gradient approach. Let
us denote by α ∈ R

K the K parameters to fit and we assume a general cost function
J in the form of

J (α) = 1

m

(
m∑

i=1

Qi (α)

)
, (9)

where Qi (α) denotes the cost of sample i associated with the parameters α. The
negative gradient −∇J (α) indicates the steepest descent of J at the point α and
minimizing J can be therefore achieved by “walking” into the latter direction of the
steepest descent. Let η > 0 be a parameter scaling of the step size and α0 ∈ R

k be
given, then

αk+1 = αk − η∇J (αk)

provides an iteration αk , which might end up in a local minimum of the cost function
J . Here, we face several problems:

• the computation time of ∇J (αk) is too high, which is caused by a large number
m of samples or a costly computation of ∇Q,

• the iteration αk might not converge,
• the algorithm ends up in a local minimum.

The first item can be tackled by considering the so-called stochastic gradient or mini
batch gradient descent schemes. The idea is as follows: Starting with a randomly
chosen subset Ik of {1, . . . , m} containing m̃ ≤ m elements, we adapt the iteration
of the gradient descent in the following way:

αk+1 = αk − η
1

m̃

⎛

⎝
∑

i∈Ik

∇Qi (αk)

⎞

⎠

=: αk − η∇J m̃
k (αk).

If we choose m̃ = m, then we obtain the so-called full batch gradient descent, which
is the classical gradient descent algorithm.

A very crucial parameter is the step size, or so-called learning rate η. If η is
chosen too large, the iteration might diverge and, in contrast, if η is too small,
it takes a large amount of iterations to reach some local minimum. Therefore,
efficient heuristics have been developed to choose and update the learning rate. A
brief overview can be found in e.g. [35] as well as in.2 A first step is the use of
ADAGRAD, which assumes an individual learning rate for every parameter, i.e.

2https://ruder.io/optimizing-gradient-descent/index.html#visualizationofalgorithms.

https://ruder.io/optimizing-gradient-descent/index.html
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αk+1,i = αk,i − η√∑k
l=0(∇J m̃

l (αl)i)2
∇J m̃

k (αk)i

for i = 1, . . . , m. This means that the learning rates decay fast in the presence
of high gradients and cannot increase anymore. Thus, as soon as a direction has a
very small learning rate, the algorithm cannot improve this direction appropriately.
To overcome this issue, the algorithm ADAGRAD has been developed in [35]
by considering a finite accumulate over window. Let E[g2]k satisfy E[g2]k+1 =
ρE[g2]k + (1 − ρ)(∇J m̃

k (αk))
2 for E[g2]0 = 0 and ρ ∈ (0, 1). Then E[g2]k adapts

to the squared gradient information iteratively with rate ρ. The latter resolves the
problem of always decaying learning rates but does not explain how to choose η in
a proper way. We define 	αk = αk+1 − αk and the ADADELTA algorithm reads
then as follows

E[g2]k = ρE[g2]k−1 + (1 − ρ)(∇J m̃
k−1(αk−1))

2,

	αk = −
√

E[	α2]k−1 + ε√
E[g2]k + ε

∇J m̃
k (αk),

E[	α2]k = ρE[	α2]k−1 + (1 − ρ)	α2
k ,

where ε > 0 is a chosen parameter to avoid singular values by division by zero and
initially E[	α2]0 = 0.

Since the presented algorithm only uses local information, it might converge
to a local minimum in the presence of several minima, which is often the case
considering artificial neural networks. In [25], an additive noise has been added
to the gradient, which is damped to zero as the number of iterations increases. This
allows for a probability to escape from local minima. Because this is a relevant
and non-difficult issue, there is recent research considering multiplicative noise or
more advanced noises to improve the probability of escaping a local minimum,
see, for example, [34, 36]. In our formulas, we replace the gradient ∇J m̃

k (αk) by
∇J m̃

k (αk) + Nk , where Nk ∼ N(0, 
k) is a multivariate normal distributed random
vector with zero mean and covariance matrix 
k . According to [25], we choose
(
k)ii = η1

