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Preface

The study of human crowds is a challenging interdisciplinary field, which combines
ideas and techniques from different disciplines, ranging from mathematics and
physics to informatics and psychology.

This area of research has attracted enormous attention in recent years not
only for its theoretical interest but also for its potential societal benefits. Indeed,
computational models of crowd movement can lead to more efficient transportation
planning, a key driver of sustainability, thus reducing the cost of transportation and
pollution and improving the population’s quality of life.

Another timely application, motivated by the recent outbreak of Covid-19, is
about controlling the spread of contagious diseases. This target may be achieved
by coupling a contagion model with simulations of human crowds that take into
account the change of the pedestrians’ behaviour due to social distancing measures.

This book is the second of a series, which aims at presenting the state of the art,
challenges, and future research perspectives in the area of modeling and simulation
of human crowds as well as at providing practical guidelines for crowd management.
The topics are covered from different perspectives, thus providing a comprehensive
overview on the works carried out in this challenging research area.

The present edited book comprises nine chapters with contributions from leading
experts in the field. The focus is on three main areas, namely pedestrian interactions,
multiscale modeling, and dynamics in complex environments. Chapter 1 is an
introductory chapter, which highlights insights presented in the following chapters
and gives an overview of the book.

While this edited book does not cover all the possible topics, it leads the
reader to a deeper understanding of pedestrians, dynamics and to envisioning the
future research directions. A forthcoming Crowd Dynamics Volume 3 will continue
chasing the new trends in this area.

Edinburgh, UK Livio Gibelli
September 2018

v



Contents

Behavioral Human Crowds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Nicola Bellomo, Livio Gibelli, and Damian Knopoff

Artificial Neural Networks for the Estimation of Pedestrian
Interaction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Simone Göttlich and Stephan Knapp

High-Statistics Modeling of Complex Pedestrian Avoidance Scenarios . . . . 33
Alessandro Corbetta, Lars Schilders, and Federico Toschi

Modeling Collective Behaviour: Insights and Applications
from Crowd Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Anne Templeton and Fergus Neville

Crowd Dynamics Through Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Rinaldo M. Colombo, Magali Lecureux-Mercier, and Mauro Garavello

The Fokker–Planck Framework in the Modeling of Pedestrians’
Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Alfio Borzì

Recent Developments in Controlled Crowd Dynamics. . . . . . . . . . . . . . . . . . . . . . . 133
M. K. Banda, M. Herty, and T. Trimborn

Mathematical Models and Methods for Crowd Dynamics Control . . . . . . . . 159
Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, and Daniele Peri

Mixed Traffic Simulation of Cars and Pedestrians for
Transportation Policy Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Hideki Fujii, Hideaki Uchida, Tomonori Yamada, and Shinobu Yoshimura

vii



Behavioral Human Crowds

Nicola Bellomo, Livio Gibelli, and Damian Knopoff

Abstract This chapter provides an introduction to the contents of Gibelli (in
Crowd Dynamics, Volume 2—Theory, Models, and Safety Problems. Modeling
and Simulation in Science, Engineering, and Technology, Birkhäuser, New York,
2020) and a general critical analysis on modeling, simulation, and control of human
crowds with emphasis on research perspectives. The contents are organized in three
parts: firstly, three key topics are stated which will be probably the focus of future
research; Subsequently, the contents of Chaps. “Artificial Neural Networks for the
Estimation of Pedestrian Interaction Forces–Mixed Traffic Simulation of Cars and
Pedestrians for Transportation Policy Assessment” are summarized by setting them
in the context of the aforementioned key research topics; finally, some promising
research directions are presented and discussed.

1 Plan of the Chapter

The study of human crowds is a challenging interdisciplinary research field which
requires contributions from different disciplines, ranging from technology, which is
needed to detect the main features of crowds, to mathematics and computational
sciences, which allow one to derive models of crowds and to simulate their
dynamics, respectively.
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Human psychology can also significantly contribute to crowd modeling, espe-
cially if one attempts to capture the pedestrian’s behavior in crisis situations, like a
rapid evacuation due to incidents or when the crowd includes groups of activists that
confront with each other [23]. In all these applications, the pedestrian’s dynamics is
strongly influenced by social interactions [1, 22, 29] which contribute to spread out
unusual behaviors through the crowd.

This area of research has attracted enormous attention in recent years not only
for its theoretical interest but also for the potential societal benefits. As an example,
computational models of crowd movement can lead to more efficient transportation
planning, a key driver of sustainability, thus reducing the cost of transportation,
pollution, and improving the population’s quality of life. Furthermore, these tools
can contribute to city security and safety in that pedestrians/vehicles may be used as
sensors to identify threats that compromise the safety of persons and infrastructures
(e.g. in natural disasters or acts of terrorism).

This introductory chapter presents an overview of the edited book [25] which
addresses various aspects of modeling, simulations, and control of the dynamics of
human crowds. A key reference is Volume 1 which provided important contributions
on the same research areas [26].

We start by briefly presenting three key topics which will probably form the focus
of future research. These topics are selected according to our own bias and, although
they do not encompass all the current open problems, their discussion paves the way
to a deeper understanding of the contents of this edited book and it may help in
foreseeing the future directions in this challenging research field.

Key Topic 1: As all systems of self-propelled particles, the collective motion of human
crowds is driven by interactions at the microscopic scale. The modeling should account
for behavioral walking strategy of pedestrians which, in turn, has its roots in pedestrians’
psychology. The nonlocality and nonlinear nature of interactions between pedestrians
cannot be overlooked.

Key Topic 2: Pedestrians generally move in complex environments constituted by a network
of interconnected areas, each of them with different geometrical features. The study of crowd
dynamics should account for this complexity so as to provide tools which may support urban
planners and crisis managers in dealing with problems of practical interest.

Key Topic 3: Crowd dynamics is usually studied by means of individual based models,
kinetic models, and hydrodynamic models. Accordingly, the focus is either on the behavior
of single pedestrian, on the crowd as a whole, or a combination of the two. However, the
modeling approach should account for the multiscale features inherent in the dynamics of
crowds rather than being limited to a specific scale of description.

The rest of the chapter is organized as follows:
Section 2 outlines the contents of Chapters 2–9 of [25], setting them in the

context of the key research challenges presented in this section.
Section 3 proposes some perspective reasoning on the research activity that

should be carried out to make seminal contributions in this challenging research
field.
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2 On the Contents of the Edited Book

The contents of the edited book [25] deal with front-edge research topics in
the modeling, simulation, and control of crowd dynamics. Although they bring
important contributions to this research field, many problems are still left open, as
we will discuss in the last section.

The next chapters cover a broad range of areas (i.e. from mathematics to
engineering and psychology) but we can roughly group them based on which Key
Topic they mainly contribute to. A graphical index is shown in Fig. 1.
The contributions to Key Topic 1 are Chaps. “Artificial Neural Networks for the
Estimation of Pedestrian Interaction Forces, High-Statistics Modeling of Complex
Pedestrian Avoidance Scenarios, and Modeling Collective Behavior: Insights and
Applications from Crowd Psychology.”

Chapter “Artificial Neural Networks for the Estimation of Pedestrian Interaction
Forces” [28] shows how artificial neural networks can be used to fit the unknown
interaction forces between pedestrians who enter in the celebrated social force
model [31]. The artificial neural network is trained simultaneously with other
parameters arising in the model by using a tailored cost function and stochastic
gradient techniques. The approach is tested by using real data sets for the unidi-
rectional and bidirectional flow in corridors. The potential applications involve the
management of emergency situations [30, 32].

Chapters
2, 3, 4

Key Topic 1
Pedestrians interactions

Key Topic 2
Mutiscale approach

Key Topic 3
Complex environments

Chapters
5, 6, 7, 8

Chapter 9

Fig. 1 Graphical index of the edited book
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Chapter “High-Statistics Modeling of Complex Pedestrian Avoidance Sce-
narios” [21] aims at providing a detailed description of interactions between
pedestrians. The main focus is the quantitative modeling of the dynamics of
a single pedestrian in a way which is deeply connected with the physics of
flowing active matter, see also [20]. The authors enlighten the statistical features
of the pedestrian’s trajectories as given by high-statistics pedestrian dynamics
measurements collected in real-life conditions. The study is both on the undisturbed
motion, namely in the absence of interactions with other pedestrians, and on the
avoidance dynamics triggered by a pedestrian incoming in the opposite direction.
This kind of investigation can contribute to get a more fundamental understanding
of the self-organization ability of crowds, e.g. lanes of uniform walking direction in
pedestrians counter flows [9, 27].

Chapter “Modeling Collective Behavior: Insights and Applications from Crowd
Psychology” [37] discusses how preestablished and emerging social identities can
affect the pedestrian behavior in crowds. This is a key process which occurs in a
broad variety of circumstances, e.g. the commuters on a train which breaks down,
the pedestrians in an emergency evacuation, and so forth. In all these cases, people
start seeing each other as sharing the same fate and identity and modify their walking
strategy accordingly. This study contributes to understand which psychological
features of pedestrians should be included into the mathematical modeling of crowd
dynamics. A similar investigation has been carried out in [34].

The contributions to Key Topic 2 are Chaps. “Crowd Dynamics through Con-
servation Laws, The Fokker–Planck Framework in the Modeling of Pedestrians’
Motion, Recent Developments in Controlled Crowd Dynamics, and Mathematical
Models and Methods for Crowd Dynamics Control.”

Chapter “Crowd Dynamics through Conservation Laws” [18] develops a sharp
qualitative analysis of a variety of crowd dynamics models with nonlocal terms.
These terms are obtained by convolutions with smooth functions and are deemed
to reproduce the visual horizon of each pedestrian. Models are classified according
to the physical domain, to the terms affected by the nonlocal operators, and to the
number of different populations composing the crowd.

Chapter “The Fokker–Planck Framework in the Modeling of Pedestrians’
Motion” [15] deals with control problems in crowd dynamics models. In more
detail, the chapter presents a modeling approach by stochastic drift-diffusion
processes and the related Fokker–Planck equations. The predictive ability of these
models is carefully studied and different control strategies are discussed. The
dynamics of a single pedestrian subject to perturbations and collision avoidance
maneuvers is studied based on the formulation of a Fokker–Planck Nash game. In
addition, a critical analysis on the mean-field approach to crowd motion is proposed
providing pointers to relevant models.

Chapter “Recent Developments in Controlled Crowd Dynamics” [7] provides a
survey of recent results on the theory and applications of sparse control methods
to many fields, ranging from crowd dynamics to opinion formation and wealth
models. The challenges and approaches in mean-field/hydrodynamic limits are also
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discussed. The techniques are applied to an elementary particle model to illustrate
the basic methods but the extension to nonlinear models is also briefly addressed.

Chapter “Mathematical Models and Methods for Crowd Dynamics Control” [3]
presents a detailed analysis of two specific control strategies: The first strategy
refers to the use of special agents, called leaders, to steer the crowd toward the
desired direction. This strategy relies on the strength of the social influence (herding
effect), namely the natural tendency of people to follow group mates in situations
of emergency or doubt. The second strategy consists in modifying the walking area
by adding obstacles optimally shaped and placed. The mathematical models are
discussed at different observation and modeling scales within a general multiscale
framework.
The contributions to Key Topic 3 are Chap. “Mixed Traffic Simulation of Cars and
Pedestrians for Transportation Policy Assessment.”

Chapter “Mixed Traffic Simulation of Cars and Pedestrians for Transportation
Policy Assessment” [24] sets out a new vision of the simulation of mixed traffic
consisting of cars, trams, and pedestrians, as a practical tool to assess different
transportation policies. A major issue is the modeling of interactions between
heterogeneous agents and the capability to fully capture the geometrical complexity
of the network where the dynamics is studied. In this chapter, the empirical data and
mathematical models are combined to develop a simulator which turns out to be an
important tool for urban planners.

3 A Forward Look to Research Perspectives

The topics presented in the chapters of this edited book stimulate to a forward
look at some research perspectives in the area of crowd modeling and simulations.
The emerging idea is that the future research activity will be addressed, more and
more, to provide practical tools which may bring benefits to our society. More
specifically, computational models should be developed within a systems approach
to contribute either to optimize the overall flow of vehicles over networks of roads in
cities or to help crisis managers in dealing with safety problems such as emergency
evacuations, in complex situations like the one depicted in Fig. 2.

Accordingly, future research programs should tackle the key topics listed in
Sect. 1 as a whole, rather than viewing them as objectives to be achieved indepen-
dently one from the other. In addition, it is worth stressing that the aforementioned
topics generate challenging analytic and computational problems which definitely
deserve attention and may stimulate fundamental research activity as well.

Bearing all the above in mind, the following thoughts are brought to the reader’s
attention along with some bibliographic indications.

Detailed Modeling of Pedestrians Interactions The derivation of models consis-
tent with the objectives of the aforementioned systems approach requires fundamen-
tal understanding of the dynamics of interactions whose modeling at different scales
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Fig. 2 Snapshot of pedestrians and vehicles along a congested road

should follow the same principles [5]. This is closely related to Key Topic 2 and Key
Topic 3.

The modeling approach should preliminary group the interacting entities in
different populations, characterizing their heterogeneity and interaction rules. As
an example, this strategy has been proposed in [5] for a crowd in a domain
with boundaries, internal obstacles, and inlet–outlet doors. However, it is worth
stressing that a more comprehensive modeling approach requires to also account
for the heterogeneity of the walking areas as well as, more in general, the complex
dynamics studied in [24].

Note that the modeling approach must fulfill two important additional require-
ments, especially with respect to the management of crisis situations. Firstly, the
computational effort required for numerically solving the model should be kept as
small as possible since the real-time simulations of the crowd are needed. Secondly,
one should account for emotional states which can drive the crowd far from rational
behaviors as those studied in [6, 35]. An interesting approach to propagation of stress
by contagion has been proposed in [11, 39], while the development in [13] derives
models from the study of interactions at the individual based scale corresponding to
consensus dynamics. These papers have shown how flow patterns are modified by
the propagation of stress. These pioneer studies on the spreading of emotional states
prompt to further investigations, which might also be related to control problems [2].

Multiscale Approach to Crowd Dynamics The modeling of pedestrians crowds
needs a multiscale approach since a single observation and representation scale
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cannot fully capture the collective dynamics of living systems. Indeed, the dynamics
at the microscopic scale defines the conceptual basis toward the derivation of
models at the mesoscopic scale. In turn, the hydrodynamic models, corresponding to
observable macroscopic quantities, can be obtained from kinetic models by letting
the distance between individuals tend to zero.

A more general discussion has been elaborated in [5]. Therein, it is shown
that models can be derived at each scale through common assumptions on the
walking strategy and using the same parameters. The described approach includes
the spreading of emotional states which is a recent contribution in the literature
on crowd dynamics [13, 39]. Chapters “Modeling Collective Behavior: Insights
and Applications from Crowd Psychology, Recent Developments in Controlled
Crowd Dynamics, and Mathematical Models and Methods for Crowd Dynamics
Control” provide a survey of results, where macroscopic models are derived from
the underlying description at the microscale by local averaging tools and from
kinetic models by mean-field averaging, see also [14, 16]. Perturbation methods
in terms of a small parameter corresponding to the distance between walkers have
been developed in [8], while a general methodology on the derivation of diffusion
models has been proposed in [17] by a technique somehow inspired by the Hilbert
sixth problem [33].

However, it is plain that this research topic is only at an initial stage and further
activity has to be carried out to account for the broad variety of the dynamics of
emotional states as well as for the system heterogeneity.

A System Approach to Crowd Dynamics The chapter [24] has proposed an
attractive approach to modeling the dynamics of heterogeneous agents, from
pedestrians to vehicles moving over networks in large cities. The same modeling
approach may be developed for dealing with emergency evacuation from envi-
ronments described as complex networks whose branches have specific features.
As an example, the heterogeneity of walking areas should be fully taken into
account [19, 36].

The adoption of this systems approach is fundamental for designing a simulation
platform to support urban planners and/or crisis managers. Such a platform may
offer a virtual and augmented-reality environment which permits one to optimize
the flow of vehicles in road networks, improve the management of safety problems
and/or the design of buildings [38]. Furthermore, crisis managers can be trained by
allowing them to explore different scenarios triggered by the possible actions that
can be taken in emergency conditions. Some perspective ideas are proposed in [12]
toward the development of machine learning devices to select optimal safety actions
based on the sharp analysis of a database repository of a large number of simulations
corresponding to different external actions.

Finally, let us mention that the derivation and application of the models pose
challenging analytic problems. These include:

(i) Qualitative analysis, namely existence and regularity of solutions of initial-
boundary value problems;



8 N. Bellomo et al.

(ii) Asymptotic analysis toward the derivation of models at the higher scale from
the underlying description at the lower scale;

(iii) Development of suitable computational methods, as models at different scales
have different differential structures, which requires a specific numerical
treatment.

Chapter “High-Statistics Modeling of Complex Pedestrian Avoidance Scenar-
ios” [18] provides, as an example of the topic mentioned in (i), a sharp study of
models at the macroscopic scale. This topic has already been treated in the contribu-
tions included in [26], in particular [4] and [35], for models at the macroscopic scale,
while a qualitative analysis of kinetic theory models has been developed in [10].
However, the preceding sections have enlightened how the complexity of models
has been rapidly increasing to refer to urban environments and complex venues in
general. The above literature refers to models at the macroscopic scale, while less
studied is the case of kinetic type models [10].

The multiscale vision for modeling crowd dynamics has already generated
problems, presenting challenging analytic difficulties, examples are [3, 8, 16]. The
hint of [5] suggests to develop models at each scale according to the same principles
and using the same parameters. This rationale has been applied to some specific
models, see, for instance, [3, 8], while the development of a multiscale vision for a
dynamics over complex networks remains a challenging open problem.
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Artificial Neural Networks for the
Estimation of Pedestrian Interaction
Forces

Simone Göttlich and Stephan Knapp

Abstract We present a data fitting approach for the social force model by Helbing
and Molnár using artificial neural networks. The latter are used as a universal
approximation for the unknown interaction forces between pedestrians. We train
the artificial neural network simultaneously with other parameters arising in the
model by utilizing a tailored cost function and stochastic gradient techniques. We
test our approach using real data sets for the unidirectional and bidirectional flow in
corridors and point out the advantages and drawbacks of the proposed approach.

1 Introduction

The modeling of crowd dynamics provides a useful tool for the evacuation or
capacity planning problem. A good overview of existing literature on pedestrian
flow models can be found in [2, 3, 8, 13], where mainly two classes of modeling
approaches, i.e. microscopic and macroscopic models, are distinguished. Micro-
scopic pedestrian models typically rely on Newton-type dynamics, e.g. in [8, 19, 26]
or cellular automata, e.g. in [6, 23, 29], while macroscopic models can be either
derived via limiting processes [8, 10, 15, 24] or phenomenologically, see e.g.
[18, 21, 26, 27]. Starting from a microscopic level, model extensions include, for
example, vision cones [11], shortest-path information [12], and stochastic velocities
[10, 31, 32].

In fact, all kinds of models are typically based on information about the pedestri-
ans’ behavior such as their maximal acceleration, comfort velocity, interaction with
other pedestrians, and obstacles. If these parameters are well-known, the models can
be used to predict reliably the movements of pedestrians. The latter is an important
issue for analyzing capacities of buildings and the detection of safe escape routes.
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Unluckily, it is hard to obtain good approximations of the modeling parameters and
the parameters should be estimated using real data from studies about pedestrian
dynamics.1 Real data should be used carefully since behavior of humans may
additionally depend on further influences, i.e. cultural aspects or panic. A good
overview of issues concerning parameter estimation can be found in [1, 22, 30].

In this contribution, we aim to estimate the pedestrian interaction forces for
the unidirectional and bidirectional flow in corridors for a microscopic pedestrian
model. In contrast to [7, 14], where a Bayesian probabilistic method has been
applied for the estimation, we focus on artificial neural networks [4]. In a very recent
result by Tordeux [33], artificial neural networks have been used for the estimation
of pedestrian speed in corridors and bottleneck situations. In our case, the artificial
neural network is a building block in a physically motivated model, the so-called
social force model, and is used as a function approximation. The application is non-
classical in the sense that we do not intend to match a given input with the outcome
of the artificial neural network. More precisely, the compared output depends on
unknown parameters which we aim to find during the training of the model. Due to
this structure, we have to deal with a non-classical cost function and the parameter
identification gets more involved. Since parameter estimation for pedestrian flow
models is an emerging research area, in particular in combination with real data, it
opens new challenging questions from a theoretical and computational viewpoint.
We try to address those while presenting our numerical results.

2 Parameter Estimation

This section is devoted to the application of artificial neural networks for parameter
estimation in the pedestrian flow model by Helbing and Molnár. To do so, we
first introduce the modeling details and explain the mathematical framework of the
artificial neural network. Since our intention is to estimate the interaction between
pedestrians, the crucial point will be the computation of weights for the artificial
neural network.

Inspired by the social force model [19], our investigations are based on Newton-
type microscopic equations which describe the movement and acceleration of every
pedestrian due to obstacles, destinations, and interaction forces. Let us consider
i = 1, . . . , N,N ∈ N, pedestrians having positions Xi(t) ∈ R

2 and velocities
Vi(t) ∈ R

2 at time t ≥ 0. This means that we look from top on to pedestrians, which
are represented by their center of mass Xi(t) and their direction of movement Vi(t).
In general, the model can be written as

d

dt
Xi(t) = Vi(t), (1)

d

dt
Vi(t) = 1

τ
(Di(Xi(t))vc−Vi(t))+F(Xi(t), Vi(t),X−i (t),V−i (t))

+ Fw(Xi(t), Vi(t)),

1http://ped.fz-juelich.de/database/.

http://ped.fz-juelich.de/database/
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where τ > 0 denotes a relaxation time describing how fast pedestrians achieve
their comfort velocity, Di is the unit vector towards the destination, and vc > 0
is the comfort velocity. The forces F and Fw describe the acceleration caused by
interaction with other pedestrians, where z−i = (z1, . . . , zi−1, zi+1, . . . , zN), and
the acceleration caused by walls or obstacles, respectively.

The componentDi(Xi(t))vc describes the desired velocity vector given that there
are no pedestrians and walls around pedestrian i. Hence, 1

τ
(Di(Xi(t))vc − Vi(t)) is

an acceleration along the direction of the desired velocity vector of pedestrian i.
Assuming that Di(Xi(t)) = Di is independent of the position then, in the absence
of other pedestrians and walls, we get

d

dt
Vi(t) = 1

τ
(Divc − Vi(t)) (2)

with solution Vi(t) = Divc + e− t
τ (Vi(0) − Divc). That means, 1

τ
is the decay

rate of the initial deviation away from the desired velocity vector vcDi . Regarding
the interaction acceleration function F, it seems unpromising estimating this high
dimensional function, i.e. for large N , by using data. Therefore, we assume the
following structure of F :

F(Xi(t), Vi(t),X−i (t),V−i (t)) =
N∑

k=1,k �=i
G(Xi(t)−Xk(t), Vi(t)− Vk(t)).

(3)

In fact, this means that we assume identical reactions of every single pedestrian
given the other pedestrians. Common choices for G in the literature are potentials
[15, 28] equipped with a vision cone [11]. In [28], the repulsive forces are given by
a parameterized (Morse-type) potential and the parameters are estimated using data
to solve a minimization problem with quadratic costs. Reasonable assumptions are
made but the shape of the function G has to be proposed. However, we will assume
that Eq. (3) holds and our goal is to recoverG : R4 → R

2 using data for an artificial
neural network as an approximation tool.

The acceleration at boundaries given by the function Fw is crucial since obstacles
and walls can be assumed as solid objects and these objects represent a reflective
boundary. This fact can be only incorporated into Fw by considering unbounded
accelerations, which makes the system (1) very hard to solve. One way out of this
has been introduced in [15], where the boundary is incorporated by manipulating
the realized velocity d

dt
Xi(t) = V(Xi(t), Vi(t)). Then, Vi(t) can be interpreted as

the desired, but maybe not realized, velocity in the presence of obstacles. For this
reason, we neglect the wall forces in the rest of this manuscript and comment on
boundary treatment individually in examples.
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Summarizing, we need a general tool to fit the function G appropriately. If we
assume a potential again, e.g. a Morse potential, and try to find the parameters,
we assume too much and could be wrong. Therefore, we choose an artificial
neural network as function approximation for the function G. For completeness,
we introduce artificial neural networks in the following and state relevant results for
our purpose.

2.1 Artificial Neural Network as Universal Function
Approximation

Unlike existing contributions for the parameter estimation in pedestrian models
[7, 14, 28], we focus on artificial neural networks for the parameter estimation.
Motivated by recent works for neural networks applied to ordinary differential
equations [5, 16], we will now embed our parameter estimation problem into this
context.

2.2 Setting Up an Artificial Neural Network

We consider feed forward artificial neural networks here, which means that the input
given into the input layer is fed forward through the network only, i.e. there exists
no connections backwards. More detailed, let L be the number of layers including
the input and hidden layer (Fig. 1).

The value of the so-called neurons a(l)k in layer l and neuron k is computed as
follows:

Input Layer

a
(1)
1 = 1, a

(1)
k = xk−1 (4)

for k ∈ {2, . . . , n(1) + 1}, where x ∈ R
n(1) is the input (feature) and n(1) is the

number of neurons without the bias unit a(1)1 .

Hidden Layers

a
(l)
1 = 1, a

(l)
k = g(l)

⎛

⎝
n(l−1)+1∑

k̃=1

θ
(l−1)
k̃,k

a
(l−1)
k̃

⎞

⎠ (5)

for l ∈ {2, . . . , L− 1} and k ∈ {2, . . . , n(l) + 1}.



Artificial Neural Networks for the Estimation of Pedestrian Interaction Forces 15

Output Layer

a
(L)
k = g(L)

⎛

⎝
n(L−1)+1∑

k̃=1

θ
(L−1)
k̃,k

a
(L−1)
k̃

⎞

⎠ (6)

for k ∈ {1, . . . , n(L)}. One has to recognize that the output layer does not contain
a bias unit, i.e. where a fixed value is set to 1. The entry θ(l)i,j of the matrices θ(l) ∈
R
n(l−1)×n(l) describes the weight from neuron a(l−1)

i to the value of the neuron a(l)j .

Example 1 We consider the case of a single hidden layer in this example, i.e.L = 3.
Further, we assume an output layer size of n(L) = 1 here. Then, we can write

a(3) = g(3)
⎛

⎝
n(2)+1∑

k̃=1

θ
(2)
k̃,1
a
(2)
k̃

⎞

⎠

= g(3)
⎛

⎝
n(2)+1∑

k̃=1

θ
(2)
k̃,1
g(1)

⎛

⎝
n(1)+1∑

s=1

θ
(1)
sk̃
a(1)s

⎞

⎠

⎞

⎠

= g(3)
⎛

⎝θ(2)1,1 +
n(2)+1∑

k̃=2

θ
(2)
k̃,1
g(1)

⎛

⎝θ(1)
1,k̃

+
n(1)+1∑

s=2

θ
(1)
sk̃
xs−1

⎞

⎠

⎞

⎠ .

1

x1

x2

x3

x4

1

a (2)
2

a (2)
3

a (2)
4

a (2)
5

a (2)
6

a (3)
1 Output 1

a (3)
2 Output 2

Hidden
layer

Input
layer

Output
layer

Fig. 1 Graphical representation of a feed forward artificial neural network with one hidden layer
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Hence, the output a3 is a nested sum of weighted evaluations of functions of the
input x. A quite common choice is g(L)(z) = z as the identity. This representation
allows for an increasing size of the hidden layer n(2) that we can profit from a special
class of approximation functions. Indeed, this is the result of the so-called universal
approximation theorems:

Theorem 1 ([9, 20])

1. Let f be a continuous function on [0, 1]n(1) and ε > 0 as well as the
activation function g(1) is assumed to be a continuous sigmoid function, i.e.
limt→∞ g(1)(t) = 1 and limt→−∞ g(1)(t) = 0. Then, there exists an artificial
neural network in the form of

a(3)(x) =
n(2)+1∑

k̃=2

θ2
k̃,1
g(1)

⎛

⎝θ(1)
1,k̃

+
n(1)+1∑

s=2

θ1
sk̃
xs−1

⎞

⎠

such that

‖a(3) − f ‖∞ < ε.

2. Let f ∈ Lp(μ), where μ is a finite measure on R
n(1) and ε > 0 as well as

the activation function g(1) is assumed to be unbounded and nonconstant. Then,
there exists an artificial neural network in the form of

a(3)(x) =
n(2)+1∑

k̃=2

θ2
k̃,1
g(1)

⎛

⎝θ(1)
1,k̃

+
n(1)+1∑

s=2

θ1
sk̃
xs−1

⎞

⎠

such that

(∫

Rn
(1)
|a(3)(x)− f (x)|pμ(dx)

) 1
p

< ε.

Theorem 1 implies that we can find an artificial neural network with one single
hidden layer such that a function is approximated appropriately in this way.

In order to obtain the weights for approximating functions we use a minimization
problem. To do so, let hθ (x) = (a(L)k ) be the output of the network for a given input
x. Then, we define the cost function as

J (θ) = 1

m

(
m∑

i=1

C(hθ (x(i)), y(i))+ λR(θ)
)
, (7)



Artificial Neural Networks for the Estimation of Pedestrian Interaction Forces 17

where C : Rn(L)×R
n(L) → R describes the cost of the difference between the feature

value x(i) and the measured output y(i), λ ≥ 0, and R : R(n(1)+1)×(n(2)+1) × · · · ×
R
n(L−1)+1×n(L) → R is a regularization of the parameters θ .
Typical choices are quadratic costs

C(z, y) = 1

2
‖z− y‖2

2

and

R(θ) = 1

2

L−1∑

l=1

n(l)+1∑

i=2

n(l+1)+1∑

j=1

(
θ
(l)
i,j

)2
, (8)

where the bias units θ(l)1,j are not considered in the regularization R(θ).
In order to obtain an approximation for a given function f : Rn(1) → R

n(L) , we
use a training set x(i) ∈ R

n(1) , i ∈ {1, . . . , m} with m ∈ N samples and define the
output as y(i) = f (x(i)). Then, we solve

min
θ
J (θ)

to obtain an optimal value θ∗ such that the artificial neural network approximates
the function f well in the sense of the costs J . It is clear that the cost function J
might have several local minima leading to difficulties in finding the global solution.

We briefly comment on the choice of activation functions g(l). Although there
exist various choices, it is quite common to choose g(L)(z) = z as the identity and
the other g(l) as the sigmoid function g(l)(z) = 1

1+e−z , as the rectified linear unit

(ReLU) g(l)(z) = max(z, 0) or as the smoothed version of the latter, i.e. the softplus
or SmoothReLU function g(l)(z) = ln(1 + ez). The identity g(L)(z) = z in the last
layer allows the space R as the image of the artificial neural network because the
output is then given as linear combination of the previous layer. Sigmoid activation
functions g(l)(z) = 1

1+e−z can be basically used to mimic decisions (true or false)

due to their shape. The rectified linear unit g(l)(z) = max(z, 0) is bio-inspired, see
e.g. [17] and has been used successfully in artificial neural networks for a faster
training of the network. Due to the lack of differentiability at z = 0 smoothed
versions like the SmoothReLU mentioned above are common alternatives.
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2.2.1 Gradient Descent and Related Algorithms

In order to minimize the cost function (7), we use a descent gradient approach. Let
us denote by α ∈ R

K the K parameters to fit and we assume a general cost function
J in the form of

J (α) = 1

m

(
m∑

i=1

Qi (α)
)
, (9)

where Qi (α) denotes the cost of sample i associated with the parameters α. The
negative gradient −∇J (α) indicates the steepest descent of J at the point α and
minimizing J can be therefore achieved by “walking” into the latter direction of the
steepest descent. Let η > 0 be a parameter scaling of the step size and α0 ∈ R

k be
given, then

αk+1 = αk − η∇J (αk)

provides an iteration αk , which might end up in a local minimum of the cost function
J . Here, we face several problems:

• the computation time of ∇J (αk) is too high, which is caused by a large number
m of samples or a costly computation of ∇Q,

• the iteration αk might not converge,
• the algorithm ends up in a local minimum.

The first item can be tackled by considering the so-called stochastic gradient or mini
batch gradient descent schemes. The idea is as follows: Starting with a randomly
chosen subset Ik of {1, . . . , m} containing m̃ ≤ m elements, we adapt the iteration
of the gradient descent in the following way:

αk+1 = αk − η 1

m̃

⎛

⎝
∑

i∈Ik
∇Qi (αk)

⎞

⎠

=: αk − η∇J m̃k (αk).

If we choose m̃ = m, then we obtain the so-called full batch gradient descent, which
is the classical gradient descent algorithm.

A very crucial parameter is the step size, or so-called learning rate η. If η is
chosen too large, the iteration might diverge and, in contrast, if η is too small,
it takes a large amount of iterations to reach some local minimum. Therefore,
efficient heuristics have been developed to choose and update the learning rate. A
brief overview can be found in e.g. [35] as well as in.2 A first step is the use of
ADAGRAD, which assumes an individual learning rate for every parameter, i.e.

2https://ruder.io/optimizing-gradient-descent/index.html#visualizationofalgorithms.

https://ruder.io/optimizing-gradient-descent/index.html
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αk+1,i = αk,i − η√∑k
l=0(∇J m̃l (αl)i)2

∇J m̃k (αk)i

for i = 1, . . . , m. This means that the learning rates decay fast in the presence
of high gradients and cannot increase anymore. Thus, as soon as a direction has a
very small learning rate, the algorithm cannot improve this direction appropriately.
To overcome this issue, the algorithm ADAGRAD has been developed in [35]
by considering a finite accumulate over window. Let E[g2]k satisfy E[g2]k+1 =
ρE[g2]k + (1− ρ)(∇J m̃k (αk))2 for E[g2]0 = 0 and ρ ∈ (0, 1). Then E[g2]k adapts
to the squared gradient information iteratively with rate ρ. The latter resolves the
problem of always decaying learning rates but does not explain how to choose η in
a proper way. We define 	αk = αk+1 − αk and the ADADELTA algorithm reads
then as follows

E[g2]k = ρE[g2]k−1 + (1 − ρ)(∇J m̃k−1(αk−1))
2,

	αk = −
√
E[	α2]k−1 + ε√
E[g2]k + ε

∇J m̃k (αk),

E[	α2]k = ρE[	α2]k−1 + (1 − ρ)	α2
k ,

where ε > 0 is a chosen parameter to avoid singular values by division by zero and
initially E[	α2]0 = 0.

Since the presented algorithm only uses local information, it might converge
to a local minimum in the presence of several minima, which is often the case
considering artificial neural networks. In [25], an additive noise has been added
to the gradient, which is damped to zero as the number of iterations increases. This
allows for a probability to escape from local minima. Because this is a relevant
and non-difficult issue, there is recent research considering multiplicative noise or
more advanced noises to improve the probability of escaping a local minimum,
see, for example, [34, 36]. In our formulas, we replace the gradient ∇J m̃k (αk) by
∇J m̃k (αk)+Nk , where Nk ∼ N(0, 
k) is a multivariate normal distributed random
vector with zero mean and covariance matrix 
k . According to [25], we choose
(
k)ii = η1

(1+k)η2 for some constants η1, η2 > 0 and (
)ij = 0 whenever i �= j .
We briefly comment about the calculation of the gradient of the cost function. An

artificial neural network is simply speaking a chain of functions and to obtain the
gradient with respect to the parameters θ , the chain rule needs to be applied. This
can be done by backpropagation through the network, i.e. starting with the output
layer the derivatives are computed according to the chain rule backwards to the first
hidden layer. For more information about backpropagation, or computation of the
gradient, we recommend [4].



20 S. Göttlich and S. Knapp

2.3 Parameter Estimation and Cost Function in Pedestrian
Flow Model

We go back now to the initial motivation that we want to recover the interaction
function G between pedestrians from real data. In order to recover the interaction
functionG, we also need to estimate the remaining parameters τ , vc simultaneously,
which makes the setting different to classical artificial neural network applications.
From the data point of view, we will have the measured positions Xki ∈ R

2 at
discrete times tk , where t0 < t1 < · · · < tm. We first discretize the microscopic
pedestrian model in the following way:

Vi(tk) = d

dt
Xi(tk) ≈ Xi(tk+1)−Xi(tk−1)

tk+1 − tk−1
,

Si(tk) = d

dt
Vi(tk) ≈ Xi(tk+1)− 2Xi(tk)+Xi(tk−1)

	tk	tk−1
,

where 	tk = tk+1 − tk . Therefore, we use V ki = Vi(tk) and Ski = Si(tk) as
approximations of the velocity and acceleration of pedestrian i at time tk .

If we estimate all Di , i.e. the destination of pedestrian i, the number of param-
eters increases significantly and cannot expect good estimations. Therefore, we
perform a “pre-processing” and identify the destination by identifying pedestrians
destination from trajectories. We will explain the used approximation more detailed
while discussing the application examples.

The main difference to the classical learning and application of the artificial
neural network is here that we do not have the classical input–output structure. More
precisely, we can use the trajectories but have no explicit outputs given. Therefore,
we introduce the following cost function, where we denote by α = (τ, vc, θ) the
collection of all parameters which we want to estimate from data. The cost function
reads as follows:

J(α) = 1

m

1

2

m∑

k=1

[ Nk∑

i=1

∣∣∣τSki − (Dki vc − V ki )− τ
Nk∑

j=1,j �=i
hθ (X

k
i −Xkj , V ki − V kj )

∣∣∣
2

+ R(θ)
]
.

First of all, we observe the classical structure of the cost function as in (7) that
allows for using the toolbox of the stochastic gradient descent algorithms. The
regularization R is the one introduced in (8), which regularizes the parameters θ
that do not originate from a bias unit. The first part of the cost function simply
results from the ODE system of the trajectories and shows that we want to satisfy
the second equation (equation for the acceleration) as good as possible. Here, we
multiply the equation for the acceleration by τ to avoid divisions by zero and more
stable gradients with respect to this parameter.
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2.3.1 Data and Preprocessing of Data

In this last part of the section we comment on the preprocessing of the data. We use
the data from the data archive of experimental data from studies about pedestrian
dynamics,3 where next to the videos of the experiments one obtains trajectory data.
More precisely, we focus on the corridor unidirectional and bidirectional flow data.4

The main contents of the trajectory data are

• x and y coordinates at every frame number,
• personal ID identifying the corresponding individual as time evolves,
• the frame rate.

One significant difficulty is that the number of pedestrians and also the set of
personal IDs change over time, which is clear since pedestrians enter and leave
the corridor. Since we need approximations of the time derivative of the trajectory
data, we need at least data of a pedestrian i in frame k − 1, k, and k + 1. We first
cleaned them out and assigned the corresponding velocity and acceleration values.

In a next step, we identify the destination of each pedestrian by taking the
normalized mean velocity direction. To avoid too many different destination
directions, we round the latter values, since pedestrians in this scenario have to walk
through the corridor and should not change their main direction.

3 Computational Results

First we introduce the setting and parameter used throughout this section. We
randomly choose 60% from the data, i.e. from the frames, as the training set. The
remaining 40% are used as test set. The initial parameters are α0 = (τ0, vC,0, θ0)

with τ0 = 0.1, vC,0 as the average norm of the velocities from the test set and
θ0 are uniformly distributed randomly chosen from [−1, 1] with exception of the
parameters originating from the last hidden bias unit, which are set to zero. As
activation functions in the hidden layer we use smooth rectifier units (softplus)
g(2)(x) = ln(1 + ex) with derivative (g(2))′(x) = 1

1+e−x , which is the logistic

function. The output layer activation function is given as the identity g(3)(x) = x in
our case and we assume the parameter λ = 10−2 for the regularization.

In the stochastic gradient descent algorithm we use the gradient noise with the
parameters η1 = 0.5 and η2 = 0.25 as proposed in [25]. And according to [35], we
use ρ = 0.95 and ε = 10−6 in the ADADELTA algorithm. The batch sizes will be
varied in the examples as well as the size of the hidden layer of the artificial neural
network.

3http://ped.fz-juelich.de/database/.
4https://doi.org/10.34735/ped.2013.5, https://doi.org/10.34735/ped.2013.6.

http://ped.fz-juelich.de/database/
https://doi.org/10.34735/ped.2013.5
https://doi.org/10.34735/ped.2013.6
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Fig. 2 Value of τ (blue star) and vc (black circle) during iteration. (a) 4 neurons in hidden layer.
(b) 40 neurons in hidden layer

3.1 Unidirectional Flow in Corridor

We use the data trajUNICORR50001 from database5 in the following. It contains
the trajectory data for pedestrians walking from the right to the left in a corridor. As
one can observe from the video, which can be found also there, we do not have a
high amount of interaction between the pedestrians as well as we expect almost no
acceleration influences from the data. For this reason, we choose τ0 = 0.1 here. We
choose the configurations of the artificial neural network as n(1) = 4, n(3) = 2 and
n(2) ∈ {4, 40} here.

In Fig. 2 the values of τ and vc during the stochastic gradient are shown indicating
that our initial guess of both parameters is close to the values during the iterations.
Also, we observe no severe difference between the case of 4 hidden neurons (Fig. 2a)
and 40 hidden neurons (Fig. 2b). Since the calculation of the full batch costs, i.e. the
cost function evaluated on the complete training or test set, is very costly from the
computational point of view, we only computed the cost function for the initial guess
and the guess after 5000 iterations of the stochastic gradient algorithm. In Table 1 the
relaxation time τ ∗ and comfort velocity v∗c after 5000 stochastic gradient iterations
are shown. They are reasonable since v∗c are around 5–6 km/h. As mentioned before,
we do not observe much acceleration in the data such that a small value of τ ∗ is
reasonable as the comfort velocity is achieved very quickly. In the case of 4 neurons
in the hidden layer, i.e. 5 · 4 + 5 · 2 = 30 parameters for G, we have a decrease in
the cost function on both, the training and test set. Surprisingly, in the case of 40
neurons in the hidden layer (5 · 40 + 41 · 2 = 282 parameters) the cost function
increases. This might be due to not enough iterations, small batch size, or a wrong
regularization parameter.

5https://doi.org/10.34735/ped.2013.6.

https://doi.org/10.34735/ped.2013.6
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Table 1 τ ∗ and v∗c after training and cost function evaluated on the test and training set for initial
parameter set and after 5000 stochastic gradient iterations with a batch size of 1

τ ∗ v∗c Jtrain(α0) Jtest (α0) Jtrain(α
∗) Jtest (α

∗)
4 neurons 0.0564 1.5210 517.29 530.08 449.23 451.05

40 neurons 0.0409 1.4650 568.12 578.49 857.89 908.53

Figures 3 and 4 show the approximated function G, which is essentially the
artificial neural network. Since the dimension of the input is of dimension 4 and
the output’s dimension is 2, we have drawn the mappings (x, y) �→ G1((x, y), v)

and (x, y) �→ G2((x, y), v) for some fixed v ∈ R
2 separately. We recover the

intuition of G again: G1 is the attraction or repulsion (depending on the sign) in the
x direction whereas G2 describes the same in the y direction. The inputs of G are
the difference in the position, i.e. Xi − Xk , which corresponds to the values (x, y)
and the difference of the velocities Vi − Vk corresponding to v here. Let us assume
pedestrian i is at x position Xi,1(t) > Xk,1(t) but in y direction they are the same
position, i.e. Xi,2(t) = Xk,2(t), which implies x > 0 and y = 0. Pedestrians in this
experiment walk from the right to the left and we imply by the latter assumption
that pedestrian i walks behind pedestrian k. If vi = (−2, 0) and vk = (−1, 0),
i.e. pedestrian i walks faster, then v = (−1, 0). This situation is shown in Fig. 3
in the left first corners of the subfigures. We observe that the force decreases with
x increasing, which is reasonable. One could worry about the values being always
negative here but that is a problem of parameter identification since we only have
single direction interactions in the data (all walk from right to the left). The plots
corresponding to v = (1, 0) show exactly the opposite, i.e. pedestrian i walks slower
than pedestrian k. To understand the graphics with v = (0,−1) and v = (0, 1) we
consider the following situation:

Let pedestrians i and k stay at the same x position but the y coordinate of i is
assumed to be greater than the coordinate of k. If vi = (−1,−1) and vk = (−1, 1)
that means they might run into each other, we obtain v = (0,−2), or normalized
v = (0,−1). We see that for fixed x = 0 the value ofG in x-direction (G1) increases
in y in Fig. 3a. In y-direction (b) it is the opposite as one would expect.

In Fig. 4 the behavior is different. One can observe that the function behaves more
nonlinear and also covers an increasing and decreasing behavior as the distance
‖(x, y)‖ changes. In order to obtain a better result in terms of the cost function, one
has to use larger batch sizes as well as more iterations.