(1+k)η2 for some constants η1, η2 > 0 and (
)ij = 0 whenever i �= j .
We briefly comment about the calculation of the gradient of the cost function. An

artificial neural network is simply speaking a chain of functions and to obtain the
gradient with respect to the parameters θ , the chain rule needs to be applied. This
can be done by backpropagation through the network, i.e. starting with the output
layer the derivatives are computed according to the chain rule backwards to the first
hidden layer. For more information about backpropagation, or computation of the
gradient, we recommend [4].
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2.3 Parameter Estimation and Cost Function in Pedestrian
Flow Model

We go back now to the initial motivation that we want to recover the interaction
function G between pedestrians from real data. In order to recover the interaction
function G, we also need to estimate the remaining parameters τ , vc simultaneously,
which makes the setting different to classical artificial neural network applications.
From the data point of view, we will have the measured positions Xk

i ∈ R
2 at

discrete times tk , where t0 < t1 < · · · < tm. We first discretize the microscopic
pedestrian model in the following way:

Vi(tk) = d

dt
Xi(tk) ≈ Xi(tk+1) − Xi(tk−1)

tk+1 − tk−1
,

Si(tk) = d

dt
Vi(tk) ≈ Xi(tk+1) − 2Xi(tk) + Xi(tk−1)

	tk	tk−1
,

where 	tk = tk+1 − tk . Therefore, we use V k
i = Vi(tk) and Sk

i = Si(tk) as
approximations of the velocity and acceleration of pedestrian i at time tk .

If we estimate all Di , i.e. the destination of pedestrian i, the number of param-
eters increases significantly and cannot expect good estimations. Therefore, we
perform a “pre-processing” and identify the destination by identifying pedestrians
destination from trajectories. We will explain the used approximation more detailed
while discussing the application examples.

The main difference to the classical learning and application of the artificial
neural network is here that we do not have the classical input–output structure. More
precisely, we can use the trajectories but have no explicit outputs given. Therefore,
we introduce the following cost function, where we denote by α = (τ, vc, θ) the
collection of all parameters which we want to estimate from data. The cost function
reads as follows:

J(α) = 1

m

1

2

m∑

k=1

[ Nk∑

i=1

∣∣∣τSk
i − (Dk

i vc − V k
i ) − τ

Nk∑

j=1,j �=i

hθ (X
k
i − Xk

j , V
k
i − V k

j )

∣∣∣
2

+ R(θ)
]
.

First of all, we observe the classical structure of the cost function as in (7) that
allows for using the toolbox of the stochastic gradient descent algorithms. The
regularization R is the one introduced in (8), which regularizes the parameters θ

that do not originate from a bias unit. The first part of the cost function simply
results from the ODE system of the trajectories and shows that we want to satisfy
the second equation (equation for the acceleration) as good as possible. Here, we
multiply the equation for the acceleration by τ to avoid divisions by zero and more
stable gradients with respect to this parameter.
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2.3.1 Data and Preprocessing of Data

In this last part of the section we comment on the preprocessing of the data. We use
the data from the data archive of experimental data from studies about pedestrian
dynamics,3 where next to the videos of the experiments one obtains trajectory data.
More precisely, we focus on the corridor unidirectional and bidirectional flow data.4

The main contents of the trajectory data are

• x and y coordinates at every frame number,
• personal ID identifying the corresponding individual as time evolves,
• the frame rate.

One significant difficulty is that the number of pedestrians and also the set of
personal IDs change over time, which is clear since pedestrians enter and leave
the corridor. Since we need approximations of the time derivative of the trajectory
data, we need at least data of a pedestrian i in frame k − 1, k, and k + 1. We first
cleaned them out and assigned the corresponding velocity and acceleration values.

In a next step, we identify the destination of each pedestrian by taking the
normalized mean velocity direction. To avoid too many different destination
directions, we round the latter values, since pedestrians in this scenario have to walk
through the corridor and should not change their main direction.