Since Figs. 3 and 4 indicate that 4 neurons are too less and 40 need a long time
to converge in the stochastic gradient algorithm, we take 10 neurons and work with
a batch size of 9. Figure 5 shows the result for G, which looks much better now
although we reduced the number of iterations to 2500. Table 2 shows that we have
a decreasing cost function again and the optimal values are close to the values in
Table 1. A big difference can be seen in Fig. 5, where the shape of the function G
fits better to the intuitions stated before. We also see that the x-direction has been
learned better than the y-direction, which is clear from the data.
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Fig. 3 Approximated function G((x, y), (v1, v2)). (a) x-direction with 4 neurons in hidden layer.
(b) y-direction with 4 neurons in hidden layer
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Fig. 4 Approximated functionG((x, y), (v1, v2)). (a) x-direction with 40 neurons in hidden layer.
(b) y-direction with 40 neurons in hidden layer
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Fig. 5 Approximated functionG((x, y), (v1, v2)). (a) x-direction with 10 neurons in hidden layer.
(b) y-direction with 10 neurons in hidden layer
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Table 2 τ ∗ and v∗c after training and cost function evaluated on the test and training set for initial
parameter set and after 2500 stochastic gradient iterations with a batch size of 9

τ ∗ v∗c Jtrain(α0) Jtest (α0) Jtrain(α
∗) Jtest (α

∗)
10 neurons 0.0391 1.4683 556.61 567.52 493.79 502.09

Fig. 6 Value of τ (blue star) and vc (black circle) during iteration. (a) 4 neurons in hidden layer
and batch size 1. (b) 10 neurons in hidden layer and batch size 9

3.2 Bidirectional Flow in Corridor

We also have a look at a second data set called BICORR400A1.6 Here, two
groups of pedestrian run against each other in a corridor, i.e. we have pedestrians
walking to the right and to the left. As before, we use a batch size of one
for the stochastic gradient algorithm and 4 neurons in the hidden layer. Due to
computational limitations, we restrict on 2500 iterations here. Figure 6 shows the
evolution of the parameters τ and vc during the stochastic gradient, where left 4
neurons and a batch size of 1 have been used and on the right 10 neurons and a
batch size of 9. The values for τ do not change significantly anymore and the values
of vc tend to being flat as well.

Table 3 contains the values for τ and vc after the iterations. Since the number of
pedestrians in the corridor is high, we have a lower average speed, which implies a
lower v∗c . The cost function value is lower for α∗ than for the initial configuration
α0 and Fig. 7 indicates that the function G has been fitted in a better way. More
detailed, we always have the increasing or decreasing behavior in x direction.

Considering the interaction function G for 10 neurons and using a larger batch
size of 9, we see again a more nonlinear behavior, see Fig. 8. More detailed, Fig. 8a
indicates that the interaction in x-direction, i.e.G1 depends strongly on y compared
to Fig. 7a. This is based on the data since the pedestrians form two walking blocks of

6https://doi.org/10.34735/ped.2013.6.

https://doi.org/10.34735/ped.2013.6
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Table 3 τ ∗ and v∗c after training and cost function evaluated on the test and training set for initial
parameter set and after 2500 stochastic gradient iterations with a batch size of 9

τ ∗ v∗c Jtrain(α0) Jtest (α0) Jtrain(α
∗) Jtest (α

∗)
4 neurons 0.0438 0.4715 500.68 513.71 449.23.71 451.05.09

10 neurons 0.0373 0.3112 − − − −

groups: one walking to the left and one walking to the right and almost no mixture in
the corridor. Figure 8 shows a quite similar behavior as it is the case for 4 neurons.

Summarizing, the choice of the number of neurons severely affects the results as
one would expect. Also the type of data strongly influences the results. This is due
to effects, which are or are not covered in the data.

4 Conclusion

We have derived a data fit setting for the social force model, where the interaction is
based on an artificial neural network. In addition, we have introduced the numerical
treatment, including stochastic gradient descent heuristics and data preprocessing.
The quality of the data fit severely depends on the number of artificial neurons and
the number of stochastic gradient iterations as we have seen in results based on real
data sets. Due to computational restrictions one cannot significantly increase the
number of artificial neurons and the number of iterations simultaneously. From the
results we also conclude that the interaction strongly depends on the velocity of both
interacting pedestrians as well as their distance from each other.

In terms of computation time, the minimization of the cost function took about
2–3 h in the case of 4 neurons and a batch size of one, whereas the batch size
of 9 and 10 neurons required 12 h (unidirectional) and 3 days (bidirectional) to
reach the number of iterations on a standard desktop computer. The computation
time also depends strongly on the number of pedestrians, which are present in a
sample since the number of evaluations increases quadratically in the number of
pedestrians. One possible way out of the computational restrictions might be the
use of well-developed artificial neural network implementations and embed them
into the presented model.

Summarizing, there is a recent trend to carry out data-driven approaches to
estimate parameters in crowd models. So far, the Bayesian probabilistic approach [7,
14] and the artificial neural networks approach [33] are the most common tools in
the literature. Both approaches are characterized by the computational evaluation
of special optimization problems with differential equations as constraints and are
therefore computationally costly. Furthermore, the choice of other problem-specific
parameters and a reasonable initial guess might be crucial to numerically compute
reasonable solutions. From a theoretical point of view, it seems that the Bayesian
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Fig. 7 Approximated function G((x, y), (v1, v2)). (a) x-direction with 4 neurons in hidden layer.
(b) y-direction with 4 neurons in hidden layer
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Fig. 8 Approximated functionG((x, y), (v1, v2)). (a) x-direction with 10 neurons in hidden layer.
(b) y-direction with 10 neurons in hidden layer
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approach can rely on more results, while the theory on artificial neural network is
rather in the early stages. However, a direct comparison of both approaches based
on the same setting is still missing.
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High-Statistics Modeling of Complex
Pedestrian Avoidance Scenarios

Alessandro Corbetta, Lars Schilders, and Federico Toschi

Abstract Modeling the behavior of pedestrians walking in crowds is an outstanding
fundamental challenge, deeply connected with the physics of flowing active matter.
The strong societal relevance of the topic, for its relations with individual safety and
comfort, sparked vast modeling efforts from multiple scientific communities. Yet,
likely because of the technical difficulties in acquiring experimental data, models
quantitatively reproducing (statistical) features of pedestrian flows are scarce. This
contribution has a twofold aim. First, we consider a pedestrian dynamics modeling
approach previously proposed by some of the authors and based on Langevin
equations. We review the approach and show that in the undisturbed and in the pair-
wise avoidance regimes (i.e., in absence of interactions between pedestrians and in
case of avoidance of a single individual walking in the opposite direction) the model
is in quantitative agreement with real-life high-statistics measurements. Second,
moving towards the final goal of quantitative and generic crowd dynamics models,
we consider the more complex case of a single individual walking through a dense
crowd advancing in the opposite direction. We analyze the challenges connected to
treating such dynamics and extend the Langevin model to reproduce quantitatively
selected observed features.
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1 Introduction

The quantitative understanding of the motion of pedestrians walking in public
shared spaces is an outstanding issue of increasing societal urgency. The scientific
challenges associated with the understanding and modeling of human dynamics
share deep connections with the physics of active matter and with fluid dynam-
ics [1, 17, 18, 20]. Growing urbanization yields higher and higher loads of users on
public infrastructures such as station hubs, airports, or museums. This translates
into more complex, high-density, crowd flow conditions, and poses increasing
management challenges when it comes to ensuring individual safety and comfort.
Achieving a quantitative comprehension and developing reliable models for the
crowd motion may help, for instance, in the design of facilities or for optimizing
crowd management.

Many among the proposed physical models for crowd dynamics rely on the
analogy between pedestrians and active particles [13]. Either at the micro-, meso-
or macro-scopic scale [1], pedestrians are usually represented as self-propelling
particles whose dynamics is regulated by ad-hoc social interaction potentials (cf.
reviews [8, 10]). While many features of crowd dynamics have been qualitatively
captured by such modeling strategies (e.g., negative correlation between crowd
density and average walking velocity, intermittent behavior at bottlenecks, for-
mation of lanes in presence of opposing crowd flows [11, 23]), our quantitative
understanding remains scarce, especially in comparison with other active matter
systems [15]. This likely connects with the difficulty of acquiring high-quality
data with sufficient statistical resolution to resolve the high variability exhibited by
pedestrian behavior. Such variability includes, for instance, different choice of paths,
fluctuations in velocity, rare events, as stopping or turning around [5]. Underlying
a quantitative comprehension is the capability of explaining and modeling a
given pedestrian dynamics scenario, including the variability that is measurable
across many statistically independent realizations, which, ultimately, enables one
to estimate the statistics of, e.g. permanence and evacuation times, positions, fluxes,
Level-of-Service [9] and tackle questions as “which are the common behaviors in a
given facility? Which rare (and potentially dangerous) events can occur? How likely
are they?”

In this chapter we discuss the challenges connected to the quantitative modeling
of a relevant and ubiquitous—yet conceptually simple—crowd dynamics scenario
which involves one pedestrian, onward referred to as the target pedestrian, walking
in a crowd of N other pedestrians that are going in the opposite direction. We shall
identify this scenario as 1vs.N , of which, in Fig. 1, we report four consecutive
snapshots taken from real-life recordings. Our analysis employs unique measure-
ments collected through a months-long, 24/7, real-life experimental campaign that
targeted a section of the main walkway of Eindhoven train station, in the Nether-
lands. Thanks to state-of-the-art automated pedestrian tracking technologies, fully
developed in house [3–6, 14], we collected millions of high-resolution pedestrian
trajectories including hundreds of occurrences of 1vs.N scenarios.



High-Statistics Modeling of Complex Pedestrian Avoidance Scenarios 35

Fig. 1 Avoidance scenario, 1vs.N , involving the target pedestrian walking towards the right (red
trajectory), while a crowd of pedestrians proceeds in opposite direction (blue trajectories). We
report four snapshots in chronological order. The target pedestrian escapes collisions by walking
diagonally with respect to the longitudinal axis of the corridor (the most likely, in some sense
“natural,” walking direction that, in this figure, corresponds to the horizontal direction). In the
scenario considered, N is the number of pedestrians walking in opposition to the target that have
appeared in the field of view of our sensors in the time window when the target was present.
Furthermore, we restrict to scenarios in which no person walking in the same direction of the
target is present

In previous works, we explored such conditions in the low density limit. In
particular, we proposed quantitative models for the case of a pedestrian walking
undisturbed (1vs. 0) [5] and for the case of a pedestrian avoiding a single individual
coming in the opposite direction (1vs.1) [6]. This contribution addresses the
complexity, from the modeling and from the data analytic points of view, arising
when dealing with the 1vs.N generalization. Let z1(t) = (x1(t), xp(t)) be the state
of the target pedestrian, which includes his/her instantaneous position, x1(t), and,
with abuse of notation, his/her desired path, xp(t) (in the following, the desired
path will be a coordinate parameterizing the straight line that a pedestrian aims at
maintaining; this could be generalized to include, e.g. a target destination).

Our final model, assuming a superposition of pair-wise interactions having the
form proposed in [6], involves the Newton-like dynamics

z̈1 = F(ż1)+N( {K(z1, xi), i = 2, . . . , N + 1} )+ σẆ , (1)

where the {xi}’s (i = 2, . . . , N ) are the positions of the opposing pedestrians, F(ż1)

is an active term regulating the onward motion of the target pedestrian, K(z1, xi)

is the pair-wise social interaction force between the target and the i-th individual,
N(·) is a (non-linear) superposition rule for the pair-wise forces. Finally, a white
Gaussian noise term Ẇ , with intensity σ , provides for stochastic fluctuations.
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The present analysis shows, on the basis of high statistics measurements, how
simplifying hypotheses based on symmetry made for the 1vs. 0 and 1vs.1 cases
[5, 6] do not hold in the general 1vs.N case (as could have been expected, since
the influence of the boundary becomes relevant). Furthermore, we discuss how
the interplay of the propulsion dynamics, determined by F(ż1), and the presence
of many interaction forces, determined by the term N(·), may yield nonphysical
effects. We present therefore some modifications to Eq. (1) that enable to recover
features of the observed dynamics at the “operational level” (e.g., local collision
avoidance movements, cf. [12] for a reference). This will open the discussion on
how to perform data acquisition and how to achieve quantitative modeling to address
the dynamics at the, so-called, “tactical level,” in which broader-scale individual
decisions are taken. These include, for instance, the definition of a preferred path,
selected by each individual within the current room/building, to reach a desired
destination.

This chapter is structured as follows: in Sect. 2 we introduce our real-life
pedestrian tracking setup; in Sect. 3 we review our previous quantitative model for
pedestrians walking in diluted conditions; in Sect. 4 we discuss through physical
observables the more generic 1vs.N scenario, and introduce some of the complexi-
ties connected to its analysis and modeling; in Sect. 5 we address generalizations of
our previous model to such case. A final discussion in Sect. 6 closes the chapter.

2 Measurement Setup and 1 vs. N Avoidance Scenario

In this section, we briefly review the measurement campaign and the technique
employed to collect the data that we consider throughout this chapter. Relevant
references for the details of the campaign and of the measurement technique are
also supplied. Then we provide a formal definition which unambiguously identifies
1vs.N scenarios.

The pedestrian dynamics data considered have been collected in the period
October 2014–March 2015 in a 24/7 pedestrian trajectory acquisition campaign in
the main walkway of Eindhoven train station [4] (see Fig. 2). The measurements
were collected through a state-of-the-art pedestrian tracking system, built in-house,
and based on an array of overhead depth sensors (Microsoft Kinect™ [16]). The
sensor view-cones were in partial overlap and allowed us to acquire data from a full
transversal section of the walkway; our observation window had a size of about 9 m
in the transversal direction and of 3 m in the longitudinal direction.

Depth sensors provide depth maps at a regular frame rate (in our case 15 Hz),
i.e. the distance field between a point and the camera plane. Examples of depth
maps (with superimposed tracking data) are reported in Fig. 1. Notably, depth maps
are non-privacy intrusive: no features allowing individual recognition are acquired.
Nevertheless, depth maps enable accurate pedestrian localization algorithms (see [2,
3, 21] for general conceptual papers about the technique, [4] for technical details
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Fig. 2 Picture of the pedestrian tracking setup in the main walkway of Eindhoven train station
where the data described here were collected. We overlay a sketch of the measurement area,
reported at the floor level, and of the initial part of the view-cones of the four depth sensors used to
acquire raw depth data. As the sensors had overlapping view, we could acquire (after appropriate
data fusion) continuous depth maps of the full measurement area, as those in Fig. 1 (the picture is
taken facing the city center, i.e. the observer is walking a trajectory analogous to that of the target
pedestrian in Fig. 1). The axes corresponding to the physical coordinates (ξ, η) are also sketched
(the canonical (x, y) coordinates are here reserved for the position of a pedestrian in reference to
their preferred path)

about this campaign, and [14] for a more recent, highly accurate, machine learning-
based localization approach).

Our measurement location was crossed daily by several tens of thousands people
and, depending on weekday and hour, the site underwent different crowd loads.
Pedestrians could often walk undisturbed at night hours or, more rarely, during off-
peak times (i.e., late morning and early afternoon). Else, our sensors could measure
highly variable crowding conditions ranging from uni-directional to bi-directional
flows with varying density levels.

We consider here scenarios that involve exactly one target pedestrian walking to
either of the two possible directions, while other N individuals are walking towards
the opposite side. This means that in accordance to our recording, the trajectory of
the target pedestrian has been perturbed exclusively by these furtherN , and no other
pedestrian walking in the direction of the target was observed simultaneously (and
thus in the neighborhood). In [6] we proposed a graph-based approach to describe
these conditions and to efficiently find them within large databases of Lagrangian
data.
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3 Physics and Modeling of the Diluted Dynamics (1 vs. 0 and
1 vs.1)

In this section we review the model for diluted pedestrian motion and pairwise
interactions that we proposed in our previous papers [5] and [6]. We consider a
crowd scenario to be diluted whenever the target pedestrian can move freely from
the influence of other peer pedestrians (e.g., incoming, or moving close by, i.e. 1vs. 0
condition) or they are just minimally affected (1vs.1).

In diluted conditions, individuals crossing a corridor typically move following
(and fluctuating around) preferred paths that develop as approximately straight
trajectories. Preferred paths belong to the tactical level of movement planning,
in other words, changes in preferred paths are connected to individual choices
performed at level overarching fine scale navigation movements (operational level).
Without loss of generality, we consider a coordinate system such that the state of
a pedestrian can be described through three position-like variables, z = (x, y, yp),
and relative velocities (in the following indicated, respectively, with u, v, and ẏp).
In particular, yp parameterizes the preferred path (that we assume parallel to the
x-axis) and (x, y) identifies the instantaneous pedestrian position.

In this reference system, as x varies, individuals approach (or, conversely, get
farther apart from) their destinations. In the transversal direction, fluctuations of
amplitude ỹ = y − yp occur around the center of the preferred path, yp. In absence
of avoidance interactions with other pedestrians, we expect ẏp = 0, at least on the
tactical time-scale. Conversely, we expect that the need of avoiding a pedestrian
incoming with opposite velocity will be reflected in a dynamics for yp.

Following [6], we model the motion of a target pedestrian in a 1vs.1 condition
with a Langevin dynamics as

dx

dt
= u(t) (2)

dy

dt
= v(t) (3)

du

dt
= −4αiu(u

2 − u2
p,i)+ σẆx − exFshort (4)

dv

dt
= −2λv − 2β(y − yp)+ σẆy − eyFshort + Fvision, (5)

dyp
dt

= ẏp(t) (6)

dẏp
dt

= Fvision − 2μẏp. (7)

In the remainder of this section we detail the expressions and the modeling ideas
underlying the preferred velocities, up,i , the friction terms, −2λv and −μẏp, and
the social forces Fshort and Fvision. We anticipate that Fshort and Fvision are
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Table 1 Parameters for the model in Eqs. (2)–(7)

1vs. 0 and 1vs.1 1vs.1 only

Desired walking speed Vision f. inter. scale

up,w (walkers) 1.29 ms−1 R 2.4 m

Desired running speed Contact-av f. inter. scale

up,r (runners) 2.70 ms−1 r 0.6 m

Coeff. U(u), walkers Desired path friction

αw 0.037 m−2s μ 1.0 s−1

Coeff. U(u), runners Vision f. intensity

αr (runners) 0.0015 m−2s A 1.5 ms−2

Noise intensity Contact-av f. intensity

σ 0.25 ms−3/2 B 0.7 ms−2

Transv. confinement Vision f. angular dep.

β 1.765 m−2s χvision (threshold) 20◦

Transv. friction Contact-av f. angular dep.

λ 0.297 s−1 χshort (threshold) 90◦

Runner % in 1vs. 0 4.02% Runner % in 1vs.1 0.2%

exponentially decaying social interaction forces depending on the distance between
the target pedestrian and the other individual. Consistently, they vanish in the case
of a pedestrian walking undisturbed, thus, in such case, ẏp = 0 holds, and the model
restricts to that considered in [5]. For the sake of brevity, in Eqs. (2)–(7) we omitted
the subscript “1” for the target pedestrian variables as in the notation in Eq. (1), as in
the current case there is no ambiguity (i.e., x should be written as x1, and similarly
for the other variables. However, the position variables of the second pedestrian, like
x2, are in fact hidden in the social force terms).

The second-order dynamics in Eqs. (2)–(7) includes the interplay of activity,
fluctuations, and interactions. In [5] we showed that, in absence of interactions,
the motion of a pedestrian is characterized by small and frequent Gaussian velocity
fluctuations around a preferred and stable velocity state, (u, v) = (±up, 0). Large
fluctuations can be observed as well, although rarely: for a narrow corridor, the
prominent case is the transition between the two stable velocity states u → −u,
which comes with a direction inversion. The simplest conceivable velocity potential,
U = U(u), allowing for this phenomenology is a symmetric polynomial double
well with minima at u = ±up, i.e. U(u) ∼ (u2 − u2

p)
2, from which one has

the force term −∂uU(u) ∼ −u(u2 − u2
p) in Eq. (4). In combination with a small

Gaussian noise (term σẆx), this yields small-scale Gaussian fluctuations and rare
Poisson-distributed inversion events (see also [7] for a path-integral based derivation
of the event statistics), both in excellent agreement with the data (cf. [5]). In
Eq. (4), we included the subscript i on the preferred velocity and on the force
intensity coefficient, respectively up,i and αi , to allow independent “populations” of
pedestrians having different moving features (e.g., walking vs. running) combined
in different percentages (see Table 1). In Fig. 3a we report a comparison of the
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Fig. 3 Probability distribution functions of walking velocity and positions for pedestrians walking
undisturbed 1vs. 0: comparison between measurements (purple dots) and simulations of Eqs. (2)–
(7) in absence of interaction forces (circle markers, simulation parameters in Table 1). The panels
contain, respectively, (a) longitudinal velocities (u), (b) transversal velocities (v), (c) transversal
positions with respect to the preferred path (ỹ = y − yp). Pedestrians walk most frequently
at around 1.29 m/s (cf. (a)). Besides, we observe a small fraction of running pedestrians, about
4%, contributing to the hump at above 2 m/s and pedestrians turning back, providing negative
velocities contributions. (b) Transversal fluctuations in velocity appear to be well approximated
by a Gaussian distribution, while (c) transversal positions exhibit small deviations from a
Gaussian behavior. The model captures quantitatively the complete longitudinal velocity statistics
including the running hump as well as the inversion events. The transversal dynamics is also well
approximated as a stochastic damped harmonic oscillator (Eqs. (3) and (5))

probability distribution function of the longitudinal velocity u for undisturbed
pedestrians in case of measurements and simulated data and a good agreement is
apparent.

We treat the transversal dynamics as a damped stochastic harmonic oscillator
centered at yp, respectively, via the friction force −2vλ, the Gaussian noise σẆy ,
and the harmonic confinement −2β(y − yp). This yields Gaussian fluctuations of v
and ỹ, which are also in very good agreement with the measurements, Fig. 3b, c. For
both the longitudinal and transversal components we employ white in time (i.e., δ-
correlated) and mutually uncorrelated Gaussian noise forcing (Ẇx , Ẇy), with equal
intensity (σ ), as validated in [5]. Our hypotheses on the noise structure are guided
by simplicity, yet they are somehow arbitrary and not mandatory [20].

Interactions enrich the system of social force-based coupling terms and of
a second-order deterministic dynamics for yp (Eqs. (6)–(7)). We consider two
conceptually different coupling forces:

• a long-range, vision-based, avoidance force

Fvision(x1, y1, x2, y2) = −sign(ey)A exp(−d2/R2)χvision(θ̃), (8)

where ey is the y component of the unit vector pointing from (x1, y1) to (x2, y2)

(i.e., the unit vector (ex, ey) = (x2 − x1, y2 − y1)/d, d being the Euclidean
distance between the positions of the pedestrians, d = ||(x2 − x1, y2 − y1)||2),
θ̃ is the angle between the x-axis and the distance vector (x2 − x1, y2 − y1),
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χvision(θ̃) is the indicator function that is equal to 1 if |θ̃ | ≤ 20◦ and vanishing
otherwise, A and R are an amplitude and a scale parameter.

• a short-range contact avoidance force

Fshort (x1, y1, x2, y2) = B exp(−d2/r2)χshort (θ̃ ), (9)

where χshort (θ̃ ) is an indicator function that is equal to 1 if |θ̃ | ≤ 90◦ and
vanishing otherwise, B and r are an amplitude and a scale parameter.

Note that Fvision operates on the transversal direction only and appears both in
Eqs. (5) and (7). In other words, it influences the dynamics of ỹ only through ẏp. In
fact, combining Eqs. (5) and (7), the evolution of ỹ satisfies

d2ỹ

dt2
= −2λ

dỹ

dt
− 2(μ− λ)ẏp − 2βỹ + σẆy − eyFshort . (10)

Vision and contact avoidance forces allow to reproduce the overall avoidance
dynamics. We analyze this by considering how the pedestrian distance, projected on
the y direction, transversal to the motion, changes during the avoidance maneuvers.
In particular, we consider three projected distances:

1. 	yi : the absolute value of the transversal distance, as the pedestrians appear in
our observation window;

2. 	ys : the absolute value of the transversal distance, at the instant of minimum
total distance between the pedestrians;

3. 	ye: the absolute value of the transversal distance when the pedestrians leave
our observation window.

In Fig. 4, we report the conditioned averages of these distance, comparing mea-
surements and simulations. In particular, Fig. 4a contains the average transversal
distance when the two pedestrians are closest (i.e., side-by-side, e(	ys)), condi-
tioned to their entrance distance (	yi). We observe that for 	yi � 1.4 m avoidance
maneuvers start and pedestrians move laterally to prevent collisions. In case of
pedestrians entering facing each other (	yi ≈ 0), on average they establish a mutual
transversal distance of about 75 cm. As experience suggests, for large transversal
distances no concrete influence is measured. In Fig. 4b, we report the average
transversal distance as the two pedestrians leave the observation area (e(	ye))
conditioned to the transversal distance at the moment of minimum distance (	ys).
We observe that, on average, the mutual distance remains unchanged. This means
that the act of avoidance impacts on the preferred path, which drifts laterally as
collision is avoided and then is not restored. We can read this as an operational-
level dynamics (avoidance gesture), that impacts on the coarser-scale tactical-level
dynamics, as the preferred path gets changed. Remarkably, the model is capable
of quantitatively recovering these features. We refer the interested reader to [6]
where we additionally discuss the full conditioned probability distributions of



42 A. Corbetta et al.

0

0.5

1

1.5

2

0 0.4 0.8 1.2 1.6 2 2.4

e(
Δ
y s

)
[m

]

Δyi [m]
data

simulations
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Fig. 4 Average conditioned transversal distance between two pedestrians in a 1vs.1 condition:
comparison between data and simulations. (a) Average, e(|	ys |), of absolute lateral distance when
at the closest point (side-by-side, y-axis) conditioned to the absolute lateral distance when at the
entrance (	yi , x-axis). (b) Average, e(|	ye|), of absolute lateral distance when at the exit (y-axis),
conditioned to the absolute lateral distance when side-by-side (|	ys |, x-axis). The diagonal line
identifies cases in which the transversal distance between the pedestrians has not changed from
one measurement point to the next, which can be interpreted as a preferred path that remained
unchanged as pedestrian crossed the observation window. The model in Eqs. (2)–(7) reproduces
with high accuracy the avoidance dynamics

the transversal distances plus other statistical observables such as pre- and post-
encounter speed and collision counts.

Note that both scenarios considered so far, 1vs. 0 and 1vs.1, feature a transla-
tional symmetry in the transversal direction, i.e. the dynamics is unchanged by rigid
translations: y → y + c, yp → yp + c.

4 Observables of the 1 vs. N Scenario

As a target pedestrian walks avoiding an increasing number of other individuals
moving in the opposite direction (i.e., 1vs.N , N > 1), his or her trajectory
acquires a richer and more fluctuating dynamics. In Fig. 5, we compare trajectories
of pedestrians moving towards the city center (i.e., from left to right) in case
of undisturbed pedestrians (1vs. 0, Fig. 5a) and in case 1vs. 10+ (i.e., N ≥ 10,
Fig. 5b). Note that the trajectories are reported in the physical coordinate system,
(ξ, η), where the first component is parallel to the span of the corridor and the
second component is in the transversal direction. These coordinates must not be
confused with (x, y, yp) which are instead aligned with the individual preferred
paths. In this random sample of trajectories, it is already visible that in the case
of individual pedestrians the absence of incoming “perturbations” allows less
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Fig. 5 Random selection of trajectories of pedestrians walking from the bus station side of the
train station toward the city center (from left to right in this reference), in case (a) of pedestrians
walking alone (i.e., 1vs. 0) or (b) in case 1vs. 10. In case of pedestrians walking alone (a), the
trajectories are mostly rectilinear, superimposing small fluctuations to an intended path. In rare
cases we observe large deviations, as, for instance, inversions or drastic trajectory changes. In
case of target pedestrians facing a crowd (b), the trajectories exhibit ample deviations following
the need of avoiding incoming individuals. Avoidance maneuvers effectively increase fluctuations,
direction changes along the path, and dispersion in the position in which the pedestrian leaves the
observation zone. The trajectories are here reported in physical coordinates (ξ, η) (cf. Fig. 2)

pronounced fluctuations that, in most of the cases occur around well-defined straight
paths, i.e. by definition, the preferred paths. It must be noticed that these preferred
paths are not, generally, parallel to the ξ -axis. Rare largely deviating trajectories
also appear, in the figure it is reported a case of trajectory inversion. Conversely, the
presence of incoming pedestrians, in addition to enhancing small-scale fluctuations,
frequently yields curved or S-like trajectories for the target individual, as an effect
of successive avoidance maneuvers.

An incoming crowd enhances the tendency of the target pedestrian to keep
the right-hand side. In Fig. 6a we report the probability distribution function of
transversal positions (in the corridor reference, i.e., pdf (η)). As the number of
incoming pedestrians increases, the η distribution increasingly peaks on the right-
hand side, remaining focused in the close proximity of the wall. Out of the bulk and
close to a wall, avoidance remains easiest and straight trajectories can be followed,
see Fig. 5b.

On the opposite, avoidance maneuvers are strongest in the bulk, and of magnitude
increasing with the number of incoming pedestrians, N , at least up to a threshold.



44 A. Corbetta et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

−5 −4 −3 −2 −1 0 1 2 3 4

pd
f

−η [m]

1vs.5+

1vs.10+

1vs.15+

1vs.20+

(free) 1vs.0

(a)

0.5

0.6

0.7

0.8

0.9

1

1v
0

1v
5+

1v
10
+

1v
15
+

1v
20
+

E
η
i
(s

td
( η

e
|η i

))
[m

]

scenario

(b)

Fig. 6 (a) Probability distribution function of traversal positions, η, for target pedestrians in free
flow (1vs. 0) vs. an increasing number of incoming pedestrians (note that the η axis is flipped to
−η with respect to the reference in Fig. 2 such that the right side of the plot coincides with the
right side of the corridor for an observer located as in Fig. 2). Although the corridor is rectangular,
the position distribution is not uniform. We believe that this possibly connects both to cultural
biases and to the geometry upstream with respect to the observed areas. The entrance area is,
in fact, asymmetric and wider on its right end. As the incoming pedestrians increase in number,
so does the tendency to choose for the right side of the corridor. (b) Aggregated statistics of the
outlet position dispersion conditioned to inlet location and incoming flow. The inlet distribution
in (a) maps to an articulated outlet distribution with dependency on inlet and flow conditions. We
report it in aggregated form by averaging the conditioned standard deviation of the outlet position,
std(ηe|ηi), over the inlet position ηi , (hence, no further dependency on ηi remains). The evaluation
is restricted to the bulk of the flow, −1.5 m ≤ ηi ≤ 3.1 m, i.e. measurements within half a meter
from the left wall and from the right-side peak are neglected. Error bars report the standard error
on the average. As the incoming crowd grows, and up to the case of 10 incoming pedestrians,
so it grows the variance in the outlet position distribution. In other words, the need of avoidance
induces larger and larger deviations from the average trajectory. Further increments of the number
of incoming pedestrians yield a reduction in dispersion. This likely connects with the fact that the
target pedestrian remains “funneled” by the incoming crowd. According to (a) this happens with
highest probability in proximity of the right-hand side wall

In Fig. 6b we report the aggregated measurement of the dispersion in the transversal
position as the target pedestrian leaves our observation window, ηe, conditioned
to their entrance position, ηi . Specifically we report the average, computed over
ηi , of the standard deviation of ηe conditioned to ηi , in formulas Eηi ( std(ηe|ηi) ).
In other words, for each entrance location (considered after a binning of the area,
−1.5 m ≤ ηi ≤ 3.1 m, into 20 uniformly spaced sub-regions), we consider the
conditioned standard deviation of exit location(s). As this aims at measuring the
“point-dispersion” from each individual entrance site, we average all these point-
dispersion measurements. We notice that the average point-dispersion increases by
20% from scenario 1vs. 0 to 1vs. 5+ and by a further 10% when restricting to
1vs. 10+. If we restrict to a larger number of incoming pedestrians, the average
dispersion starts reducing. This is likely a consequence of the fact that, in many
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cases, the target pedestrian remains “funneled” in a narrow space left by the
incoming crowd.

Considering the increment in the variability and in the fluctuations of the
trajectories for the generic 1vs.N case, for large N , and the relative shortness of
our observation window (about 3 m), contrarily to the 1vs. 0 and 1vs.1 cases, our
data only allows us to evaluate operational-level movements. In other words, within
our observation window we can collect statistics about the fine scale avoidance but
not on the way the preferred path gets modified on a longer time-scale. On this
bases, in the next section we present a model for the 1vs.N scenario.

5 Modeling 1 vs. N Dynamics via Superposition of
Interactions

In this section we address the generalization of the model in Eqs. (2)–(7) (cf. Sect. 3)
as the number of incoming pedestrians increases. Our underlying hypothesis is the
existence of a superposition rule for the pairwise vision-based and contact avoidance
forces in presence of more than one opposing pedestrian. In the next equations,
we indicate these as Nshort ({·}) and Nvision({·}). To emphasize the generality of
the superposition, we set the argument of these functions to the whole set of
pairwise forces, in general referred to as {fi}. The linear superposition rule (or linear
superposition of effects, i.e. N({fi}) = ∑

i fi), ubiquitous in classical physics, has
been widely considered in pedestrian dynamics (e.g., [8, 11]), but also it has been
criticized (e.g., [19]). Notably, in a context of linear superposition of forces, the total
force intensity may diverge in presence of a large crowd. Most importantly, however,
it is likely that the individual reactions are dependent on a (weighted) selection of
surrounding stimuli rather than on their blunt linear combination [19]. In formulas,
we consider the following dynamics:

dx1

dt
= u1 (11)

du1

dt
= F(u1)−Nshort ({ex,iFshort,i})+ σxẆx (12)

dy1

dt
= v1 (13)

dv1

dt
=−2λv1− 2β(y1− yp)

−Nshort ({ey,iFshort,i})+Nvision({Fvision,i})+ σyẆy (14)

dyp,1

dt
= ẏp,1 (15)

dẏp,1

dt
= −2μẏp,1 +Nvision({Fvision,i}), (16)
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here the subscripts “1” and i (i = 2, . . . , N + 1) identify explicitly the target
pedestrian and the rest of the incoming crowd. For the sake of brevity, we used the
notation {Fvision,i} to indicate the set of pair-wise forces {Fvision,i , i = 2, . . . , N +
1} between the target pedestrian and the N other individuals.

The highly complex dynamics, in combination with the relative shortness of our
observation window, allows us to highlight some modeling challenges connected
to finding and validating functional forms to the terms in Eqs. (11)–(16). We list
these here and address them through additional hypotheses or simplifications on the
dynamics model.

• Bi-stable dynamics vs. contact avoidance forces. Avoidance forces interplay with
our bi-stable velocity dynamics (cf. Fig. 7). Effectively they increase the proba-
bility of hopping between the two stable velocity states and provide nonphysical
trajectory inversions. Although it is reasonable to expect an higher trajectory
inversion rate when a pedestrian faces a large crowd walking in opposite
direction, such rate has to be probabilistically characterized. In modeling terms,
we expect the height of the potential barrier U(up) − U(0) between the stable
velocity state, u = ±up, and the zero walking velocity, u = 0, to be altered by
the incoming crowd. In absence of validation data, here we simplify our model by
considering a second-order Taylor expansion of the potentialU around u = +up.
In this way, u = +up remains the only stable state of the dynamics and trajectory
inversions are therefore impossible. While this is a strong simplification, it serves
the present purpose of studying 1vs.N scenarios.

• Preferred path. In presence of many consecutive avoidance maneuvers, as in
a typical 1vs.N case, the trajectory of the target pedestrian is continuously
adjusted. These adjustments likely include modifications of the preferred path.
Our monitoring area along the longitudinal walking direction is relatively short
(about 3 m). As such, local avoidance maneuvers (operational level) remain
mostly indistinguishable for re-adjustments of the preferred path (tactical level).
Therefore, we opt to address path variations as avoidance maneuvers (i.e.,
operational-level movements). As we hypothesize that tactical-level movements
are negligible, we opt to set the preferred path to the average longitudinal
path measured. Longer recording sites would open the possibility of addressing
statistically the dynamics of preferred paths in presence of many successive
interactions.

• Preferred velocity. The diluted motion comes with a measurable notion of
preferred walking velocity (or velocities in case of multiple walking modes).
In Fig. 3a we report the pdf of the longitudinal component of the velocity
for undisturbed pedestrians, u, displaying the superposition of two dominant
behaviors, pedestrians walking and running with averages velocity up,w =
1.29 m/s, up,r = 2.70 m/s, respectively. In the generic 1vs.N case, we expect
an “adjusted” preferred velocity depending on the surrounding traffic. In other
words, although a pedestrian would keep his/her desired velocity constant at
all times, the constraints given by the presence of other pedestrians require its
temporary reduction. The velocity reduction is generally reported in average
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Fig. 7 The longitudinal walking dynamics of a pedestrian in diluted conditions, according to
Eqs. (2)–(4), is defined by the interplay of a velocity gradient force, −∂U , that brings the system
toward a stable state (in this case, say u = +up; a sketch of the potential U is reported in
blue), a random forcing, σWx , that brings the system away from the stable state (and possibly
yields transitions between the stable states), and the longitudinal component of the short-range,
contact avoidance, force, Fshort . As these forces linearly accumulate when N increases, the
system gets more and more “unbalanced” toward the unstable state u = 0 or the negative
velocities. In other words excessive forcing increases the hopping probability towards negative
velocities and effectively reduces the potential barrier that separates the stable states. Although
it is reasonable to expect that the probability of trajectory inversion increases in presence of a
large incoming crowd, the phenomenon has to be probabilistically characterized. Here we bring
this probability (unrealistically high for the original double well potential, as in [5, 6]) to zero, by
considering a Taylor approximation of the potential around the positive velocity stable state, i.e.
U(u) ≈ C(u−up)p , whereC is a positive constant. Finally, in presence of a large incoming crowd,
the desired walking velocity (that one would keep in diluted flow) most likely cannot be employed
due to “resistance” of the surrounding crowd. Hence, the effective walking velocity is reduced
(cf. fundamental diagram in [4]). In presence of enough data the statistics of such reduction can
be quantified. Here, focusing on the path fluctuations, we set the locally preferred velocity to the
average longitudinal walking velocity of the target pedestrian. This translates the velocity potential
towards velocities lower in absolute value (gray dashed line)

terms through fundamental diagrams (i.e., density–velocity relations [22]) that
for our setup we quantified in [4]. At the microscopic level, we expect a
number of elements influencing the adjusted preferred speed, e.g. surrounding
crowd density, geometry of and position in the domain, presence of a visible
walkable free space within the incoming crowd, etc. These aspects are also likely
statistically quantifiable in presence of a large enough observation window, that
enables to disentangle tactical- and operational-level aspects of the dynamics.
Similarly to the preferred path, here we set the preferred velocity to the average
walking velocity of the target pedestrian.
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• Superposition rule for vision-based interactions. Vision-based interactions are
long-range, and relatively narrow angled (cf. Sect. 3 and [6]). This makes them
mostly irrelevant in a 1vs.N condition as in Fig. 1, where there is limited
frontal interaction as compared to interactions with other neighboring neighbors.
As such, we opt to simplify the superposition rule for this forces to a linear
summation, that is Nvision({fi}) = ∑N+1

i=2 fi .

Given these simplifications, we consider four superposition rules for the short-range
contact avoidance forces:

(C1) Nshort ({fi}) = ∑N+1
i=2 fi—this is a linear extension to Eqs. (4)–(5) and serves

as a baseline reference;
(C2) Nshort ({fi}) = 1

10

∑N+1
i=2 fi—this case is analogous (C1), but a scaling of the

interaction by a factor 10;
(C3) Nshort ({fi}) = 1

10

∑N+1
i=2 fi and α → 10α—this case extends (C2) by

steepening the velocity potential around the stable velocity state by a factor
10;

(C4) Nshort ({fi}) = 1
2 maxi (fi)—this is a non-linear superposition of forces:

because of the decreasing monotonicity of the short-range interactions, this
is equivalent to consider interactions exclusively with the nearest-neighbor.

Considering the stochastic dynamics, we compare the simulations and data as
follows. We sample 200 random occurrences in a 1vs.N scenario from our
measurement in which the target pedestrian enters in the bulk section of the domain;
each scenario is similar to what depicted in Fig. 1. We specifically consider N =
10+, that according to Fig. 6b, spans among the most challenging cases in terms of
variability of the paths. For each occurrence, we opt to simulate through Eqs. (11)–
(16) exclusively the target pedestrian dynamics, while we update the position of the
other N individuals according to the data (our simulation step, 	t , is equal to the
sampling period of the sensor, i.e. (15 Hz)−1 = 66 ms). Employing the measured
initial position of the target pedestrian and initial velocity sampled from the target
measured walking velocities, we simulate his or her dynamics, from the entrance
in our observation window to the exit, for M = 50 independent realizations. We
report in Fig. 8 examples of such simulations (green lines) overlaying real measured
trajectories of the target pedestrian and of the rest of the crowd (respectively, in
red and blue). Employing the simulated trajectories, we can compute an ensemble-
averaged path, z̄r1(t) = (x̄s1(t), ȳs1(t), ȳsp,1(t)) (i.e., with some abuse of terminology
from the quantum path integral language [7], this would correspond to the “classical
path”) as

z̄s1(t) =
1

M

M∑

k=1

zs1,j (t), (17)

where j indexes the realizations, the average is performed on the position vectors
zs1,j (t) = (xs1,j (t), y

s
1,j (t), y

s
p,1,j (t)) and the superscript s indicates that the
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Fig. 8 Comparison of measurements and simulations performed via Eqs. (11)–(16) and non-
linear force superposition model (C4) in four 1vs.N scenarios **(a,b,c,d)**. We consider the
coordinates, (x, y), aligned with the preferred path of the target pedestrian (i.e., the whole domain
has been rotated accordingly). The measured trajectory of the target pedestrian is reported in red,
in blue are the measured trajectories of the incoming crowd. We display in green different target
pedestrian trajectory realizations as generated by our model, and in black the classical path or the
(time-)averaged simulated trajectory (cf. Eq. (17))

quantities involved are from simulated data. Hence, we can compute the pdf of the
instantaneous fluctuation, dB(z̄s1, z1)(t), with respect to the classical path

dB(z̄
s
1, z1)(t) = ||(x̄s1(t), ȳs1(t))− (x1(t), y1(t))||2, (18)

where the position z1 can be either from the simulated data themselves or from
the measurements. The underlying idea is to probe how likely it is that a measured
trajectory is prompted by the model, for which, a necessary condition is a similar
dB probability distribution. Note that in the case of simulated trajectories, the
distribution of dB gives a measure for the size of the trajectory bundle (cf. bundle of
green simulated trajectories in Fig. 8).

In Fig. 9, we report the probability distribution of the distance dB for the four
force superposition rules (C1)–(C4). We observe that a first-neighbor only reaction
(C4) yields a distance distribution, in case of measured and simulated trajectories,
that is mutually closest while incorporating the least parameter variations with
respect to the validated 1vs.1 case. In this case, we exclusively halved the intensity
of the short-range interaction force. Such reduction might be further justified by the
fact that only the target pedestrian has been simulated, which included no reaction
of the other pedestrians that were passively moved according to the measurements.
We stress that possibly many other superposition rules may exist: in case (C3) in
fact, we achieved a good agreement between the distance distribution. Nevertheless,
this involved not only a reduction of the interaction forces by a factor 10, which
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Fig. 9 Probability distribution functions of the distance dB between the simulated classical path
(i.e., the average simulated trajectory, cf. Eq. (18)) and the measured or the simulated trajectories,
respectively, dB(z̄s1, z

m
1 ) and dB(z̄s1, z

s
1), for short-range force superposition rules (C1)–(C4). The

non-linear force superposition, considering interactions with the first-neighbor only, allows highest
similarities in the distance distributions, with minimum variation of parameters with respect to the
1vs.1 case

may agree with a mean-field like interaction scaling (here N ≈ 10 holds), but we
needed to heavily steepen the velocity potential around the stable state, with respect
to the validated value in the 1vs. 0 case, i.e. we increased α and so the likelihood of
a pedestrian to keep their desired velocity.

6 Discussion

In this chapter we addressed complex avoidance scenarios involving one pedestrian
walking in a corridor, while avoiding a crowd of N other individuals walking in
the opposite direction, that we conveniently named 1vs.N . This work aimed at a
first step towards general crowd models, quantitative in probabilistic sense, where
the dynamics is in agreement with large ensembles of measurements and statistics
evaluated thereof. Our analysis has been based on real-life data collected in an
unprecedented experimental campaign held over about a six months time-span, held
in the train station of Eindhoven, The Netherlands, in which millions of individual
trajectories have been recorded with high space- and time-resolution. We considered
this scenario a first step to tackle avoidance in non-diluted conditions; we based our
analysis and modeling on our previous works on diluted 1vs. 0 and 1vs.1 conditions
that we briefly reviewed in the first part of the chapter.

Our contribution has been twofold. First we evidenced, on the basis of the
experimental data, complex aspects of the dynamics arising in comparison to a
diluted flow: namely the increased randomness in the motion, both in terms of
small-scale fluctuations and of avoidance maneuvers (operational-level dynamics),
and the increased relevance of geometric aspects. These elements also show how
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our current trajectory database enables to explore just a small portion of the overall
1vs.N dynamics, that we could mainly address in its operational aspects, while we
had to make assumptions on the tactical part.

On this basis, we considered a generalization of our previous model for the
diluted dynamics. Assuming the preferred path and speed known, we could show
that a non-linear superposition of short-ranged contact avoidance forces, focusing on
the first-neighbor only, could produce a position-wise fluctuation distribution with
respect to the classical path that was in better agreement with the measurements. In
other words, the trajectories measured in real-life had higher chance to be generated
by our stochastic model. It is important to stress that this is possibly one among
many fitting forces superposition schemes. In fact, we could produce fluctuations
distributions with good agreement between simulations and data also with a linear
superposition of forces; this however required multiple parameter changes with
respect to the validated baseline 1vs. 0 and 1vs.1 models.

While extending the model to the 1vs.N case we could also point out a limitation
in our 1vs. 0 modeling approach. We cast both types of identified longitudinal
velocity fluctuations, i.e. the frequent and small oscillations and the rare and large
path deviations (trajectory inversions), in a unified perspective through a double
well potential in velocity. In presence of interaction forces among pedestrians,
these interplay with the gradient force due to the potential altering, among others,
the probability of inversion. Although the trajectory inversion probability is likely
to be affected by pedestrians coming in the opposite direction, the exact extent
to which this happens has to be measured. From the modeling perspective, this
modification can be rendered in terms of a dynamic modification of the potential
barrier (U(up) − U(0)) in dependence of the surrounding crowd. This dynamics
can also be extended to other parameters of the potential, like the preferred velocity
up that has now been inferred from the data rather than modeled.

In general, we evidenced the increase of complexity when analyzing and
modeling dense 1vs.N avoidance scenarios vs. diluted (1vs. 0 and 1vs.1), with
higher relevance of geometric aspects, mainly the position in the domain. Moreover,
in order to resolve and model tactical level dynamics, one would require even longer
measurement campaigns, to extensively sample complex and dense pedestrian
configurations, as well as longer observation windows, to disentangle tactical and
operational-level dynamics. Finally, from the modeling perspective, we reckon
that employing Langevin-like equations can get prohibitively complex as one
considers scenarios that are crowded and/or geometrically complicated: the involved
potentials, in fact, can get excessively complex to identify and model. On the
opposite, more trajectory-centric approaches, e.g. based on tools well established
in modern physics such as path integrals [7], can provide more natural modeling
environments.
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Modeling Collective Behaviour: Insights
and Applications from Crowd Psychology

Anne Templeton and Fergus Neville

Abstract Research from crowd psychology and pedestrian dynamics can inform
one another to improve understandings and predictions of collective behaviour. In
this chapter, we provide an overview of theoretical insights from crowd psychology
on intragroup and intergroup behaviour and discuss possible avenues for implement-
ing principles of the social identity approach into pedestrian models. Specifically,
we debate the use of outdated assumptions of crowd behaviour, discuss how the
core tenets of social identity theory and self-categorisation theory are central to
understanding collective behaviour, showcase how perceptions and experiences of
crowd members can be dynamic and influence their perceived safety and behaviour,
and then point to recent trends in using crowd psychology to inform models of
pedestrian movement and behaviour in emergencies. Finally, we examine barriers to
incorporating social psychological theory into models, and look ahead to potential
collaborative projects to improve crowd safety and experiences.

1 Introduction

Picture a crowd scene. It could be worshipers walking together during a religious
pilgrimage, supporters of sports teams chanting songs at rival fans across a stadium,
or passengers on a train helping one another in a sudden emergency. What unites
these diverse behaviours and contexts is not only the physical co-presence of many
people, but their feeling of being together as a group. An important part to making
sense of their behaviour is understanding the social identities involved. That is, their
identification as a member of the social group. In these examples the crowd members
see themselves as being in the same social group and act in line with beliefs that the
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group holds, known in psychology as the social norms of the group [1]. The social
identities and norms are somewhat pre-established for the pilgrimage and sports
crowds, but emergent for the train passengers responding to the attack as they come
to recognise each other as sharing a common threat.

These are all examples of what social psychologists call psychological crowds
as opposed to physical crowds [2, 3]. The latter are large groups of co-present
people who think and act as individuals or small subgroups of friends and families.
Suitable examples might include shoppers on a high street or commuters on public
transport. Unlike in psychological crowds, members of physical crowds do not
perceive themselves to be in the same social group with other crowd members other
than their subgroup of families or friends.

However, crowds are dynamic environments. Physical crowds can transition to
psychological crowds when something in the context changes to unite people within
a shared social identity. To use the example of a physical crowd of commuters on
public transport, if their train were to break down and they were badly treated by
the train company then the individual crowd members may become a psychological
crowd. People cease being ‘other’ and become fellow group members who share the
same fate and social identity. This shared identity can then lead to a positive shift
in social relations such that people support rather than ignore or compete with one
another [4]. A physical crowd can also consist of one or more psychological crowds,
such as two psychological crowds of opposing football fans within a stadium, or a
psychological crowd of concert attendees travelling through a physical crowd of
others at a transport hub.

Despite the importance of social identity processes for understanding crowd
behaviour, they remain largely neglected in pedestrian models of crowds. A sys-
tematic review of contemporary models of crowd behaviour noted that the models
continued to rely on mistaken or outdated assumptions of collective behaviour rather
than on the findings of empirical research [5]. The review concluded that existing
pedestrian models simulated crowds in one of three ways. Crowds were either
treated as (1) homogenous masses where all members acted in the same way, (2)
independently acting individuals without any sense of collectivity (often with the
underlying assumptions of panic or selfish behaviour), or (3) a series of subgroups
with various levels of cognitive connections to others in the model (e.g. leader-
follower models).

The review indicated an upsurge in the publication of crowd modeling articles,
with the homogenous mass approach becoming the most prevalent. While these
models have made important gains in simulating collective behaviour, existing
approaches do not integrate the social identity processes which underpin crowd
behaviour. Instead, the models are often based on outdated assumptions from
transformation and dispositional theories which hark back to discredited ‘classical’
crowd psychology. Basing models on these invalidated theories can have significant
consequences for crowd safety since an incorrect premise in a model will result in
an incorrect outcome. We argue that if modellers want to accurately predict and
monitor crowd behaviour to increase safety, then we need to look to contemporary
research in crowd psychology to incorporate accurate assumptions and behavioural
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outcomes into models. Specifically, models should look to recent research from
a social identity perspective to explain how and when crowd members perceive
themselves and others to be fellow group members, and what forms of collective
behaviour can emerge from this process.

In this chapter we will set out some of the core considerations that modellers can
take from contemporary crowd psychology. First, in Sect. 2 we provide a summary
of classical theories in crowd psychology, highlighting their strengths and weakness,
and implications for crowd modeling. In Sect. 3, we present the core theoretical
tenants of the social identity approach [6] to both demonstrate its importance
in modeling the root of collective behaviour, and to lay out the foundations of
group processes that are needed to implement collective behaviour in psychological
crowds. Following this, in Sect. 4 we provide more nuanced and dynamic aspects
of the social identity approach to show why crowd members’ cognitive appraisals
of others, relations, and emotions can transform over time. In the fifth section, we
give applied examples from previous research to show how these transformations
can influence phenomena such as feelings of safety, perception of crowdedness,
intimacy with others, and enjoyment of events.

In Sect. 6, we summarise how social identification influences pedestrian prox-
imity and pedestrian flow in psychological crowds. Here, we focus on how
experimental methods from crowd psychology and pedestrian movement can be
combined by researchers who aim to explore group processes in crowd movement.
We then turn our attention in Sect. 7 to understanding collective behaviour in
emergencies. We discuss research on emergency behaviour (e.g. motivation for
helping behaviour), and initial attempts to implement theoretical principles from the
social identity approach into a pedestrian model. Finally, in Sect. 8 we look ahead
to potential research avenues. We discuss current challenges such as barriers to
combining complex psychological theory with concise models, possible solutions to
pressing questions using methods from psychology and pedestrian dynamics, offer
suggestions for integrating contemporary crowd psychology into models, and pose
future theoretical and applied directions to improve our understanding and modeling
of crowd behaviour.

2 Classical Theories of Crowd Behaviour

Classical crowd psychology refers to early theories of crowd behaviour which
became popular at the end of the nineteenth century. These approaches broadly
fall into two categories: transformational theories and dispositional theories. There
are several detailed and entertaining reviews of the historical origins, authors, and
theories of classical crowd psychology which explain how this work emerged as a
conservative reaction to popular struggle and democratic politics (e.g. [7–14]). We
provide a brief summary of the classical theories of crowd behaviour in Table 1.

Transformation or ‘group mind’ theories argue that crowds fundamentally alter
the character of their members through a loss of identity [15–17]. Identity here
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Table 1 Classical theories of crowd behaviour

Theory-type Characterisations Neglects

Transformative • Loss of individual identity and
self-control
• Submergence to the crowd
• Contagion of emotions and
behaviours

• Normative influences
• Collective pro-social behaviour in
absence of leaders
• Social influence is constrained by
group membership

Dispositional • The collective is a nominal fallacy
• Collective behaviour due to
common traits and characteristics of
individuals
• Social facilitation through
convergence

• Social context such as emergent and
pre-established social norms,
intergroup dynamics in unfolding
events (e.g. collective action)

Deindividuation • Loss of individual identity,
awareness, and restraint
• Anonymity leads to anti-social
behaviour

• Reasons for crowd assembly
• Intergroup dynamics in conflict in
behaviour

is conceived of as a unitary and individual entity which is ‘submerged’ when
people enter crowds. A loss of identity leads to a loss of behavioural constraint
and thus any emotions or behaviour can pass ‘contagiously’ through crowds leading
them to behave in ‘primitive’, ‘irrational’, and unpredictable ways. The apparently
‘contagious’ nature of crowd behaviour and emotion has been integrated into some
computer simulations of crowds (e.g. [18, 19]). However, there are three primary
dangers of modeling crowd behaviour upon transformation theories.

First, the transformation approach fails to account for normative influences on
behaviour such as how group members will self-police negative behaviour within
crowds if people act outside the norm (see [20, 21]). Second, their inherently
negative views of crowds and ideas of hypnotic suggestibility to leaders fail to
account for instances in which crowds act pro-socially and work collectively in
the absence of leaders, including maintaining everyday norms such as queuing
rather than losing their ordinary civility (e.g. [22]). Third, they neglect how emotion
transference is constrained by group membership, whereby we are more influenced
by the emotions/actions of people within our group (ingroup members) than those
not in our group (outgroup members) [23–26].

Transformation theories and the concept of identity ‘submergence’ was the inspi-
ration for the deindividuation literature which continued to argue that (individual)
identity is lost in crowds, thereby causing people in them to act pathologically
[27]. For example, Festinger and colleagues [28] claimed that individual anonymity
within groups led to anti-social behaviour; Diener [29] and Duval and Wicklund [30]
suggested that deindividuation caused a loss of objective (individual) self-awareness
preventing reliance upon individual standards, while Zimbardo [31] proposed that
deindividuation led to a ‘lower threshold of normally restrained behaviour’ (p251)
(for reviews see [32, 33]).
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A key reason why crowds were pathologised in classical theories was their
decontextualisation at both distal and proximal levels. In other words, no attention
was given either to the motivating forces that led crowds to assemble, or to the role
in which other groups (namely the security forces) played in intergroup collective
conflict [12]. Violent interactions between groups were consequently seen as having
their origins solely within the crowd, and changes in collective behaviour and
emotion seemed random and unpredictable when considered in isolation. This
decontextualisation engendered a reification of crowd behaviour such that the
brutality and emotionality of specific crowds in particular settings were used to
condemn collective behaviour in general [10, 12, 34].

Dispositional theories of the crowd evolved in direct opposition to the transfor-
mation literature. These theories argued that groups were made up of individuals
who shared common traits and characteristics which were amplified through social
facilitation as similar individuals converged together [35, 36]. This work was
reflected in subsequent individualistic accounts of crowd behaviour that explained
the behaviour of crowds as a consequence of individual (Freudian) personality
conflicts (see [37, 38]). For example, Kornhauser [39] suggested that crowd
members were alienated individuals, while Lasswell [40], Hoffer [41], and Klapp
[42] characterised political ‘types’ who engaged in collective behaviour to fulfil
inner needs.

Empirically, the dispositional approach finds little support. Numerous studies
have failed to find common traits that predict participation in collective behaviour
(e.g. [9, 43]; Stott and Adang [114]; [14]). Despite being a response to trans-
formation theories, the dispositional account shares many of its criticisms [44].
Both traditions rely upon a unitary notion of identity such that the isolated
individual is considered the only locus of self and reason (see [9, 12]). Moreover,
by detaching collective action from its social context, crowd behaviour appears
meaningless and is explicable only by invoking some hidden factor. The difference
between transformation and disposition theories is merely whether this factor is
a metaphysical group mind or the predisposition of individual crowd members.
Decontextualised, the pathologised behaviour of particular crowds are reified and
generalised to all collective contexts such that participation in crowd action becomes
in itself a sign of individual pathology [12].

Although strong in their convictions, classic crowd psychologists rarely provided
detailed descriptions of the collective events upon which they based their conclu-
sions. When one does systematically examine crowd action, including the violent
incidences of collective behaviour that dominated the classic theories, one finds
order in place of chaos. Rather than exemplifying collective irrationality, crowd
behaviour instead appears grounded in shared systems of belief and identification,
and to operate in relation to social context [14, 44–46].

Emergent Norm Theory (ENT; [47]; for summaries see [12, pp. 192–4], [48, pp.
424–6]) rejected psychology’s depiction of crowds as irrational and pathological.
Instead of reducing collective action to the ‘rational’ actions of individuals, ENT
contended that emergent norms shaped crowd behaviour. ENT fused symbolic inter-
actionism (the process whereby meanings materialise from micro-social relations)
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with social psychological research into group norm formation ([49, 50]; see [12]). It
was argued that collective action was preceded by an episode of ‘milling’ during
which time group members exchanged views and discussed advisable courses
of action through interpersonal interaction. Some individuals—‘keynoters’—had
particular influence during this period through their forceful delivery and resolve of
opinion. Gradually there emerged an ‘illusion of unanimity’ as keynoters’ positions
were adopted by crowd members.

ENT made an important move away from the irrationalist crowd models and
restored the relationship between the self-understandings of crowd members and
their collective behaviour [12]. However, ENT is vulnerable to several criticisms
that showcase substantial shortcomings for a modeller attempting to simulate crowd
behaviour. Firstly, while collective action does often follow a period of mingling
and discussion, this process is unable to account for the coherence of crowd action
throughout rapid changes in social context [9, 12, 51, 52]. Also, by focussing upon
interindividual interactions without grounding norm formation in wider issues of
group and societal identification, ENT cannot explain how the emerging norms
of collective behaviour come to echo shared understandings or predict who or
what becomes influential. One prominent theoretical framework that addresses these
shortcomings is the social identity approach.

3 The Social Identity Approach

Reicher’s [44, 51–53] social identity model (SIM) of crowd behaviour critiqued
decontextualised accounts that examined either the individual or the crowd in
isolation, and instead argued that to understand collective co-action one needs
‘a social psychology that places the individual in society, and relates conduct to
context’ (ibid, 1987, p171). The model claimed that the social identity approach
to group behaviour provides such a social psychology. By the ‘social identity
approach’ (see Reicher et al. [6] for a review) we refer to social identity theory
(SIT; [54, 55]), self-categorisation theory (SCT; [56, 57]), and the Elaborated Social
Identity Model (ESIM; [12, 51, 52, 58, 59]). A brief glossary of key terms within
the social identity approach are presented in Table 2.

The social identity approach sets out a strong theoretical and practical base to
be adapted into computer models of crowd behaviour. Instead of a loss of identity
in groups, the social identity approach argues that as one’s membership with a
relevant social category becomes salient, there is a shift from personal to social
level identification. Personal identity refers to ‘I’, or how one’s characteristics and
qualities are distinct to other individuals, while social identity refers to ‘we’, or how
group members understand their membership in a social category such that they are
unique in comparison to members of other social groups [6, 54, 60]. In this sense,
when one’s group identity becomes salient, the ‘social collectivity becomes self’
([61, p. 12]). The dependence of collective action on group norms and social context
gives crowds the capability to act coherently in rapidly changing non-routinised
situations without the ‘milling’ process required by ENT [12].



Modeling Collective Behaviour: Insights and Applications from Crowd Psychology 61

Table 2 A glossary of key terms within the social identity approach

Term Brief definition

Social identity theory We have a personal identity (referring to our idiosyncratic self) and
social identities (our membership of social groups) and operate on a
continuum between these. People are members of multiple social
groups and each group has social norms, values, and beliefs that
guide our meaning-making and behaviour. People within our group
are referred to as ingroup members, and people in another group are
referred to as outgroup members

Social norms Shared rules regarding how to think, feel, and act within a social
group. These can be descriptive (what group members do) and
injunctive (what group members ought to do)”

Salience The extent to which a social identity is cognitively present at a
particular time

Social identification Refers to how much one identifies as a member of a particular
social group

Shared social
identification

The extent to which people believe that they and others feel part of
the same social group

Self-categorisation
theory

Described the process in which people are cognitively categorised
into social groups. Categorisation involves a process of
self-stereotyping, depersonalisation, comparative fit, and normative
fit

Self-stereotyping The process whereby individuals define their self in terms of their
social identity and act in line with the group’s social norms

Depersonalisation A shift from personal identity to social identity.
Meta-contrast principle When differences between people in the ingroup are perceived as

smaller than the differences with the outgroup
Comparative fit Based on the meta-contrast principle, the level of context-specific

comparative (dis)similarity that the self and others have to group
members. A group of people can be categorised as being in the
same group as one another if the differences between themselves
are less than their differences with another group. This is part of the
meta-contrast principle

Normative fit The extent to which stimuli align with the perceived norms of the
group. For example, if someone acts in line with a group’s social
norms, then they are likely to be categorised as a member of that
group

Of particular interest for crowd modellers simulating how crowd behaviour
develops over time, Reicher [44] explains how behaviour emerges and develops
within crowded contexts. For example, in his study of the St Paul’s riot in Bristol,
Reicher [44] noted how crowd members’ identification with the local St Paul’s
community determined the limits of their behaviour. Rather than having rigid
unyielding accounts of normative and anti-normative behaviour, Reicher shows how
norms are dynamic and can change within the intergroup context. Conflict with
the police—who were perceived as an illegitimate presence within the community
space—was deemed appropriate such that throwing stones at police cars became
normative behaviour. However, when a crowd member threw a stone at a passing bus
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the behaviour was not repeated. Instead, the fellow crowd members actively stopped
the behaviour due to the illegitimacy of the target in relation to the community
identity. The community identity had very clear boundaries of who and what was
associated with the ingroup, and the normative behaviour operated within this
understanding.

SCT contends that the categorisation of others into groups depends upon both
perceiver readiness (the extent to which particular social categories are available to
us and how familiar we are in applying them), and the comparative and normative
components of category fit [56]. Comparative fit is a function of the meta-contrast
ratio (the ratio of intragroup to intergroup differences), such that an aggregate of
people will be categorised as a group when the differences between them are less
than the differences with a comparator aggregate. In this way the categorisation of
self and others is inherently contextual because comparative fit will always depend
upon one’s relative frame of reference [57]. Normative fit refers to the congruence
between perceived social stimuli and normative expectations about different social
groups, such that one is more likely to be classed as a member of a group when
one’s behaviour matches that group’s norms [56].

The social identity approach argues that one is in possession of multiple social
identities, the salience of which changes as a function of social context. As different
identities become relevant, behaviour is shaped by the norms associated with that
identity. In a pedestrian model, it could be possible for each pedestrian to have
multiple available social identities and have one identity that is salient (prominent
in governing behaviour) at any one time. For instance, our identities as academics
might be most prominent while attending a conference, compared to our identities
as climate activists when attending a protest. As one defines or ‘self-categorises’
oneself in terms of these different group memberships, one self-stereotypes and
adopts the norms and behaviours associated with that relevant identity. While these
identities are of real importance to me as an individual, they cannot be reduced to
an individual level because they are collective constructs. In this way, Reicher [62]
describes social identity as the pivot between the individual and the social.

Self-categorisation therefore becomes the psychological basis for crowd
behaviour, such that group members are able to act collectively towards common
goals because they possess a shared social identity [22, 53, 56, 60, 63]. This point
is worth emphasising; identity is not lost in groups but is the very foundation
of collectivity. When group objectives are achieved—a process named collective
self-realisation (CSR)—participants can feel empowered and efficacious [64–66],
leading to positive affect and a willingness to participate in future group action.
The power of crowds is not therefore due to a loss of identity (as argued by Le Bon
1895/[15]), but is rather a consequence of shared identification and co-action. More
support for this can be found in a meta-analysis of 60 independent studies examining
the issue by Postmes and Spears [32]. Here, Postmes and Spears found evidence in
favour of the social identity approach and not the deindividuation account. That is,
participants who had their anonymity, self-awareness, and group size manipulated
did not act pathologically, but rather conformed to situation specific social norms.
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The core theoretical principles for the social identity approach have several
implications for crowd and pedestrian modellers. First, it demonstrates how people
act as collectives, share beliefs, and have positive or negative relations with others.
The literature on depersonalisation provides the framework for modeling how
people transition from their personal to social identities, i.e. how they change from
acting as an individual to acting collectively with other ingroup members. Moreover,
it poses that we have multiple social identities with different norms and values, and
shows how a social identity can become salient and influence our perceptions and
behaviour. It illustrates how agents in a model may decipher group membership:
through their relative similarity or difference to us compared to others (comparative
fit) and their behaviour (normative fit).

Crucially for crowded contexts, the social identity approach sets out how norms
are dynamic and how crowd behaviour is limited within these norms. It shows how
clear and important boundaries on behaviour are governed by group norms, and how
crowd members may collectively work together to regulate behaviour to ensure it
operates within their understanding of the group. This, however, is far from all that
the social identity approach can offer to modellers. In order to properly dig into
how crowds can be behaviourally and emotionally dynamic, we now turn to the
cognitive, relational, and emotional transformations that social identity processes
entail.

4 Transformations in Psychological Crowds

As noted in the previous sections, crowd members and the relationships between
them can be transformed in various ways which are of relevance to those seeking
to model crowd behaviour. To be more concrete, recent work from the social
identity approach has noted three potential transformations when people perceive
themselves as being members of a psychological group (i.e. sharing a social identity
with co-present other): cognitive, relational and emotional transformations [3, 67].
Please see Table 3 for a brief glossary of the transformations.

Table 3 Glossary of transformations in the social identity approach

Transformation Brief definition

Cognitive A shift in identification. This can involve a shift from a personal identity to a
social identity, or from one social identity to another social identity

Relational Shared identity leads to a shift in social and sensual relations as crowd
members cease to be ‘other’ and become ‘one of us’. Incurs increased
feelings of closeness, higher trust, support, respect, and cooperation

Emotional The emotional consequences of being in a group. This includes feelings of
collective empowerment, joy, pride, and anger on the basis of group
membership
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First, based upon the process of self-categorisation, crowd members can undergo
a cognitive transformation such that they come to think and behave in terms of
the goals and norms of their salient social identity rather than their individual
identities. For example, if crowd members come to define themselves as climate
justice activists, then they might chant anti-fracking songs, carry pro-environmental
banners, and march towards sites of particular interest to their identity, such as
centres of political power or offices of fossil fuel companies. How the crowd will act
at those sites (such as a sit-down protest, handing out flowers, throwing rocks, etc.)
will depend upon the social norms associated with that group, and interactions with
other groups (including the police). Moreover, how group members experience the
world around them will also be perceived through the prism of their social identity.
For example, noise regarded as meaningful to one’s group will be rated as more
positive than irrelevant noise [68, 69].

Furthermore, as members of the crowd come to see each other as sharing the
same social identity—such that they are part of the socially extended self rather than
‘other’—this can lead to relational transformations. Multiple laboratory studies
have used the social identity framework to explore the role that shared identity
plays in transforming intragroup social relations (alternatively termed ‘relatedness’)
(for reviews see [70–72]). For example, Haslam et al. [73] reported that ingroup
members expected to agree with one another during conversations, and in so doing
picked up upon common points of agreement that led to consensualisation. In
a quasi-experimental field study (BBC Prison Experiment; [74]), shared identity
could encourage intragroup trust, respect, cooperation, and a decrease in stress.
Novelli et al. [75] built upon these findings to demonstrate that ingroup members
were more comfortable in close physical proximity to one another than they were
to outgroup members or people whose group membership they did not know. As
noted in the introduction, laboratory studies in which participants imagine their train
breaking down can lead to a perception of shared identity with fellow passengers and
subsequent comfort in social and sensual interactions [4].

Outside of the laboratory, a number of fieldwork studies have likewise found
evidence for a positive relational transformation of social relations in groups
of common identity (e.g. [76–79]). As a heterogeneous crowd unites to form
a homogeneous group (perhaps in response to a shared outgroup), interpersonal
relationships with strangers often become characterised by trust and support, rather
than threat and misunderstanding. Importantly, these transformed social relations
can have behavioural manifestations, exemplified in the positive impact that shared
identity has upon resilience and willingness to help strangers in both emergency and
mundane situations ([22, 24, 80–83]).

Finally, the cognitive and relational transformations can lead to emotional
transformations within crowds. Collective gatherings can clearly be sites of intense
passion [37, 38, 84]. While classical crowd psychology theories explained the
emotionality of crowds as a consequence (personal) identity loss, recent research
within the social identity literature has begun to show the various ways in which
crowd emotion is linked to social identification.
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First, to the extent that one identifies with a social group, then group relevant
events are appraised and experienced emotionally as a function of group member-
ship (Intergroup Emotions Theory; [85]). For example, when a football team scores
a goal then its supporters will experience this with joy and pride while fans of the
conceding team will experience the event negatively [79, 86]. This can also lead
to negative emotions, such as when police action to block a march is perceived
as illegitimate by the crowd and leads to collective anger [51, 52]. Second, when
crowds achieve their collective objectives (collective self-realisation) this can be
experienced with a sense of empowerment such as being able to shape the world
rather than being shaped by it, and joy [65, 66]. Such feelings of empowerment can
then act as a predictor of participation in future collective action [65, 66, 87, 88].
Finally, when social relations between crowd members are positively transformed
through shared identity, solidarity and recognition from fellow group members can
be experienced positively, and emotions related to the group experience can be
validated and amplified (e.g. [78, 79, 89]).

5 The Effects of Social Identities on Perceptions of Crowds
and Crowd Events

Social identities affect perceptions and experiences of crowd events. Social identi-
fication as a member of a crowd can influence feelings of relatedness with others
and, in turn, positive appraisal of events, experiences of crowding, feelings of
safety, and comfort levels in close proximity to others. An illustrative example of
the relationship between social identification and crowd experiences can be seen
in Neville and Reicher’s [79] research on attendees of the Rock Ness festival in
Scotland. Neville and Reicher [79] surveyed attendees of the Rock Ness festival
in Scotland to further explore how social identities affect people’s experiences of
crowd events. They asked respondents to rate their shared social identity with others
in the crowd (i.e. the extent to which others in the crowd shared a social identity),
their sense of relatedness with others in the crowd, and the extent to which their
experience of the crowd was positive. They found that having a shared social identity
was not enough to create a positive evaluation of the crowd, but that a sense of
relatedness with others was needed to explain how a sense of shared identity created
a positive experience. That is, respondents who had a stronger sense of shared social
identification with the other crowd members felt more related to them and therefore
had higher positive evaluations of the crowd experience.

In similarly themed research with pilgrims of the Magh Mela, Hopkins et al.
[89] found that shared social identity among crowd members predicted a positive
experience of the pilgrimage when accounting for the sense of intimacy felt with
other crowd members. Here, as pilgrims felt a stronger shared social identity, they
had an increased sense of intimacy with the other crowd members and this led to
higher positive judgements of the pilgrimage experience itself.
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Comparable results were found with pilgrims at the Hajj by Alnabulsi et al. [90].
The Hajj is comprised of pilgrims for across the world with different languages,
religious denominations, and cultures. Despite these differences, the more strongly
pilgrims perceived the crowd to be united, the more they identified with the crowd
(i.e. felt a sense of togetherness with other people on the Hajj), and the more they
identified as being Muslim. Moreover, they found that as positive experiences of
the crowd increased, so too did identification with the crowd, and in turn the more
important their Muslim identity was to them compared to before the Hajj. Taken
together, this research indicates that inter-related components of social identification
and relatedness are pivotal to understanding crowd experiences.

Another important component of crowd experience is the extent to which the
crowd members are able to act in group normative ways that align with their group
values. For example, in the Magh Mela pilgrimage, the more the pilgrims felt that
all kalpwasis (pilgrims who stayed at the Magh Mela for the entire month of the
pilgrimage) thought of themselves as part of a single group, the more they felt
they were able to live a simple life in accordance with the religious teachings, and
therefore the more fulfilled they felt. Here, being able to act in line with group values
through following religious teachings of a simple life was central to the pilgrims’
emotional experience of the event.

Moreover, group relations influence how close crowd members are willing to
be to others, even smelly people. A common assumption within crowd modeling
is that humans have a maximum threshold level of tolerated density or proximity
with others in a crowd before trying to move away (e.g. [91, 92]). This is important
for considering ingress, egress, how people will distribute within spaces, and how
people’s emotional experiences will be influenced by the density. A pedestrian
modeller may understandably assume that participants at a crowd event will try
to avoid those who are smelly and disgusting, yet this too is influenced by group
processes. As shown by Reicher et al. [93], we are less disgusted by smelly stimuli
that we believe belongs to an ingroup member.

Over two studies on perceived disgust, Reicher et al. [93] explored the extent to
which participants were disgusted by a t-shirt supposedly belonging to an ingroup
member, an outgroup member, or a plain t-shirt that acted as a control. Results
from study 1 suggested that participants were less disgusted by smelly ingroup t-
shirts because the t-shirt owner was perceived as more similar to them than in the
outgroup or control conditions. Moreover, the more people perceived the owner of
the t-shirt to be ingroup, the less disgusted they were by them, and therefore the
higher willingness they felt to socially interact with them. In study 2, the results
showed that participants who perceived the owner of the t-shirt to be ingroup spent
less time walking to hand sanitiser that was placed across the room, and indeed used
fewer pumps of it when they got there.

Taken together, the research suggests that having a shared social identity
influences how close we feel to others, how much we are able to enact our group’s
desired behaviour, and therefore our evaluations of crowds and crowd events. The
implications of this research are important from a crowd planning perspective:
hindering a psychological crowd from enacting group-specific behaviours that are
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expected by those with a shared group identity could lead to less positive evaluations
of the event. Although the studies by Reicher et al. [93] were based on smelly t-
shirts, the implications for crowd management and modeling are substantial. They
indicate that disgust perceptions are influenced by group relationships. The studies
provide initial evidence that modellers’ underlying assumptions of proximity and
repulsion need to be re-evaluated to include group processes.

In contrast to assumptions that people will avoid highly dense areas, Novelli
et al. [94] found that social identification influences people’s perceptions of how
crowded they are, and that people who identify with the crowd actually experience
more positive emotions in denser areas. Novelli et al. surveyed attendees of the
Fatboy Slim Big Beach Boutique 2 in the UK. Attendees were standing on an
uneven beach, wedged between an incoming tide of water and the city, in a crowd so
dense that security personnel struggled to enter without causing danger. Despite this,
Novelli et al. found that attendees felt less crowded the more they identified with
the crowd, and in turn experienced a greater intensity of positive emotions during
the event. In contrast, those who had low identification with the crowd reported
more negative emotions the more crowded they felt. Remarkably, the attendees who
highly identified with the crowd wanted to be in the centre of the crowd because they
associated that area with a more positive experience. In short, the more attendees
identified with the crowd, the less crowded they felt, the more central in the crowd
they wanted to be, and the more positive experience they then had during the event.

One possible explanation for why people who highly identify with the crowd
are happy when surrounded by group members is that they feel safer when they
are with members of their group. Alnabulsi and Drury [95] found compelling
evidence for this when surveying pilgrims attending Hajj. Pilgrims who reported
low identification with the other pilgrims in the crowd felt less safe in denser areas
of the crowd. In contrast, pilgrims who highly identified with the crowd felt safer
in denser areas. Evidence suggests that feeling safe may due to an expectation that
people in our group will support us. Further analysis by Alnabulsi et al. [90] found
that Hajj pilgrims in the plaza (outside the Grand Mosque) who perceived other
pilgrims to be supportive of others were more likely to give social support to others
themselves if they perceived others in the crowd be to ingroup members and highly
identified with the crowd. Importantly, this occurred if they perceived others in the
crowd to be ingroup members and had a high social identification with the crowd.
Thus, identifying with other members of the crowd is related to feeling safer in dense
areas (compared to those who do not identify with the crowd) and giving support to
others if they see the others as good ingroup members.

The effect of social identities on experiences of crowd events has a number
of implications for pedestrian modeling and collective dynamics. Our positive
experiences of events are affected by how related we feel to others, even attenuating
our level of disgust to ingroup members in smelly situations. Crucially, social
identification with others in the crowd influences our perceptions of crowding,
safety, and expected support. A positive side to these findings is that people
may feel safer than commonly assumed. There are, however, potentially negative
consequences which need considered in pedestrian modeling and planning for
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crowd events. Specifically, crowd members may seek out more crowded areas
because they perceive them to be safe and believe they will have a more positive
experience there, which could potentially lead to dangerously high densities. This
should be a key consideration in risk anticipation: people may not avoid dense areas
or spread out in uniform distributions. Instead, models should consider the effects
of social identification on desired proximity of crowd members, and the impact of
this on use of space and pedestrian flow.

6 Modeling Social Identification in Pedestrian Movement

Within the modeling literature, the influence of pedestrian relations on behaviour
has primarily focussed on the effects of interpersonal and intergroup effects on
route choice, way-finding, and collision avoidance. The research into pedestrian
movement in crowds can be divided into four overarching areas.

The first area of research explores the effects of group behaviour on crowd flow,
such as how the sizes, numbers, and formations of groups influence movement.
This affiliative approach—where people stay with whom they have pre-existing
bonds—is also common in evacuation and egress models (e.g. [98]) and the walking
formations of groups in crowds (e.g. [99, 100]). Crucially, however, these studies
investigate pre-existing subgroups within a crowd rather than when an entire crowd
acts as a group. They do not aim to analyse what makes a ‘group’ and how
perceptions of group membership can change as a function of changing context
(e.g. the cognitive transformations discussed earlier). A second method focuses
on individualist approaches to crowd behaviour, exploring how unique traits or
attributes of the members of the crowd affects way-finding. However, this approach
ignores interactions between people and instead focuses on individual differences
and traits based on risk estimates. Thus, it bypasses the fundamental effect that self-
categorisation can have on collective behaviour, such as how social connections
between pedestrians can influence evacuation behaviour by reducing competitive
actions [81].

A third area explores navigation in crowds as a consequence of responses to
social information in the environment, such as the perception of others’ intended
behaviour. For example, where other pedestrians look and walk (e.g. [18]), and
how quickly other pedestrians respond at the beginning of an evacuation [101].
However, this approach examines fleeting interactions between individuals and is
based solely on avoiding collision with others. It neglects how a crowd can self-
organise behaviour for reasons other than collision avoidance based on their shared
social identities, such as how large groups of people may try to stay together when
walking, or how a crowd of pilgrims can coordinate movement for complex religious
rituals in high crowd densities. A fourth approach looks at how social transference
of information affects crowd movement and group structures (e.g. [102]). A benefit
of these approaches is that they foreground the need for social influence in models.
However, they either do not account for how human social interactions can be more
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complex than in birds or fish, or they neglect the research suggesting that we are
more influenced by ingroup than outgroup members.

Together, these approaches investigate either interactions between individuals
or subgroups within a crowd. They do not address crowd members who act
as a collective, or truly grapple with the psychological underpinnings of what
a ‘crowd’ is and how group processes can influence movement. Research from
crowd psychology suggests that collective self-organisation and proximity to group
members are a function of (shared) social identification. Thus far we have discussed
the psychological considerations of perceptions and feelings on overall crowd
behaviour, but social identity influences behaviour at the core pedestrian level.
Social identities influence how close people are willing to be to one another, the
size of subgroups, walking speed, and distance.

Examples of willingness to be closer to ingroup members, or being more
comfortable with ingroup members, can be seen in the previously discussed sweaty
t-shirt study [93], pilgrims performing the Hajj feeling safer in high densities
when they had high social identification as a member of the crowd [95], and
attendees at a music festival feeling less crowded when they had a high shared
social identification [94]. Novelli et al. [75] sought to explore the effects of social
identities on physical proximity experimentally. Participants completed a task where
they estimated the number of dots on a screen. They were subsequently told that
people were either dot over-estimators or dot under-estimators, and that they fell
into the dot under-estimator group. Finally, the participants had to set up chairs in
a room for themselves and either an ingroup (dot under-estimator) or outgroup (dot
over-estimator) member who was supposedly also a participant. They found that
participants who thought they were setting up the chairs for an ingroup member
placed the chair significantly closer to their own chair than if the participant thought
they were setting up the chairs for an outgroup member. Moreover, participants
who believed the other person was an outgroup member rated a higher perceived
difference between themselves and the other person, compared to less perceived
difference if the other person was believed to be an ingroup member.

The study was repeated but in Study 2 the participants were asked to place
chairs around a chair that had supposedly already been set up by the other
participant who was manipulated to be an ingroup or outgroup member. Again,
participants who thought they would be sitting with an ingroup member placed
the chairs closer together than if they thought they would be sitting with an
outgroup member. Together, this suggests that personal space is affected by the
context of group relations: participants move closer to an ingroup member than
to an outgroup member. Sorting people into groups without strong significance
to their ordinary lives was sufficient to achieve this intergroup discrimination and
subsequent willingness for proximity. Specifically, it suggests that the categorisation
of people as ingroup or outgroup members is important for modeling collective
movement in crowds as ingroup members tend to move closer to one another than
to outgroup members.

To explore the role of group processes on proximity, Templeton et al. [103]
conducted a quasi-field experiment to investigate how intragroup dynamics effect
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pedestrian movement in physical and psychological crowds. In the first part of
the study, 121 pedestrians were filmed without manipulation while walking from
an undergraduate Psychology statistics lecture. We did this to obtain a baseline
of participants’ proximity, speed, distance, and group size in a physical crowd
which we would then compare to the behaviour of a psychological crowd when
a shared social identity was made salient. Afterwards, we recruited the Psychology
students at the end of their statistics lecture and primed them to have a shared social
identity. Participants were told that they were being recruited because they were
Psychology students at that university and were given baseball caps which had labels
denoting their shared group membership as Psychology students. The baseball caps
doubly served as a method to track which pedestrians were part of the experiment.
Participants were then filmed as they walked the same route from their lecture as
they had previously walked without manipulation.

We tracked the pedestrians’ locations to obtain their coordinates every five
frames (1/3rd of a step), and then transformed the footage to planar view. In the
non-manipulation condition, there were 66 people walking from the lecture and
55 people walking in counterflow. In the manipulation condition, there were 112
participants primed to share a social identity, 34 other people walking in the same
direction as the recruited participants, and 13 people walking in counterflow.

Our primary focus was to compare the speed, distance, proximity, and group
size of the pedestrians who walked from their lecture during our observation stage
(no manipulation), and when we had primed a shared social identity. We measured
their speed based on distance divided by time, and their distance by summing the
distance between their coordinates of each tracked step. The proximity between
pedestrians was calculated using Sievers’ [115] method for Voronoi decomposition
in MATLAB with vertices constrained so that the maximum tessellation area radius
was 1 m to avoid artificially inflating the space around individuals walking alone or
on the periphery of the crowd. Group size was measured using cluster analysis on
participants’ coordinates.

The results indicated that the shared social identity among members of the
psychological crowd motivated the collective self-organisation of speed and distance
so that ingroup members could maintain close proximity. Specifically, participants
walked more slowly and further when in the psychological crowd than when in
the physical crowd. Crucially, when participants were in the psychological crowd,
they maintained closer proximity with ingroup members regardless of how many
other pedestrians were in the area. Contrary to what the modeling literature would
suggest, the psychological crowd did not divide into small subgroups and instead
maintained sizes of up to 11 people compared to a maximum of three people in the
physical crowd.

Our study raised key issues for modeling crowds and broader safety planning.
First, individual ingroup members within psychological crowds may try to stay
in close proximity to other ingroup members even when there is space around,
suggesting that close proximity is not merely caused by the number of people
around. Second, psychological crowds may alter their speed and distance in order
to stay together. This has particular implications for planning ingress and egress in
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models. It suggests that pedestrians in psychological crowds will prioritise staying
with fellow group members over walking quickly, and will walk further distance in
order to stay together. Moreover, pedestrians in psychological crowds may not split
into smaller groups to ease crowd flow and evacuate more quickly.

Our study was the first to explore the effect of social identities on pedestrian
behaviour in a psychological crowd. However, there are often two or more psycho-
logical crowds within the same physical space. For example, fans of different sports
teams entering a stadium, protestors and counter-protestors, fans at different music
stages in a festival. In our next study we aimed to explore the effect that another
psychological group had on pedestrian behaviour.

To explore the effects of another psychological group on crowd movement, we
created two distinct psychological groups by randomly allocating participants to
be in either group A or group B. The participants were given identity markers
via baseball caps with either ‘A’ or ‘B’ on them to allow them to see if others
were in the same or different group from them. We measured their level of social
identification with members of their own group (e.g. ‘I feel a bond with the people in
this group’, a = 0.846) and the other group to ensure they had higher identification
with their own group compared to the outgroup. Each group had significantly higher
identification with members of their own group compared to members of the other
group. We then used the same methodology as the 2018 paper to measure the
proximity, speed, and distance of pedestrians. First, we had members of group
A walk alone to get their baseline speed, distance, and proximity to other group
members. Second, we had the members of group A and group B walk in counterflow.
This enabled us to compare the behaviour of group A when walking alone to when
walking the presence of group B.

Overall, the results suggested that pedestrians in group A walked in closer
proximity, slower, and less distance when walking in the presence of the other
psychological group. Moreover, the group members did not split into single file
to ease crowd flow but instead moved closer to ingroup members and stayed three
of four people abreast. This suggests that when a shared social identity with others
in the crowd is salient, members of the crowd may remain in larger groups to stay
together rather than splitting up to ease movement. Speed, distance, and proximity
are crucial factors to consider when planning how a crowd will behave during
ingress, egress, or in non-emergency and emergency situations. Taken together,
the two studies on crowd movement suggest that social identification is a core
component that influences the microscopic level factors in pedestrian movement.

7 Collective Self-Organisation and Helping Behaviour
in Emergencies

One area where aspects of SIT and SCT have been included in pedestrian models
is in simulated responses to disasters. Previous research from social psychology has
demonstrated that we are more likely to help those who we perceive as ingroup
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members (e.g. [105]), and in emergencies crowds maintain everyday norms such
as queuing and staying behind to help others (e.g. [22, 81, 106]). Rather than
irrational panicking, crowd members in potentially risky situations share resources
and collectively self-regulate anti-social behaviour to maintain a safety (e.g. [20]).

The psychological transformations and corresponding behaviour that occur in
emergencies are detailed by Drury et al. [81] in their research into survivor
experiences of the July 7th 2005 London bombings. During the terror attack, three
bombs were detonated in London underground tube trains, leaving survivors in
dark tunnels and emergency services hindered from reaching them. The researchers
combined interviews with survivors of the event and contemporaneous accounts and
found that shared social identification among the survivors was a key influence on
their reactions to the incident. The survivors experienced a cognitive transformation
from being a member of a physical group to a psychological one. In physical
groups, people think, feel, and act as individuals, and co-present others are regarded
as irrelevant or perhaps even competitors. However, when something happens to
re-frame the group boundaries—in this extreme example bombs being detonated—
fellow passengers ceased to be ‘other’ and instead became co-members of a group
united by shared threat and fate. This shift from seeing people as ‘ingroup’ rather
than irrelevant or ‘outgroup’ transforms social relationships and behaviours.

The participants reported sharing emotional (e.g. reassurance) and practical (e.g.
first aid) help on the basis that they were fellow group members. The people who
had previously been individualised came together collectively to help one another,
often at risk to their personal safety (e.g. delaying their own evacuation). Instead of
competing to evacuate, the survivors queued in an orderly fashion, let others go first,
and helped one another to escape. The lack of competition among group members
was also found by Drury et al. [107] in a laboratory simulation of an emergency.
Here, when participants perceived others in the evacuation as ingroup members,
they exhibited less competitive behaviour such as pushing and shoving. Conversely,
where crowd members did not perceive co-present others as sharing their social
identity, it could lead to a lack of solidarity behaviours or even the presence of selfish
behaviours [22, 81, 107]. Crowd managers or those in authority should therefore
seek to facilitate shared identification within crowds, particularly within emergency
contexts.