3 Computational Results

First we introduce the setting and parameter used throughout this section. We
randomly choose 60% from the data, i.e. from the frames, as the training set. The
remaining 40% are used as test set. The initial parameters are α0 = (τ0, vC,0, θ0)

with τ0 = 0.1, vC,0 as the average norm of the velocities from the test set and
θ0 are uniformly distributed randomly chosen from [−1, 1] with exception of the
parameters originating from the last hidden bias unit, which are set to zero. As
activation functions in the hidden layer we use smooth rectifier units (softplus)
g(2)(x) = ln(1 + ex) with derivative (g(2))′(x) = 1

1+e−x , which is the logistic

function. The output layer activation function is given as the identity g(3)(x) = x in
our case and we assume the parameter λ = 10−2 for the regularization.

In the stochastic gradient descent algorithm we use the gradient noise with the
parameters η1 = 0.5 and η2 = 0.25 as proposed in [25]. And according to [35], we
use ρ = 0.95 and ε = 10−6 in the ADADELTA algorithm. The batch sizes will be
varied in the examples as well as the size of the hidden layer of the artificial neural
network.

3http://ped.fz-juelich.de/database/.
4https://doi.org/10.34735/ped.2013.5, https://doi.org/10.34735/ped.2013.6.

http://ped.fz-juelich.de/database/
https://doi.org/10.34735/ped.2013.5
https://doi.org/10.34735/ped.2013.6
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Fig. 2 Value of τ (blue star) and vc (black circle) during iteration. (a) 4 neurons in hidden layer.
(b) 40 neurons in hidden layer

3.1 Unidirectional Flow in Corridor

We use the data trajUNICORR50001 from database5 in the following. It contains
the trajectory data for pedestrians walking from the right to the left in a corridor. As
one can observe from the video, which can be found also there, we do not have a
high amount of interaction between the pedestrians as well as we expect almost no
acceleration influences from the data. For this reason, we choose τ0 = 0.1 here. We
choose the configurations of the artificial neural network as n(1) = 4, n(3) = 2 and
n(2) ∈ {4, 40} here.

In Fig. 2 the values of τ and vc during the stochastic gradient are shown indicating
that our initial guess of both parameters is close to the values during the iterations.
Also, we observe no severe difference between the case of 4 hidden neurons (Fig. 2a)
and 40 hidden neurons (Fig. 2b). Since the calculation of the full batch costs, i.e. the
cost function evaluated on the complete training or test set, is very costly from the
computational point of view, we only computed the cost function for the initial guess
and the guess after 5000 iterations of the stochastic gradient algorithm. In Table 1 the
relaxation time τ ∗ and comfort velocity v∗

c after 5000 stochastic gradient iterations
are shown. They are reasonable since v∗

c are around 5–6 km/h. As mentioned before,
we do not observe much acceleration in the data such that a small value of τ ∗ is
reasonable as the comfort velocity is achieved very quickly. In the case of 4 neurons
in the hidden layer, i.e. 5 · 4 + 5 · 2 = 30 parameters for G, we have a decrease in
the cost function on both, the training and test set. Surprisingly, in the case of 40
neurons in the hidden layer (5 · 40 + 41 · 2 = 282 parameters) the cost function
increases. This might be due to not enough iterations, small batch size, or a wrong
regularization parameter.

5https://doi.org/10.34735/ped.2013.6.

https://doi.org/10.34735/ped.2013.6
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Table 1 τ ∗ and v∗
c after training and cost function evaluated on the test and training set for initial

parameter set and after 5000 stochastic gradient iterations with a batch size of 1

τ ∗ v∗
c Jtrain(α0) Jtest (α0) Jtrain(α

∗) Jtest (α
∗)