The cognitive transformation from being a physical to psychological crowd,
combined with evidence of cooperative behaviour, provides prime ground to begin
a model of evacuation behaviour that incorporates social identities. Von Sivers
et al. [108] simulated survivor reactions to the bombings by implementing the
cognitive transformations and subsequent helping behaviour based on shared group
membership. In the agent-based model, each agent had the capacity to have either a
personal or shared social identity salient, and to know the identities of other agents
to allow for collective behaviour. The agents in each train carriage had a salient
personal identity until the bomb was detonated. The detonation caused a cognitive
transformation: now a set percentage of the total agents could have a shared social
identity to replicate the perception of a common fate reported by the real-world
survivors. In addition, we set a percentage of participants to be injured and others
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to be healthy. We created a rule where healthy agents with the shared social identity
would help injured agents with the same social identity to evacuate if they were
within a certain radius. The model was dynamic; the number of agents with a shared
social identity could be increased or decreased, as could the number of injured
and healthy agents and radius dictating the locations within which people could
be helped. Further work by von Sivers et al. [109] developed this model using
uncertainty quantification to further explore the effects of different components
of the model (e.g. number of pedestrians with a shared social identification), and
provides an example of how the effects of social identification on behaviour can be
explored in future models.

The simulations of the July 7th 2005 London bombings provide a starting point
for considering how to implement the psychological transformations associated with
social identities. However, there is much more work to be done. One avenue for
future research would be to explore the extent to which people will go out of their
way to provide support to ingroup members. Currently, our models (von Sivers et al.
[108, 109]) result in small groups evacuating together and the agents do not go very
far out of their way from their initial position to help others before evacuating. In
contrast, the accounts by survivors suggest that people go to great lengths to support
multiple people with first aid before evacuating and people would help others escape
and then return to help more people.

Another limitation to the evacuation models is that we do not have quantitative
behavioural data to calibrate the model against. Emergencies are difficult to simulate
because we do not often have reliable footage or measures of the behaviour due to
the natures of the emergencies. Although qualitative accounts cannot provide exact
reaction times or specific information about route-taking, they do provide valuable
insight into respondents’ own experiences of the events and behaviour which is
crucial to understanding people’s perceptions and motivations. It demonstrates
that the transformation from a physical to psychological crowd is an important
component to understanding collective processes—and the type of behaviour—in
the aftermath of emergencies.

8 Summary and Future Directions

Crowd models serve a myriad of benefits. They provide a method to formalise and
test hypotheses about crowd behaviour and allow users to neatly simulate scenarios
to predict behaviour for crowd safety planning. A modeller reading this chapter
could justifiably ask ‘crowd psychology sounds very interesting, but how am I
supposed to put all this theory in a model?’. Herein lies the crux of the practical
limitations to integrating crowd psychology into models. As Seitz et al. [110]
indicate, models are usually focused on pedestrian movement rather than complex
social cognition behind the movement. From a modeling perspective, models must
be parsimonious as they can only have a limited number of parameters before the
model becomes unfalsifiable. From a psychological theorist’s perspective, there is
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a dilemma in how to model the theory accurately without being reductionist. For
both parties, there is the shared issue of how to boil down the components to what is
most needed to accurately depict the behaviour, and can be generalisable to multiple
crowd events rather than only representing one specific scenario.

Pedestrian modellers and crowd psychologists can learn from one another by
collaboratively conducting further research on the effects of social identification on
behaviour. Together, we can design experiments to isolate and explore behavioural
phenomena and the psychological processes underpinning them. Working together
has clear benefits to crowd psychologists, as models can allow crowd psychologists
to test theories by simulating scenarios in controlled safe environments. A substan-
tial step forward would be for pedestrian modellers and crowd psychologists to
jointly map out some of the core theoretical considerations for collective behaviour
in crowds. In this chapter, we have outlined some starting points that provide fruitful
ground: the effects of social identities on emotional experiences of mass events,
perceptions of crowdedness and safety, collective self-organisation in pedestrian
movement, and helping behaviour in disasters.

Agent-based modeling provides a prime platform for integrating the social
identity approach into pedestrian models. Agent-based models can represent varying
levels of perceptual and cognitive processes and offer the unique ability to model
multiple levels of behaviour, from the individual level to the collective level,
that enables the simulation of social influence from individual actions. They can
represent varying levels of perceptual and cognitive processes. Importantly, they
are also dynamic, as the behaviour of the agents within the crowd, their individual
characteristics, and the ‘information’ that the agents receive, together drive their
actions and can be updated at each time step of the simulation (e.g., [91, 111, 112]).
Crucially, agent-based models allow us to ask why and how behaviour emerges by
exploring the underlying psychological mechanisms, and allow us to operationalise
social connections between crowd members. In the next few paragraphs we set
out some core foundations to model social identities and principles of self-
categorisation.

First, each agent should be given the ability to have both a personal and social
identity. That is, they should be able to act both as an individual and a group
member, and be able to change from acting in line with their personal identity to
their social identity (and vice versa) depending on which identity is salient in a
particular context. This will enable modellers to simulate updates in events such as
emergencies where the crowd changes from a physical crowd prior to the emergency
to a psychological crowd once the emergency is underway (e.g. [108, 109]). The
limited work that includes social identities in models could be refined and expanded.
Thus far, the models have treated social identification as binary where agents either
have a salient social identity or do not, and this is activated as soon as an emergency
occurs. Strength of identification exists on a continuum, as exemplified by the scale
measures for social identification used in much of the research we have discussed
(e.g. [75, 95]). Further work is needed to explore the effects of the strength of social
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identity (one’s strength of feeling of being a member of their group) and the strength
of shared social identity (one’s strength of feeling that others also see themselves as
being part of the same group) on behaviour.

Second, agents should be given social identities and the ability to know both their
own social identity and the social identities of others. This will provide to basis for
collective self-organisation as it will enable agents to discern whether other agents
are ingroup or outgroup members. Discerning group membership is fundamental
for modeling intra- and intergroup scenarios, such as pilgrims performing rituals
together, or opposing fans of sports teams during ingress at a stadium.

Third, further research could focus on the changing perceptions of group
membership and the implications this has for levels of help provided among crowd
members. Identities are dynamic, and categories can be expanded or narrowed
depending on what criteria are used to define group membership at the time. For
example, if someone was at a meeting within their organisation dedicated to crowd
modeling, then they might have a salient social identity as being a member of their
particular crowd modeling organisation, and people outside of the organisation are
perceived to be outgroup. However, in another context such as a conference for
crowd modellers, you may perceive everyone as being a fellow ingroup member,
including those who were previously considered to be outgroup. The dynamic
nature of identities also has important implications for modeling safety planning
at mass events, such as the role of social identity on helping behaviour (e.g. [105])
and providing social support (e.g. [113]). Agent-based modeling with event driven
update schemes provides a prime platform to explore changes in perceived group
membership and the corresponding effects on behaviour.

Fourth, we can begin to incorporate group processes based on empirical research.
One starting point could be modeling the attraction to fellow group members
while walking to mimic the collective self-organisation of the psychological crowd
found in Templeton et al. [103]. Modellers can use behavioural data to calibrate,
validate, and verify their models and test their behavioural outcomes. For example,
in Templeton et al. [103], modellers could test their behavioural outcomes of speed,
distance, proximity, and group size in a model against the behavioural results from
the psychology study.

A fifth avenue for research is to explore the effects of multiple psychological
groups in the same areas on crowd movement. The research by Templeton et al.
[104] suggested that group members moved in closer proximity and walked slower,
less distance, and in closer proximity when walking in counterflow to another
psychological group compared to when walking alone. These findings suggest that
when considering pedestrian counterflow in crowds, research should consider that
groups with a shared social identity prioritise staying together even when it impedes
their speed. Further research could explore the effects of multiple groups in different
types on environments and when two or more psychological groups move in the
same direction.

There are many more opportunities for joint research ventures beyond the
five recommendations that we set out in this chapter. Collectively, our different
disciplinary backgrounds from pedestrian modeling, event management, crowd psy-
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chology, and broader research on collective behaviour has equipped us with a range
of skills that could be combined to approach crowd behaviour in a more rigorous
and prosperous way. By combining our methodologies and skills we can work
together to ascertain a better understanding of crowd behaviour, improve confidence
in our predictive models, advance event planning, and ultimately enhance safety and
experiences of crowd events.

References

1. D.J. Terry, M.A. Hogg, Group norms and the attitude-behaviour relationship: a role for group
identification. Personal. Soc. Psychol. Bull. 22(8), 776–793 (1996). https://doi.org/10.1177/
0146167296228002

2. F.G. Neville, S.D. Reicher, Crowds, social identities, and the shaping of everyday social
relations, in Political Psychology: A Social Psychological Approach, (Wiley, Hoboken, 2018),
pp. 231–252. https://doi.org/10.1002/9781118982365.ch12

3. S. Reicher, Mass action and mundane reality: An argument for putting crowd analysis at
the centre of the social sciences. Contemp. Soc. Sci. 6(3), 433–449 (2011). https://doi.org/
10.1080/21582041.2011.61

4. F. Neville, D. Novelli, S. Reicher, J. Drury, Shared identity transforms social relations in
imaginary crowds. Group Processes Intergroup Relations (under review).

5. A. Templeton, J. Drury, A. Philippides, From mindless masses to small groups: conceptualiz-
ing collective behavior in crowd modeling. Rev. Gen. Psychol. 19(3), 215–229 (2015). https:/
/doi.org/10.1037/gpr0000032

6. S. Reicher, R. Spears, A. Haslam, The social identity approach in social psychology, in The
SAGE Handbook of Identities, ed. by M. Wetherall, C. T. Mohanty, (Sage, London, 2010), pp.
45–62

7. S. Barrows, The crowd in the late nineteenth century, in Distorting Mirrors: Visions of the
Crowd in Late Nineteenth-Century France, ed. by S. Barrows, (The Alpine Press, Soughton,
1981), pp. 7–42

8. S. Jonsson, The invention of the masses: the crowd in French culture from the revolution to the
commune, in Crowds, ed. by J. T. Schnapp, M. Tiews, (Stanford University Press, Stanford,
2006), pp. 47–75

9. C. McPhail, The Myth of the Maddening Crowd (Routledge, New York, 1991)
10. S. Moscovici, The Age of the Crowd (Cambridge University Press, Cambridge, 1981/1985)
11. R.A. Nye, The Origins of Crowd Psychology: Gustave le Bon and the Crisis of Mass

Democracy in the Third Republic (Sage, Beverley Hills, 1976)
12. S. Reicher, The psychology of crowd dynamics, in Blackwell Handbook of Social Psychology:

Group Processes, ed. by M. Hogg, S. Tindale, (Blackwell Publishers Inc., Malden, 2001), pp.
182–208

13. S. Reicher, Crowds, in Encyclopaedia of Group Processes and Intergroup Relations, ed. by J.
M. Levine, M. A. Hogg, (Sage, London, 2010)

14. N. Rogers, Crowds, Culture, and Politics in Georgian Britain (Oxford University Press, New
York, 1998)

15. G. Le Bon (2002), The Crowd: A Study of the Popular Mind (T. Fisher Unwin, Trans.) (Dover
Publications Inc., Mineola, NY, 2002). (Reprinted from La psychologie des foules, by G. L.
Bon, 1895, Paris, France: Les Presses universitairs de France)

16. H. Taine, Les origines de la France contemporaine (R. Laffont, Paris, 1878). Bouqins
17. G. Tarde, Les crimes des foules (Masson, Paris, 1892)
18. A. Gallup, A. Chong, I. Couzin, The directional flow of visual information transfer between

pedestrians. Biol. Lett. 8(4), 520–522 (2012). https://doi.org/10.1098/rsbl.2012.0160

http://dx.doi.org/10.1177/0146167296228002
http://dx.doi.org/10.1002/9781118982365.ch12
http://dx.doi.org/10.1080/21582041.2011.61
http://dx.doi.org/10.1037/gpr0000032
http://dx.doi.org/10.1098/rsbl.2012.0160


Modeling Collective Behaviour: Insights and Applications from Crowd Psychology 77

19. R.P. Mann, J. Faria, D.J. Sumpter, J. Krause, The dynamics of audience applause. J. R. Soc.
Interface 10(85), 20130466 (2013). https://doi.org/10.1098/rsif.2013.0466

20. J. Drury, D. Novelli, C. Stott, Managing to avert disaster: explaining collective resilience at
an outdoor music event. Eur. J. Soc. Psychol. 45(4), 533–547 (2015). https://doi.org/10.1002/
ejsp.2108

21. C. Stott, P. Hutchison, J. Drury, ‘Hooligans’ abroad? Intergroup dynamics, social identity and
participation in collective ‘disorder’ at the 1998 world cup finals. Br. J. Soc. Psychol. 40(3),
359–384 (2001). https://doi.org/10.1348/014466601164876

22. J. Drury, C. Cocking, S.D. Reicher, The nature of collective resilience: survivor reactions to
the 2005 London bombings. Int. J. Mass Emerg. Disasters 27(1), 66–95 (2009). Retrieved
from http://www.ijmed.org/articles/113/download/

23. R. Ball, C. Stott, J. Drury, F. Neville, S. Reicher, S. Choudhury, Who controls the city? A
micro-historical case study of the spread of rioting across North London in August 2011. City
23(4–5), 483–504 (2019). https://doi.org/10.1080/13604813.2019.1685283

24. J. Drury, H. Carter, C. Cocking, E. Ntontis, S. Guven, R. Amlôt, Facilitating collective psy-
chosocial resilience in the public in emergencies: twelve recommendations based on the social
identity approach. Front. Public Health 7 (2019). https://doi.org/10.3389/fpubh.2019.00141

25. J. Drury, C. Stott, R. Ball, S. Reicher, F. Neville, L. Bell, M. Biddlestone, S. Choudhury, M.
Lovell, C. Ryan, A social identity model of riot diffusion: from injustice to empowerment in
the 2011 London riots. Eur. J. Soc. Psychol. 50(3), 646–661 (2019). https://doi.org/10.1002/
ejsp.2650

26. C. Stott, R. Ball, J. Drury, F. Neville, S. Reicher, A. Boardman, S. Choudhury, The evolving
normative dimensions of ‘riot’: towards an elaborated social identity explanation. Eur. J. Soc.
Psychol. 48(6), 834–849 (2018). https://doi.org/10.1002/ejsp.2376

27. F. Cannavale, H. Scarr, A. Pepitone, De-individuation in the small group: further evidence. J.
Pers. Soc. Psychol. 16, 141–147 (1970). https://doi.org/10.1037/h0029837

28. L. Festinger, A. Pepitone, T. Newcombe, Some consequences of deindividuation in a group.
J. Abnorm. Soc. Psychol. 47, 382–389 (1952). https://doi.org/10.1037/h0057906

29. E. Diener, Deindividuation: the absence of self-awareness and self-regulation in group
members, in The Psychology of Group Influence, ed. by P. Paulus, (Erlbaum, Hillsdale, 1980),
pp. 209–242

30. S. Duval, R.A. Wicklund, A Theory of Objective Self Awareness (Academic Press, Oxford,
1972)

31. P.G. Zimbardo, The human choice: Individuation, reason, and order versus deindividuation,
impulse and chaos, in Nebraska Symposium on Motivation, ed. by W. J. Arnold, D. Levine,
(University of Nebraska Press, Lincoln, NE, 1969), pp. 237–307

32. T. Postmes, R. Spears, Deindividuation and antinormative behavior: a meta-analysis. Psychol.
Bull. 123(3), 238–259 (1998). https://doi.org/10.1037/0033-2909.123.3.238

33. S.D. Reicher, R. Spears, T. Postmes, A social identity model of deindividuation phenomena.
Eur. Rev. Soc. Psychol. 6, 161–198 (1995). https://doi.org/10.1080/14792779443000049

34. J. Carey, The Intellectuals and the Masses: Pride and Prejudice among the Literary
Intelligentsia, 1880–1939 (Faber & Faber, London, 1992)

35. F.H. Allport, The group fallacy in relation to social science. Am. J. Sociol. 29(6), 668–706
(1924). https://doi.org/10.1086/213647

36. S. Sighele, La folla delinquente (Bocca, Turin, 1891)
37. J. Goodwin, J.M. Jasper, F. Polletta, Introduction: why emotions matter, in In Passionate

Politics: Emotions and Social Movements, ed. by J. Goodwin, J. Jasper, F. Polletta, (University
of Chicago Press, Chicago, 2001), pp. 1–24

38. J. Goodwin, J. M. Jasper, F. Polletta (eds.), Passionate Politics: Emotions and Social
Movements (University of Chicago Press, London, 2001)

39. W. Kornhauser, The Politics of Mass Society (The Free Press, Glencoe, 1959)
40. H.D. Lasswell, Psychopathology and Politics (University of Chicago Press, Chicago, 1930)
41. E. Hoffer, The True Believer: Thoughts on the Nature of Mass Movements (Harper and Row,

New York, 1951)

http://dx.doi.org/10.1098/rsif.2013.0466
http://dx.doi.org/10.1002/ejsp.2108
http://dx.doi.org/10.1348/014466601164876
http://www.ijmed.org/articles/113/download/
http://dx.doi.org/10.1080/13604813.2019.1685283
http://dx.doi.org/10.3389/fpubh.2019.00141
http://dx.doi.org/10.1002/ejsp.2650
http://dx.doi.org/10.1002/ejsp.2376
http://dx.doi.org/10.1037/h0029837
http://dx.doi.org/10.1037/h0057906
http://dx.doi.org/10.1037/0033-2909.123.3.238
http://dx.doi.org/10.1080/14792779443000049
http://dx.doi.org/10.1086/213647


78 A. Templeton and F. Neville

42. O. Klapp, Collective Search for Identity (Holt, Rinehart, New York, 1969)
43. G. Rudé, The Crowd in the French Revolution (Oxford University Press, London, 1959)
44. S.D. Reicher, The St. Pauls’ riot: an explanation of the limits of crowd action in terms

of a social identity model. Eur. J. Soc. Psychol. 14, 1–21 (1984). https://doi.org/10.1002/
ejsp.2420140102

45. N.Z. Davis, The rites of violence: religious riot in sixteenth-century France. Past Present 59,
51–91 (1973)

46. E.P. Thompson, The moral economy of the English crowd in the eighteenth century. Past
Present 50, 76–136 (1971)

47. R.H. Turner, L. Killian, Collective Behaviour (Prentice Hall, Engelwood Cliffs, 1957)
48. M.A. Hogg, G.M. Vaughan, Social Psychology, 5th edn. (Essex, Pearson Education Ltd,

2008)
49. S.E. Asch, Group forces in the modification and distortion of judgments, in Social Psychol-

ogy, ed. by S. E. Asch, (Prentice-Hall, Inc., Englewood Cliffs, 1952), pp. 450–501
50. M. Sherif, An experimental approach to the study of attitudes. Sociometry 1(1/2), 90–98

(1937). https://doi.org/10.2307/2785261
51. S.D. Reicher, ‘The Battle of Westminster’: developing the social identity model of

crowd behaviour in order to explain the initiation and development of collective
conflict. Eur. J. Soc. Psychol. 26, 115–134 (1996). https://doi.org/10.1002/(SICI)1099-
0992(199601)26:1<115::AID-EJSP740>3.0.CO;2-Z

52. S.D. Reicher, The Battle of Westminster: developing the social identity model of
crowd behaviour in order to deal with the initiation and development of collective
conflict. Eur. J. Soc. Psychol. 26, 115–134 (1996). https://doi.org/10.1002/(SICI)1099-
0992(199601)26:1<115::AID-EJSP740>3.0.CO;2-Z

53. S.D. Reicher, Crowd behaviour as social action, in Rediscovering the Social Group: A Self-
Categorization Theory, ed. by J. Turner, M. Hogg, P. Oakes, S. D. Reicher, M. Wetherell,
(Blackwell, Oxford, 1987), pp. 171–202

54. H. Tajfel, Differentiation Between Social Groups (Academic Press, London, 1978)
55. H. Tajfel, J.C. Turner, An integrative theory of intergroup conflict, in The Social Psychology

of Intergroup Relations, ed. by W. G. Austin, S. Worchel, (Brooks/Cole, Monterey, 1979), pp.
33–47

56. J.C. Turner, M.A. Hogg, P.J. Oakes, S.D. Reicher, M.S. Wetherell, Rediscovering the Social
Group: A Self-Categorization Theory (Basil Blackwell, Oxford, 1987)

57. J.C. Turner, P.J. Oakes, S.A. Haslam, C. McGarty, Self and collective: cognition and
social context. Personal. Soc. Psychol. Bull. 20, 454–463 (1994). https://doi.org/10.1177/
0146167294205002

58. J. Drury, S. Reicher, Collective action and psychological change: the emergence of
new social identities. Br. J. Soc. Psychol. 39, 579–604 (2000). https://doi.org/10.1348/
014466600164642

59. C.J. Stott, S.D. Reicher, How conflict escalates: the inter-group dynamics of collec-
tive football crowd ‘violence’. Sociology 32, 353–377 (1998). https://doi.org/10.1177/
0038038598032002007

60. J.C. Turner, Towards a cognitive redefinition of the social group, in Social Identity and Inter-
Group Relations, ed. by H. Tajfel, (Cambridge University Press, Cambridge, 1982), pp. 15–
40

61. J.C. Turner, Some current issues in research on social identity and self-categorization theories,
in Social Identity Context, Commitment, Content, ed. by N. Ellemers, R. Spears, B. Doosje,
(Blackwell Publishers, Oxford, 1999), pp. 6–34

62. S.D. Reicher, The context of social identity: domination, resistance, and change. Polit.
Psychol. 25, 921–945 (2004). https://doi.org/10.1111/j.1467-9221.2004.00403.x

63. S. Reicher, The determination of collective behaviour, in Social Identity and Intergroup
Relations, ed. by H. Tajfel, (Cambridge University Press, Cambridge, 1982), pp. 41–83

http://dx.doi.org/10.1002/ejsp.2420140102
http://dx.doi.org/10.2307/2785261
http://dx.doi.org/10.1002/(SICI)1099-0992(199601)26:1<115::AID-EJSP740>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1099-0992(199601)26:1<115::AID-EJSP740>3.0.CO;2-Z
http://dx.doi.org/10.1177/0146167294205002
http://dx.doi.org/10.1348/014466600164642
http://dx.doi.org/10.1177/0038038598032002007
http://dx.doi.org/10.1111/j.1467-9221.2004.00403.x


Modeling Collective Behaviour: Insights and Applications from Crowd Psychology 79

64. J. Drury, S. Reicher, The intergroup dynamics of collective empowerment: substantiating the
social identity model of crowd behaviour. Group Process. Intergroup Relat. 2(4), 381–402
(1999). https://doi.org/10.1177/1368430299024005

65. J. Drury, S. Reicher, Explaining enduring empowerment: a comparative study of collective
action and psychological outcomes. Eur. J. Soc. Psychol. 35, 35–58 (2005). https://doi.org/
10.1002/ejsp.231

66. J. Drury, S. Reicher, Collective psychological empowerment as a model of social change:
researching crowds and power. J. Soc. Issues 65, 707–772 (2009). https://doi.org/10.1111/
j.1540-4560.2009.01622.x

67. S. Reicher, “La beauté Est dans la rue”: four reasons (or perhaps five) to study
crowds. Group Process. Intergroup Relat. 20(5), 593–605 (2017). https://doi.org/10.1177/
1368430217712835

68. S. Shankar, C. Stevenson, K. Pandey, S. Tewari, N.P. Hopkins, S.D. Reicher, A calming
cacophony: social identity can shape experience of loud noise. J. Environ. Psychol. 36, 87–95
(2013). https://doi.org/10.1016/j.jenvp.2013.07.004

69. N. Srinivasan, N. Hopkins, S.D. Reicher, S.S. Khan, T. Singh, M. Levine, Social meaning
of ambiguous sounds influences retrospective duration judgments. Psychol. Sci. 24(6), 1060–
1062 (2013). https://doi.org/10.1177/0956797612465293

70. N. Ellemers, R. Spears, B. Doosje (eds.), Social Identity: Context, Commitment, Content
(Blackwell, Oxford, 1999)

71. S.A. Haslam, Psychology in Organizations: The Social Identity Approach (Sage, Thousand
Oaks, CA, 2001)

72. T. Tyler, S.L. Blader, Cooperation in Groups: Procedural Justice, Social Identity, and
Behavioral Engagement (Psychology Press, Sussex, 2000)

73. S.A. Haslam, J.C. Turner, P.J. Oakes, C. McGarty, K.J. Reynolds, The group as a basis for
emergent stereotype consensus. Eur. Rev. Soc. Psychol. 8, 203–239 (1998). https://doi.org/
10.1080/14792779643000128

74. S.A. Haslam, S.D. Reicher, Stressing the group: social identity and the unfolding dynamics
of responses to stress. J. Appl. Psychol. 91, 1037–1052 (2006). https://doi.org/10.1037/0021-
9010.91.5.1037

75. D. Novelli, J. Drury, S. Reicher, Come together: two studies concerning the impact of group
relations on personal space. Br. J. Soc. Psychol. 49(2), 223–236 (2010). https://doi.org/
10.1348/014466609X449377

76. D. Barr, J. Drury, Activist identity as a motivational resource: dynamics of (dis)empowerment
at the G8 direct actions, Gleneagles, 2005. Soc. Mov. Stud. 8, 243–260 (2009). https://doi.org/
10.1080/14742830903024333

77. J. Drury, S. Reicher, C. Stott, Transforming the boundaries of collective identity: from the
“local” anti-road campaign to “global” resistance? Soc. Mov. Stud. 2, 191–212 (2003). https:/
/doi.org/10.1080/1474283032000139779

78. N. Hopkins, S. Reicher, C. Stevenson, K. Pandey, S. Shankar, S. Tewari, Social relations in
crowds: recognition, validation and solidarity. Eur. J. Soc. Psychol. 49, 1283 (2019). https://
doi.org/10.1002/ejsp.2586

79. F. Neville, S. Reicher, The experience of collective participation: shared identity, related-
ness and emotionality. Contemp. Soc. Sci. 6(3), 377–396 (2011). https://doi.org/10.1080/
21582041.2012.627277

80. C. Cocking, J. Drury, S.D. Reicher, The psychology of crowd behaviour in emergency
evacuations: results from two interview studies and implications for the Fire & Rescue
Services. Ir. J. Psychol. 30, 59–73 (2009). https://doi.org/10.1080/03033910.2009.10446298

81. J. Drury, C. Cocking, S.D. Reicher, Everyone for themselves? A comparative study of crowd
solidarity among emergency survivors. Br. J. Soc. Psychol. 48(3), 487–506 (2009). https://
doi.org/10.1348/014466608X357893

82. E. Ntontis, J. Drury, R. Amlôt, G.J. Rubin, R. Williams, Emergent social identities in a flood:
implications for community psychosocial resilience. J. Community Appl. Soc. Psychol. 28(1),
3 (2017). https://doi.org/10.1002/casp.2329

http://dx.doi.org/10.1177/1368430299024005
http://dx.doi.org/10.1002/ejsp.231
http://dx.doi.org/10.1111/j.1540-4560.2009.01622.x
http://dx.doi.org/10.1177/1368430217712835
http://dx.doi.org/10.1016/j.jenvp.2013.07.004
http://dx.doi.org/10.1177/0956797612465293
http://dx.doi.org/10.1080/14792779643000128
http://dx.doi.org/10.1037/0021-9010.91.5.1037
http://dx.doi.org/10.1348/014466609X449377
http://dx.doi.org/10.1080/14742830903024333
http://dx.doi.org/10.1080/1474283032000139779
http://dx.doi.org/10.1002/ejsp.2586
http://dx.doi.org/10.1080/21582041.2012.627277
http://dx.doi.org/10.1080/03033910.2009.10446298
http://dx.doi.org/10.1348/014466608X357893
http://dx.doi.org/10.1002/casp.2329


80 A. Templeton and F. Neville

83. E. Ntontis, J. Drury, R. Amlôt, G.J. Rubin, R. Williams, Community resilience and flooding
in UK guidance: a critical review of concepts, definitions, and their implications. J Contin-
gencies Crisis Manag 27(1), 2–13 (2019). https://doi.org/10.1111/1468-5973.12223

84. J.M. Jasper, The Emotions of Protest (University of Chicago Press, Chicago, 2018)
85. E.R. Smith, C. Seger, D.M. Mackie, Can emotions be truly group level? Evidence regarding

four conceptual criteria. J. Pers. Soc. Psychol. 93, 431–446 (2007). https://doi.org/10.1037/
0022-3514.93.3.431

86. G. B. Sullivan (ed.), Understanding Collective Pride and Group Identity: New Directions in
Emotion Theory, Research and Practice (Routledge, London, 2014)

87. A. Poma, T. Gravante, Emotions and empowerment in collective action: the experience of a
women’s collective in Oaxaca, Mexico, 2006–2017. Emotions History, Culture, Society 1(2),
59–79 (2017)

88. S. Vestergren, J. Drury, E.H. Chiriac, How collective action produces psychological change
and how that change endures over time: a case study of an environmental campaign. Br. J.
Soc. Psychol. 57(4), 855–877 (2018). https://doi.org/10.1111/bjso.12270

89. N. Hopkins, S.D. Reicher, S.S. Khan, S. Tewari, N. Srinivasan, C. Stevenson, Explain-
ing effervescence: investigating the relationship between shared social identity and pos-
itive experience in crowds. Cognit. Emot. 30(1), 20–32 (2016). https://doi.org/10.1080/
02699931.2015.1015969

90. H. Alnabulsi, J. Drury, V.L. Vignoles, S. Oognik, Understanding the impact of the Hajj:
explaining experiences of self-change at a religious mass gathering. Eur. J. Soc. Psychol.
50(2), 292–308 (2018). https://doi.org/10.1002/ejsp.2623

91. Z. Fang, S.M. Lo, J.A. Lu, On the relationship between crowd density and movement velocity.
Fire Saf. J. 38(3), 271–283 (2003). https://doi.org/10.1016/S0379-7112(02)00058-9

92. R.S.C. Lee, R.L. Hughes, Prediction of human crowd pressures. Acc. Anal. Prevent. 38(4),
712–722 (2006). https://doi.org/10.1016/j.aap.2006.01.001

93. S.D. Reicher, A. Templeton, F. Neville, L. Ferrari, J. Drury, Core disgust is attenuated by
ingroup relations. Proc. Natl. Acad. Sci. 133(10), 2631–2635 (2016). https://doi.org/10.1073/
pnas.1517027113

94. D. Novelli, J. Drury, S. Reicher, C. Stott, Crowdedness mediates the effect of social
identification on positive emotion in a crowd: a survey of two crowd events. PLoS One 8(11),
e78983 (2013). https://doi.org/10.1371/journal.pone.0078983

95. H. Alnabulsi, J. Drury, Social identification moderates the effect of crowd density on
safety at the Hajj. Proc Natl. Acad. Sci. 111(25), 9091–9096 (2014). https://doi.org/10.1073/
pnas.1404953111

96. K. Alfahdli, M. Guler, H. Cakal, J. Drury, The role of emergent shared identity in psychosocial
support among refugees of conflict in developing countries. Int. Rev. Soc. Psychol. 32(1), 1–
16 (2019). https://doi.org/10.5334/irsp.176

97. J. Drury, R. Brown, R. Gonzalez, D. Miranda, Emergent social identity and observing social
support predict social support provided by survivors in a disaster: solidarity in the 2010 Chile
earthquake. Eur. J. Soc. Psychol. 46(2), 209–233 (2015). https://doi.org/10.1002/ejsp.2146

98. L.Z. Yang, D.L. Zhao, J. Li, T.Y. Fang, Simulation of the kin behavior in building occupant
evacuation based on cellular automaton. Build. Environ. 40(3), 411–415 (2005). https://
doi.org/10.1016/j.buildenv.2004.08.005

99. G. Köster, F. Treml, M. Seitz, W. Klein, Validation of crowd models including social groups,
in Pedestrian and Evacuation Dynamics, ed. by U. Wedmann, U. Kirsch, M. Schreckenberg,
(Springer, New York, 2014), pp. 1051–1063. https://doi.org/10.1007/978-3-319-02447-9_87

100. V. Reuter, B.S. Bergner, G. Köster, M. Seitz, F. Treml, D. Hartmann, On modelling groups in
crowds: empirical evidence and simulation results including large groups, in Pedestrian and
Evacuation Dynamics, ed. by U. Weidmann, U. Kirsch, M. Schreckenberg, (Springer, Berlin,
2012), pp. 835–845. https://doi.org/10.1007/978-3-319-02447-9_70

101. D. Nilsson, A. Johansson, Social influence during the initial phase of a fire evacuation-
analysis of evacuation experiments in a cinema theatre. Fire Saf. J. 44(1), 71–79 (2009).
https://doi.org/10.1016/j.firesaf.2008.03.008

http://dx.doi.org/10.1111/1468-5973.12223
http://dx.doi.org/10.1037/0022-3514.93.3.431
http://dx.doi.org/10.1111/bjso.12270
http://dx.doi.org/10.1080/02699931.2015.1015969
http://dx.doi.org/10.1002/ejsp.2623
http://dx.doi.org/10.1016/S0379-7112(02)00058-9
http://dx.doi.org/10.1016/j.aap.2006.01.001
http://dx.doi.org/10.1073/pnas.1517027113
http://dx.doi.org/10.1371/journal.pone.0078983
http://dx.doi.org/10.1073/pnas.1404953111
http://dx.doi.org/10.5334/irsp.176
http://dx.doi.org/10.1002/ejsp.2146
http://dx.doi.org/10.1016/j.buildenv.2004.08.005
http://dx.doi.org/10.1007/978-3-319-02447-9_87
http://dx.doi.org/10.1007/978-3-319-02447-9_70
http://dx.doi.org/10.1016/j.firesaf.2008.03.008


Modeling Collective Behaviour: Insights and Applications from Crowd Psychology 81

102. J.R. Dyer, A. Johansson, D. Helbing, I.D. Couzin, J. Krause, Leadership, consensus decision
making and collective behaviour in humans. Philos. Trans. Royal Soc. London B Biol. Sci.
364(1518), 781–789 (2009). https://doi.org/10.1098/rstb.2008.0233

103. A. Templeton, J. Drury, A. Philippides, Walking together: behavioural signatures of psychol-
ogy crowds. R. Soc. Open Sci. 5(7), 1–14 (2018). https://doi.org/10.1098/rsos.180172

104. A. Templeton, J. Drury, A. Philippides, Placing large group relations into pedestrian
dynamics: psychological crowds in counterflow. Collective Dynamics 4(A23) (2020). https://
doi.org/10.17815/CD.2019.23

105. M. Levine, A. Prosser, D. Evans, S. Reicher, Identity and emergency intervention: how social
group membership and inclusiveness of group boundaries shape helping behaviour. Personal.
Soc. Psychol. Bull. 34(4), 443–453 (2005). https://doi.org/10.1177/0146167204271651

106. J. Drury, Collective resilience in mass emergencies and disasters, in The Social Cure: Identity,
Health and Well-being, ed. by J. Jetten, C. Haslam, A. S. Haslam, (Psychology Press, Hove,
2012), pp. 195–216

107. J. Drury, C. Cocking, S. Reicher, A. Burton, D. Schofield, A. Hardwick, D. Graham, P.
Langston, Cooperation versus competition in a mass emergency evacuation: a new laboratory
simulation and a new theoretical model. Behav. Res. Methods 41(3), 957–970 (2009). https:/
/doi.org/10.3758/BRM.41.3.957

108. I. von Sivers, A. Templeton, G. Köster, J. Drury, A. Philippides, Humans do not always act
selfishly: social identity and helping in emergency evacuation simulation. Transport. Res.
Proc. 2, 585–593 (2014). https://doi.org/10.1016/j.trpro.2014.09.099

109. I. von Sivers, A. Templeton, F. Kunzner, G. Köster, J. Drury, A. Philippides, T. Neckel, H.
Bungartz, Modelling social identification and helping in evacuation simulation. Saf. Sci. 89,
288–300 (2016). https://doi.org/10.1016/j.ssci.2016.07.001

110. M.J. Seitz, A. Templeton, J. Drury, G. Köster, A. Philippides, Parsimony versus reductionism:
how can crowd psychology be introduced into computer simulation? Rev. Gen. Psychol.
21(1), 95–102 (2016). https://doi.org/10.1037/gpr0000092

111. Q. Ji, C. Gao, Simulating crowd evacuation with a leader-follower model. Int. J. Comp. Sci.
Eng. Syst. 1(4), 249–252 (2007)

112. G. Köster, M. Seitz, F. Treml, D. Hartmann, W. Klein, On modelling the influence of group
formations in a crowd. Contemp. Soc. Sci. J. Acad. Soc. Sci. 6(3), 387–414 (2011). https://
doi.org/10.1080/21582041.2011.619867

113. H. Alnabulsi, J. Drury, A. Templeton, Predicting collective behaviour at the hajj: places, space
and the process of cooperation. Philos. Transact. B 373, 20170240 (2018). https://doi.org/
10.1098/rstb.2017.0240

114. C.J.T. Stott, O. Adang, Disorderly conduct: social psychology and the control of football
‘hooliganism’ at Euro2004. The Psychologist 17, 318–319 (2004)

115. J. Sievers, VoronoiLimit(varagin) [Software] (2012). Available from
https://uk.mathworks.com/matlabcentral/fileexchange/34428-voronoilimit-
vararginrequestedDomain=www.mathworks.com

http://dx.doi.org/10.1098/rstb.2008.0233
http://dx.doi.org/10.1098/rsos.180172
http://dx.doi.org/10.17815/CD.2019.23
http://dx.doi.org/10.1177/0146167204271651
http://dx.doi.org/10.3758/BRM.41.3.957
http://dx.doi.org/10.1016/j.trpro.2014.09.099
http://dx.doi.org/10.1016/j.ssci.2016.07.001
http://dx.doi.org/10.1037/gpr0000092
http://dx.doi.org/10.1080/21582041.2011.619867
http://dx.doi.org/10.1098/rstb.2017.0240
https://uk.mathworks.com/matlabcentral/fileexchange/34428-voronoilimit-vararginrequestedDomain=www.mathworks.com


Crowd Dynamics
Through Conservation Laws

Rinaldo M. Colombo, Magali Lecureux-Mercier, and Mauro Garavello

Abstract We consider several macroscopic models, based on systems of conserva-
tion laws, for the study of crowd dynamics. All the systems considered here contain
nonlocal terms, usually obtained through convolutions with smooth functions, used
to reproduce the visual horizon of each individual. We classify the various models
according to the physical domain (the whole space R

N or a bounded subset), to the
terms affected by the nonlocal operators, and to the number of different populations
we aim to describe. For all these systems, we present the basic well posedness and
stability results.

1 Introduction

From a macroscopic point of view, a crowd can be described through a density
function ρ, i.e., a time and space dependent quantity measuring the fraction of space
occupied by individuals. It is then natural to ground macroscopic crowd dynamics
models on Conservation Laws, which are partial differential equations of the form

∂tρ + divx(ρ v) = 0
t ∈ R

+ (time),
x ∈ � (space coordinate),

(1.1)
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where �, typically a subset of R2, is the domain available to crowd’s movements.
A key role is played by the speed law v, a map assigning to each (t, x) ∈ � the
velocity vector describing the movement of the individual at position x at time t .

Equation (1.1), also known as the continuity equation, is used in a variety of
modeling frameworks, ranging from fluid dynamics to vehicular traffic. Specific
features of crowd motion are its being not isotropic and the fact that each “particle”
moves according to what he/she sees within his/her own visual horizon. These
features are present in the speed law: in particular, in the models presented in the
sequel, v depends on ρ or on its space gradient∇xρ through spatial averages, usually
obtained through convolutions ρ ∗ η, or ∇x(ρ ∗ η), with an averaging kernel η, i.e.,
η ∈ C1(R2;R+) and

∫
R2 η = 1. The geometry of the support of η, in particular its

diameter, describes the visual horizon of the individuals in the crowd.
Moreover, again differently from fluid particles, individuals in a crowd may

well have different destinations, behaviors or reactions. Within the framework
provided by (1.1), this variety can be described through the introduction of different
populations, replacing (1.1) with a system, say

∂tρi + divx(ρi vi) = 0 i = 1, . . . , n, (1.2)

where members of the same populations, that is, counted within the same density ρi ,
have somewhat homogeneous behaviors, for instance, sharing the same destination.
Otherwise, when a few single individuals play a leading role in directing the crowd
motion, we use equations of the type (1.1) or (1.2) coupled with ordinary differential
equations describing the leaders’ movements.

A natural question arising from the results below is the relation between nonlocal
and local models, the latter referring to situations where v depends on ρ(x), i.e., on
ρ evaluated at a single point x. Since, as is well known, ρ ∗ η → ρ as η → δ,
δ being Dirac’s delta, one might expect similar convergence results ensuring the
convergence of nonlocal models to local ones as the visual horizon vanishes, see [3].
This question motivated various results yielding negative answers [35–38] as well
as positive results, see [18].

Crowd dynamics is currently described also through other analytic tools: from
systems of partial differential equations motivated through fluid dynamics [59], to
cellular automata [4], to measure valued partial differential equations [55, 56], to
kinetic models [2, 6], to discrete or microscopic models [5, 24, 51]. Also the level of
the related works is very diverse, ranging from purely analytic investigations [39],
to numerically oriented results [14], to data analysis [54]. For more information
on mixed systems and relations among the different descriptions, refer for instance
to [7, 8, 43] and to the references therein.

It is worth mentioning also the modeling of crowd dynamics through conserva-
tion laws that mimic fluid dynamics, developed, for instance, in [41, 45].

On the other hand, nonlocal conservation laws are currently used also in the
modeling of vehicular traffic [9, 21–23], in that of supply chains [40, 58], in predator
prey dynamics [27], in the modeling of laser beams cutting steel [25, 53] as well as in
the modeling of biological pest control [31]. Other strictly analytical investigations
on nonlocal conservation or balance laws are, for instance, [42].
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Hoping that this work might serve as a reference, all statements are placed in R
N

wherever this generality does not require any extra effort.
Throughout, I is a fixed time interval, say I = [0, T ] for a positive T , or I =

R
+. The notation used for function spaces and differential operators is standard and

collected in section “List of Symbols” in Appendix.
The next section is devoted to the analytic results that serve as a basis for the

later sections. In Sect. 3 we describe models for one or more populations defined
on all of RN , so that the geometric constraints to crowd movements are encoded in
the speed law v. The case of Initial Boundary Value Problems (IBVP) is treated in
Sect. 5 while mixed systems consisting of coupled ordinary and partial differential
equations are deferred to Sect. 6.

2 Stability and Well Posedness in MultiD Conservation Laws

This section provides the basic well posedness and stability results on the Cauchy
Problem for a scalar multiD balance law of the type

{
∂tρ + divx f (t, x, ρ) = F(t, x, ρ)
ρ(0, x) = ρo(x) . (2.1)

The definitions and theorems in this section serve both as a tool and as a model for
the subjects developed in later sections. Several monographs cover the basic theory
of conservation, or balance, laws. We refer, for instance, to [16, 44, 47].

Definition 2.1 ([47, Chapter 1]) Fix an initial datum ρo ∈ L∞(RN ;R). A function
ρ ∈ L∞(

I ; ρo+L1(RN ;R)) is a weak solution to (2.1) if limt→0+ ρ(t) = ρo in L1

and for any test function ϕ ∈ C∞
c (I̊ × R

N ;R+)
∫

I

∫

RN

[
ρ(t, x) ∂tϕ(t, x)

+f (t, x, ρ(t, x)) · ∇xϕ(t, x)
+F (t, x, ρ(t, x)) ϕ(t, x)

]
dx dt = 0.

Even in the case of a (nonlinear) Riemann Problem [16, Chapter 5] in one space
dimension, such as

⎧
⎪⎨

⎪⎩

∂tρ + ∂x
(

1
2 ρ

2
)
= 0

ρ(0, x) =
{−1 x < 0

1 x ≥ 0 ,

(2.2)
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the above definition does not single out a unique solution, since both the maps

ρ(t, x) =
{−1 x < 0

1 x ≥ 0
and ρ(t, x) =

⎧
⎨

⎩

−1 x ≤ t
x/t x ∈ ]−t, t[
1 x ≥ t

solve (2.2) in the sense of Definition 2.1.
It is the next, classical, definition that under suitable assumptions singles out a

unique solution to (2.1) and is used throughout the next sections.

Definition 2.2 ([49, Definition 1], [47, § 2.1]) Fix an initial datum ρo ∈
L∞(RN ;R). A function ρ ∈ L∞(

I ; ρo + L1(RN ;R)) is a Kružkov solution
to (2.1) if limt→0+ ρ(t) = ρo in L1 and for any constant k ∈ R and for any test
function ϕ ∈ C∞

c (I̊ × R
N ;R+)

∫

I

∫

RN

[ (
ρ(t, x)− k) ∂tϕ(t, x)
+ (
f
(
t, x, ρ(t, x)

)− f (t, x, k)) · ∇xϕ(t, x)
+ (
F
(
t, x, ρ(t, x)

)− divx f (t, x, k)
)
ϕ(t, x)

]
sgn

(
ρ(t, x)−k) dx dt ≥ 0 .

Both choices k > ‖ρ‖L∞(I×RN ;R) and k < −‖ρ‖L∞(I×RN ;R) show that a
Kružkov solution is also a weak solution.

The results collected below ensure that Definition 2.2 is the correct tool to
establish a well posedness theory for the Cauchy Problem (2.1).

2.1 The Linear Case

We consider first the case where f in (2.1) is linear in ρ and F is affine in ρ, i.e.:

∂tρ + divx (ρ v(t, x)) = α(t, x) ρ + β(t, x) . (2.3)

In the study of (2.3), the characteristic equation ẋ = v(t, x) plays a key role.
Therefore, with reference to (2.3), introduce the notation

t → X(t; to, xo) is the solution to

{
ẋ = v(t, x)
x(to) = xo . (2.4)

We collect here a few results about the map X above.

Lemma 2.3 Assume that
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v ∈ C0(I × R
N ;RN) ,

v(t) ∈ C1(RN ;RN) for all t ∈ I ,
‖v(t, x)‖ ≤ A(t)+ B ‖x‖ where A ∈ L1(I ;R+) and B ∈ R

+ .
(2.5)

Then, the map X defined in (2.4) is well defined and, for a.e. t, to ∈ I , x ∈ R
N and

δo ∈ R
N

∂tX(t; to, xo) = v (t, X(t; to, xo)) ,
∂toX(t; to, xo) = −v(to, xo) exp

∫ t
to
∇xv (τ,X(τ ; to, xo)) dτ ,

DxoX(t; to, xo) δo = δ(t) where

{
δ̇ = ∇xv (t, X(t; to, xo)) δ
δ(to) = δo ,

detDxoX(t; to, xo) = exp
(∫ t
to

divx v (τ,X(τ ; to, xo)) dτ
)
.

The proof relies on classical ordinary differential equations techniques; see for
instance [17, § 2.3] and [33, § 5.1].

A careful mixing of [33, Lemma 5.1, Lemma 5.2] and [27, Proposition 2.8], see
also [29], yields the following result.

Theorem 2.4 Consider the Cauchy Problem

{
∂tρ + divx (ρ v(t, x)) = α(t, x) ρ + β(t, x)
ρ(0, x) = ρo(x), (2.6)

where v satisfies (2.5) and

α ∈ L∞(
I ;L1(RN ;R)) , α(t) ∈ C0(RN ;R) ,

β ∈ L∞(I × R
N ;R) , β(t) ∈ C0(RN ;R) .

Then, for all ρo ∈ (L1 ∩ L∞)(RN ;R), the map

ρ(t, x) = ρo
(
X(to; t, x)

)
exp

(∫ t

to

(
α
(
τ,X(τ ; t, x))− divx v

(
τ,X(τ ; t, x))) dτ

)

+
∫ t

to

β
(
s,X(s; t, x)) exp

(∫ t

s

(
α
(
τ,X(τ ; t, x))− divx v (τ,X(τ ; t, x))

)
dτ

)
ds

(2.7)

solves (2.6) in the sense of Definition 2.2 (Kružkov solution). Moreover, any solution
to (2.6) in the sense of Definition 2.1 (weak solution) coincides with ρ as given
by (2.7).

The explicit expression (2.7) allows to prove a variety of estimates, see [27, 29,
33].
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2.2 The General Case

The classical work by Kružkov [49] ensures the existence of a solution to (2.1), its
uniqueness and its continuous dependence on the initial datum with respect to the
L1 norm.

The stability of solutions with respect to the flow f and source F is more recent.
The case of a conservation law, i.e. F = 0, was initially addressed assuming that
the flow depends only on the unknown variable, i.e. f = f (ρ). A first result in this
direction is in [52], inspired by numerics, and an improvement was then obtained
in [15], while the case of systems in one space dimension was solved in [10].

An x dependent flow was then considered in [20] where the necessity of a priori
bounds on the total variation in space of the solution is evident.

The stability of the solutions to the general balance law (2.1) with respect to
variations in the time and space dependent flow and source was first addressed
in [32], with further improvements being provided in [50].

Introduce the following assumptions on (2.1):

(H.1) f ∈ C0(I × R
N × R;RN), the derivatives ∂ρf, ∂ρ∇xf,∇2

xf exist and are
continuous and for all R > 0, ∂ρf ∈ L∞(I × R

N × [−R,R];RN).
F ∈ C0(I × R

N × R;R) and the derivatives ∂ρF,∇xF exist and are
continuous.
For all R > 0, (F − divx f ), ∂ρ(F − divx f ) ∈ L∞(I ×R

N × [−R,R];R).
(H.2) For all R > 0, ∂ρ∇xf ∈ L∞(I × R

N × [−R,R];RN×N), ∂ρF ∈ L∞(I ×
R
N×[−R,R];R) and

∫
I

∫
RN

‖∇x(F − divx f )(t, x, ·)‖L∞([−R,R];R)dxdt <
+∞.

(H.3) For all R > 0, ∂ρf ∈ L∞(I×R
N×[−R,R];RN×N), ∂ρF ∈ L∞(I×R

N×
[−R,R];R) and

∫
I

∫
RN

‖(F − divx f )(t, x, ·)‖L∞([−R,R];R)dxdt < +∞.

First, we recall the key well posedness result by Kružkov.

Theorem 2.5 ([49, Theorem 1]) Let f, F satisfy (H.1) and fix ρo ∈ L∞(RN ;R).
Then, the Cauchy Problem (2.1) admits a unique Kružkov solution ρ defined on all
I and L1-continuous in time from the right.

The following total variation estimate is a necessary step towards the stability
estimate on the dependence of the solution to (2.1) on flow and source.

Theorem 2.6 ([50, Theorem 2.2]) Let (H.1) and (H.2) hold. Fix an initial datum
ρo ∈ (L1 ∩ L∞ ∩ BV)(RN ;R). Then, the Kružkov solution ρ to (2.1) satisfies
ρ(t) ∈ BV(RN ;R) for all t ∈ I .

Define

R = ‖ρ‖L∞([I×RN ;R) , St = ⋃
τ∈[0,t] spt ρ(τ) ,

Rt = ‖ρ(t)‖L∞(RN ;R) , 
t = I × St × [−R,R] ,
κ = (2N + 1)‖∂u∇xf ‖L∞(
ρ ;RN×N) + ‖∂uF‖L∞(
ρ ;R) .

(2.8)
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Then, for all t ∈ I , settingWN = ∫ π/2
0 (cos θ)Ndθ ,

TV
(
ρ(t)

) ≤ TV (ρo) eκt

+ NWN
∫ t

0
ek(t−τ)

∫

RN

‖∇x(F − divx f )(τ, x, ·)‖L∞([−Rτ ,Rτ ];RN)dxdτ.

Remark that when (2.1) reduces to the usual case ∂tρ+divx f (ρ) = 0, the above
estimate reduces to the well known property that solutions to conservation law have
a nonincreasing total variation in space.

Moreover, setting f = 0 and F = F(t, ρ), (2.1) reduces to a Cauchy Problem
for an ordinary differential equation and, coherently, the estimate provided by
Theorem 2.6 reduces to the standard ODE estimate resulting from the application
of Gronwall Lemma.

The continuous dependence of the solutions to (2.1) on time directly follows
from Theorem 2.6.

Corollary 2.7 ([50, Corollary 2.4]) Let (H.1)–(H.3) hold. Fix an initial datum
ρo ∈ (L1 ∩ L∞ ∩ BV)(RN ;R). Then, the Kružkov solution ρ to (2.1) satisfies
ρ ∈ C0

(
I ; ρo+L1(RN ;R)) and moreover for any t1, t2 ∈ I , with the notation (2.8),

‖ρ(t1)− ρ(t2)‖L1(RN ;R) ≤
∣∣∣∣
∫ t2

t1

∫

RN

‖(F − divx f )(τ, x, ·)‖L∞([−R,R];R)dxdτ

∣∣∣∣

+‖∂uf ‖L∞(
ρ ;R) sup
τ∈[0,t]

TV
(
ρ(τ)

) |t1 − t2| .

Moreover, under the stronger condition

sup
t∈I

∫

RN

‖(F − divx f )(τ, x, ·)‖L∞([−R,R];R)dx < +∞ ,

we have ρ ∈ C0,1
(
I ; ρo + L1(RN ;R)).

We are now ready to tackle the stability of the solutions to (2.1) with respect
to variations in the flow f and in the source F . To this aim, we consider the two
Cauchy Problems

{
∂t ρ̂ + divx f̂ (t, x, ρ̂) = F̂ (t, x, ρ̂)
ρ̂(0, x) = ρ̂o(x) and

{
∂t ρ̌ + divx f̌ (t, x, ρ̌) = F̌ (t, x, ρ̌)
ρ̌(0, x) = ρ̌o(x) .

(2.9)

Theorem 2.8 ([50, Theorem 2.5]) Let both pairs (f̂ , F̂ ) and (f̌ , F̌ ) satisfy (H.1),
(f̂ , F̂ ) satisfy (H.2) and (f̂−f̌ , F̂−F̌ ) satisfy (H.3). Fix initial data ρ̂o, ρ̌o in (L1∩
L∞ ∩ BV)(RN) and call ρ̂, ρ̌ the corresponding solutions. Besides the quantities
defined in (2.8), introduce also



90 R. M. Colombo et al.

S̄t = ⋃
τ∈[0,t] spt ρ̂(τ ) ∪ spt ρ̌(τ ) , R̄ = max

{∥∥ρ̂
∥∥

L∞(I×RN ;R),
∥∥ρ̌

∥∥
L∞(I×RN ;R)

}
,


t = [0, t] × St × [−R̄, R̄] , R̄t = supx∈RN max
{
ρ̂(t, x), ρ̌(t, x)

}
,

M = ∥∥∂ρ̌
∥∥

L∞(I×RN×[−Ř,Ř];R) , κ∗ = ∥∥∂ρF
∥∥

L∞(
t ;R)+
∥∥∥∂ρ divx(f̌−f̂ )

∥∥∥
L∞(
t ;R)

.

Then, for any positive r and for any xo in R
N , the solutions ρ̂ and ρ̌ to (2.9) satisfy:

∫

‖x−xo‖≤r
∣∣ρ̂(t, x)− ρ̌(t, x)∣∣dx

≤ eκ
∗t
∫

‖x−xo‖≤r+Mt
∣∣ρ̂o(x)− ρ̌o(x)

∣∣dx

+ eκt − eκ
∗t

κ − κ∗ TV (ρ̂o)
∥∥∥∂ρ(f̂ − f̌ )

∥∥∥
L∞(
t ;RN)

+ NWN
∫ t

0

eκ(t−τ) − eκ
∗(t−τ)

κ − κ∗
∫

RN

∥∥∥∇x(F̂ − divx f̂ )(τ, x, ·)
∥∥∥

L∞([−Rτ ,Rτ ];RN )
dxdτ

×
∥∥∥∂ρ(f̂ − f̌ )

∥∥∥
L∞(
t ;R)

+
∫ t

0
eκ

∗(t−τ)
∫

‖x−xo‖≤r+M(t−τ)

∥∥∥
(
(F̂ − F̌ )− divx(f̂ − f̌ )

)
(τ, x, ·)

∥∥∥
L∞([−R̄τ ,R̄τ ];R)

dxdτ.

The above estimate can be easily extended to bound the L1 distance between
solutions over all of RN .

As a side remark, we observe that the recurrent appearance of the term F−divx f

is to be expected, for it reflects the obvious nonuniqueness of the distinction between
flow and source. Indeed, for instance, in the case n = N = 1, the two flow–source
pairs

f̌ (t, x, u) = u− x
F̌ (t, x, u) = 0

and
f̂ (t, x, u) = u
F̂ (t, x, u) = 1

define the same balance law and, clearly, F̌ − divx f̌ = F̂ − divx f̂ .

3 A Single Population in R
N

While moving in a crowd, each individual is affected by what happens within his/her
visual horizon. It is then natural to choose the speed law v in the general model (1.1)
so that its value at time t and position x depends on the density ρ as a function, not
only on the value ρ(t, x) attained by ρ at (t, x). In other words, the term nonlocal
means that the flux function may depend in a nonlocal way on the density. More
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precisely, we consider the Cauchy Problem

{
∂tρ + divx

(
ρ V

(
t, x, ρ,I(ρ)

)) = 0
ρ(0, x) = ρo(x), (3.1)

where ρ is the crowd density, V is the velocity vector field, and I is a nonlocal
operator. A typical choice for the operator I is a convolution operator, such as

(
I
(
ρ(t)

))
(x) = (

ρ(r) ∗ η)(x) =
∫

RN

ρ(t, ξ) η(x − ξ) dξ .

As soon as η is sufficiently regular, nonnegative and with integral 1, the quantity(
I
(
ρ(t)

))
(x) above yields a weighted average of the values attained by ρ at time t

around x.
Below, we addressed the basic well posedness and stability issues related to (3.1).

In doing this, we distinguish two different nonlocalities in V i , namely the one where
the speed modulus is given by a nonlocal operator, and that where it is (also) the
velocity direction which is a nonlocal operator.

A numerical procedure to integrate (3.1) is detailed in [3].

3.1 A NonLocal Speed Modulus

As a first example of (3.1) we assume that the pedestrians’ trajectories are assigned,
but their speed depends on the local average of the crowd density. Hence, we
consider a speed law of the form

V
(
t, x, ρ,I(ρ)

) = v (I(ρ(t))) v(x), (3.2)

where I(ρ) = ρ ∗ η, the convolution kernel η being smooth, nonnegative and with∫
RN
η(x)dx = 1, so that (ρ(t) ∗ η)(x) results in the local average of the density

ρ(t) in x + spt η. The scalar nonnegative function v is nonincreasing, meaning that
at higher densities the speed is lower. The unit vector v(x) describes the direction
typically followed by the individual at x.

Definition 3.1 ([33, Definition 2.1]) Fix ρ0 ∈ L∞(RN ;R). A weak entropy
solution to (3.1)–(3.2) on I is a bounded measurable map ρ ∈ C0

(
I ;L1

loc(R
N ;R))

which is a Kružkov solution to

{
∂tρ + divx (ρ w(t, x)) = 0
ρ(0, x) = ρ0(x)

where w(t, x) = (V (ρ(t))) (x) .

The basic well posedness and stability result for (3.1)–(3.2) is as follows.
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Theorem 3.2 ([33, Theorem 2.2 and Proposition 4.1]) Consider the conservation
law (3.1) with speed law (3.2). Assume that

v ∈ C2(R;R)
v∈ (C2 ∩ W2,1)(RN ;RN) with supRN ‖v(s)‖ ≤ 1,
η ∈ C2

c(R
N ;R+) is such that spt η ⊆ B(0, 1) and ‖η‖L1(RN ;R) = 1.

Then, for all α, β > 0 with β > α, there exists a time T (α, β) > 0 such that for
all ρ0 ∈ (L1 ∩ BV)(RN ; [0, α]), problem (3.1)–(3.2) admits a unique weak entropy
solution ρ ∈ C0

([0, T (α, β)]; (L1 ∩BV)(RN ; [0, β]) in the sense of Definition 3.1.
Moreover,

1. ‖ρ(t)‖L∞(RN ;R) ≤ β for all t ∈ [0, T (α, β)] .
2. There exists a function L ∈ C0(R+;R+) such that for all ρ0,1, ρ0,2 in (L1 ∩

BV)(RN ; [0, α], the corresponding solutions satisfy, for all t ∈ [0, T (α, β)],

‖ρ1(t)− ρ2(t)‖L1(RN ;R) ≤ L(t)
∥∥ρ0,1 − ρ0,2

∥∥
L1(RN ;R) .

3. There exists a constant L = L(β) such that for all ρ0 ∈ (L1 ∩ BV)(RN ; [0, α]),
the corresponding solution satisfies for all t ∈ [0, T (α, β)]

TV (ρ(t)) ≤ (
TV (ρ0)+L t ‖ρ0‖L∞(RN ;R)

)
eLt

‖ρ(t)‖L∞(RN ;R) ≤ ‖ρ0‖L∞(RN ;R) eLt .

The above result can be easily extended to ensure the existence of global in time
solutions, see Sect. 4.1 below and [33].

On the basis of Theorem 3.2, a few control problems can be addressed, leading
to the corresponding optimality conditions, see [33, § 2.2 and § 2.3].

3.2 A NonLocal Velocity Direction

Now, we consider a single nonlocal conservation law in all of RN , i.e. n = 1, where
the unknown ρ = ρ(t, x) is defined for t ≥ 0 and x ∈ � = R

N . More precisely, we
study the following Cauchy problem:

{
∂tρ + divx (ρ v(ρ) (σ (x)+ I(ρ))) = 0
ρ(0, x) = ρo(x) . (3.3)

Here the velocity function V (t, x, ρ,I) in (4.1) is equal to v(ρ) (σ (x)+ I(ρ)),
where the scalar function ρ �→ v(ρ) describes the pedestrians’ speed, independently
of geometrical considerations, the vector σ(x) ∈ R

N is the preferred direction of
the pedestrian at x, while the nonlocal term I(ρ)(x) describes how the pedestrian
at x deviates from the preferred direction, due to the crowd distribution. Roughly
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speaking, an individual at position x ∈ R
2 moves at the speed v (ρ(t, x)) depending

only on the density ρ(t, x). Moreover the individual at position x and time t is
assumed to move along the direction σ(x)+ (

I
(
ρ(t)

))
(x).

On the functions defining (3.3), we introduce the following hypotheses:

(v) v ∈ C2(R;R) is nonincreasing, v(0) = V and v(R) = 0 for fixed V,R > 0.

(σ ) σ ∈ (C2 ∩ W1,∞)(RN ;RN) is such that divx σ ∈ (W1,1 ∩ W1,∞)(RN ;R).
(I) I ∈ C0

(
L1(RN ; [0, R]);C2(RN ;RN)) satisfies the following estimates:

(I.1) There exists an increasing CI ∈ L∞
loc(R

+;R+) such that, for all r ∈
L1(RN ; [0, R]),

‖I(r)‖W1,∞(RN ;RN ) ≤ CI (‖r‖L1(RN ;R)) and

‖divx I(r)‖L1(RN ;R) ≤ CI (‖r‖L1(RN ;R)) .

(I.2) There exists an increasing CI ∈ L∞
loc(R

+;R+) such that, for all r ∈
L1(RN ; [0, R]),

‖∇x divx I(r)‖L1(RN ;RN) ≤ CI (‖r‖L1(RN ;R)) .

(I.3) There exists a constant KI such that for all r1, r2 ∈ L1(RN ; [0, R]),

‖I(r1)− I(r2)‖L∞(RN ;RN) ≤ KI · ‖r1 − r2‖L1(RN ;R)
‖I(r1)− I(r2)‖L1(RN ;RN) ≤ KI · ‖r1 − r2‖L1(RN ;R)

∥∥divx
(
I(r1)− I(r2)

)∥∥
L1(RN ;R) ≤ KI · ‖r1 − r2‖L1(RN ;R) .

Following Definition 2.2, we introduce the notion of solution for (3.3).

Definition 3.3 ([34, Definition 2.1]) Fix a positive T and an initial datum ρo ∈
L1(RN ; [0, R]). A function ρ ∈ C0

(
I ;L1(RN ;R)) is a weak entropy solution

to (3.3) if it is a Kružkov solution (see Definition 2.2) to the Cauchy problem

{
∂tρ + divx (ρ v(ρ)w(t, x)) = 0
ρ(0, x) = ρo(x) where w(t, x) = σ(x)+ (

I
(
ρ(t)

))
(x) .

Note that Definitions 2.2 and 3.3 imply that for all k ∈ R and for all ϕ ∈
C∞
c (]−∞, T ] × R

N ;R+),

∫ T

0

∫

RN

[|ρ − k| ∂tϕ + (ρ v(ρ)− k v(k)) w · ∇xϕ sgn(ρ − k)] dxdt

−
∫ T

0

∫

RN

k v(k) divxw ϕ sgn(ρ − k)dxdt +
∫

RN

|ρo(x)− k|ϕ(0, x)dx ≥ 0 ,
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where w(t, x) = σ(x)+ (
I
(
ρ(t)

))
(x).

The following existence and uniqueness result for (3.3) holds.

Theorem 3.4 ([34, Theorem 2.1]) Let (v), (σ ), and (I) hold. Fix ρo ∈ (L1 ∩
BV)(RN ; [0, R]). Then, there exists a unique weak entropy solution

ρ ∈ C0(
R
+;L1(RN ; [0, R]))

to (3.3) in the sense of Definition 3.3. Moreover, ρ conserves the L1 norm, i.e. for
a.e. t ∈ R

+,

‖ρ(t)‖L1(RN ;R) = ‖ρo‖L1(RN ;R),

and, for a.e. t ∈ R
+, satisfies the total variation inequality

TV
(
ρ(t)

) ≤ TV (ρo) ekt

+N WN‖q‖L∞([0,R];R)
(‖∇x divx σ‖L1(RN ;RN ) + CI (‖ρo‖L1(RN ;R))

)
t ekt ,

where

q(ρ) = ρ v(ρ) ,
k = (2N + 1)

∥∥q ′
∥∥

L∞([0,R];R)
(‖∇xσ‖L∞(RN ;RN×N ) + CI (‖ρo‖L1(RN ;R))

)
,

WN =
∫ π/2

0
(cosϑ)N dϑ .

The proof relies on a careful application of Banach Fixed Point Theorem. Moreover
the following theorem contains stability results for (3.3).

Theorem 3.5 ([34, Theorem 2.2]) Let (v), (σ ), and (I) be satisfied by both systems

{
∂tρ+ divx [q1(ρ) (σ1(x)+I1(ρ))]=0
ρ(0, x) = ρ0,1(x)

{
∂tρ + divx [q2(ρ) (σ2(x)+ I2(ρ))] = 0
ρ(0, x) = ρ0,2(x),

where q1(ρ) = ρ v1(ρ) and q2(ρ) = ρ v2(ρ) and ρ0,1, ρ0,2 ∈ (L1 ∩
BV)(RN ; [0, R]). Then, for a.e. t ∈ R

+, the two solutions ρ1 and ρ2 satisfy

‖ρ1(t)− ρ2(t)‖L1 ≤ (1 + C(t)) ∥∥ρ0,1 − ρ0,2
∥∥

L1

+ C(t) (‖ρ1v1 (ρ1)− ρ2v2 (ρ2)‖W1,∞ + d (I1,I2)
)

+ C(t) (‖σ1 − σ2‖L∞ + ‖divx(σ1 − σ2)‖L1

)
,

where
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d(I1,I2)

= sup
{‖I1(ρ)− I2(ρ)‖L∞+ ‖divx (I1(ρ)− I2(ρ))‖L1: ρ ∈ L1(RN ; [0, R])} ,

and the map C ∈ C0(R+;R+) vanishes at t = 0 and depends on TV (ρ0,1),∥∥ρ0,1
∥∥

L1 , ‖σ1‖L∞ , ‖divx σ1‖W1,1 , ‖ρ1v1 (ρ1)‖W1,∞ , ‖ρ2v2 (ρ2)‖W1,∞ .

Theorems 3.4 and 3.5 allow to consider various realistic situations and control
problems, among which we recall the important problem of evacuation of a room in
minimum time; see [34, § 4] for more detailed discussions.

4 Several Populations in R
N

In this part we consider a system of conservation laws, i.e. n > 1, in the whole
domain R

N , where the unknowns ρi = ρ1(t, x) are defined for t ≥ 0 and x ∈ � =
R
N .
More precisely, we consider the system

∂tρ
i + divx

(
ρi V i

(
t, x, ρi,Ii (ρ)

)) = 0 i = 1, . . . , n, (4.1)

where ρ = (ρ1, · · · , ρn) is the vector of conserved quantities, n ∈ N \ {0}
denotes the number of equations, t > 0 is time, x ∈ R

2 is the space variable,
V = (V 1, · · · , V n) is the velocity vector field, and I = (I1, · · · ,In) is a nonlocal
operator, which depends on the whole vector ρ of the densities.

Remarkably, couplings among the different equations in (4.1) motivated by the
description of moving crowds allow to prove the well posedness and stability
of systems of nonlocal conservation laws in several space dimensions. As is
well known, general results of this type for local conservation laws are currently
unavailable.

For the description of a numerical procedure to tackle (4.1) we refer to [1].

4.1 A NonLocal Speed Modulus

In this part, we consider system (4.1) where the nonlocal operator acts only on
the modulus of the speed, but not on the direction. More precisely, we study the
following Cauchy problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
1 + divx

(
ρ1 v1

(
I1(ρ)

)
σ 1(x)

)
= 0

...

∂tρ
n + divx

(
ρn vn

(
In(ρ)

)
σn(x)

) = 0
ρ1(0, x) = ρ1

o(x)
...

ρn(0, x) = ρno (x) .

(4.2)

Here the velocity functions V i(t, x, ρi,Ii ) in (4.1) are given by

V i(t, x, ρi,Ii ) = vi(Ii ) σ i(x) , (4.3)

where the functions vi(r) describe the pedestrians’ speed of the i-th population,
independently of geometrical considerations, the vectors σ i(x) ∈ R

N represent the
direction of the pedestrian of the i-th class at x, while Ii (ρ) are nonlocal functions
of the overall total density. More precisely, we assume that Ii : L1(Rd;Rn) →
C0(Rd ;Rn) are given by

(
Ii (ρ)

)
(x) =

n∑

j=1

∫

Rd

ρj (t, ξ) ηj (x − ξ) dξ ,

where ηj are suitable mollifiers functions.

Definition 4.1 ([26, Definition 2.1]) Fix a positive T and an initial datum ρo ∈
L1(RN ;Rn). A function ρ ∈ C0

(
I ;L1(RN ;Rn)) is a weak entropy solution to (4.2)

if, for every i ∈ {1, · · · , n}, the i-th component ρi is a Kružkov solution (see
Definition 2.2) to the Cauchy problem

{
∂tρ

i + divx
(
ρi w(t, x)

) = 0
ρi(0, x) = ρio(x)

where w(t, x) = vi(Ii (ρ)) σ i(x) .

The following well posedness result holds.

Theorem 4.2 ([26, Theorem 2.2]) Assume that for every i ∈ {1, · · · , n}
1. vi ∈ (

C2 ∩ W2,∞)
(R;R);

2. σ i ∈ (
C2 ∩ W2,1

)
(RN ;RN) satisfies

∥∥σ i(x)
∥∥ ≤ 1 for every x ∈ R

N ;
3. ηi ∈ (C2 ∩ W2,∞)(RN ; [0, 1]) and

∥∥ηi
∥∥

L1(RN ;R) = 1.

Then, there exists a semigroup

S : R+ × (L1 ∩ L∞ ∩ BV)(RN ;Rn)→ (L1 ∩ L∞ ∩ BV)(RN ;Rn)

such that the following conditions hold.
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1. For every initial datum ρo ∈ (L1 ∩ L∞ ∩ BV)(RN ;Rn), for every t ≥ 0, the
orbit t �→ Stρo is the unique solution to (4.2), in the sense of Definition 4.1.
Furthermore, the map t �→ Stρo belongs to C0

(
R
+;L1(RN ;Rn)).

2. For every ρo ∈ (L1 ∩ L∞ ∩ BV)(RN ; (R+)n), we have that (Stρo)i ≥ 0 for all
t > 0 and i ∈ {1, · · · , n}.

3. There exists a constant L such that, for all ρo ∈ (L1 ∩ L∞ ∩ BV)(RN ;Rn) and
t ∈ R

+,

TV
(
St (ρo)

) ≤ (
TV (ρo)+L t ‖ρo‖L∞(RN ;Rn)

)
eLt

and

‖St (ρ)‖L∞(RN ;Rn) ≤ ‖ρo‖L∞(RN ;Rn).

4. There exists a function L ∈ C0(R+;R+) such that,

∥∥St (ρ′o)− St (ρ′′o )
∥∥

L1(RN ;Rn) ≤
(
1 + t L(t)) ∥∥ρ′o − ρ′′o

∥∥
L1(RN ;Rn)

for all ρ′o, ρ′′o ∈ (L1 ∩ L∞ ∩ BV)(RN ;Rn) and t ∈ R
+.

5. If ρo ∈ W1,1(RN ;Rn), then St (ρo) ∈ W1,1(RN ;Rn) for all t > 0. Moreover
there exists a positive constant C such that, for t > 0,

‖St (ρ)‖W1,1(RN ;Rn) ≤ (1 + C t) eCt ‖ρo‖W1,1(RN ;Rn).

6. If ρo ∈ W1,∞(RN ;Rn), then St (ρo) ∈ W1,∞(RN ;Rn) for all t > 0. Moreover,
there exists a positive constant C such that, for t > 0,

‖St (ρ)‖W1,∞(RN ;Rn) ≤ (1 + C t) eCt ‖ρo‖W1,∞(RN ;Rn).

7. If v ∈ C4(R;Rn), then, for every initial datum ρo ∈ (W2,∞ ∩ W2,1)(RN ;Rn),
σo ∈ (W1,1 ∩ L∞)(RN ;Rn) and for all time t > 0, the semigroup S is strongly
L1 Gâteaux differentiable in the direction σo. The derivative D St(ρo)(σo) of St
at the point ρo in the direction σo is 
ρot (σo), where 
ρo is the linear semigroup
whose orbits are the Kružkov solutions to

{
∂tσ

i + divx

(
σ i V i

(
St (ρo)

)+ (
St (ρo)

)i
DV i

(
St (ρo)

)
(σ )

)
= 0

σ i(0, x) = σ io(x) ,

where V i is defined in (4.3).

The Cauchy problem (4.2) is also stable with respect to variations of the functions
ηi , vi , and σ i . More precisely, consider the Cauchy problems
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
1 + divx

(
ρ1 v̂1

(
Î

1
(ρ)

)
σ̂ 1(x)

)
= 0

...

∂tρ
n + divx

(
ρn v̂n

(
Î
n
(ρ)

)
σ̂ n(x)

)
= 0

ρ1(0, x)=ρ̂1
o(x)

...

ρn(0, x)=ρ̂no (x)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
1+ divx

(
ρ1 v̌1

(
Ǐ

1
(ρ)

)
σ̌ 1(x)

)
=0

...

∂tρ
n+ divx

(
ρn v̌n

(
Ǐ
n
(ρ)

)
σ̌ n(x)

)
=0

ρ1(0, x)=ρ̌1
o(x)

...

ρn(0, x)=ρ̌no (x) ,

where

Î
i
(ρ)(x)=

n∑

j=1

∫

RN

ρj (t, ξ) η̂j (x−ξ) dξ, Ǐ
i
(ρ)(x)=

n∑

j=1

∫

RN

ρj (t, ξ)η̌j (x−ξ) dξ.

Denote by ρ̂ and ρ̌ the respective solutions.

Theorem 4.3 ([26, Theorem 2.2]) Fix a positive constant M . Then, there exists a
function L ∈ C0(R+;R+) such that

∥∥ρ̂(t)− ρ̌(t)∥∥L1(RN ;Rn) ≤
(
1 + t L(t)) ∥∥ρ̂o − ρ̌o

∥∥
L1(RN ;Rn)

+t L(t) ∥∥η̂ − η̌∥∥W1,∞(RN ;Rn)
+t L(t) ∥∥v̂ − v̌∥∥W1,∞(R;Rn)

+t L(t)
(∥∥σ̂ − σ̌∥∥L∞(RN ;Rnd ) +

∥∥σ̂ − σ̌∥∥W1,1(RN ;Rnd )
)

for every initial data ρ̂o, ρ̌o ∈ L1(RN ;Rn), for every velocity functions v̂, v̌ ∈ (C2∩
W2,∞)(R;Rn), for every directions σ̂ , σ̌ ∈ (C2 ∩ W2,1)

(
R
N ;RNn), and for every

mollifier η̂, η̌ ∈ (C2 ∩ W2,∞)(RN ; [0, 1]n) with
∥∥η̂i

∥∥
L1(RN ;R) =

∥∥η̌i
∥∥

L1(RN ;R) = 1
for i ∈ {1, · · · , n}.

4.2 A NonLocal Velocity Direction

In this part, we consider system (4.1) where the nonlocal operator influences the
geometric direction of the velocity. More precisely, we study the following Cauchy
problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
1 + divx

(
ρ1 v1(ρ1)

(
v1(x)+ I1(ρ1, . . . , ρn)

))
= 0

...

∂tρ
n + divx

(
ρn vn(ρn)

(
vn(x)+ In(ρ1, . . . , ρn)

)) = 0
ρ1(0, x) = ρ1

o(x)
...

ρn(0, x) = ρno (x) .

(4.4)

Here the velocity functions V i(t, x, ρi,Ii ) in (4.1), for i ∈ {1, · · · , n}, are given
by

V i(t, x, ρi,Ii ) = vi(ρi)
(

vi (x)+ Ii (ρ1, . . . , ρn)
)
.

More precisely, the velocity V i of the i-th population is the product of a scalar
crowding factor vi(ρi) with a vector vi (x) + Ii (ρ1, . . . , ρn), which is the sum
of a preferred direction vi (x) and a deviation Ii (ρ1, . . . , ρn). The scalar vi(ρi)
approximately gives the modulus of the speed. A possible choice for the preferred
direction vi is, for instance, the tangent vector at x to the geodesic that the
individuals in the i-th population follow to reach their destination, if unaffected
by any other individual. Instead, the term Ii (ρ1, . . . , ρn) describes how the i-
th population deviates from its preferred trajectory due to the interaction among
individuals, both of the same and of different populations. It is a nonlocal functional,
since its value at any position x depends on the population densities averaged over
a neighborhood of x.

Definition 4.4 ([26, Definition 3.1]) Fix a positive T and, for every i ∈ {1, · · · , n},
the initial datum ρio ∈ (L1 ∩L∞)(RN ;Rn). A map ρ ∈ C0

([0, T ];L1(RN ;Rn)) is
a weak entropy solution to (4.4) if, for i = 1, · · · , n, ρi is a Kružkov solution to the
Cauchy problem

{
∂tρ

i + divx
(
ρi vi(ρi) V i(t, x)

) = 0
ρi(0, x) = ρio(x) ,

where V i(t, x) = vi (x)+ Ii (ρ1(t), · · · , ρn(t)) (x).
The following well posedness result holds.

Theorem 4.5 ([26, Theorem 3.2]) Assume that for every i ∈ {1, · · · , n},
1. vi ∈ C2(R;R+) satisfies vi(R) = 0 for a suitable R > 0;
2. vi ∈ (C2 ∩ W1,∞)(RN ;RN) and divx vi ∈ W1,1(RN ;RN×N);
3. there exists a constant CI > 0 such that Ii : L1(RN ;Rn) → C2(RN ;RN)

satisfies, for every ρ, ρ′ ∈ L1(RN ; [0, R]n),
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∥∥∥∇xIi (ρ)
∥∥∥

L∞(RN ;RN) ≤ CI ‖ρ‖L1(RN ;Rn),
∥∥∥∇x divx

(
Ii (ρ)

)∥∥∥
L1(RN ;RN×N) ≤ CI ‖ρ‖L1(RN ;Rn),

∥∥∥Ii (ρ)− Ii (ρ′)
∥∥∥

L∞(RN ;RN) ≤ CI
∥∥ρ − ρ′∥∥L1(RN ;Rn),

∥∥∥divx

(
Ii (ρ)− Ii (ρ′)

)∥∥∥
L1(RN ;R) ≤ CI

∥∥ρ − ρ′∥∥L1(RN ;Rn).

Then, there exists a semigroup

S : R+ × (L1 ∩ BV)(RN ; [0, R]n)→ (L1 ∩ BV)(RN ; [0, R]n)

such that the following conditions hold.

1. For all ρo ∈ (L1 ∩ BV)(RN ; [0, R]n), the orbit t �→ Stρo is the unique solution
to (4.4) in the sense of Definition 4.4.

2. For all ρo ∈ (L1 ∩ BV)(RN ; [0, R]n) and t > 0

TV (Stρo) ≤ TV (ρo) eκot +N K WN eκot
(
CI + ‖divx v‖L∞(RN ;R)

)
t ,

whereWN = ∫ π/2
0 cosN(θ)dθ , K > 0, and κo > 0.

3. For M > 0, there exist b ∈ C0(R+;R+) such that for all ρo,1, ρo,2 ∈
L1(RN ; [0, R]n) with TV (ρo,i) ≤ M and for all t ∈ R

+

∥∥Stρo,1 − Stρo,2
∥∥

L1(RN ;Rn) ≤
(

1 + t et b(t)
) ∥∥ρo,1 − ρo,2

∥∥
L1(RN ;Rn).

The Cauchy problem (4.4) is also stable with respect to variations of the functions
vi and vi.

Theorem 4.6 ([26, Theorem 3.2]) There exists a function L ∈ C0(R+;R+) such
that

∥∥ρ̂(t)− ρ̌(t)∥∥L1(RN ;Rn) ≤
(
1 + t L(t)) ∥∥ρ̂o − ρ̌o

∥∥
L1(RN ;Rn)

+t L(t) ∥∥v̂ − v̌∥∥W1,∞(RN ;Rn)
+t L(t) ∥∥v̂ − v̌

∥∥
L∞(RN ;RNn)

+t L(t) ∥∥divx
(
v̂ − v̌

)∥∥
L1(RN ;Rn)

for every initial data ρ̂o, ρ̌o ∈ L1(RN ;Rn), for every velocity functions v̂, v̌ ∈
(C2 ∩ W2,∞)(RN ;Rn), for every directions v̂, v̌ ∈ (C2 ∩ W2,1)

(
R
N ;RNn), where

ρ̂ (resp. ρ̌) denotes the solutions for ρ̂o, v̂, and v̂ (resp. for ρ̌o, v̌, and v̌).
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5 NonLocal Conservation Laws in Bounded Domains

In this part we consider a system of conservation laws, i.e. n > 1, in an open,
connected, and bounded domain � of R

N with boundary of class C2. More
precisely, we study the initial boundary value problem for system (4.1), i.e. the
problem

⎧
⎪⎨

⎪⎩

∂tρ
i + divx

(
ρi V i

(
t, x,Ii (ρ)

)) = 0 t > 0, x ∈ �, i ∈ {1, · · · , n}
ρ(0, x) = ρo(x) x ∈ �
ρ(t, x) = 0 t > 0, x ∈ ∂� ,

(5.1)

where ρ denotes the vector (ρ1, · · · , ρn). For numerical examples; see [30].
The presence of a boundary has two different effects. First, boundary conditions

need to be carefully considered. Indeed, as is well known, the data imposed by
boundary conditions need not be strictly assumed, see [57] and the references
therein. Second, nonlocal terms have to be evaluated exclusively inside the domain
of reference. Indeed, the presence, or absence, of people behind a wall cannot
influence the pedestrians’ speed choices, see the discussion in [30].

Definition 5.1 ([30, Definition 4.1]) Fix a positive T and an initial datum ρo ∈
L1(�;Rn). A function ρ ∈ C0

(
I ;L1(�;Rn)) is a solution to (5.1) if, for every

i ∈ {1, · · · , n}, the i-th component ρi is a regular entropy solution, in the sense of
Definition A.2, to

⎧
⎨

⎩

∂tρ
i + divx

(
ρi w(t, x)

) = 0 t ∈ I̊ , x ∈ �
ρi(0, x) = ρio(x) x ∈ �
ρi(t, x) = 0 t ∈ I̊ , x ∈ ∂�

where w(t, x) = V i(t, x,Ii(ρ(t))(x)).

In the following well posedness result, the key assumptions require relations
(bounds) on the nonlocal operator. Remark that these bounds all depend exclusively
on values of the various functions inside the domain�. In other words, we substitute
the usual convolution

(ρ∗η)(x) =
∫

RN

ρ(x) η(x−ξ) dξ with (ρ ∗
�
η)(x) =

∫
RN
ρ̄(x) η(x − ξ) dξ∫
�
η(x − ξ) dξ

,

where ρ̄ is the null extension of ρ from � to all of RN :

ρ̄(x) =
{
ρ(x) x ∈ �
0 x ∈ R

N \� .

This choice is coherent with the above remark about letting each individual react
exclusively to what is within his/her horizon and inside �.
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Theorem 5.2 ([28, Theorem 2.2]) Assume the following hypotheses hold.

1. For every i ∈ {1, · · · , n}, V i ∈ (C0 ∩ L∞)
(
I̊ ×�× R

m;RN ).
2. There exists M > 0 such that for every i ∈ {1, · · · , n} and t ∈ I̊ , V i(t) ∈

C2(�× R
m;RN) and

∥∥V i(t)
∥∥

C2(�×Rm;RN) ≤ M .

3. For every i ∈ {1, · · · , n}, Ii : L1(�;Rn)→ C2(�;Rm) is such that there exists
a positive K and a nondecreasing map K ∈ L∞

loc(R
+;R+) such that:

a. for all r ∈ L1(�;Rn),
∥∥∥Ii (r)

∥∥∥
L∞(�;Rm) ≤K ‖r‖L1(�;Rn) ,

∥∥∥∇xIi (r)
∥∥∥

L∞(�;Rm×N) ≤K ‖r‖L1(�;Rn) ,
∥∥∥∇2

xIi (r)
∥∥∥

L∞(�;Rm×N×N) ≤K
(‖r‖L1(�;Rn)

) ‖r‖L1(�;Rn) ;

b. for all r1, r2 ∈ L1(�;Rn)
∥∥∥Ii (r1)− Ii (r2)

∥∥∥
L∞(�;Rm) ≤K ‖r1 − r2‖L1(�;Rn) ,

∥∥∥∇x
(
Ii (r1)− Ii (r2)

)∥∥∥
L∞(�;Rm×N) ≤K

(‖r1‖L1(�;Rn)
) ‖r1 − r2‖L1(�;Rn) .

Then:

1. For every ρo ∈ (L∞ ∩ BV)(�;Rn), there exists a unique ρ ∈ L∞(I̊ × �;Rn)
solving (5.1) in the sense of Definition 5.1.

2. For every ρo ∈ (L∞ ∩ BV)(�;Rn) and for every t ∈ I̊ ,

‖ρ(t)‖L1(�;Rn) ≤ ‖ρo‖L1(�;Rn) ,

‖ρ(t)‖L∞(�;Rn) ≤ ‖ρo‖L∞(�;Rn) exp
(
t M(1 +K ‖ρo‖L1(�;Rn))

)
,

TV
(
ρ(t)

) ≤ exp
(
t M(1 +K ‖ρo‖L1(�;Rn))

)

×
[
O(1) n ‖ρo‖L∞(�;Rn) + TV (ρo)+ n t ‖ρo‖L1(�;Rn) M

×
(
1+‖ρo‖L1(�;Rn)

(
K+K2‖ρo‖L1(�;Rn)+K

(‖ρo‖L1(�;Rn)
)))]

.

3. For every ρo ∈ (L∞ ∩ BV)(�;Rn) and for any t, s ∈ I̊ ,

‖ρ(t)− ρ(s)‖L1(�;Rn) ≤ TV (ρ(max{t, s})) |t − s|.
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4. For every initial data ρo, ρ̃o ∈ (L∞ ∩ BV)(�;Rn) and for any t ∈ I̊ , calling ρ
and ρ̃ the corresponding solutions to (5.1),

‖ρ(t)− ρ̃(t)‖L1(�;Rn) ≤ eL(t) ‖ρo − ρ̃o‖L1(�;Rn),

where L(t) > 0 depends on �, V i , Ii , ‖ρo‖L1(�;Rn), ‖ρ̃o‖L1(�;Rn),
‖ρo‖L∞(�;Rn), ‖ρ̃o‖L∞(�;Rn), TV (ρo), and on TV (ρ̃o).

5. Fix ρo ∈ (L∞ ∩ BV)(�;Rn). Let Ṽ i satisfies the same assumptions of V i . Call
ρ and ρ̃ the solutions to problem (5.1) corresponding, respectively, to the choices
V and Ṽ . Then, for every t ∈ I̊ ,

‖ρ(t)− ρ̃(t)‖L1(�;Rn) ≤ C(t)
∫ t

0

∥∥∥V (s)− Ṽ (s)
∥∥∥

C1(�×Rm;RnN ) ds,

where C depends on �, V i , Ṽ i , Ii , and on the initial datum.
6. For i ∈ {1, · · · , n}, if ρio ≥ 0 a.e. in �, then ρi(t) ≥ 0 a.e. in � for all t ∈ I̊ .

We conclude this section noting that the extension of Theorem 5.2 to the case of
several interacting populations in a bounded domain is, at present, apparently still
to be considered.

6 Mixed Micro–Macro Models in R
N

Here we consider the case of a system similar to (4.1) coupled with ordinary
differential equations. In typical situations, the system of conservation laws is used
to describe the evolution of several populations through their macroscopic densities,
while the ordinary differential equations model the microscopic dynamics of few
agents.

For i ∈ {1, · · · , n}, we consider the system

{
∂tρ

i + divx

[
qi(ρi) V i

(
t, x,Ii (ρ), p

)] = 0

ṗ = F (
t, p,J

(
ρ(t)

)
(p)

)
,

(6.1)

where q(ρ) = ρ v(ρ), t > 0, x ∈ � = R
N , ρ = (ρ1, · · · , ρn) is the vector of

the macroscopic densities, p ∈ R
m describes the positions and possibly the velocity

of d ∈ N agents, so that m = Nd or m = 2Nd. Moreover Ii and J are nonlocal
operators, reflecting the fact that the behavior of the members of the population
as well as of the agents depends on suitable spatial averages. System (6.1) is
supplemented with the initial conditions

ρ(0, x) = ρo(x) and p(0) = po, (6.2)

with ρo ∈ L1(RN ;Rn) and po ∈ R
m.
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Definition 6.1 ([13, Definition 2.6]) Fix ρo ∈ (L1 ∩ BV)(RN ;Rn) and po ∈ R
m.