4 neurons 0.0564 1.5210 517.29 530.08 449.23 451.05

40 neurons 0.0409 1.4650 568.12 578.49 857.89 908.53

Figures 3 and 4 show the approximated function G, which is essentially the
artificial neural network. Since the dimension of the input is of dimension 4 and
the output’s dimension is 2, we have drawn the mappings (x, y) �→ G1((x, y), v)

and (x, y) �→ G2((x, y), v) for some fixed v ∈ R
2 separately. We recover the

intuition of G again: G1 is the attraction or repulsion (depending on the sign) in the
x direction whereas G2 describes the same in the y direction. The inputs of G are
the difference in the position, i.e. Xi − Xk , which corresponds to the values (x, y)

and the difference of the velocities Vi − Vk corresponding to v here. Let us assume
pedestrian i is at x position Xi,1(t) > Xk,1(t) but in y direction they are the same
position, i.e. Xi,2(t) = Xk,2(t), which implies x > 0 and y = 0. Pedestrians in this
experiment walk from the right to the left and we imply by the latter assumption
that pedestrian i walks behind pedestrian k. If vi = (−2, 0) and vk = (−1, 0),
i.e. pedestrian i walks faster, then v = (−1, 0). This situation is shown in Fig. 3
in the left first corners of the subfigures. We observe that the force decreases with
x increasing, which is reasonable. One could worry about the values being always
negative here but that is a problem of parameter identification since we only have
single direction interactions in the data (all walk from right to the left). The plots
corresponding to v = (1, 0) show exactly the opposite, i.e. pedestrian i walks slower
than pedestrian k. To understand the graphics with v = (0,−1) and v = (0, 1) we
consider the following situation:

Let pedestrians i and k stay at the same x position but the y coordinate of i is
assumed to be greater than the coordinate of k. If vi = (−1,−1) and vk = (−1, 1)

that means they might run into each other, we obtain v = (0,−2), or normalized
v = (0,−1). We see that for fixed x = 0 the value of G in x-direction (G1) increases
in y in Fig. 3a. In y-direction (b) it is the opposite as one would expect.

In Fig. 4 the behavior is different. One can observe that the function behaves more
nonlinear and also covers an increasing and decreasing behavior as the distance
‖(x, y)‖ changes. In order to obtain a better result in terms of the cost function, one
has to use larger batch sizes as well as more iterations.

Since Figs. 3 and 4 indicate that 4 neurons are too less and 40 need a long time
to converge in the stochastic gradient algorithm, we take 10 neurons and work with
a batch size of 9. Figure 5 shows the result for G, which looks much better now
although we reduced the number of iterations to 2500. Table 2 shows that we have
a decreasing cost function again and the optimal values are close to the values in
Table 1. A big difference can be seen in Fig. 5, where the shape of the function G

fits better to the intuitions stated before. We also see that the x-direction has been
learned better than the y-direction, which is clear from the data.
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Fig. 3 Approximated function G((x, y), (v1, v2)). (a) x-direction with 4 neurons in hidden layer.
(b) y-direction with 4 neurons in hidden layer
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Fig. 4 Approximated function G((x, y), (v1, v2)). (a) x-direction with 40 neurons in hidden layer.
(b) y-direction with 40 neurons in hidden layer
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Fig. 5 Approximated function G((x, y), (v1, v2)). (a) x-direction with 10 neurons in hidden layer.
(b) y-direction with 10 neurons in hidden layer
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Table 2 τ ∗ and v∗
c after training and cost function evaluated on the test and training set for initial

parameter set and after 2500 stochastic gradient iterations with a batch size of 9

τ ∗ v∗
c Jtrain(α0) Jtest (α0) Jtrain(α

∗) Jtest (α
∗)

10 neurons 0.0391 1.4683 556.61 567.52 493.79 502.09

Fig. 6 Value of τ (blue star) and vc (black circle) during iteration. (a) 4 neurons in hidden layer
and batch size 1. (b) 10 neurons in hidden layer and batch size 9

3.2 Bidirectional Flow in Corridor

We also have a look at a second data set called BICORR400A1.6 Here, two
groups of pedestrian run against each other in a corridor, i.e. we have pedestrians
walking to the right and to the left. As before, we use a batch size of one
for the stochastic gradient algorithm and 4 neurons in the hidden layer. Due to
computational limitations, we restrict on 2500 iterations here. Figure 6 shows the
evolution of the parameters τ and vc during the stochastic gradient, where left 4
neurons and a batch size of 1 have been used and on the right 10 neurons and a
batch size of 9. The values for τ do not change significantly anymore and the values
of vc tend to being flat as well.