A couple (ρ, p) with

ρ ∈ C0(
R
+;L1(RN ;Rn)) and p ∈ W1,1(R+;Rm)

is a solution to (6.1)–(6.2) if the following conditions are satisfied:

1. For every i ∈ {1, · · · , n}, the map ρi is a Kružkov solution, in the sense of
Definition 2.2, to the scalar conservation law

∂tρ
i + divx

[
qi(ρi) V (t, x)

] = 0 ,

where V (t, x) = V i(t, x,Ii (ρ(t)) (x), p(t)).
2. The map p is a Carathéodory solution to the ordinary differential equation

ṗ = F(t, p) where F(t, p) = F (t, p,J(ρ(t))(p)) .

3. ρ(0, x) = ρo(x) for a.e. x ∈ R
N .

4. p(0) = po.
The following well posedness and stability result holds; for a proof see [13,
Theorem 2.2 and Section 4.1].

Theorem 6.2 ([13, Theorem 2.2]) Assume the following hypotheses.

1. For every i ∈ {1, · · · , n}, qi ∈ C2(R+;R+) satisfies qi(0) = 0 and qi(R) = 0,
for some R > 0.

2. For every i ∈ {1, · · · , n}, V i ∈ (C2 ∩ L∞)(R+ × R
N × R

N × R
m;RN).

3. The map F ∈ C0(R+ × R
m × R

�;Rm) is such that

a. For all compact subsetK of Rm, there exists a constant LF > 0 such that, for
every t ∈ R

+, p1, p2 ∈ K and b1, b2 ∈ R
�,

‖F(t, p1, b1)− F(t, p2, b2)‖Rm ≤ LF
(‖p1 − p2‖Rm + ‖b1 − b2‖R�

)
.

b. There exists a map CF ∈ L1
loc(R

+;R+) such that for all t > 0, b ∈ R
�, and

p ∈ R
m

‖F(t, p, b)‖Rm ≤ CF (t)
(
1 + ‖p‖Rm + ‖b‖R�

)
.

4. For every i ∈ {1, · · · , n}, the maps Ii : L1(RN ;Rn)→ (C2 ∩ W2,1)(RN ;RN)
are Lipschitz continuous and satisfy Ii (0) = 0. In particular there exists a
positive constant LI > 0 such that, for every ρ1, ρ2 ∈ L1(RN ; [0, R]n),

∥∥∥Ii (ρ1)− Ii (ρ2)

∥∥∥
W2,1(RN ;RN)

+
∥∥∥Ii (ρ1)− Ii (ρ2)

∥∥∥
C2(RN ;RN)
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≤ LI ‖ρ1 − ρ2‖L1(RN ;Rn).

5. The map J : L1(RN ;Rn) → W1,∞(Rm;R�) is Lipschitz continuous and
satisfies J(0) = 0. In particular, there exists a positive constant LJ > 0 such

that, for every ρ1, ρ2 ∈ L1(RN ; [0, R]n),

‖J(ρ1)−J(ρ2)‖W1,∞(Rm;R�) ≤ LJ ‖ρ1 − ρ2‖L1(RN ;Rn).

Then, given the sets

R =
{
ρ ∈ (L1 ∩ BV)(RN ; [0, R]n) : spt ρ is compact

}
,

T = {(t1, t2) : t2 ≥ t1 ≥ 0} ,

there exists a process P : T× R× R
m → R× R

m such that:

1. for every t ∈ R
+, Pt,t is the identity map;

2. for all t1, t2, t3 ∈ R
+ with t3 ≥ t2 ≥ t1, Pt2,t3 ◦ Pt1,t2 = Pt1,t3 ;

3. for all (ρo, po) ∈ R×R
m and to ∈ R

+, the map t �→ Pto,t (ρo, po) is continuous,
defined for t ≥ to, and the unique solution to (6.1) in the sense of Definition 6.1
with initial datum (ρo, po) assigned at time to;

4. for every (ρ1
o , p

1
o), (ρ

2
o , p

2
o) ∈ R× R

m, there exists a function L ∈ C0(R+;R+)
such that L(0) = 0 and, setting (ρi, pi)(t) = P0,t (ρ

i
o, p

i
o),

‖ρ1(t)−ρ2(t)‖L1(RN ;Rn) ≤
(
1+L(t))

∥∥∥ρ1
o−ρ2

o

∥∥∥
L1(RN ;Rn)+L(t)

∥∥∥p1
o−p2

o

∥∥∥
Rm
,

‖p1(t)−p2(t)‖Rm ≤L(t)
∥∥∥ρ1
o−ρ2

o

∥∥∥
L1(RN ;Rn)+

(
1+L(t))

∥∥∥p1
o−p2

o

∥∥∥
Rm
;

5. for all (ρo, po) ∈ R × R
m, if q1, q2, V1, V2, and F1, F2 satisfy the same

assumptions as q, V , and F , then there exists a function K ∈ C0(R+;R+) such
that K(0) = 0 and, calling (ρi, pi) the corresponding solutions, for t > 0,

‖ρ1(t)− ρ2(t)‖L1(RN ;Rn) + ‖p1(t)− p2(t)‖Rm
≤ K(t)

(
‖q1 − q2‖W1,∞(R+;R+) + ‖V1 − V2‖W1,∞(R+×RN×RN×Rm;RN)

)

+K(t) ‖F1 − F2‖L∞(R+×Rm×R�;Rm) .

For further models based on the coupling of conservation laws with ordinary
differential equations, see [11, 12].
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7 Conclusions

Above, we collected various results that, together, allow a rigorous study of several
macroscopic crowd dynamics models based on conservation laws. On these bases,
several research directions naturally open.

From a strictly analytic point of view, a natural question is the relation between
the models above and the so-called microscopic ones. It is apparently still unknown
if a nonlocal conservation law model can be rigorously proved to be the limit as
n → +∞ of a microscopic model for n individuals, typically based on ordinary
differential equations. A few results in this direction, currently limited to a single
space dimension, are, for instance, in [46, 48].

From a control theoretic point of view, the modeling frameworks introduced
above allow to state many optimization problems. In particular, we stress the
relevance of shape optimization problems: is there an optimal shape for an exit,
so that emergency evacuations are as quick as possible? Preliminary results in this
direction are, for instance, in [34]. Note that, in this connection, both necessary and
sufficient conditions for optimality are nowadays apparently unknown.

From a numerical point of view, the introduction of efficient algorithms would
definitely foster the development and the spread of these models. Indeed, nonlocal
terms impose the computation of (possibly several) convolution integrals at each
time step. A detailed numerical study aimed at optimizing the choices of the meshes
used in the PDE integration and in the convolution integrals might have dramatic
effects on the integration times. Preliminary numerical studies in this direction are,
for instance, in [1, 3, 19].

Appendices

Regular Entropy Solutions for IBVP Problems

In this appendix we briefly recall the concept of regular entropy solutions for an
initial boundary value problem. To this aim, fix T > 0, an open and bounded subset
� of RN , and let us consider the system

⎧
⎨

⎩

∂tρ + divx (ρu(t, x)) = 0 t ∈ I̊ , x ∈ �
ρ(t, x) = 0 t ∈ I̊ , x ∈ ∂�
ρ(0, x) = ρo(x) x ∈ ∂� ,

(7.1)

where u ∈ (C∞ ∩ L∞)(I̊ × �;RN) satisfies, for every t ∈ I̊ , u(t) ∈ C2(�;RN)
and ‖u(t)‖C2(�;RN) ≤ M for a suitable positive constant M . The definition of a
boundary entropy–entropy flux pair is as follows.
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Definition A.1 ([28, Definition 4.1], [60, Definition 2]) The pair of functions
(H,Q) ∈ C2

(
R

2;R) × C2
(
I̊ × � × R

2;RN ) is said a boundary entropy–entropy
flux pair for (7.1) if:

1. the function z �→ H(z,w) is convex for every w ∈ R;
2. the equality ∂zQ (t, x, z,w) = (∂zH (z,w)) u (t, x) holds for every t ∈ I̊ , x ∈
�, and z,w ∈ R;

3. the equalities H (w,w) = 0, Q(t, x,w,w) = 0, and ∂zH (w,w) = 0 hold for
every t ∈ I̊ , x ∈ �, and w ∈ R.

It is now possible to state the definition of regular entropy solution.

Definition A.2 ([57, Definition 3.3]) A regular entropy solution to (7.1) is a
function ρ ∈ L∞(I̊ × �;R) such that, for every boundary entropy–entropy flux
pair (H,Q), in the sense of Definition A.1, for every k ∈ R and for every
ϕ ∈ C1

c(R× R
N ;R+), it holds

∫ T

0

∫

�

[H (ρ(t, x), k) ∂tϕ(t, x)+Q(t, x, ρ(t, x), k) · ∇xϕ(t, x)] dxdt

−
∫ T

0

∫

�

∂zH (ρ(t, x), k) ρ(t, x) divx (u(t, x)) ϕ(t, x)dxdt

+
∫ T

0

∫

�

divxQ(t, x, ρ(t, x), k) ϕ(t, x)dxdt

+
∫

�

H (ρo(x), k) ϕ(0, x)dx

+ ‖u‖L∞(I̊×�;RN)
∫ T

0

∫

∂�

H (0, k) ϕ(t, x)dHN−1(x)dt ≥ 0,

whereHN−1 denotes the Hausdorff measure of dimension N − 1.

List of Symbols

C0,1(A;B) withA and B subsets of normed vector spaces, is the set of functions
defined on A, with values in B, that are Lipschitz continuous on A.

Ck(A;B) withA and B subsets of normed vector spaces, is the set of functions
defined on A, with values in B, whose k-derivatives are continuous
on A.

Ckc(A;B) with A and B subsets of normed vector spaces, is the set of
compactly supported functions defined onA, with values inB whose
k-derivatives are continuous on A.

I is the closure of the set I .
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I̊ is the interior of the set I .
Lp(A;B) with p ≥ 1,A ⊆ R

n and B ⊆ R
m, is the set of measurable functions

f defined on A, with values in B, such that |f |p is Lebesgue
integrable on A.

L∞(A;B) with A ⊆ R
n and B ⊆ R

m, is the set of measurable functions f
defined on A, with values in B, essentially bounded.

R
+ is the set [0,+∞[ of 0 and all positive real numbers.

R̊
+ is the set ]0,+∞[ of all strictly positive real numbers.

S
N−1 is the unit sphere in R

N .
spt ρ is the support of the function ρ.
W1,p(A;B) with 1 ≤ p ≤ ∞, A ⊆ R

n and B ⊆ R
m, is the Sobolev space of

functions defined in A with values in B whose first weak derivative
is in Lp.
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The Fokker–Planck Framework in the
Modeling of Pedestrians’ Motion

Alfio Borzì

Abstract Stochastic drift-diffusion processes and the related Fokker–Planck equa-
tions appear to be adequate for modeling the motion of pedestrians in different
circumstances, and for the design of control strategies for different purposes. In
this paper, some mathematical contribution in this field are reviewed that include
different modeling issues concerning the control of a single pedestrian subject
to perturbation and the development of a framework for pedestrian’s avoidance
dynamics based on the formulation of a Fokker–Planck Nash game. This review
also includes a discussion on the mean-field approach to crowd motion and provides
pointers to related models.

1 Introduction

The study of motion of animal/human crowds is a long-standing topic of research,
probably starting with the empirical studies in [52]. However, crowd (collective)
motion is ubiquitous in living systems: it has been observed in migration of cells
[83], colonies of bacteria, herds of animals [84], swarms of birds and fishes [92];
see, e.g., [39] for a review on collective motion in biological systems.

On the other hand, there is a rich literature dedicated to the mathematical
modeling of crowd motion, starting from the studies in [55, 67] and the paper [53]
where pedestrians are modeled as interacting particles with mechanical attractive-
repulsive forces. Further developments have resulted in many different modeling
approaches including discrete and cellular automata, continuum fluid dynamics
equations, conservation laws, and mesoscopic models; see, e.g., [3, 32, 34, 36, 49,
62, 72, 75, 86]. In this framework, pedestrian motion as a social process in crowds
has been investigated in, e.g., [16, 89] for problems in one space dimension, and in
[12] for multidimensional problems, including propagation in space of emotional
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patterns. Further, we remark that the investigation of pedestrian crowd motion has
been strongly motivated by applications as, e.g., emergency evacuation procedures
[11, 61, 74], efficient planning and designing of urban structures [26, 45], including
the study of pattern formation, e.g., groups and lanes, and non-rational dynamics as
in panic situation.

Notice that we have mentioned only few representative works concerning the vast
research field of crowd and swarm systems; for a recent and comprehensive review
of this field of applied mathematics we refer to [3].

We remark that the successful application of differential models has motivated
further studies that suggest to include stochastic terms in the crowd dynamics [46,
92], and this new insight has motivated the development of new differential models
[37, 70, 83, 92], where the underlying idea is that individual random dispersal results
from, e.g., collision that can be described by Brownian motion.

With these assumptions, the simplest model of pedestrian motion is given by the
following stochastic differential equation (SDE):

dX(t) = u(X(t), t) dt + σ(X(t), t) dW(t),
X(0) = X0,

(1)

where the position variable X(t) is subject to deterministic infinitesimal increments
driven by the vector-valued drift function u = (u1, . . . , ud), and to random infinites-
imal increments proportional to a multidimensional Wiener process dW(t) ∈ R

d ,
with stochastically independent components. However, we shall adopt a specific
picture where X denotes the position of a pedestrian in a room � ⊂ R

2, and
u = (u1, u2) denotes the velocity field of motion of the pedestrian. For simplicity,
we assume that the dispersion matrix σ(X(t), t) is a diagonal matrix with both
entries equal to the constant σ > 0 (we use the same symbol).

The model (1) has many advantages compared to the deterministic model
Ẋ(t) = u(X(t), t). First of all, it models all possible realization of motion of a
pedestrian with a given velocity field and subject to perturbations. Further, it allows
to have the initial state X0 prescribed by a probability density function (PDF) that
accommodates uncertainties in our knowledge of initial conditions. Moreover, in
our SDE model we can assume that the position of the pedestrian is considered in
a bounded domain X(t) ∈ �, and we can prescribe specific barriers that delimit
the motion in this domain. Specifically, we can have absorbing barriers where
the pedestrian ‘disappears’ or reflecting barriers, like rigid walls, that cannot be
traversed by the pedestrian; see [82] for a formulation of barriers for stochastic
processes. Notice that the model (1) remains equally valid in the case of many non-
interacting pedestrians driven by the same drift function.

We see that a stochastic framework could very well address the fundamental
aim to model pedestrian motion by differential equations that allow simulation and
analysis in many application systems. Thus, the next step in our modeling effort
becomes the design of control mechanisms in our kinetics model for purposes like
evacuation procedures [62]. For this task, stochastic optimal control schemes are a
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possible choice. However, in stochastic models the state evolution X(t) is random
and represents an outcome of a probability space, therefore a direct insertion of
X(t) into a functional objective J results into a random variable. For this reason, in
stochastic optimal control theory, the following expected value of a cost functional
is considered [44]:

J (X, u) = E[
∫ T

0
L(t,X(t), u(X(t), t)) dt +�[X(T )]], (2)

where L and � are continuous functions which satisfy a polynomial growth
condition, and T defines the time horizon where the motion is considered. The
function L usually represents a pay-off along a trajectory that includes the cost of
the control, whereas � is related to the terminal state. In the context of pedestrian
motion, these functions can be used to model the purpose of the motion, that is, to
follow a desired path and to reach a final destination, and to model the cost of this
motion.

It appears that a stochastic control problem leads to assume a statistical point of
view, with the perspective of capturing the collective behaviour of motion in crowds,
and for this purpose we notice that the state of the stochastic motion modeled by (1)
can be completely characterized by its probability density function, whose evolution
is governed by the following Fokker–Planck (FP) equation:

∂tf (x, t)+ ∇ · (u(x, t) f (x, t))− σ
2

2
	f (x, t) = 0,

f (x, 0) = f0(x),

(3)

where f = f (x, t) is the probability density of the pedestrian to be in x at time
t , where (x, t) ∈ Q := � × (0, T ), the space-time cylinder where our problem is
formulated. With ‘∇·’ we denote the divergence operator.

The initial PDF distribution for X0 is denoted with f0, and it satisfies the
following properties:

f0 ≥ 0,
∫

�

f0(x) dx = 1. (4)

We remark that the PDF associated with (1) can be equally well be interpreted as a
normalized material density of all pedestrians involved.

Now, to complete the formulation of our FP problem, we notice that (3) can be
written in flux form as follows:

∂tf (x, t) = ∇ · F(f )(x, t), f (x, 0) = f0(x), (5)
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where the flux F is given component-wise by

Fj (f )(x, t) = σ 2

2
∂xj f − uj (x, t) f, j = 1, 2.

With this setting, we can formulate two types of barriers for the stochastic motion
and consequently two types of boundary conditions for the FP equation. If absorbing
barriers are prescribed, then we have homogeneous Dirichlet boundary conditions
for the PDF, i.e., f = 0 on ∂�. On the other hand, reflecting barriers correspond to
the following flux-zero boundary conditions:

F · n = 0, on ∂�× (0, T ), (6)

where n is the unit outward normal to ∂�.
Notice that, with both choices of boundary conditions and the initial condi-

tion satisfying (4), the resulting FP problem has a unique non-negative solution
f ∈ L2(0, T ;H 1(�)) ∩ C([0, T ];L2(�)). Furthermore, in the case of flux-
zero boundary conditions, we have conservation of the total probability, that is,∫
�
f (x, t) dx = 1 for all t ≥ 0.
We see that the coefficients of the FP equation are directly determined by the

coefficients of the SDE modeling the motion of the pedestrian. In particular, we can
identify the velocity field u as our control function. Moreover, the solution of the
FP problem gives us the PDF that allows to write the functional (2) in the following
form:

J (f, u) :=
∫ T

0

∫

�

L(s, x, u(x, s)) f (x, s) ds dx +
∫

�

�(x) f (x, T ) dx. (7)

Therefore one can formulate a FP control framework where the problem is to find
u that drives the solution to (3) in such a way to minimize (7) in the given time
horizon.

It is the purpose of this paper to illustrate some interesting aspects of this
approach to pedestrian motion and review a few contributions in this field. However,
let us remark that, for the purpose of control design, the approach outlined above of
lifting the stochastic dynamics modeled by a SDE to the corresponding continuity
equation given by the FP model was initially proposed in [4, 5] and independently
in [21, 22]. In fact, this is a general strategy that applies to many different classes
of dynamical systems having a corresponding continuity equation; see [7, 9] for
additional discussion and details.

2 The Motion of One Pedestrian

In this section, we focus on the modeling of motion of one pedestrian in the
framework given above and discuss the formulation of a FP optimal control problem
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that aims at determining an optimal velocity field u of the pedestrian for the purpose
of performing some given tasks.

Clearly, in this modeling step we have to decide the functional space to which the
vector function u belongs, and consequently formulate our FP optimization problem
in such a way that a solution u in this space exists. In taking this decision, we notice
that there is a striking difference between choosing a velocity field u that depends
only on the time variable, u = u(t), or only on the space variable u = u(x), or
on both variables. Roughly speaking, in the former case, we have an open-loop
control, and in the latter cases we have a closed-loop control function, in the sense
that a sudden change of the position of the pedestrianX(t) provides instantaneously
(feedback) the optimal control for the new state configuration. For a discussion on
the significance of these two settings, we refer to [21, 22] and the discussion that
follows.

In our framework, the case u = u(t) has been discussed in detail in, e.g., [4, 5]
and [9] in a general setting and is discussed later in this paper in correspondence to
the avoidance problem. For this reason, we now focus on the case u = u(x, t) as
discussed in [78, 80].

In this case, we may suppose that the control field u is sought in the following
admissible set:

Uad = {u ∈ U | ua ≤ ui(x, t) ≤ ub, i = 1, 2, a.e. in �, ua, ub ∈ R, ua < ub}.
(8)

Thus, Uad is a convex, closed, and bounded set of our control space U .
In [78, 80], the space U is chosen to be the space L2(0, T ;H 1(�)×H 1(�)); see

these references for all details. However, for the purpose of this review to illustrate
the main ideas and possible advantages of the FP control framework in modeling
pedestrian motion, we make the simpler choice U = Lq(Q) × Lq(Q), q > 2;
however, notice that u ∈ Uad ⊂ L∞(Q); see, e.g., [43] for a similar setting.

In this case, appropriate penalisation terms in the cost functional guaranteeing
that u ∈ U are given by

A(u(x, t)) = |u(x, t)|2, (9)

A(u(x, t)) = |u(x, t)|2 f (x, t), (10)

where | · | represents the standard Euclidean norm in R
2, ∇u is the Jacobian matrix

whose entries are defined by (∇u)ij = ∂ui

∂xj
, and |∇u| represents the Frobenius

norm of ∇u. Notice that A can be considered the part of the pay-off function L that
embodies the control.

On the other hand, we would like to formulate the purpose of motion of the
pedestrian, that is, the purpose of the control u. A standard choice is to determine
an optimal velocity field with which the pedestrian follows a desired path, and
comes as close as possible to a final position at time T . This means that our
objective functional should have a tracking-trajectory term and a terminal position
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term that are consistent with the structure given in (7). This requirement is satisfied
by introducing the concept of a ‘valley’ potential V , such that the minimization of
the objective functional corresponds to concentrating the PDF along the bottom of
the valley. This configuration corresponds to having the ensemble of all stochastic
trajectories being close to the one defining the bottom of the valley. Specifically, let
xt = (x1(t), x2(t)) represents a desired trajectory in �, t ∈ [0, T ]. Then a possible
choice for V is a quadratic function, and in our objective functional we have

∫ T

0

∫

�

V (x − xt ) f (x, t) dxdt.

A similar structure can be implemented for a desired final configuration xT .
Summarizing, we arrive at the following objective functional:

J (f, u) = α
∫ T

0

∫

�

V (x − xt ) f (x, t) dxdt + β
∫

�

V (x − xT ) f (x, T ) dx

+ ν
2

∫ T

0

∫

�

A(u(x, t)) dxdt, (11)

where α, β ≥ 0 are optimization weights for tuning the relative importance of the
tracking and terminal tasks, whereas ν > 0 is the weight of the cost of the control.

Notice that (11) has the structure (7) when choosing the cost of the control given
by (10). On the other hand, choosing (9) results in a cost functional that has not the
structure of an average functional. The former strategy is discussed in [80], while
the latter is considered in [21, 22, 78].

In both cases, the problem formulation is to find u ∈ Uad that minimizes
the objective functional J , given by (11), subject to the FP differential con-
straint (3), (4), (6), as follows:

min
u∈Uad

J (f, u) subject to (s.t.) (3)–(4)–(6). (12)

This is a deterministic optimal control problem governed by a parabolic partial-
differential equation (PDE) for which we can apply many theoretical and numerical
techniques; see, e.g., [17, 66, 87].

However, the FP optimal control problem (12) has some distinct features that
deserve further discussion. For this purpose, we recall that, subject to appropriate
differentiability properties [66, 87], the solution to (12) must satisfy the first-order
necessary optimality conditions that result in an optimality system that includes the
FP equation with the given initial- and boundary conditions, an adjoint FP equation
with terminal- and boundary conditions, and an optimality condition inequality.

For the case (9), the adjoint FP equation and the optimality condition are given by
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−∂tp(x, t)− σ
2

2
	p(x, t)− u(x, t) · ∇p(x, t)+ αV (x − xt ) = 0

p(x, T ) = −βV (x − xT ) in �,
∂p

∂n
= 0 on ∂�× (0, T ),

(13)

and

(νui − ∂xip f, v − uk) ≥ 0 ∀v ∈ Uad, i = 1, 2. (14)

For the case (10), we have

∂tp(x, t)−σ
2

2
	p(x, t)−u(x, t) · ∇p(x, t)+αV (x− xt )+ν

2
|u(x, t)|2= 0

p(x, T ) = −βV (x − xT ) in �,
∂p

∂n
= 0 on ∂�× (0, T ),

(15)
and

(
(
νui − ∂xip

)
f, v − uk) ≥ 0 ∀v ∈ Uad, i = 1, 2, (16)

where (· , ·) denotes the L2(Q) scalar product.
Now, for clarity, let us assume Uad = U (thus no pointwise constraints on the

value of u). In this case, the optimality condition (14) becomes νui − ∂xip f =
0, whereas (16) becomes

(
νui − ∂xip

)
f = 0. This fact shows that the velocity

field obtained with the setting (9) depends on both p and f , and because of the
latter it depends on the distribution of the initial condition. Therefore it cannot be
a feedback control although it may represent a good approximation of it. On the
other hand, in the case of the setting (10), we notice that, since our FP equation is
uniformly parabolic, the resulting PDF is almost everywhere non-negative for any
t > 0 independently of the shape of f0. Hence, the optimality condition becomes
νui − ∂xip = 0, that is, u(x, t) = ∇p(x, t)/ν, which means that u is uniquely
determined by the adjoint equation that becomes

∂tp(x, t)+ σ
2

2
	p(x, t)+ 1

2ν
|∇p(x, t)|2 − αV (x − xt ) = 0

p(x, T ) = −βV (x − xT ) in �,
∂p

∂n
= 0 on ∂�× (0, T ).

(17)

This is the Hamilton–Jacobi–Bellman equation for the stochastic pedestrian motion
and the given expectation functional, whose solution gives the feedback law that
optimally drives the pedestrian along xt , and towards the final destination xT .
For further discussion on the connection between the HJB and the FP control
frameworks see, e.g., [7, 8]. However, there is another way to construct feedback
solutions also using the (9) setting that is based on the so-called model predictive
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control (MPC) scheme [51]. For a discussion on the implementation of this scheme
with FP models see, e.g., [5, 42]

We see that the FP framework provides a full scale of modeling features. For
example, we can add another term in our functional with a concave potential that
could be used to model a ‘soft’ obstacle. This situation has been considered in [78],
see Fig. 1.

Further, one could reformulate the problem of designing the ‘optimal’ room
(based on some criteria) as FP-based shape/topology optimization problems, and
in general problems of structural design; see, e.g., [23].

We would like to remark that the FP framework is not limited to the case of
motion modeled by the drift-diffusion model (1). In fact, it appears very natural to
consider this model augmented with a jump process, which leads to a FP equation
of integro-partial differential type that can be used to design a FP control strategy
of the drift-diffusion-jump motion of the pedestrian; see, e.g., [47, 48]. Similarly,
one could consider this motion modeled by a piecewise-deterministic process and
consider the related (hyperbolic) FP system [6].

3 The Motion of Two Pedestrians

In this section, we illustrate a FP approach to model interaction between two
pedestrians and, for this purpose, we need to clarify the meaning of ‘interaction’.
We have that the assumption of a physical interaction by attractive or repulsive
forces stems very much from our viewing the pedestrians as particles subject to
forces. This mechanistic approach can be found in many works on multiple agents
[3, 32, 34, 49, 75], and it requires to prescribe how the dynamics should be. From
the FP point of view, this approach leads to consider a system of coupled SDEs,
and results in a FP equation whose space dimensionality equals dN , where d is the
space where the pedestrians move (d = 1, 2, 3) and N is the number of pedestrians.
It is clear that, in this setting, solving the FP problem becomes prohibitive also
for a relatively small number of pedestrians. On the other hand, a setting where
independent pedestrians aim at solving a unique optimization problem or multiple
ones determines another form of interaction that allows to considerN uncoupled FP
problems in d dimensions. In particular, one can consider the case of N pedestrians
with a common cost functional to be minimized, which may model cooperative
motion. However, we can also consider the case where each pedestrian aims at
optimizing its own functional, possibly in competition with the others, thus defining
a competition game. In the latter situation, we do not have a solution concept
of optimality, but one of equilibria with respect to the competitive tasks, and
this appears to be the case of two pedestrians (at least) that have planned to go
along paths that cross each other and would lead to collision. Therefore we have
the problem of designing an avoidance strategy that allows the non-cooperative
pedestrians to deviate from their original route as less as possible and at a minimal
cost.
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Fig. 1 Motion of a pedestrian along the desired trajectory x̄(t) = (1.5t, 0) with a soft obstacle (a
cylinder). Top: the evolution of the PDF; bottom: different stochastic realization of the pedestrian’s
trajectories
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The problem of avoidance is one of the important and challenging features in
pedestrians’ motion [41]. It involves non-cooperative behaviour and possibly non-
local interactions, and the understanding of the avoidance mechanism has attracted
much attention in behavioural sciences; see, e.g., [59, 73, 88]. Thus the problem of
avoidance represents a benchmark for the mathematical modeling of the motion of
two pedestrians in some situation where they come close.

As already mentioned, we can approach the avoidance problem from a mech-
anistic point of view. In fact, in this framework the setting of left-hand traffic
and right-hand traffic can be considered two solutions of the avoidance problem
in bidirectional traffic. On the other hand, the approach presented in [57, 58, 79]
represents an alternative point of view that formulates the avoidance problem as
a Nash game such that the avoidance dynamics arises as a Nash equilibrium of
the game and is not assigned a priori. Specifically, in [79] the concept of Nash
equilibrium is central for modeling the decision-making control, and is based on
the formulation of an open-loop Nash game governed by FP equations, where the
controls are included in the drifts of the stochastic equation of motion of the two
pedestrians, and objective functionals are assigned that include a cost of the control
and a collision-penalizing term as illustrated below.

Consider two pedestrians, p = 1, 2, whose position is denoted with X(p) ∈ � ⊂
R

2. We assume that � represents a convex room limited by walls; thus the motion
of the pedestrians is subject to reflecting barriers. The evolution of X(p) is governed
by

{
dX(p)(t) = b(p)(X(p)(t), t, u(p)(t)) dt + σ dW(p)(t)

X(p)(0) = X(p)0 , p = 1, 2,
(18)

where the drifts b(p)(X(p)(t), t, u(p)(t)) have the following structure:

b(p)(X(p)(t), t, u(p)(t)) = v(p)(X(p)(t), t)+ u(p)(t). (19)

The velocity fields v(p), p = 1, 2, represent the deterministic dynamics of the
single pedestrian in the absence of interaction with others (the planned motion).
On the other hand, the time-dependent control functions u(p) represent the strategy
that the pedestrians choose as an additional velocity field to avoid collision. The
Brownian process is included to model dispersal due to external physical forces
(e.g., in a crowd) or other perturbation to the deterministic motion. Notice that the
two SDEs given in (18) are uncoupled. Therefore, corresponding to each stochastic
model, we can associate a FP equation with the corresponding drift and diffusion
coefficient. In the following, we denote with f (p)(x, t), p = 1, 2, the solution PDFs
of the corresponding evolution FP problems in correspondence to the given controls
u(p)(t), p = 1, 2, respectively.

In the FP framework, the pedestrians’ objectives for the avoidance game are
formulated as follows:
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Jp(u
(1), u(2)) = α

∫

�

V (x − x(p)T ) f (p)(x, T )dx + ν
2
‖u(p)‖2

H 1(0,T ;R2)

+ ρ
∫

�

f (1)(x, t) f (2)(x, t) dx, p = 1, 2. (20)

Notice that we omit to write the PDFs as arguments of these (reduced) functionals
since we already assume that the PDFs are well-defined functions of the controls.
In the functional (20), the first term models the desire of the pedestrian to reach
a final position at time T ; this benefit term is also considered in [58]. The second
term represents the H 1-cost of the control. Notice that, by embedding, we obtain
control functions that are continuous. The third term penalizes collision since in this
situation the two PDFs would ‘overlap’ and the integral would take a large value.

Now, let U(p) be the space of admissible controls, u(p) ∈ U(p). Then a Nash
equilibrium (NE) is defined as a pair of control strategies (ū(1), ū(2)) ∈ U(1) ×U(2)
such that the following holds

(ū(1), ū(2)) = arg min
u(1)∈U(1)

J1(u
(1), ū(2)) (21)

= arg min
u(2)∈U(2)

J2(ū
(1), u(2)). (22)

Notice that reduced functional objectives are non-convex and this fact prevents
the application Nash’s theorem [71] to prove existence of a Nash equilibrium.
However, by exploiting the structure of the present problem a proof of existence
of a NE is given in [79] along the following line.

Let us define

Gp(u
(p)) = α

∫

�

V (x − x(p)T )f (p)(x, T )dx + ν
2
‖u(p)‖2

H 1(0,T ;R2)
.

Thus, we can write the pedestrians’ objectives as follows:

Jp(u
(1), u(2)) = Gp(u(p))+W(u(1), u(2)). (23)

Therefore we have a separable game. Next, we define the following composite cost
functional:

Ĵ (u(1), u(2)) = G1(u
(1))+G2(u

(2))+W(u(1), u(2)), (24)

and consider the optimal control problem

min Ĵ (u(1), u(2)), (u(1), u(2)) ∈ U(1) × U(2).

In [79], the following theorem is proved stating that a solution to this optimal
control problem is a Nash equilibrium of our game.
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Theorem 1 Assume that Ĵ has a minimum ū = (ū(1), ū(2)). Then (ū(1), ū(2)) is a
Nash equilibrium of the game (21)–(22).

This theorem states that the existence of a minimum of Ĵ is a sufficient condition
for a Nash equilibrium. However, this condition is not necessary, and there can be
Nash equilibria that are not minima of Ĵ .

Furthermore, the result of Theorem 1 states that we can determine the NE by
applying well-known tools from computational optimization to the following FP
control problem:

minJ (f (1), f (2), u(1), u(2)) := G1(f
(1), u(1))+G2(f

(2), u(2))+W(f (1), f (2))
∂tf

(1)(x, t)− σ 2

2 	f
(1)(x, t)+ ∇ · (b(1)(x, t, u(1)(t)) f (1)(x, t)) = 0

∂tf
(2)(x, t)− σ 2

2 	f
(2)(x, t)+ ∇ · (b(2)(x, t, u(2)(t)) f (2)(x, t)) = 0,

with initial conditions given by the distributions of the initial positions of the
pedestrians, f (1)(x, 0) = f (1)0 (x) and f (2)(x, 0) = f (2)0 (x), and flux-zero boundary
conditions. We refer to [79] for the proof of existences of a solution to this FP
optimal control problem and for its characterization by a FP optimality system.

In [79], the validity of the FP Nash game approach to model avoidance is
successfully benchmarked with results of real experiments in the field of cognitive
psychology studies involving experiments with humans [59, 73, 88]. For illustration,
we report results for the experiment ‘1C-A3’ presented in [88].

We set the initial position density of the pth pedestrian as the following
normalized Gaussian:

f
(p)

0 (x) = Ĉe−{(x1−D(p)1 )2−(x2−D(p)2 )2}/0.5, p = 1, 2, (25)

where D(p) = (D
(p)

1 ,D
(p)

2 ) represents the Cartesian coordinates of the departure
point. The terminal potential for the pth pedestrian is given by

V (x − x(p)T ) = (x − A(p))2, p = 1, 2,

where the arrival point A(p) = (Ap1 , Ap2 ) represents the desired terminal position of
the pth pedestrian.

In the experiment [88], two pedestrian P1 and P2 are asked to walk from given
initial to final points. In the present case, P1 goes from ‘1 to C’, and the other goes
from ‘A to 3’ as shown in Fig. 2 (right). In our computational setting, this motion is
considered in the square domain � = [−1, 8] × [−1, 8] for a time interval [0, T ]
with T = 5. Pedestrian P1 starts its motion from the departure point D(1) = (1, 1),
and pedestrian P2 starts its motion from the pointD(2) = (6, 1). The arrival position
of P1 isA(1) = (6, 4) and for P2 isA(2) = (1, 4). In the numerical setting, the spatial
and temporal domains are divided into 50 uniformly distributed subintervals, and we
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Fig. 2 Settings for the experiment ‘1C-A3’: (left) the computational setting; (right) the experi-
mental setting excerpt from [88]

choose α = 100 and ν = 1. The geometrical setting for the pedestrians’ avoidance
is shown in Fig. 2.

Solving the FP optimal control problem given above, we have the results shown
in Fig. 3. Figure 3a and b depict the zoomed-in plots of the mean of the resulting
PDFs obtained choosing ρ = 0.01 and ρ = 200, respectively. That is, the case of
almost no penalization of collision and the case of large penalization. We notice
that for ρ = 0.01, the two pedestrians collide at time t = 2.5, as denoted by the
black dot. In the case of ρ = 200, the pedestrians P1 and P2 avoid each other as
is shown by their positions at time t = 2.5 with a black dot. In fact, we see that
the pedestrian P1 apparently slows down, while P2 accelerates; see the discussion
in [59]. However, it is clear that this is one possible NE solution, since by symmetry
of the experimental setting, we could exchange P1 with P2 and obtain another NE
point, which can be obtained with the same numerical scheme using a different
initialisation. Notice that this multitude of NE solutions reflects the output of real
experiments and our own experience.

4 The Motion of Many Pedestrians

In the literature, the modeling of the motion of many pedestrians usually refers to
the case of a crowd, a large group of people that are close to each other. (We may
refer to swarms in the case of animals and robots.) In this case, it is the emergence of
a collective behaviour and its control that are subject of mathematical investigation.
With the assumption of a large number of individuals, the indeterminacy in the
individual motion can be considered as a local fluctuation of a mean behaviour.
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Fig. 3 Zoomed-in plots of the mean positions with ρ = 0.01 (a) and ρ = 200 (b)
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Thus, a reliable description of crowd motion becomes appropriate at mesoscopic
and macroscopic scales [3]. On the other hand, from the application point of view,
we would like to determine efficient crowd management tools that are required, for
example, in emergency evacuation procedures [11, 74], and in this context, one can
identify at least three different mechanisms: the control via leadership, the concept
of sparse control, and the distributed action. However, the distributed action of a
controller can certainly be implemented in a swarm of robots or satellites, but it
is in contrast with the concept of crisis, e.g., panic situation. For this purpose, the
control exerted on a small group of agents having leadership on the crowd seems
more realistic. Recently, the leadership-based controllability and optimal control of
(microscopic) multi-agent systems has been proposed in [90] for a first-order model,
in [18] for a second-order model, and in [91] for evolving social networks. At the
mesoscopic scale, the control by leadership has been investigated in, e.g., [33].

On the other hand, in the framework of sparse controls acting on a microscopic
model, in [27, 28] an efficient control mechanism is proposed that is acting only on
the smallest number of agents, thus introducing sparse controllability problems. The
sparse controllability of a kinetic alignment model is considered in, e.g., [76].

Now, in this general framework, we can put the FP equation into the class
of mesoscopic models together with other continuity equations like the Liouville
equation and the Boltzmann equation. However, the lifting of a (coupled) micro-
scopic model at the level of a density representation is viable under appropriate
assumptions. The easiest of these assumptions is to focus on a unique representative
agent of the system and interpret the action of the other agents on it as a background
noise. This is our working assumption in the previous two sections, which actually
requires to see the chosen pedestrian as being much more ‘massive’ than the others.
Notice that a similar assumption appears in the derivation of the FP equation
starting from the Boltzmann equation [69]. In fact, Boltzmann-like kinetic models
are considered in many works concerning the modeling of collective motion of
pedestrians; see, e.g., [1, 50, 54, 56]. On the other hand, it appears that an appropriate
working assumption to model crowd motion is to focus on mean-field theory.

Now, we illustrate the mean-field approach in the case where the motion of
pedestrians in the crowd is modeled by a SDE similar to (1). For this purpose,
consider a system of N identical pedestrians whose motion is given as follows:

dXi(t) = 1

N

N∑

j=1

b(Xi(t), Xj (t)) dt + 1

N

N∑

j=1

σ(Xi(t), Xj (t)) dWi(t) (26)

Xi(0) = Xi0, i = 1, . . . , N, (27)

where Xi(t) ∈ R
d denotes the position of the ith pedestrian. Notice that the

structure of (26) assumes that in the drift and dispersion coefficients an average
of ‘interactions’ appears.
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Next, assume that the velocity field of the ith pedestrian is made of an ‘external’
field function u and a component that results from the presence of all other
pedestrians. We have

b(xi, xj ) = u(xi, t)+ θ (xi − xj ),

where θ is a function of the distance between any two pedestrians.
Now, in correspondence to (26)–(27), the following dN-dimensional FP equation

results

∂tfN−1

2

N∑

i=1

	i

⎡

⎢⎣

⎛

⎝1

N

N∑

j=1

σ(xi, xj )

⎞

⎠
2

fN

⎤

⎥⎦+
N∑

i=1

∇i ·
⎡

⎣

⎛

⎝1

N

N∑

j=1

b(xi, xj )

⎞

⎠ fN

⎤

⎦=0

(28)

where fN = fN(x, t), x = (x1, . . . , xN), xi ∈ R
d . We denote with 	i , resp.

∇i , the R
d Laplacian, resp. the R

d gradient for the variable coordinates of the ith
pedestrian. With (28), one can formulate an evolution problem specifying the initial
PDF fN(x, 0) = f0N(x), with f0N(x) ≥ 0 with

∫
RdN

f0N(x) dx = 1.
Nevertheless, the high dimensionality of (28) makes its solution practically

impossible, and it is only thanks to the mean-field strategy [20, 38, 60] that we
can circumvent this problem by considering (26)–(27) in the limit of N →∞ such
that

1

N

N∑

j=1

b(xi, xj )→ E(b(xi, ·)), (29)

and similarly for σ we have 1
N

∑N
j=1 σ(x

i, xj )→ E(σ (xi, ·)). If these limits hold,
then the stochastic differential equations (26) appear as decoupled and equivalent to
each other in the sense that any of the Xi represents the same pedestrian.

Notice that the validity of (29) has been rigorously discussed in, e.g., [19, 38, 85].
In particular, the empirical measure process XN(A, t) := 1

N

∑N
j=1 1A(X

j
t ) where

A denotes any Borel set of Rd and 1A(·) is the indicator function of A, is proved to
converge to a unique deterministic measure μt(A).

We remark that the above results are valid under the condition of indistinguisha-
bility, which means that the probability law above is invariant under exchange
of particles. This is possible if the initial conditions Xi0 are independently and
identically distributed and all the drift and dispersion functions are the same and
symmetric under exchange of indices; see, e.g., [85].

Based on these considerations, in the limit N → ∞, we obtain the following
model of motion, where X denotes any of the Xi . We have

dX(t) = Eμt [b(X(t), ·)] dt + Eμt [σ(X(t), ·)] dW(t) (30)

X(0) = X0. (31)



The Fokker–Planck Framework in the Modeling of Pedestrians’ Motion 127

As in [19] and under suitable conditions on b and σ , the measure μ becomes
absolutely continuous and we can write μt(dx) = f (·, t) dx, where f is the time-
dependent PDF of (30)–(31), which is governed by the following mean-field FP
model:

∂tf (x, t)− 1

2
	

[
f (x, t)

(∫

Rd

σ (x, y)f (y, t)dy

)2
]

+ ∇ ·
[
f (x, t)

(∫

Rd

b(x, y)f (y, t)dy

)]
= 0,

where 	, resp. ∇, represent the Laplacian, resp. the gradient, in R
d .

We see that the mean-field strategy allows to effectively model very large (ideally
infinite) crowds and makes possible to reconsider the control and games approaches
discussed in the previous sections also in this context. In this context, we would like
to mention the framework of mean-field games [65] and related control schemes
[7, 13], which have been already successfully applied to model pedestrian motion
in particular situation; see [25, 63] and the references therein.

Notice that the mean-field strategy applies to many different models of motion
[2, 29, 35]; see also the review [3, 10]. On the other hand, similar nonlinear (and
nonlocal) models of swarms, called aggregation models, are also applied to model
collective motion [14, 15, 40].

5 Closing Remarks

In this review, we have illustrated the FP control framework and related techniques
to model the motion of pedestrians in some particular situation. In doing this,
we have bypassed all issues concerning the numerical solution of the resulting
problems. However, a few comments on this topic are in order to complete this
review. Thus, we would like to point out that an appropriate numerical approxi-
mation of any continuity equation should guarantee, together with the necessary
property of stability and accuracy, the non-negativity of the solution (the density)
and conservation of the total mass or probability. For this purpose, the work in [68]
proves these properties for the Chang-Cooper (CC) scheme [31], which is a second-
order accurate finite volume scheme for the linear (parabolic) FP equation; see also
[24, 64, 78, 80]. Further, in [77] similar properties are discussed for a scheme applied
to the Liouville equation due to Sanders [81]. For a review of numerical methods
for solving aggregation-diffusion equations see [30].

On the other hand, from the point of view of numerical optimization, we are
concerned with the accurate determination of the optimization gradient and its
use in gradient-based optimization techniques [17], and for the former problem,
a convenient strategy is the so-called discretize-before-optimize method. This
approach plays a central role in some works on FP control problems [5, 78], and in
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the optimal control of multi-agent systems; see, e.g., [18, 90, 91] and the references
therein. However, much less is available on the numerical analysis of nonlinear
optimal control problems related to crowds and mean-field models.
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Recent Developments in Controlled
Crowd Dynamics

M. K. Banda, M. Herty, and T. Trimborn

Abstract We survey recent results on controlled particle systems. The control
aspect introduces new challenges in the discussion of properties and suitable mean
field limits. Some of the aspects are highlighted in a detailed discussion of a
particular controlled particle dynamics. The applied techniques are shown on this
simple problem to illustrate the basic methods. Computational results confirming
the theoretical findings are presented and further particle models are discussed.

1 Introduction

Large-scale interacting particle systems have recently generated interest in the
description of phenomena beyond classical statistical mechanics and we refer to
the recent book on active particles [11] and furthermore to [36, 67] for some
examples and further references. A major difference to mathematical descriptions
in continuum and statistical mechanics is the fact that particles are no longer
passively interacting. This enables analysis of new pattern formation mechanisms,
but also allows to introduce control actions within the interacting particle system.
Among the examples of controlled particle systems are economic models for price
formation, wealth accumulation, trading or formation of consensus behavior. We
refer to the references [3, 8, 12, 21, 23, 24, 44, 67, 74] as well as the references
therein for some examples. Typically, control actions might be applied to drive
systems towards a desired state using either an open loop [6, 16, 53, 62], a closed
loop [1–3, 3, 5, 7, 25, 38, 55], or a competitive game setup [13, 17, 22, 24, 28–30, 39–
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41, 50, 57–59, 63]. Those directions have been explored recently for interacting
particle systems described by ordinary differential equations with the question of
control actions prevailing in the mean field limit of infinitely many particles. Those
limits have been well-explored in the context of classical statistical mechanics,
see, for example, [33, 34, 70]. The limit allows derivations of time-continuous
descriptions of qualitative properties independent of the number of particles. In
the case of finitely many interacting agents subject to control, the control problem
can be solved using Pontryagin’s maximum principle, dynamic programming, or
Hamilton–Jacobi Bellman equations. Those techniques are well-established in the
context of ordinary differential equations but pose, in view of the desired mean field
limit, interesting and challenging analytical and numerical problems.

The major obstacle, for example, has been the fact that the size of the system
of associated Hamilton-Jacobi Bellman equations is proportional to the number of
particles. So far, different approaches have been explored to address possible issues
mostly based on an approximation of the control, for example, by a restriction to
short (instantaneous) time horizon controls [3, 26, 54], or by implementing the
control on a binary interaction scale [2] or by solving approximate Hamilton–Jacobi
equations [7]. Those approaches typically aim to derive a (suboptimal) closed loop
control. On the level of open loop control problems only few and mostly theoretical
results could be achieved, for example, in the game theoretic setting [63], using
Riccati control [55] or using a mean field approach for both adjoint and primal
variables [6, 47, 53].

Another aspect in dealing with the open loop control problem is a suitable
notion of differentiability [15, 27, 53, 56] that leads to consistent optimality
systems for both the large-scale particle system and the mean field optimal control
problem. Here, choices regarding differentiability in the sense of Frechet as well as
differentiability in metric spaces with respect to Wasserstein distance are possible
and an analysis of properties and possible connections is given in [15, Section 2] or
[56, Appendix], among many examples.

Suitable numerical methods for the full control problem on the mean field level
are still sparse due to the complexity of solving successively forward and backward
partial differential equations. Besides the mean field limit, the hydrodynamic limit
of particle systems is of interest for a qualitative study of long-term behavior
of solutions. For controlled particle systems, this direction is currently largely
unexplored.

In this chapter, we would like to illustrate the main steps undertaken in controlled
particle systems by presenting, on a simplistic particle model, challenges and
approaches in mean field limits as well as on the hydrodynamic limit. The focus
will be on the control action and, therefore, we present results in a simple linear
setting in Sect. 2. This setup has also been used to illustrate basic properties of mean
field games [27] and served as a guiding example for many previously presented
techniques [56]. The linear setting enables use of a closed loop strategy based on



Recent Developments in Controlled Crowd Dynamics 135

the Riccati equation on the level of finitely many agents. It is also well-known that
in the case of linear–quadratic open loop control problems, the Riccati control is
optimal. Besides the investigation of the interplay between the Riccati control and
the mean field limit, we also discuss here the corresponding hydrodynamic limit
in Sect. 2.3. The analytical findings are illustrated by numerical simulations of the
closed loop control system in Sect. 3. Extensions to a nonlinear setting and other
perspectives are discussed in Sect. 4.

2 Multiscale Riccati Control for Linear Particle Systems

The main purpose of this section is to illustrate control concepts and mean field
limits. We, therefore, restrict ourselves to a simplistic setting for interacting particle
systems. Consider i = 1, . . . , N particles with a state (xi(t), vi(t)) ∈ R

2 driven by
the dynamics

d

dt
xi = vi, d

dt
vi = q∗i , (xi, vi)(0) = (xi,0, vi,0) (1)

for initial data (xi,0, vi,0) and where each particle is subject to a control q∗i = q∗i (t)
modeling an individual strategy. The control is chosen in order to minimize a joint
objective

q∗ := arg min
q∈RN

∫ T

0

1

N

N∑

i=1

(
1

2
v2
i +

α

2
q2
i

)
dt, (2)

where q = (qi)
N
i=1. The parameter α > 0 is a weight to balance the cost of all

controls and the desired state. The latter is chosen here to be vi ≡ 0 for all particles
i = 1, . . . , N for simplicity. Clearly, other desired states may be considered and
they may be dependent on further parameters and costs at terminal time t = T may
be added to problem (2). The terminal time T > 0 is fixed but can be replaced
by T = +∞ provided a suitable weight exp(−rt) is added towards the cost with
discount r > 0.

At this point it is important to note that there is a major difference in discussing
the case of whether or not all particles try to minimize a joint objective or their
individual objective. In the latter case the problem turns into a differential game and
concepts of optimality have to be discussed. We refer to [48] for a careful discussion
as well as to [13], for example, for mean field limits of games. Here, we will focus
on the case of a single joint objective (2).
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2.1 Closed Loop Control for Particle System

The problems (2) and (1) are linear–quadratic optimal (convex) control problems. It
is well-known that in this case the unique solution q∗ is given by a state feedback
involving a symmetric matrix K ∈ R

2N×2N which is a solution of the (matrix)
Riccati equation. In order to derive this equation, it is advantageous to introduce the
following vectors and matrices:

w :=
(
(xi)

N
i=1, (vi)

N
i=1

)T ∈ R
2N, (3)

A :=
(

0 Id
0 0

)
∈ R

2N×2N, B :=
(

0
Id

)
∈ R

2N×N, M :=
(

0 0
0 Id

)
∈ R

2N×2N,

(4)

where Id ∈ R
N×N denotes the identity matrix. Solving problem (1), (2) is equivalent

to solving

min
q∈RN

∫ T

0

1

2N
wT (t)Mw(t)+ α

2N
q(t)T (Id)q(t) dt (5)

subject to (6)

d

dt
w(t) = Aw(t)+ Bq(t), w(0) =

(
(xi,0)

N
i=1, (vi,0)

N
i=1

)T
(7)

which necessary optimality conditions yield the following expression for q ∈ R
N

q(t) = −2N

α
BTK(t)w(t), (8)

where K(t) = K(t)T fulfills the matrix Riccati equation [69]:

− d
dt
K(t) = 1

2N
M +K(t)A+ ATK(t)− 2N

α
K(t)BBTK(t), K(T ) = 0.

(9)

Note that in the nonlinear case a state feedback or closed loop control of the type (8)
is in general impossible to obtain and gives rise to the suboptimal control strategies
mentioned in the introduction.

In view of the mean field limit forN →∞ particles, it is advantageous to exploit
the particular structure of the matrices A andM to obtain further information on the
matrix K.We split K according to the state space as follows:

K =
(
K11 K12

K21 K22

)
,
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with Kij ∈ R
N×N for i, j = 1, 2. Direct computation yields a simplified form of

Eq. (9) as follows:

− d
dt
K(t) = 1

2N

(
0 0
0 Id

)
+

(
0 K11

0 K21

)
+

(
0 0
K11 K12

)
− 2N

α

(
K12K21 K12K22

K22K21 K22K22

)
,

(10)

or

− d
dt
K11 = −2N

α
K12K21, K11(T ) = 0, (11)

− d
dt
K12 = K11 − 2N

α
K12K22, K12(T ) = 0, (12)

− d
dt
K21 = K11 − 2N

α
K22K21, K21(T ) = 0, (13)

− d
dt
K22 = 1

2N
Id +K12 +K21 − 2N

α
K22K22, K22(T ) = 0. (14)

This nonlinear system of ordinary differential equations has a differentiable and
locally Lipschitz right-hand side. Therefore, a unique solution exists and by direct
computation, we obtain the assertion of the following Lemma.

Lemma 1 The system of ordinary differential equations (9) has a unique differen-
tiable solution K = K(t) ∈ C1(R2N×2N) given by

K(t) =
(

0 0
0 K22(t)

)
,

where K22(t) is given as a solution to the equation

− d
dt
K22(t) = 1

2N
Id − 2N

α
K22(t)K22(t), K22(T ) = 0. (15)

Again, the particular structure of Eq. (15) allows the derivation of the following
result for the structure of K22, that is in fact, diagonal with the same entry.

Lemma 2 The system of ordinary differential equations (15) has a unique differen-
tiable solution

(K22(t))i,i = d(t), and (K22(t))i,j = 0, i, j = 1, . . . , N, i �= j, (16)

where d(·) is the unique solution to the (scalar) ordinary differential equation

− d
dt
d(t) = 1

2N
− 2N

α
d(t)2, d(T ) = 0.
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The proof of the Lemma follows the verification thatK22 given by Eq. (16) is in fact
a solution to Eq. (15) which is also the unique solution. The ordinary differential
equation for d allows for an explicit solution given by

d(t) = 1

2N

√
α tanh

(T − t√
α

)
.

However, it is not necessary to use the explicit form in the following. Having d(t)
available, we obtain the (optimal) closed loop control

q∗(t) = −2N

α
BTK(t)w(t) = −2N

α
(0,K22(t))w(t) = −2N

α
d(t)v(t). (17)

Hence, we introduce y(t) := Nd(t) that satisfies

− d

dt
y(t) = 1

2
− 2

α
y(t)2, y(T ) = 0 (18)

and q∗(t) = − 2
α
y(t)v(t). Summarizing, the problem (1), (2) is solved by q∗ which

is the closed loop control. The controlled particle dynamics for i = 1, . . . , N is then
given by

d

dt
xi = vi, d

dt
vi = − 2

α
y(t)vi(t), − d

dt
y(t) = 1

2
− 2

α
y(t)2, (19)

with limit conditions (xi, vi)(0) = (xi,0, vi,0), y(T ) = 0. (20)

The system (19) allows for a mean field limit in the number of agents as shown in
the following paragraph.

Furthermore, we note that the decay of vi(t) towards the desired zero state can
be quantified using a Lyapunov function. The following result holds true.

Lemma 3 Consider N particles with dynamics given by Eq. (19) and arbitrary
initial conditions (xi,0, vi,0) for i = 1, . . . , N. Let y be the solution to (18). Then,
the differentiable function

L(t) := wT (t)K(t)w(t),

where K is given by Eq. (9) is bounded from above as

L(t) ≤ L(0) exp (−r(t))

for t ∈ [0, T ] and the rate r(t) is given by

r(t) =
∫ t

0

2y(s)

α
ds ≥ 0. (21)
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Proof We observe that due to Lemma 2 d(t) ≥ 0 for t ∈ [0, T ] and therefore K(t)
is positive semi-definite. Hence, L(t) ≥ 0 for all t ∈ [0, T ].According to Lemmas 1

and 2, we have L(t) =
N∑
i=1
vi(t)

2d(t) = 1
N

N∑
i=1
v2
i (t)y(t). Thus

d

dt
L(t) = 1

N

d

dt
y(t)

N∑

i=1

vi(t)
2 − 4

Nα
y2(t)

N∑

i=1

v2
i (t)

= −1

2

1

N

N∑

i=1

vi(t)
2 +

(
2

α
− 4

α

)
y(t)L(t) ≤ −2y(t)

α
L(t).

The assertion follows by Gronwall’s inequality and since y ≥ 0 the rate is non-
positive.

2.2 Mean Field Limit of Controlled Particle System

We illustrate the mean field limit of the particle system (19). For more details and
a detailed discussion of the mean field limit for linear systems, we refer to [49,
60]. The following formal calculation exhibits the main idea: Denote by μN(t, ·) ∈
P(R2) the empirical measure at time t associated with the state (xi(t), vi(t))Ni=1 ∈
R

2N by

μN(t, x, v) := 1

N

N∑

i=1

δ(x − xi(t))δ(v − vi(t)), (22)

where δ denotes the Dirac measure on R and P(R2) is the space of probability
measures on R

2. Letψ be any smooth compactly supported function, i.e.,ψ(x, v) ∈
C∞0 (R2). In the following formal computation, we neglect the time-dependence of
the corresponding functions for readability.

d

dt

∫

R2
ψ(x, v)dμN(x, v) = 1

N

N∑

i=1

∂xψ(xi, vi)
d

dt
xi + ∂vψ(xi, vi) d

dt
vi

= 1

N

N∑

i=1

∂xψ(xi, vi)vi − 2

α
y∂vψ(xi, vi)vi

=
∫

R2
∂xψ(x, v)vdμ

N(x, v)− 2

α
y

∫

R2
∂vψ(x, v)vdμ

N(x, v).
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Hence, the measure μN fulfills a partial differential equation in the sense of
distributions. In the following, we will assume that the measure dμ(t, x, v) has
a density f = f (t, x, v), i.e., dμ(t, x, v) = f (t, x, v)dxdv, then the previous
equality is the weak form of the mean field equation for (x, v) ∈ R

2 and t ∈ [0, T ]

∂tf (t, x, v)+ ∂x (vf (t, x, v))− 2

α
y(t)∂v (vf (t, x, v)) = 0. (23)

Equation (23) has to be solved subject to initial conditions

f (0, x, v) = f0(x, v) (24)

, where the initial (non-negative) probability density f0(x, v) is an approximation
to the empirical measure μN0 associated with the initial conditions

μN0 = 1

N

N∑

i=1

δ(x − xi,0)δ(v − vi,0).

Furthermore, y fulfills, as before,

− d

dt
y(t) = 1

2
− 2

α
y(t)2, y(T ) = 0. (25)

In order to show that the particle dynamics converges to the mean field limit,
the Wasserstein distance and Dobrushin’s inequality have been used as a theoretical
tool. We follow the presentation in [49] and references therein for further details.
The convergence is obtained in the space of probability measures P(R2) using the
Wasserstein distance. This distance measures the space of probability measures and
we refer to [9] for more details. For the following presentation it suffices to consider
the 1-Wasserstein distance defined as follows.

Definition 1 Let μ and ν be two probability measures on R
2. Then, the 1-

Wasserstein distance is defined by

W(μ, ν) := inf
π∈P∗(μ,ν)

∫

R2

∫

R2
|ξ − η|dπ(ξ, η), (26)

where P∗(μ, ν) is the space of probability measures on R
2 × R

2 such that
the marginals of π are μ and ν, respectively, i.e.,

∫
R2 dπ(·, η) = dμ(·) and∫

R2 dπ(ξ, ·) = dν(·).
Furthermore, we introduce the push-forward notion for a measureable map g :
R

2 → R
2 and a measureμ ∈ P(R2). A measure ν ∈ P(R2) is denoted by ν = g#μ,

if
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ν(A) = μ(g−1(A))

for any set A ⊂ R
2 such that g−1(A) is μ-measurable. Let y be the unique solution

to Eq. (25). Introduce now ξ = (x, v) ∈ R
2 and rewrite Eq. (23) for a probability

measure μ(t, ξ) := f (t, x, v)dxdv as

∂tμ(t, ξ)+∇ξ ·
(
(ξ2,− 2

α
y(t)ξ2)

T μ(t, ξ)

)
= 0, μ(0, ξ) = μ0 := f0(x, v)dxdv,

(27)
which is understood in the sense of distributions. Associated with the mean field
equation (27) and the initial datum, there is a system of characteristics t →
�(t, ξ̄ ) ∈ R

2 emanating from ξ̄ ∈ R
2 by

d

dt
�1(t, ξ̄ ) = �2(t, ξ̄ ), �1(0, ξ̄ ) = ξ̄1, (28)

d

dt
�2(t, ξ̄ ) = − 2

α
y(t)�2(t, ξ̄ ), �2(0, ξ̄ ) = ξ̄2. (29)

For any t ≥ 0 the measure μ(t, ·) is then obtained as

μ(t, ·) = �(t, ·)#μ0. (30)

The latter equation follows by integral transformation formula applied to Eq. (27).
The relation (30) is now the starting point for developing the Dobrushin estimate.
Let measures μ = μ(t, ·) and ν = ν(t, ·) in P(R2) be two solutions to (27) such
that t → μ(t, ·) and t → ν(t, ·) are continuous. Then, we have

W(μ(t, ·), ν(t, ·)) ≤ W(μ0, ν0)C1, t ∈ [0, T ] (31)

for some constant C1 ≥ 0. The inequality (31) is established using the following
computation. Let π0 ∈ P∗(μ, ν) and for (ξ, η) ∈ R

4 define π(t, ·) as the measure
under the image of (ξ, η)→ (�(t, ξ),�(t, η)) by

π(t, (ξ, η)) := π0(�(t, ξ),�(t, η)).

Then, we have π(t, ·) ∈ P∗ (μ(t, ·), ν(t, ·))) . Further, denote by R(t) the distance
computed at the measure π(t, ·) as

R(t) :=
∫

R4
‖ξ − η‖dπ(t, (ξ, η)) =

∫

R4
‖�(t, ξ)−�(t, η)‖dπ0(ξ, η)

=
∫

R4
‖ξ − η +

∫ t

0
(�2(s, ξ)−�2(s, η),− 2

α
y(s)(�2(s, ξ)−�2(s, η))

T ds‖dπ0(ξ, η).



142 M. K. Banda et al.

Note that the solution to (25) fulfills 0 ≤ y(t) ≤
√
α

2 for t ∈ [0, T ]. Furthermore,
the right-hand side of the system (28)–(29) is Lipschitz with constant CL :=
max{1, 1√

α
} and therefore we have, for any fixed T , using Gronwall’s inequality:

‖�(s, ξ)−�(s, η)‖2 ≤ exp(CLT )‖ξ − η‖2, ∀s ∈ [0, T ]. (32)

Hence, we estimate

R(t) ≤
∫

R4

(
‖ξ − η‖ + 4T exp(

1

2
CLT )‖ξ − η‖

)
dsdπ0(ξ, η) ≤ C1R(0)

for a constant C1 = max{1, 4T exp( 1
2CLT )}. Next, we take the infimum for both

sides over all π0 ∈ P∗(μ0, ν0) and obtain the Dobrushin type inequality (31), i.e.,

W(μ(t, ·), ν(t, ·)) ≤ R(t) ≤ C1W(μ0, ν0).

This inequality is a key estimate to show convergence of the particle dynamics
towards the mean field equation: consider νN0 to be the empirical measure associated
with initial data ξ0,i = (x0,i , v0,i ) for i = 1, . . . , N, i.e.

νN0 (ξ) :=
1

N

N∑

i=1

δ(ξ − ξ0,i ). (33)

Then, (30) implies that the measure at time t is given by the empirical measure

νN(t, ξ) := 1

N

N∑

i=1

δ(ξ −�i(t)), (34)

where �i(t) = �(t, ξ0,i ) is the solution to the system (28)–(29) with initial data
ξ0,i = (x0,i , v0,i ), i.e.,

d

dt
�i1(t) = �i2(t), �i1(0) = xi,0, (35)

d

dt
�i2(t) = − 2

α
y(t)�i2(t), �

i
2(0) = vi,0. (36)

Recalling that ξ = (x, v), the system (35)–(36) is equivalent to the controlled
particle system (19). Let μ = μ(t, ξ) be another solution to the mean field
equation (27). Then, Dobrushin’s inequality shows that

W(μ(t, ·), νN(t))→ 0
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provided that W(μ0, ν
N
0 )→ 0. Hence, we have shown that the limit of the particle

system converges in Wasserstein towards a weak solution to the mean field equation.
Finally, we also prove the decay of the mean field Lyapunov function by

extending the results of Lemma 3. For the empirical measure (22) and its density,
f , we obtain as in the proof of Lemma 3.

L(t) = wTK(t)w = 1

N

N∑

i=1

v2
i (t)y(t) =

∫

R2
v2y(t)dμN(t, x, v)

=
∫

R2
v2y(t)f (t, x, v)dxdv. (37)

The following Lemma shows that the mean field limit inherits the decay properties
of the particle system and the same rate.

Lemma 4 Consider sufficiently smooth initial conditions f0(x, v) ∈ P(R2)

with integrable second moment
∫
R2 v

2f0(x, v)dxdv < ∞. Assume that there
exists a non-negative C1([0, T ] × R

2) solution f = f (t, x, v) vanishing as
‖(x, v)‖ → ∞ to the dynamics given by Eq. (23) with integrable second moment∫
R2 v

2f (t, x, v)dxdv < ∞. Let y be the solution to (25). Then, the differentiable
function

L(t) :=
∫

R2
v2y(t)f (t, x, v)dxdv

is bounded from above by

L(t) ≤ L(0) exp (−r(t))

for t ∈ [0, T ] and rate, r(t), given by Eq. (21).

Proof The (strong) assumptions allow for a pointwise evaluation of the partial
differential equations. Furthermore, since y ≥ 0 and f is assumed to be non-
negative, L ≥ 0. A direct computation of the derivative of L yields

d

dt
L(t) =

∫

R2
v2y(t)

(
−∂x(vf (t, x, v))+ 2

α
y(t)∂v(vf (t, x, v))

)
dxdv+

+ d

dt
y(t)

∫

R2
v2f (t, x, v)dxdv

≤− y(t)
∫

R

∂x

(∫

R

v3f (t, x, v)dv

)
dx −

∫

R2

2

α
y2(t)2v2f (t, x, v)dxdv

+ 2

α
y(t)L(t),
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where we used integration by parts in the v derivative and, since f is non-negative,
could estimate d

dt
y using Eq. (25). Further, we obtain

d

dt
L(t) ≤

(
− 4

α
+ 2

α

)
y(t)L(t) = − 2

α
y(t)L(t).

Using Gronwall’s inequality the same rate r(t) as in Lemma 3 is obtained. This
shows that the basic properties of the controlled system are transferred from particle
to mean field limit.

2.3 Hydrodynamic Approximation to Controlled Particle
System

As the final scale of description, we consider a hydrodynamic formulation of the
particle system. The procedure to derive hydrodynamic equations from kinetic or
mean field equations is by now standard and a detailed discussion of the validity
and its properties could be found in the references such as [34, 64]. In view of
Eq. (23), we define the quantities ρ(t, x) as local particle density as well as the flux
(ρu)(t, x) at time t and position x by

ρ(t, x) :=
∫

R

f (t, x, v)dv, (ρu)(t, x) :=
∫

R

vf (t, x, v)dv. (38)

Here, u = u(t, x) is the hydrodynamic velocity. Further, we introduce the pressure
p[f ] as

p[f ](t, x) =
∫

R

(v − u(t, x))2f (t, x, v)dv. (39)

Formally, evolution equations for the density and flux are found by integration of
the mean field equation (23) with respect to dv and vdv. The quantities (38) are
also referred to as the zeroth and first moments of the probability density f with
respect to v. The partial differential equations obtained by integration with respect
to x ∈ R and t ∈ [0, T ] are given by

∂tρ(t, x)+ ∂x(ρu)(t, x) = 0, (40)

∂t (ρu)(t, x)+ ∂x
(
(ρu2)(t, x)+ p[f ](t, x)

)
+ 2

α
y(t)(ρu)(t, x) = 0. (41)

The equation for y is unchanged and given by Eq. (25). Initial conditions for the
previous system are obtained by successive integration of the initial condition, i.e.,
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ρ(0, x) = ρ0(x) :=
∫

R

f0(x, v)dv, (ρu)(0, x) = (ρu)0(x) :=
∫

R

vf0(x, v)dv.

(42)

The system (40)–(41) is not closed since p cannot be expressed explicitly in terms of
(ρ, ρu) directly. This problem is known as a closure problem and it is due to the fact,
that f is projected to a lower dimensional subspace given by density and flux and p
accounts for the projection error. Several possibilities exist to overcome the problem.
Further equations for the moments of the type mj(t, x) = ∫

R
vjf (t, x, v)dv of f

can be derived shifting the closure problem to equations for higher moments and
thereby improving the approximation of f in terms of (ρ, ρu,m3, . . . ). However,
the problem in principle persists. A possibility to close the hierarchy of equations is
to assume that f is close to a (known) equilibrium distribution for higher moments.
We illustrate this approach by approximating

p[f ] ≈ p[δ(· − u(t, x))] (43)

known as mono-kinetic closure. Equation (43) states that at the level of the pressure
the particles propagate with the hydrodynamic speed, instead of their individual
velocity v. Formally, replacing p[f ] by the mono-kinetic closure in Eqs. (40)–(41)
leads to the system similar to pressureless gas dynamics of the form:

∂tρ(t, x)+ ∂x(ρu)(t, x) = 0, (44)

∂t (ρu)(t, x)+ ∂x(ρu2)(t, x)+ 2

α
y(t)(ρu)(t, x) = 0. (45)

Another used closure in gas dynamics is the Grad-closure [34]. Here, we assume
that

p[f ] ≈ C1ρ
C2 (46)

for some known constants 0 ≤ C1, C2. In the case of isentropic gas 1 < C2 ≤ 3
and for isothermal gas, we have C2 = 1. Other closure options, for example, based
on entropy principles also exist, see e.g. [43].

Based on the moments of the mean field f , we obtain

L(t) =
∫

R2
v2y(t)f (t, x, v)dxdv = (47)

y(t)

∫

R

(∫

R

(v − u(t, x))2f (t, x, v)dv
)
+ (ρu2)(t, x)dx = (48)

y(t)

∫

R

p[f ](t, x)+ (ρu2)(t, x)dx. (49)
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For the closure (43), we are able to also prove decay of the corresponding Lyapunov
function at the hydrodynamic scale.

Lemma 5 Consider sufficiently smooth initial conditions ρ0(x), (ρu)0(x) such
that

∫
R
(ρu2)0(x)dx < ∞. Assume that there exists a C1([0, T ] × R) solution

(ρ, ρu)(t, x) vanishing at ‖x‖ → ∞ and with ρ ≥ 0 to the dynamics given by
Eqs. (44)–(45) with integrable momentum

∫
R
(ρu2)(t, x)dx <∞ for any time t. Let

y be the solution to (25). Then, the differentiable function

L(t) :=
∫

R

y(t)(ρu2)(t, x)dx

is bounded from above by

L(t) ≤ L(0) exp (−r(t))

for t ∈ [0, T ] and the rate, r(t), is given by Eq. (21).

Proof The (strong) assumptions allow for a pointwise evaluation of the partial
differential equations. Note that Eqs. (44) and (45) lead to an equation for u =
u(t, x) as

∂tu(t, x)+ u(t, x)∂xu(t, x)+ 2

α
u(t, x) = 0.

Furthermore, a direct computation yields

d

dt
L(t) = d

dt
y(t)

∫

R

(ρu2)(t, x)dx

+ y(t)
∫

R

(−∂x(ρu)(t, x))u2(t, x)dx + 2(ρu)(t, x)∂tu(t, x)dx

≤ 2

α
y2(t)

∫

R

(ρu2)(t, x)dx + y(t)
∫

R

2(ρu)(t, x) (u(t, x)∂xu(t, x)+ ∂tu(t, x)) dx,

where we used the equation for y and the non-negativity of ρ(t, x). Further, using
the equation for u(t, x), we obtain

d

dt
L(t) ≤ 2

α
y(t)L(t)− y(t)

∫

R

2(ρu)(t, x)
2

α
u(t, x)dx = −2y(t)

α
L(t).

Using Gronwall’s inequality we obtain the assertion. The obtained rate is the same
as on the particle and mean field scale.

Remark 1 Using Grad’s closure a similar estimate is not possible due to the
particular structure of the hydrodynamic equations and the form of the Lyapunov
function.
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3 Numerical Tests and Results for the Linear Control
Problem

Numerical experiments will be undertaken to demonstrate the theoretical properties
discussed in the previous sections. The first set of numerical tests will consider
the particle system. The theoretical results are presented in Sect. 2.1. The decay of
Lyapunov function will be investigated and presented in Sect. 3.1 below. Similarly,
the hydrodynamic limit discussed in Sect. 2.3 will be numerically investigated and
presented in Sect. 3.2.

3.1 Numerical Results for the Particle System

In these tests, we consider a system with a total of N = 250 particles. The initial
spatial positions of these particles, xi,0, are uniformly distributed in the interval
[0, 1]. The initial velocities are given by vi,0 = exp(xi,0) sin(2πxi,0)+ξi where ξi is
a random variable uniformly distributed in [0, 0.2]. The dynamics are described by
Eq. (19). Time marching of this dynamic system is undertaken using an embedded
explicit Runge–Kutta method of orders 2 and 3 with four stages (with local error
control). The control y(t) is computed by piecewise constant discretization of the
exact solution to Eq. (25) on the same grid used for the integration of the system of
ordinary differential equations (19).

The Lyapunov function L(t) in Lemma 3 is also evaluated on the same grid.
For comparisons the theoretical decay rate, r(t), is also computed by a midpoint
integration of equation (21) using the exact solution to the ordinary differential
equation (25). The terminal time for these computations has been set to T = 1.

In Fig. 1 computational results for the particle system are presented. The decay of
the Lyapunov function, L(t), with the estimate of the decay provided by Lemma 3
for different values of α is computed. We consider α ∈ {10−2, 10−3, 10−4}. Recall
that α weighs the control cost compared to the cost associated with the quadratic
deviation of particle velocities from zero. Larger values of α are related to higher
control costs and lead to slower decay rates which is also observed numerically.
Furthermore, we observe that the theoretical estimate is an upper bound on the
observed decay in all cases. This confirms the theoretical findings.

3.2 Numerical Results for the Hydrodynamic Limit

Similar computations as above are repeated for the hydrodynamic approach in
Sect. 2.3. Note that formally the equations are the so-called pressureless gas
dynamics—however damped by the control in ρu.Without the control the equations
may exhibit Dirac-solutions for initial values in the velocity field that lead to
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Fig. 1 Semi-logarithmic plot for the decay of the Lyapunov function t → L(t) over time. The
crossed lines correspond to the numerical integration of system (19) for different values of α. The
solid line shows the theoretical expected decay L(0) exp(−r(t)) where the rate r is obtained by
numerical integration of equation (21). The red, blue, and black lines correspond to α = 10−4,

α = 10−3 and α = 10−2, respectively

concentration phenomena. This case is not present for the initial data considered
here due to the strong damping and the smooth initial datum. The initial data of
the particle system translates to the following initial data for the hydrodynamic
simulation

ρ0(x) = 1 and (ρu)0(x) = exp(x) sin(2πx)+ ξ(x), (50)

where x → ξ(x) is spatially distributed random noise. Periodic boundary conditions
in space are imposed.

A second-order relaxed finite-volume scheme for the spatial and temporal
discretization of equation (40) as proposed in [61] is employed. The spatial domain
is discretized using an equal-distant grid with center points xi = i	x with i =
1, . . . , Nx grid points. We choose Nx = 250 spatial points. The temporal grid is
chosen using a CFL condition with a CFL number of 0.9. Terminal time is set to
T = 1. The noise is pointwise equally distributed in [0, 0.2]. As in the case of the
particle system the control y(t) is computed by piecewise constant discretization of
the exact solution to Eq. (25) on the grid used for the solution of partial differential
equations (40).

It is appropriate to remark at this point that in [18] a first-order version of the
relaxed finite-volume scheme also referred to as the Rusanov scheme was discussed.
For a system of conservation laws:
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∂tU + ∂xF (U) = 0

the numerical flux takes the form:

Fi+1/2 = F(Ui)+ F(Ui+1)

2
− cUi+1 − Ui

2
.

The subcharacteristic condition needs to be satisfied i.e. the eigenvalues of the
physical system to be solved must lie between the eigenvalues of the relaxation
system. It was proved that for isentropic gas dynamics systems with pressure
p = p(ρ) the choice of

c = max
(
|ui | +

√
p′(ρi), |ui+1| +

√
p′(ρi+1)

)
,

is appropriate, where u is the velocity gives a scheme that preserves positivity of
density as well as resolves solutions with vacuum since c does not blow up at
vacuum. For relaxation schemes that can handle delta-shocks, we refer to [71]. For
other numerical approaches for pressureless gas, we refer to [19, 20, 35].

The Lyapunov function F(t) in Lemma 5 is evaluated on the same temporal grid
and the integral in space is discretized using a midpoint scheme.

In Fig. 2, we compare the decay of the Lyapunov function L(t) with the estimate
of the decay provided by Lemma 5 for different values of α. As in the case of the
particle system, the theoretical findings are confirmed by the numerical simulation.

4 Results on Nonlinear Interacting Particle Systems

In this section we briefly review some existing research directions for controlled
particle systems.

4.1 One-Dimensional State Space Models

Many recent publications focus on simple models with a phase state that is one-
dimensional, i.e., each particle i has a state yi ∈ R. Such models are popular in the
description of opinion formation and wealth distributions [52, 66] to name just two.

Many contributions [1, 3, 5] introduce novel control strategies based on opinion
formation models of the type

y′i =
1

N

N∑

j �=i
P (yi, yj )(yj − yi)+ qi, yi(0) = yi,0, (51)
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Fig. 2 Semi-logarithmic plot for the decay of the Lyapunov function t → L(t) over time. The
crossed lines correspond to the numerical integration of system (19) for different values of α. The
solid line shows the theoretical expected decay L(0) exp(−r(t)) where the rate r is obtained by
numerical integration of equation (21). The red, blue, and black lines correspond to α = 10−4,

α = 10−3, and α = 10−2, respectively

where yi ∈ I ⊂ R and the dynamics are driven by an alignment process due
to pairwise interaction and weighted by a function P(·, ·). In the case of wealth
models, we have I = R+ denoting the available money for each particle while
for opinion formation, we have I = [−1, 1] denoting extreme opinions. For traffic
flow applications the interval I is I = [0, vmax] where vmax is the maximal speed
allowed on a road. Other examples are I = [0, 2π ] in the case of one-dimensional
Kuramoto-type models or I = R in the case of the one-dimensional Cucker–Smale
model.

For constant P , the model (51) is still linear and a similar analysis as in Sect. 2
is possible. For nonlinear P , most of the research has focused on suboptimal
control based on instantaneous or short time horizon control. The mean field
limit of (51) and the corresponding controlled system, using a suboptimal control,
has also been established. Due to the one-dimensional phase space the extension
to the hydrodynamic equation is not relevant. However, moments of the kinetic
distribution as well as equilibrium conditions have been studied.

A further extension to the models has been the addition of stochasticity to the
dynamics. In [6] white noise, dW , is added to the dynamics leading to a problem of
the form:
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q∗ = argminv∈R
1

2

∫ T

0
E

⎛

⎜⎝

⎛

⎝ 1

N

N∑

j=1

g(yi)

⎞

⎠
2

+ β
2
v2

⎞

⎟⎠ dt,

subject to dyi =
( 1

N

N∑

j �=i
P (yi, yj )(yj − yi)+ v

)
dt + dWi, yi(0) = yi,0,

where P is a given interaction kernel and g a given cost functional. Also, in [4]
a stochastic parameter, W , is included in the collision operator, P , to account for
modeling errors. Thus the resulting problem reads

u = argminv∈R
1

2

∫ T

0
E

⎛

⎜⎝

⎛

⎝ 1

N

N∑

j=1

g(yi)

⎞

⎠
2

+ β
2
v2

⎞

⎟⎠ dtsubject to (51).

Using instantaneous control and polynomial chaos expansion the problem is reduced
to a closed loop problem for suboptimal control q.

Additional structural requirements on the control could be considered. For
example, some application might require sparse control. An existing approach
modifies the cost functional to treat this case [46]:

q∗ = argminv∈R
1

2

∫ T

0

1

N

N∑

j=1

y2
i dt + β‖v‖L,

for L = Lp(0, T ) where 0 < p ≤ 1 is studied. This term promotes sparsity of
the control in time. Another type of sparsity is introduced in [7] where sparsity
is introduced in the number of controllable particles leading to a problem of the
following type:

y′i =
1

N

N∑

j �=i
P (yi, yj ,W)(yj − yi)+ biv, yi(0) = yi,0,

where bi ∈ {0, 1}, fixed, with ‖b‖�1 sufficiently small. A further example of sparse
control in the case of the Hegselmann–Krause model is given in [68].

4.2 Controlled Particle Systems in High-Dimensional State
Space

Typical crowd dynamic models [10, 36, 73] have a state space that at least contains
the velocity vi and the position of the particle xi. However, the field of control
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for such models and its associated mean field equations is largely unexplored. So
far, results on instantaneous control approaches applied to second-order alignment
models are available in [1]. The basic model for i = 1, . . . , N particles is given by
the following dynamics:

d

dt
xi(t) = vi(t), (52)

d

dt
vi(t) = 1

N

N∑

j=1

P(xi(t), xj (t))(vj (t)− vi(t))+ q∗(t) (53)

subject to initial conditions and for a given function P. The instantaneous control
approach has been used to find a suboptimal explicit closed loop control for q∗(t)
by minimizing

q∗(t) = argminq∈R
1

2

∫ t+	t

t

1

N

N∑

j=1

(vi(s)− vd(s))2 + β
2
q2(s)ds, (54)

on a small time horizon 	t > 0. The parameter β > 0 is again the regularization
parameter and vd is a desired velocity, piecewise constant on the receding horizon
(t, t+	t). To illustrate this point, we consider for parametersK > 0, γ > 0, δ ≥ 0

P(xi, xj ) = K

(γ 2 + ‖xi − xj‖2)δ
. (55)

These dynamics are known as the Cucker–Smale model. We refer to [32, 37] for
more details on properties as well as motivation. Another example of P is introduced
in [65] given by

P(xi, xj ) = H(|xi − xj |)
1
N

∑N
j=1H(|xi − xj |)

, (56)

where H could be given by (55), i.e., H = H(r) = K
(γ 2+r2)δ

. An extension of the
instantaneous control approach to this system is straightforward.

A further class of crowd models where, to the best of our knowledge no control
results are available for now, are models of the type [42]

d

dt
xi(t) = vi(t), (57)

d

dt
vi(t) = − 1

N

N∑

j=1

P(xi(t)− xj (t))+ (β − γ |vi |2)vi, (58)
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where P(x, y) is given as a gradient of a potential, U , modeling interactions,
P(xi, xj ) = ∇xiU(|xj − xi |) and β, γ ≥ 0 are parameters modeling the self-
propulsion of particles.

Even more detailed models which have been recently introduced such as in [32]
introduce, on the particle level, the concept of a visual cone, restricting the possible
interaction of particle i with particles j �= i by geometric conditions. So far, no
control results for those models are known.

In applications in finance, there only exist a few results on control of wealth
or financial market models. For wealth models of the type (51) subject to (54), an
instantaneous control approach has been introduced in [45]. The objective function
intends to reduce the variance of wealth among agents and thus the objective
function in (54) needs to be replaced by the empirical variance. Furthermore, the
control of binary wealth interactions leading to a Boltzmann type description has
been investigated in [45].

In a game theoretic setting wealth models have been studied as well. A second-
order model of the type

ẋi = V (xi, yj ), (59)

dyi = q∗i dt + yi dWi (60)

has been discussed in [38]. Here V (·, ·)models the speed of change in the economic
configuration xi ∈ R. The control q∗i has been computed as best reply to a cost
functional of the type

q∗i (t) = argminq∈R
1

2

∫ t+	t

t

E

( 1

N

N∑

j=1

P(xi(s), xj (s)) �(yj (s)− yi(s))

+ β
2
q2(s)

)
ds, (61)

where �(·) models the trading interaction of agents with different wealth levels
xi > 0. A portfolio model of similar structure to (59)–(61) has been discussed in
[72], where additionally the dynamics are coupled to a stock price equation modeled
by a stochastic differential equation.

An example of a wealth model which has been studied in the game theoretic
setting without any suboptimal strategies is presented in [51]. The structure of the
model is as follows:

dxi = q∗i dt + dWi, (62)

q∗i (t) = argminq∈R
1

2

∫ ∞

t

E

(
F(x1, . . ., xN , qi) e

−r(s−t)) ds. (63)
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In the mean field limit the system (62) reduces to a Hamilton–Jacobi–Bellman
equation. These models are known as mean field games and have been extensively
studied in the past decade, see [14, 31].

5 Summary

In summary the chapter presents some developments in controlled crowd dynamics.
A discussion of the multisclae control of particle systems which culiminates in
the mean field of the controlled particle system is presented. In addition, the
ensuing control system for the hydrodynamic model is derived from the particle
system. To demonstrate the practical application of the approaches, numerical tests
are undertaken on the linear models. The behavior predicted in the theoretical
discussions is clear in the numerical results. Further a discussion of work that has
been done on nonlinear models is also discussed in the last section of the chapter.
This includes applications in opinion formation, stochastic control, crowd models
as well as wealth models among others.
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Mathematical Models and Methods for
Crowd Dynamics Control

Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, and Daniele Peri

Abstract In this survey we consider mathematical models and methods recently
developed to control crowd dynamics, with particular emphasis on egressing
pedestrians. We focus on two control strategies: the first one consists in using
special agents, called leaders, to steer the crowd towards the desired direction.
Leaders can be either hidden in the crowd or recognizable as such. This strategy
heavily relies on the power of the social influence (herding effect), namely the
natural tendency of people to follow group mates in situations of emergency or
doubt. The second one consists in modify the surrounding environment by adding
in the walking area multiple obstacles optimally placed and shaped. The aim of the
obstacles is to naturally force people to behave as desired. Both control strategies
discussed in this paper aim at reducing as much as possible the intervention on the
crowd. Ideally the natural behavior of people is kept, and people do not even realize
they are being led by an external intelligence. Mathematical models are discussed at
different scales of observation, showing how macroscopic (fluid-dynamic) models
can be derived by mesoscopic (kinetic) models which, in turn, can be derived by
microscopic (agent-based) models.
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1 Introduction

This paper aims at presenting a brief survey of some recent developments in the
mathematical modeling and control techniques for human crowd dynamics. Here,
we define crowd dynamics control as the art of steering large masses of people in
the desired direction, minimizing verbal directives to individuals and preserving
as much as possible their natural behavior. In the extreme case, we get methods
to steer crowds along predefined paths without the crowd being aware of it, i.e.,
individuals do not even perceive that their (apparently) natural decisions are guided.
Such control techniques are expected to be effective in all situations characterized
by the impossibility of directly communicating with the crowd (e.g., in case of very
large groups, emergencies, violent crowds reluctant to follow directions indicated
by event organizers or police).

Crowd control stems on different research topics and benefits from a mul-
tidisciplinary approach. First, physics and psychology are called upon to point
out the main behavioral aspects which represent the constitutive ingredients of
mathematical models. Models will then be used to create a digital twin of the
moving crowd. After a careful choice of the scale of observation (mainly depending
on the size of the crowd and computing resources), numerical analysis is used to
solve the equations and get a reproduction of virtual crowds, while real observations
and data acquisition are crucial to calibrate the models. Calibration is particularly
challenging, considering the high variability among persons and the difficulty of
measuring some parameters like pushiness, degree of rationality, knowledge of the
surrounding environment, etc. After that, we have to set up the control problem,
defining the control (design) variables. Roughly speaking, this means that we need
to identify which part of the system is subject to modifications and which part is
instead left to the natural state. Then, we must define the objective function, i.e.,
the goal of the optimization procedure. Here optimization techniques come into
play to solve the control problem and get the optimal strategy to apply to steer the
crowd as desired. Finally, experiments with real crowds are desirable to check the
effectiveness of the strategy found in virtual environments.

Curiously, some metaheuristic optimization techniques like the one adopted in
Sect. 4.2 are inspired precisely by models for collective behavior: many agents
spread in the abstract space of control variables hunting for the optimal strategy
of the crowd. This creates a surreal parallelism between the physical space, where
people move, and the space of control variables, where people’s behavior lies. In
the two spaces, the same abstract mathematical methods can be then used to make
agents reach their goals.
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1.1 Scale of Observation, Models, and Degree of Rationality

Pedestrian dynamics can be observed at different scales, and the choice of the
point of view drastically changes the modeling framework. A nanoscopic approach
consists in tracking every single agent, including the position of torso and head
[12, 25]. A microscopic approach consists instead in tracking every single agent
assuming s/he is a 0-dimensional point or a small circle. A mesoscopic approach
is based on the description of average quantities like the density of people, but it
keeps the possibility to distinguish one-to-one interactions. Finally, the macroscopic
approach describes only average quantities loosing any kind of granularity.

Multiscale approaches are also possible: one can adopt different scales of
observation in different parts of the domain (passing information across an interface)
or one can employ two or more scales at the same time and space, to get a fully
hybridized description, as in [35, 36].