Table 3 contains the values for τ and vc after the iterations. Since the number of
pedestrians in the corridor is high, we have a lower average speed, which implies a
lower v∗

c . The cost function value is lower for α∗ than for the initial configuration
α0 and Fig. 7 indicates that the function G has been fitted in a better way. More
detailed, we always have the increasing or decreasing behavior in x direction.

Considering the interaction function G for 10 neurons and using a larger batch
size of 9, we see again a more nonlinear behavior, see Fig. 8. More detailed, Fig. 8a
indicates that the interaction in x-direction, i.e. G1 depends strongly on y compared
to Fig. 7a. This is based on the data since the pedestrians form two walking blocks of

6https://doi.org/10.34735/ped.2013.6.

https://doi.org/10.34735/ped.2013.6
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Table 3 τ ∗ and v∗
c after training and cost function evaluated on the test and training set for initial

parameter set and after 2500 stochastic gradient iterations with a batch size of 9

τ ∗ v∗
c Jtrain(α0) Jtest (α0) Jtrain(α

∗) Jtest (α
∗)

4 neurons 0.0438 0.4715 500.68 513.71 449.23.71 451.05.09

10 neurons 0.0373 0.3112 − − − −

groups: one walking to the left and one walking to the right and almost no mixture in
the corridor. Figure 8 shows a quite similar behavior as it is the case for 4 neurons.

Summarizing, the choice of the number of neurons severely affects the results as
one would expect. Also the type of data strongly influences the results. This is due
to effects, which are or are not covered in the data.

4 Conclusion

We have derived a data fit setting for the social force model, where the interaction is
based on an artificial neural network. In addition, we have introduced the numerical
treatment, including stochastic gradient descent heuristics and data preprocessing.
The quality of the data fit severely depends on the number of artificial neurons and
the number of stochastic gradient iterations as we have seen in results based on real
data sets. Due to computational restrictions one cannot significantly increase the
number of artificial neurons and the number of iterations simultaneously. From the
results we also conclude that the interaction strongly depends on the velocity of both
interacting pedestrians as well as their distance from each other.

In terms of computation time, the minimization of the cost function took about
2–3 h in the case of 4 neurons and a batch size of one, whereas the batch size
of 9 and 10 neurons required 12 h (unidirectional) and 3 days (bidirectional) to
reach the number of iterations on a standard desktop computer. The computation
time also depends strongly on the number of pedestrians, which are present in a
sample since the number of evaluations increases quadratically in the number of
pedestrians. One possible way out of the computational restrictions might be the
use of well-developed artificial neural network implementations and embed them
into the presented model.

Summarizing, there is a recent trend to carry out data-driven approaches to
estimate parameters in crowd models. So far, the Bayesian probabilistic approach [7,
14] and the artificial neural networks approach [33] are the most common tools in
the literature. Both approaches are characterized by the computational evaluation
of special optimization problems with differential equations as constraints and are
therefore computationally costly. Furthermore, the choice of other problem-specific
parameters and a reasonable initial guess might be crucial to numerically compute
reasonable solutions. From a theoretical point of view, it seems that the Bayesian
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Fig. 7 Approximated function G((x, y), (v1, v2)). (a) x-direction with 4 neurons in hidden layer.
(b) y-direction with 4 neurons in hidden layer



30 S. Göttlich and S. Knapp

Fig. 8 Approximated function G((x, y), (v1, v2)). (a) x-direction with 10 neurons in hidden layer.
(b) y-direction with 10 neurons in hidden layer
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approach can rely on more results, while the theory on artificial neural network is
rather in the early stages. However, a direct comparison of both approaches based
on the same setting is still missing.
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