Concerning pedestrian modeling, many kinds of models have been investigated
so far and several reviews and books are available. For a quick introduction, we
refer the reader to the surveys [16, 51] and the books [36, 61, 67]. Some papers
deal specifically with egressing/evacuating pedestrians: a very good source of
references is the paper [1], where evacuation models both with and without optimal
planning search are discussed. The paper [1] itself proposes a cellular automata
model coupled with a genetic algorithm to find a top-down optimal evacuation
plan. Evacuation problems were studied by means of lattice models [26, 47], social
force models [53, 72, 81], cellular automata models [1, 79], mesoscopic models
[2, 8, 43], and macroscopic models [23]. Limited visibility issues were considered
in [23, 26, 47]. Real experiments involving people can be found in [8, 47].

It can be useful to recall here that pedestrians can show different degrees of
rationality, depending on the situation and their knowledge of the surrounding
environment. In an unknown environment with limited visibility we expected people
to follow basically a full instinctive behavior, being impossible to make predictions.
Conversely, an ideal rational pedestrian with a specific target and full knowledge of
the environment can compute her/his path in an optimal manner, is able to forecast
the behavior of other pedestrians (even for long time), and is able to understand
the impact of the presence of the others at any time along her/his path. In this
case dynamics of people are fully coupled in space and time, and a competition
among pedestrians naturally arises. Nash equilibria or similar concepts help to find
the strategy eventually adopted by the participants. For a deep discussion in this
direction we refer the reader to the book [36, Sect. 4.4] and papers [34, 37].
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1.2 Crowd Dynamics Control

The problem of controlling crowds falls in the larger line of research dedicated to
self-organizing agents. For this, a vast mathematical literature is available and first
principles as well as the most important qualitative results are already known. The
toy model for such investigations is the Cucker–Smale model [38], introduced in
2007. Controlled versions of the model are widely studied, see, e.g., [5, 7, 15, 17,
20, 44, 56]. Let us also mention the seminal paper [31], where the authors pointed
out that in a group of individuals with tendency to move together, a small percentage
of informed individuals is able to steer the whole group in the desired direction.

In this paper we focus on two control strategies:

• The first one consists in using special agents, called leaders, to steer the crowd
towards the desired direction. Leaders can be either hidden in the crowd [8, 31,
39, 49, 50] or recognizable as such [6, 9, 10, 18, 40, 66, 81]. This strategy heavily
relies on the power of the social influence (or herding effect), namely the natural
tendency of people to follow group mates in situations of emergency or doubt.
En passant, let us stress that the term “herding” is largely ambiguous in the
literature, as pointed out in the recent paper [48].

• The second one consists in modify the surrounding environment by adding
in the walking area multiple obstacles optimally placed and shaped. The aim
of the obstacles is to smoothly force people to behave as desired, changing
surrounding conditions in such a way that the modified behavior of people
naturally matches the optimal one. This approach can be seen as an inverse
application of the Braess’s paradox [19, 58], originally proposed in the context
of traffic flow on network. In that case it was noted that adding a new road (i.e.,
a new connection) in the network can lead to a higher degree of congestion. In
our framework, an additional constraint leads paradoxically to an improvement
of the pedestrian flow. Several papers investigate numerically the effectiveness
of the Braess’s paradox by means of both microscopic models (e.g., Helbing’s
social force model) and macroscopic models. Some papers report the effect of
additional obstacles manually placed in the walking area, see, among others,
[41, 45, 54, 57, 64, 77]. Other papers, instead, employ optimization algorithms,
see [32, 33, 37, 59, 60, 75, 80]. Note that the resulting optimization problem
typically is non-convex and high dimensional. Efficient optimization algorithms,
including Particle Swarm Optimization (PSO), genetic algorithms, differential
evolution, and random compass search, were used.

1.3 Manuscript Organization

The rest of the manuscript is organized as follows. In Sect. 2 we introduce the
mathematical model for egressing pedestrians which will serve as a guideline for
the rest of the paper. Main ingredients are introduced and three scales of observation
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(microscopic, mesoscopic, macroscopic) are discussed. In addition, we discuss
methods to manage obstacles in models, i.e., how to prevent pedestrians from
entering forbidden zones of the walking area. In Sect. 3 we present crowd control
techniques based on the use of leaders, either visible (i.e., recognizable from the
crowd as such) or not. In Sect. 4 we analyze crowd control techniques based on the
use of smart obstacles suitably located in the walking area to modify the perception
of the environment and suitably modify the optimal paths. Finally, in Sect. 5 we
sketch some conclusions and future research directions.

2 Different Levels of Description

In this section we describe the model at a general level. In particular we will focus
on the different levels of description: microscopic, mesoscopic, and macroscopic.

2.1 Preliminary Notions

Hereafter, we divide the population between leaders, which are the controllers and
behave in some optimal way (to be defined), and followers, which represent the
mass of agents to be controlled. Followers typically cannot distinguish between
followers and leaders. Our approach consists in describing leaders by a first-order
model (positions are the only state variables), while followers are described by a
second-order model (both positions and velocities are state variables). In the latter
case, the small inertia typical of pedestrian motion is obtained by means of a fast
relaxation towards the target velocity.

Concerning the way interactions between individuals are modeled, we adopt a
mixed approach, assuming short-range interactions to be metrical and long-range
ones to be topological. We recall that, the individual interactions are said to be
metrical if they involve only mates within a predefined sensory region, regardless
of the number of individuals which actually fall in it. Interactions are instead
said topological if it involves a predefined number of group mates regardless their
distance from the considered agent.

We assume here that pedestrians have a target to reach in minimal time, but the
environment is in general unknown. Therefore, since individuals have no idea of
the location of their target, we expect that they often look around to explore the
environment and see the behavior of the others. This is why we prefer to adhere to
isotropic (all-around) interactions.

Next, before introducing the details of the model, let us briefly describe the social
forces acting on the agents.
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• Leaders.

– Leaders are subject to an isotropic metrical short-range repulsion force
directed against all the others, translating the fact that they want to avoid
collisions and that a maximal density exists.

– Leaders are assumed to know the environment and the self-organizing features
of the crowd. They respond to an optimal force which is the result of an offline
optimization procedure, defined as to minimize some cost functional.

• Followers.

– Similarly to leaders, followers respond to an isotropic metrical short-range
repulsion force directed against all the others.

– Followers tend to a desired velocity which corresponds to the velocity that
would follow if they were alone in the domain. Since they do not know the
environment, we assume that followers describe a random walk if the exit is
not visible (exploration phase) or a sharp motion toward the exit if the exit is
visible (evacuation phase).

– If the exit is not visible, followers are subject to an isotropic topological
alignment force with all the others, including leaders, i.e., they tend to have
the same velocity of the group mates (herding effect). We will distinguish in
the sequel between visible (recognized by the followers) and invisible (not
recognized by the followers) leaders.

2.2 The Microscopic Leader-Follower Model

In this section we introduce the microscopic model for followers and leaders. We
denote by d the dimension of the space in which the motion takes place (typically
d = 2), by NF the number of followers, and by NL � NF the number of leaders.
We also denote by � ≡ R

d the walking area and by xτ ∈ � the target point. To
define the target’s visibility area, we consider the set 
, with xτ ∈ 
 ⊂ �, and
we assume that the target is completely visible from any point belonging to 
 and
completely invisible from any point belonging to �\
.

For every i = 1, . . . , NF, let (xi(t), vi(t)) ∈ R
2d denote position and velocity

of the agents belonging to the population of followers at time t ≥ 0 and, for every
k = 1, . . . , NL, let (yk(t), wk(t)) ∈ R

2d denote position and velocity of the agents
among the population of leaders at time t ≥ 0. Let us also define x := (x1, . . . , xNF )

and y := (y1, . . . , yNL ).
Finally, let us denote by Br(x) the ball of radius r > 0 centered at x ∈ � and by

BN(x; x, y) the minimal ball centered at x encompassing at least N agents, and by
N∗ the actual number of agents in BN(x; x, y). Note that N∗ ≥ N.

Remark 1 The computation of BN(x; x, y) requires the knowledge of the positions
of all the agents, since all the distances |xi − x|, i = 1, . . . , NF, and |yk − x|,
k = 1, . . . , NL must be evaluated in order to find the N closest agents to x.
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The microscopic dynamics described by the two populations is given by the
following set of ODEs: for i = 1, . . . , NF and k = 1, . . . , NL,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = vi,
v̇i = A(xi, vi)+∑NF

j=1H
F(xi, vi, xj , vj ; x, y)+∑NL

�=1H
L(xi, vi, y�, w�; x, y),

ẏk = wk = ∑NF
j=1K

F(yk, xj )+∑NL
�=1K

L(yk, y�)+ uk.
(1)

We assume that

• A is a self-propulsion term, given by the relaxation toward a random direction or
the relaxation toward a unit vector pointing to the target (the choice depends
on the position), plus a term which translates the tendency to reach a given
characteristic speed s ≥ 0 (modulus of the velocity), i.e.,

A(x, v) := θ(x)Cz(z− v)+ (1 − θ(x))Cτ
(
xτ − x
|xτ − x| − v

)
+ Cs(s2 − |v|2)v,

(2)

where θ : Rd → [0, 1] is the characteristic function of �\
, θ(x) = χ�\
(x),
z is a d-dimensional random vector with normal distribution N(0, σ 2), and Cz,
Cτ , Cs are positive constants.

• The interactions follower-follower and follower-leader are defined as

H F(x, v, x′, v′; x, y) := − CF
r Rγ,r (x, x

′)+ θ(x)C
F
al

N∗
(
v′ − v)χBN(x;x,y)(x

′),

H L(x, v, y,w; x, y) := − CF
r Rγ,r (x, y)+ θ(x)

CL
al

N∗ (
w − v) χBN(x;x,y)(y)

+ θ(x)Cat y − x|y − x| ,
(3)

for given positive constants CF
r , C

F
al, C

L
al, Cat , r , and γ .

In the first equation of (3) the term,

Rγ,r (x, x
′) =

{
e−|x′−x|γ x′−x|x′−x| , if x′ ∈ Br(x)\{x},
0, otherwise,

models a (metrical) repulsive force, while the second term accounts for the
(topological) alignment force, which vanishes inside 
. Note that the interaction
with the leaders, defined by the second equation in (3), accounts the previous
forces with an additional attraction towards the leaders’ position. With the choice
Cat = 0, CF

al = CL
al we have H F ≡ H L and, therefore, the leaders are not

recognized by the followers as special. This feature opens a wide range of new
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applications, including the control of crowds not prone to follow authority’s
directives.

• The interactions leader-follower and leader-leader reduce to a mere (metrical)
repulsion, i.e., KF = KL = −CL

r Rζ,r , where CL
r > 0 and ζ > 0 are in general

different from CF
r and γ , respectively.

• uk : R+ → R
dNL

is the control variable, to be chosen in a set of admissible
control functions. Except for the short-range repulsion forces, the behavior of the
leaders is entirely characterized by the control term u. More details on the control
term will be given in Sect. 3.

Remark 2 As a further generalization of the above modeling, the population of
leaders can be separated into two populations (yV

k (t), w
V
k (t)), k = 1, . . . , NL,V

and (y I(t)k, w
I
k(t)), k = 1, . . . , NL,I with NL = NL,V + NL,I, depending on

whether they are recognized by the followers (visible) or not (invisible). In the
first case, the corresponding interaction function H L,V �= H F since followers will
have the tendency to align with greater intensity towards leaders, whereas in the
second case we simply have H L,I = H F. In the sequel, for the sake of simplicity,
we present our analysis in the case of system (1), where all leaders are either
visible or invisible, leaving to a straightforward generalization of the extension of
simultaneous coexistence of visible and invisible leaders.

2.3 Boltzmann Modeling

As already mentioned, our main interest in (1) lies in the caseNL � NF, that is, the
population of followers exceeds by far the one of leaders. When NF is very large,
a microscopic description of both populations is no longer a viable option. We thus
consider the evolution of the distribution of followers at time t ≥ 0, denoted by
f (t, x, v), together with the microscopic equations for the leaders (whose number
is still small). To this end, we denote with mF the total mass of followers, i.e.,

mF(t) =
∫

R2d
f (t, x, v) dx dv,

which we shall eventually require to be equal to NF. We introduce, for symmetry
reasons, the distribution of leaders g and their total mass

g(t, x, v) =
NL∑

k=1

δ(yk(t),wk(t))(x, v), mL(t) =
∫

R2d
g(t, x, v) dx dv = NL.

(4)
The evolution of f can be then described by a Boltzmann-type dynamics, derived

from the above microscopic formulation, which is obtained by analyzing the binary
interactions between a follower and another follower and the same follower with
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a leader. The application of standard methods of binary interactions, see [24, 71],
shall yield a mesoscopic model for the distribution of followers, to be coupled with
the previously presented ODE dynamics for leaders.

To derive the Boltzmann-type dynamics, we assume that, before interacting,
each agent has at his/her disposal the values x and y that s/he needs in order to
perform its movement: hence, in a binary interaction between two followers with
state parameter (x, v) and (x̂, v̂), the value of H F(x, v, x̂, v̂; x, y) does not depend
on x and y. In the case of H F of the form (3), this means that the ball BN(x; x, y)
and the value of N∗ have been already computed before interacting.

Moreover, since we are considering the distributions f and g of followers and
leaders, respectively, the vectors x and y are derived from f and g by means of
the first moments of f and g, π1f and π1g, respectively, which give the spatial
variables of those distribution. Hence, we write H F(x, v, x̂, v̂;π1f, π1g) in place
of H F(x, v, x̂, v̂; x, y) to stress the dependence of this term on f and g.

We thus consider two followers with state parameter (x, v) and (x̂, v̂), respec-
tively, and we describe the evolution of their velocities after the interaction
according to

⎧
⎪⎨

⎪⎩

v∗ = v + ηF
[
θ(x)Czξ + S(x, v)+mFH F(x, v, x̂, v̂;π1f, π1g)

]
,

v̂∗ = v̂ + ηF
[
θ(x̂)Czξ + S(x̂, v̂)+mFH F(x̂, v̂, x, v;π1f, π1g)

]
,

(5)

where ηF is the strength of interaction among followers, ξ is a random variables
whose entries are i.i.d. following a normal distribution with mean 0, variance ς2,
taking values in a set B, and S is defined as the deterministic part of the self-
propulsion term (2),

S(x, v) = −θ(x)Czv + (1 − θ(x))Cτ
(
xτ − x
|xτ − x| − v

)
+ Cs(s2 − |v|2)v. (6)

We then consider the same follower as before with state parameters (x, v) and a
leader agent (x̃, ṽ); in this case the modified velocities satisfy

{
v∗∗ = v + ηLmLH L(x, v, x̃, ṽ;π1f, π1g),

ṽ∗ = ṽ, (7)

where ηL is the strength of the interaction between followers and leaders. Note
that (7) accounts only the change of the followers’ velocities, since leaders are not
evolving via binary interactions.

The time evolution of f is then given by a balance between bilinear gain and
loss of space and velocity terms according to the two binary interactions (5) and (7),
quantitatively described by the following Boltzmann-type equation

∂tf + v · ∇xf = λFQ(f, f )+ λLQ(f, g), (8)
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where λF and λL stand for the interaction frequencies among followers and between
followers and leaders, respectively. The interaction integrals Q(f, f ) and Q(f, g)
are defined as

Q(f, f )(t) = E

(∫

R4d

(
1

JF
f (t, x∗, v∗)f (t, x̂∗, v̂∗)− f (t, x, v)f (t, x̂, v̂)

)
dx̂ dv̂

)
,

Q(f, g)(t) = E

(∫

R4d

(
1

JL
f (t, x∗∗, v∗∗)g(t, x̃∗, ṽ∗)− f (t, x, v)g(t, x̃, ṽ)

)
dx̃ dṽ

)
,

where the couples (x∗, v∗) and (x̂∗, v̂∗) are the pre-interaction states that generate
(x, v) and (x̂, v̂) via (5), and JF is the Jacobian of the change of variables given
by (5). Similarly, (x∗∗, v∗∗) and (x̃∗, ṽ∗) are the pre-interaction states that generate
(x, v) and (x̃, ṽ) via (7), and JL is the Jacobian of the change of variables given
by (7). Moreover, the expected value E is computed with respect to ξ ∈ B.

In what follows, for the sake of compactness, we shall omit the time dependency
of f and g, and hence of Q(f, f ) and Q(f, g) too. In conclusion, we have the
following combined ODE-PDE system for the dynamics of microscopic leaders and
mesoscopic followers

⎧
⎪⎪⎨

⎪⎪⎩

∂tf + v · ∇xf = λFQ(f, f )+ λLQ(f, g),

ẏk = wk =
∫

R2d
KF(yk, x)f (x, v) dx dv +

NL∑

�=1

KL(yk, y�)+ uk.
(9)

Remark 3 If we would have opted for a description of agents as hard-sphere
particles, the arising Boltzmann equation (8) would be of Enskog type, see [76]. The
relationship between the hard- and soft-sphere descriptions (i.e., where repulsive
forces are considered, instead) has been deeply discussed, for instance, in [11]. In
our model, the repulsive force Rγ,r is not singular at the origin for computational
reasons, therefore the parameters γ and r have to be chosen properly to avoid
arbitrary high density concentrations.

2.4 Mean-Field Modeling

A different level of modeling is obtained by considering directly the limit for large
NF of the dynamic described by (1) where all individuals in principle are allowed
to interact with all others. This kind of models are typically described by Fokker–
Planck equations and can also be obtained directly from (8) in the quasi-invariant
limit [71]. This technique, analogous to the so-called grazing collision limit in
plasma physics, has been thoroughly studied in [78] and allows, as pointed out
in [71], to pass from the binary Boltzmann description introduced in the previous
section to the mean-field limit.
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In what follows, we shall assume that our agents densely populate a small
region but weakly interact with each other. Formally, we assume that the interaction
strengths ηF and ηL scale according to a parameter ε, the interaction frequencies λF

and λL scale as 1/ε, and we let ε → 0. In order to avoid losing the diffusion term
in the limit, we also scale the variance of the noise term ς2 as 1/ε. More precisely,
we set

ηF = ε, ηL = ε, λF = 1

εmF , λL = 1

εmL , ς2 = σ 2

ε
. (10)

Under the above scaling assumptions, the weak form of Eq. (8), i.e.,

∂

∂t
〈f, ϕ〉 + 〈f, v · ∇xϕ〉 = λF 〈Q(f, f ), ϕ〉 + λL 〈Q(f, g), ϕ〉 , (11)

for a compactly supported test function ϕ, where

〈Q(f, f ), ϕ〉 = E

(∫

R4d

(
ϕ(x, v∗)− ϕ(x, v)) f (x, v)f (x̂, v̂) dx dv dx̂ dv̂

)
,

(12)

〈Q(f, g), ϕ〉 = E

(∫

R4d

(
ϕ(x, v∗∗)− ϕ(x, v)) f (x, v)g(x̃, ṽ) dx dv dx̃ dṽ

)
,

(13)

reduces to the following Fokker–Planck equation (see [71] for more details)

∂

∂t
〈f, ϕ〉 + 〈f, v · ∇xϕ〉 =

〈
f,∇vϕ · G [f, g] + 1

2
σ 2(θCz)

2	vϕ

〉
, (14)

where

G [f, g] = S +HF[f ] +HL[g]

with

HF[f ](x, v) =
∫

R2d
H F(x, v, x̂, v̂;π1f, π1g)f (x̂, v̂) dx̂ dv̂,

HL[g](x, v) =
∫

R2d
H L(x, v, x̃, ṽ;π1f, π1g)g(x̃, ṽ) dx̃ dṽ.

Since ϕ has compact support, Eq. (14) can be recast in strong form by means of
integration by parts. Coupling the resulting PDE with the microscopic ODEs for the
leaders k = 1, . . . , NL, we eventually obtain the system
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⎧
⎪⎪⎨

⎪⎪⎩

∂tf + v · ∇xf = −∇v · (G [f, g] f )+ 1
2σ

2(θCz)
2	vf,

ẏk = wk =
∫

R2d
KF(yk, x)f (x, v) dx dv +

NL∑

�=1

KL(yk, y�)+ uk.
(15)

2.5 Macroscopic Modeling

In terms of model hierarchy one could imagine to compute the moments of (15)
to further reduce complexity. Let us stress that deriving a consistent macroscopic
system from the kinetic equation is in general a difficult task, since equilibrium
states are difficult to obtain, therefore no closure of the moments equations is
possible. For self-organizing models similar to (15), in the noiseless case (i.e.,
σ ≡ 0), a standard way to obtain a closed hydrodynamic system is to assume the
velocity distribution to be mono-kinetic, i.e., f (t, x, v) = ρ(t, x)δ(v − V (t, x)),
and the fluctuations to be negligible, thus computing the moments of (15) leads to
the following macroscopic system for the density ρ and the bulk velocity V ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ +∇x · (ρV ) = 0,

∂t (ρV )+∇x · (ρV ⊗ V ) = Gm
[
ρ, ρL, V , V L] ρ,

ẏk = wk =
∫

Rd

KF(yk, x)ρ(t, x) dx +
NL∑

�=1

KL(yk, y�)+ uk,
(16)

where ρL(x, t), V L(x, t) represent the leaders’ macroscopic density and bulk
velocity, respectively, and Gm the macroscopic interaction operator, see [4, 22] for
further details. For σ > 0, the derivation of a macroscopic system depends highly
on the scaling regime between the noise and the interaction terms, see, for example,
[21, 22, 62]. Furthermore, the presence of diffusion operator in model (15) depends
on the spatial domain, therefore the derivation of a reasonable macroscopic model
is not trivial and it is left for further studies.

2.6 Interaction with Obstacles

So far we have considered pedestrians influenced by the leaders’ action but free to
move in any direction of the space. In practical applications, however, dynamics
are often constrained by walls or other kind of obstacles. Including obstacles in
mathematical models is not as trivial as one can imagine. We refer the reader to [32,
Sect. 2] for a review of obstacles’ handling techniques proposed in the literature.
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Here we recall just the three most common procedures, the first is the one we use in
the numerical tests presented in this paper.

Cut Off of the Velocity Field An easy method to deal with obstacles is obtained
by computing the velocity field first neglecting the presence of the obstacles, then
nullifying the component of the velocity vector which points inside the obstacle.
This method is used in, e.g., [8, 35, 37]. The method requires to pay attention that
pedestrians do not stop walking completely because both components of the velocity
vector vanish. This can happen around corners, stair-shaped obstacles, and when
obstacles are very close to each other (i.e., the distance is comparable with the spatial
resolution of the numerical grid). A similar but more sophisticated approach can be
found in [32, Sect. 3].

Repulsive Obstacles Another easy method used to manage obstacles is obtained
assuming that they generate a repulsive (social) force, exactly as pedestrians
themselves do. In other words, obstacles are treated as frozen pedestrians. In
this way one can use a repulsion function of the same kind to model both the
interactions with group mates and with obstacles. This method is extensively used
in microscopic models, see, e.g., [28, 45, 52, 63, 68–70] and also in macroscopic
and multiscale models, see, e.g., [29, 30, 42, 74], with or without the pre-evaluation
of the distance-to-obstacle function. The main drawback of this approach is that it
is quite difficult to tune the strength of the repulsion force in such a way that the
resulting behavior is both admissible and realistic. Indeed, if the force is too small
there is the risk that pedestrians enter the obstacles, while if it is too large pedestrians
bypass the obstacles excessively far away. The paper [29] proposes a method to tune
automatically the strength of the repulsion.

Rational Turnaround In more sophisticated models which take into account the
rationality and predictive ability of pedestrians, obstacles can be managed including
them into the decision-making process. For example, in the Hughes’s model [57]
pedestrians move, at each given time, along the fastest path toward the target,
considering that crowded regions slow down the walking speed. In this framework,
obstacles are easily included assuming that inside them the speed is null, so that the
computation of the fastest path will circumvent them automatically.

3 Crowd Controls Through Leaders

As discussed in the previous section, in order to steer the crowd towards a desired
direction or target position, we want to exploit the tendency of people to follow
group mates in situations of emergency or doubt (social influence or herding effect).
In particular by controlling few leaders and their trajectories we want to drive the
whole system of followers. In this section, we will formulate this problem in the
context of optimal control theory and discuss its numerical solution. The main
challenge is represented by the complexity induced by the non-linearities, and the



172 G. Albi et al.

high-dimensionality of models (1) and (9). Hence, we are interested in efficient
methods to solve this optimization problem, synthesizing strategies scalable at
various levels: from micro to macro.

3.1 Optimal Control Framework

The functional to be minimized can be chosen in several ways, the effectiveness
mostly depends on the optimization method which is used afterwards. The most
natural functional to be minimized for a crowd of egressing pedestrian is the
evacuation time, which can be defined as follows:

min{t > 0 | xi(t) /∈ � ∀i = 1, . . . , NF}, (17)

subject to (1) or (9) and with u(·) ∈ Uadm, where Uadm is the set of admissible
controls (including, for instance, box constraints to avoid excessive velocities). Such
functional can be extremely nonregular, therefore the search of local minima is
particularly difficult. Moreover the evacuation of the total mass in many situations
cannot completely be reached, in particular for the mesoscopic model where we
account for a diffusion term.

In the sequel we propose two alternative optimal control problems, both designed
to improve the evacuation time, and associated with different optimization methods
for their solution.

3.1.1 Quadratic Cost Functional and Model Predictive Control

A first approximation of (17) can be designed introducing a quadratic cost as
follows:

�(x, y, u) = C1

NF∑

i=1

‖xi − xτ‖2 + C2

NF∑

i=1

NL∑

k=1

‖xi − yk‖2 + C3

NL∑

k=1

‖uk‖2, (18)

for some positive constants C1, C2, and C3. The first term promotes the fact that
followers have to reach the exit, the second forces leaders to keep contact with
the crowd, and the last term penalizes excessive velocities. This minimization is
performed along a fixed time frame [0, T ]

min
u(·)∈Uadm

T∫

0

�(x(t), y(t), u(t)) dt, subject to (1) or (9). (19)
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For this type of problem optimal solutions are typically out of reach, therefore we
have to rely on suboptimal strategies. A computationally efficient way to address
the optimal control problem (19) is by Model Predictive Control (MPC) [65], the
method works as follows.

Algorithm 1 (MPC)

1. Set the time step	t with n̄ = 0, . . . , NT such that T = NT	t , and the predictive
parameter Nmpc, where Nmpc � NT .

2. while n̄ < NT

a. Solve the reduced minimization problem

min
u(·)∈Uadm

n̄+Nmpc−1∑

n=n̄
�(x(n	t), y(n	t), u(n	t)) (20)

subject to a discretization of the dynamics (1).
b. Generate an optimal sequence of controls {u(n̄	t), . . . , u((n̄+Nmpc−1)	t)}.
c. Evolve the dynamics of (1) for a time step 	t with u(n̄	t).
d. Update n̄← n̄+ 1.

repeat
 !

Note that for Nmpc = T/	t the MPC approach solves the full time frame
problem (19), whereas for Nmpc = 2, it recovers an instantaneous controller.
Such flexibility is complemented with a robust behavior, as the optimization is
re-initialized every time step, allowing to address perturbations along the optimal
trajectory.

3.1.2 Evacuated Mass Functional and Compass Search

Complete evacuation of the crowd is not always feasible; therefore, we consider as
milder request to maximize the evacuated mass at final time T , minimizing the total
mass inside the domain � as follows:

min
u(·)∈Uadm

{
mF(T |u) =

∫

Rd

∫

�

f (T , x, v) dx dv

}
, subject to (9), (21)

where in the microscopic case the integral over the density f (T , x, v) has to be
interpreted in the empirical sense as sum of Dirac masses, namely

mF(T |u) = 1

NF

NF∑

i=1

δ(xi(t), vi(t))χ�(xi(t)).
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In order to minimize such functional we move towards random methods as
compass search (see [14] and the references therein), alternative methods are genetic
algorithms, or particle swarm optimization which will be discussed in more details
in Sect. 4.

First of all, we consider only piecewise constant trajectories, introducing suitable
switching times for the leaders’ controls. More precisely, we assume that leaders
move at constant velocity for a given fixed time interval and when the switching
time is reached, a new velocity vector is chosen. Therefore, the control variables
are the velocities at the switching times for each leader. In order to optimize such
strategy we define the following Compass Search (CS) algorithm.

Algorithm 2 (CS)

1. Select a discrete set of sample times SM = {t1, t2, . . . , tM }, the parameters k = 0,
kmax and mE .

2. Select an initial strategy u∗ piecewise constant over the set SM, e.g., constant
direction and velocity speed towards the target xτ (go-to-target)

u∗j (t) = − yj (0)− xτ
‖yj (0)− xτ‖ , j = 1, . . . , NL,

compute the functional m(T |u∗).
3. Perform a perturbation of the piecewise constant u∗(t) with small random

variations over the time-set SM

u(k)(tm) = u∗(tm)+ Bm, m = 1, . . . ,M, (P)

where Bm is a random perturbation of the velocity at time tm. Finally compute
m(T |u(k)).

4. while k < kmax AND m(T |u∗) < mE
a. Update k← k + 1.
b. Perform the perturbation (P) and compute m(T |u(k))
c. If m(T |u(k)) ≤ m(T |u∗)

set u∗ ← u(k) and m(T |u∗)← m(T |u(k)).
repeat

 !
Remark 4 In the following some remarks concerning the above control settings.

• Both MPC and CS approaches produce suboptimal controls, but they offer a good
compromise in terms of computational efficiency.

• Controlling directly the velocities rather than the accelerations makes the
optimization problem much simpler because minimal control variations have an
immediate impact on the dynamics.

• In the mesoscopic scale, both functionals (17) and (18) can be considered,
however, the major difficulty to reach a complete evacuation of the continuous
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density is mainly due to the presence of the diffusion term and to the invisible
interaction with respect to the leaders. Indeed the action of the Laplacian outside
the visibility area causes the followers’ density to spread overall the domain.
Hence without any further assumptions such non-linear diffusion, boundary
conditions, or stronger interaction terms exist among followers and followers-
leaders. Thus, in order to deal with the optimal control of the mean-field model,
we will consider functional (21), namely the mass evacuated at the final time T .

3.2 Numerical Experiments

In this section, we present some numerical tests to validate our modeling framework
at the microscopic and mesoscopic level. We explore three different scenarios
for pedestrians: in Setting 1 (S#1) we discuss the difference between visible and
invisible leaders; in Setting 2 (S#2) and 3 (S#3) we explore situation without and
with obstacles, respectively.

The dynamics at microscopic level (1) is discretized by means of the explicit
Euler method with a time step	t = 0.1. The evolution of the kinetic density in (15)
is approximated by means of binary interaction algorithms, which approximates
the mesoscopic model (9) simulating the Boltzmann dynamics (8) with a Monte
Carlo method for small values of the parameter ε, as presented in [3]. We choose
ε = 0.02, 	t = 0.01, and a sample of Ns = O(104) particles to reconstruct the
kinetic density for Setting 0 and 1, and Ns = O(4 × 103) for S#2. This type of
approach is inspired by numerical methods for plasma physics and it allows to solve
the interaction dynamics with a reduced computational cost compared with mesh-
based methods, and an accuracy of O(N−1/2

s ). For further details on this class of
binary interaction algorithms see [3, 71].

Concerning optimization, in the microscopic case we adopt either the compass
search with functional (17) or MPC with functional (19). In the mesoscopic case we
adopt the compass search with functional (21).

In S#2 and S#3 we set the compass search switching times every 20 time
steps, and in S#3 every 50, having fixed the maximal random variation to 1 for
each component of the velocity. In S#1, the inner optimization block of the MPC
procedure is performed via a direct formulation, by means of the fmincon routine
in MatLab, which solves the optimization problem via an SQP method.

In Table 1 we report the various parameters used for the different settings.

Table 1 Model parameters for the different scenarios

Setting NL NF N CF
r CL

r CL
al CF

al Cat Cz Cτ Cs s2 r = ζ γ

#1 3 150 10 2 1.5 3 3 0.01/0 – 1 0.5 0.4 1 1

#2 0–3 150 10 2 1.5 3 3 0 1 1 0.5 0.4 1 1

#3 0–2 150 10 2 1.5 3 3 0 1 1 0.5 0.4 1 1
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Fig. 1 S#1- Visible leaders. Evolution of microscopic density guided by three visible leaders. Top
row shows the microscopic system, bottom row the mesoscopic system

3.2.1 S#1. Visible vs Invisible Leaders

We investigate numerically the difference among invisible and visible leaders,
namely we distinguish situations where leaders are undercover with respect to cases
where leaders act as an attractor of the crowd.

In this first setting the crowd of followers is distributed uniformly in the space
domain with initial velocity randomly distributed with zero average, the leaders
are positioned on the far right side of the crowd moving with fixed velocity w� =
(|v|, 0)T for every � = 1, 2, 3, and no target is visible.

In Fig. 1 we observe the evolution of microscopic and mesoscopic models density
for visible leaders and speed v = 1.5. In both cases it is evident that the visibility
plays a central role in attracting the whole crowd in the direction of leaders’
movement.

In Fig. 2 we observe the same situation with invisible leaders reducing the speed
to v = 0.5, in order to let the leaders interact for longer time with the followers.
Indeed, in this case the followers are only partially influenced by the leaders, and
only the mass close to them is driven towards the right direction, the remaining part
spreads in the domain.

These experiments confirm that the action of invisible leaders is in general
more subtle on the crowd influence, and determining effective strategies poses an
additional challenge to the crowd control.

Moreover we can also infer that for the invisible case the initial positioning
of leaders is of paramount importance to maximize their impact on the crowd
dynamics.
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Fig. 2 S#1- Invisible leaders. Evolution of microscopic density guided by three invisible leaders.
Top row shows the microscopic system, bottom row the mesoscopic system

3.2.2 S#2. Invisible Leaders Guiding a Crowd

We consider now the case of invisible leaders. We compare microscopic and
mesoscopic framework and the evolution of the followers according to three
strategies of the leaders:

• no action (leaders behave as normal followers);
• go-to-target (leaders point straight at the target);
• optimized strategy (an optimization algorithm is used to find the optimal strategy

with respect to some criterion).

Differently from S#1 the crowd is now placed between the leaders and the exit.
In this way leaders, moving to the exit, break more easily the initial uncertainty and
trigger the crowd of followers toward the correct direction.

Microscopic Model

Figure 3 (first row) shows the evolution of the agents computed by the microscopic
model, without leaders. Followers having a direct view of the exit immediately point
towards it, and some group mates close to them follow thanks to the alignment force.
On the contrary, farthest people split in several but cohesive groups with random
direction and never reach the exit.

Figure 3 (second row) shows the evolution of the agents with three leaders. The
leaders’ strategy is defined manually. More precisely, at any time the control is equal



178 G. Albi et al.

10 15 20 25 30 35 40
0
2
4
6
8

10
12
14
16
18
20

10 15 20 25 30 35 40
0
2
4
6
8

10
12
14
16
18
20

10 15 20 25 30 35 40
0
2
4
6
8

10
12
14
16
18
20

15 20 25 30 35
5

10

15

15 20 25 30 35
5

10

15

15 20 25 30 35
5

10

15

15 20 25 30 35
2

4

6

8

10

12

14

15 20 25 30 35
2

4

6

8

10

12

14

15 20 25 30 35
2

4

6

8

10

12

14

Fig. 3 S#2- Microscopic dynamics. First row: no leaders. Second row: three leaders, go-to-target
strategy. Third row: three leaders, optimal strategy (compass search)

to the unit vector pointing towards the exit from the current position (go-to-target
strategy).

The initial position of the leaders plays a central role. Indeed having placed them
on the left-side of the crowd, their motion generates a larger influence into the
followers’ dynamics. This is in contrast with the behavior observed in Fig. 1: where
only a small portion of the pedestrians was triggered by the leaders positioned on
the right-hand side of the crowds.

Note also that the final leaders’ trajectories are not straight lines because of the
additional repulsion force. As it can be seen, the crowd behavior changes completely
since, this time, the whole crowd reaches the exit. However, followers form a heavy
congestion around the exit. It is interesting to note that the shape of the congestion
is circular: this is in line with the results of other social force models as well as
physical observation, which report the formation of an “arch” near the exits. The
arch is correctly substituted here by a full circle due to the absence of walls. Note
that the congestion notably delays the evacuation. This suggests that the strategy of
the leaders is not optimal and can be improved by an optimization method.

Figure 3 (third row) shows the evolution of the agents with three leaders and the
optimal strategy obtained by the compass search algorithm. Surprisingly enough, the
optimizator prescribes that leaders divert some pedestrians from the right direction,
so as not to steer the whole crowd to the exit at the same time. In this way congestion
is avoided and pedestrian flow through the exit is increased.
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In this test we have also run the MPC optimization, including a box constraint
uk(t) ∈ [−1, 1]. We choose C1 = 1, and C2 = C3 = 10−5. MPC results are
consistent in the sense that for Nmpc = 2, the algorithm recovers a controlled
behavior similar to the application of the instantaneous controller (or go-to-target
strategy). Increasing the time frame up to Nmpc = 6 improves both congestion and
evacuation times, but results still remain non-competitive if compared to the whole
time frame optimization performed with a compass search.

In Fig. 4 we compare the occupancy of the exit’s visibility zone as a function of
time for go-to-target strategy and optimal strategies (compass search, 2-step, and 6-
step MPC). We also show the decrease of the value function as a function of attempts
(compass search) and time (MPC). Evacuation times are compared in Table 2. It can
be seen that only the long-term optimization strategies are efficient, being able to
moderate congestion and clogging around the exit.
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Fig. 4 S#2-Microscopic dynamics. Optimization of the microscopic dynamics. Top-left: occu-
pancy of the exit’s visibility zone
 as a function of time for optimal strategy (compass search) and
go-to-target strategy. Top-right: decrease of the value function (17) as a function of the iterations
of the compass search (for 50 and 150 followers). Bottom: MPC optimization. occupancy of the
exit’s visibility zone 
 as a function of time, CPU time of the optimization call embedded in the
MPC solver, and the evolution of the corresponding value (2-step and 6-step)
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Table 2 S#1. Evacuation times (time steps)

No leaders Go-to-target 2-MPC 6-MPC CS (IG)

NF = 50 335 297 342 278 248 (318)

NF = 150 ∞ 629 619 491 459 (554)

CS compass search, IG initial guess

This suggests a quite unethical but effective evacuation procedure, namely
misleading some people to a false target and then leading them back to the right one,
when exit conditions are safer. Note that in real-life situations, most of the injuries
are actually caused by overcompression and suffocation rather than urgency.

Mesoscopic Model

We consider here the case of a continuous density of followers. Figure 5 (first row)
shows the evolution of the uncontrolled system of followers. Due to the diffusion
term and the topological alignment, large part of the mass spreads around the
domain and is not able to reach the target exit.

In Fig. 5 (second row) we account the action of three leaders, driven by a go-to-
target strategy defined as in the microscopic case. It is clear that also in this case the
action of leaders is able to influence the system and promote the evacuation, but the
presence of the diffusive term causes the dispersion of part of the continuous density.
The result is that part of the mass is not able to evacuate, unlike the microscopic case.

In order to improve the go-to-target strategy we rely on the compass search,
where, differently from the microscopic case, the optimization process accounts
the objective functional (21), i.e., the total mass evacuated at final time. Figure 5
(third row) sketches the optimal strategy found in this way: on the one hand, the
two external leaders go directly towards the exit, evacuating part of the density;
on the other hand the central leader moves slowly backward, misleading part of
the density and only later it moves forwards towards the exit. The efficiency of the
leaders’ strategy is due in particular by the latter movement of the last leader, which
is able to gather the followers’ density left behind by the others, and to reduce the
occupancy of the exit’s visibility area by delaying the arrival of part of the mass.

In Fig. 6 we summarize, for the three numerical experiments, the evacuated mass
and the occupancy of the exit’s visibility area 
 as functions of time. In the right
plot the occupancy of the exit’s visibility area shows clearly the difference between
the leaders’ action: for the go-to-target strategy, the amount of mass occupying

 concentrates and the evacuation is partially hindered by the clogging effect, as
only 66.3% of the total mass is evacuated. The optimal strategy (obtained after 30
iterations) is able to better distribute the mass arrival in 
, and a higher efficiency is
reached, evacuating up to 84.1% of the total mass.
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Fig. 5 S#2-Mesoscopic dynamics. First row: no leaders. Second row: three leaders, go-to-target
strategy. Third row: three leaders, optimal strategy (compass search)
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Fig. 6 S#2. Invisible leaders’ control. On the left: percentage of mass evacuated in time. On the
right: occupancy of the visibility area in terms of total mass percentage



182 G. Albi et al.

3.2.3 S#3. Invisible Leaders in Presence of Obstacles

Finally we test the microscopic and mesoscopic model in presence of obstacles.
The crowd is initially confined in a rectangular room with three walls. In order to
evacuate, people must first leave the room and then search for the exit point. We
assume that walls are not visible, i.e., people can perceive them only by physical
contact. This corresponds to an evacuation in case of null visibility (but for the exit
point which is still visible from within 
). Walls are handled as in [35].

Microscopic Model

In Fig. 7 (first row) we observe the case where no leaders are present: the crowd
splits in several groups and most of the people hit the wall. After some attempts the
crowd finds the way out, and then it crashes into the right boundary of the domain.
Finally, by chance people decide, en cascade, to go upward. The crowd leaves the
domain in 1162 time steps.

If instead we hide in the crowd two leaders who point fast towards the exit
(Fig. 7 (second row)), the evacuation from the room is completed in very short
time, but after that, the influence of the leaders vanishes. Unfortunately, this time
people decide to go downward after hitting the right boundary, and nobody leaves
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Fig. 7 S#3-Microscopic simulation. First row: no leaders. Second row: two leaders and go-to-
target strategy. Third row: two leaders and best strategy computed by the compass search
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the domain. Slowing down the two leaders helps keeping the leaders’ influence for
longer time, although it is quite difficult to find a good choice.

Compass search optimization finds (after 30 iterations) a nice strategy for the
two leaders which remarkably improves the evacuation time, see Fig. 7 (third row).
One leader behaves similarly to the previous case, while the other diverts the crowd
pointing SE, then comes back to wait for the crowd, and finally points NE towards
the exit. This strategy allows to bring everyone to the exit in 549 time steps, without
bumping anyone against the boundary, and avoiding congestion near the exit.

Mesoscopic Model

In Fig. 8 we report the evolution of the mesoscopic density of followers. First row
shows the evolution of the uncontrolled case, contrary to the microscopic in this case
evacuation is not reached: the mass slowly diffuse outside the corridor and move in
the opposite direction with respect the target exit, only a small percentage of the
mass is able to evacuate.

Fig. 8 S#3-Mesoscopic dynamics.Top row: uncontrolled setting. Middle row: two invisible leaders
with go-to-target strategy. Bottom row: two invisible leaders with optimized strategy (compass
search)
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Fig. 9 S#3. Invisible leaders’ control. On the left: percentage of mass evacuated in time. On the
right: occupancy of the visibility area in terms of total mass percentage

Second rows depict the case with two leaders and a go-to-target strategy,
positioned at the end of the corridor. Their movements are able to influence large
part of the crowd, at final time 67.2% of the mass is evacuated.

Employing the compass search method we show in the bottom row of Fig. 8 an
improvement of the go-to-target strategy (after 9 iterations). In this case evacuation
of the 72.4% of the total mass is reached: one of the two leaders deviates from the
original direction, slowing down part of the mass. Similarly to the optimal strategy
retrieved in S#2, the optimization suggests to avoid congestion around the exit.

We compare in Fig. 9 the outcomes of the three different situations. The left
plot reports the percentage of evacuated mass as a function of time, On the right
we depict the occupancy of the visibility area. We observe that also in this case
the optimal strategy suggests to decrease the congestion around the exit in order to
increase the total mass evacuated.

4 Crowd Controls Through Smart Obstacles

The exploration activity of an unknown environment by a group of pedestrians may
become crucial if the time of egress represents a critical variable. This could not be
only connected with a specific state of danger, like in case of fire or earthquake,
because even staying too long into an environment can be undesirable. For this
reason, several signals and other indications need to be accurately located in order to
correctly address a crowd entering a room. Unfortunately, in case of low visibility,
the classical signage cannot be perceived, and other devices can be adopted to this
aim, like lighting and sound effects.

Also the shape of the room can be designed to facilitate the egress. Walls or
obstacles can be shaped in order to operate a guidance of the crowd, and several
studies gave evidence of the usefulness of this strategy [32, 33]. On the other hand,
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the number of obstacles cannot be too large, in order to preserve the original purpose
of the room. As an extreme situation, if we lock every useless passage of a maze,
we are minimizing the egress time, but we have no longer a maze.

In the following, we are illustrating the activity of optimization of the position of
a number of fixed walls to minimize the egress time of a crowd from a simple square
room with four entrance and four exit. The simulation of the crowd movement is
performed by means of the micro-scale model previously described in Sect. 2.

4.1 Selection of the Objective Function

Due to the presence of a random component in the speed of the single pedestrian,
the final egress time of the crowd estimated by the numerical model is a stochastic
outcome. If we want to utilize this quantity as the objective function of an
optimization problem, a statistical approach is essential. We can compute the
expected value if we repeat the simulation a large number of times, but this data
is, in our opinion, still not sufficiently representative. In fact, the variability of the
egress time is also fundamental. For this reason, we are here considering as objective
function the sum of expected value plus their variance,

F = EV (x)+ σ(x).

With this definition, we can assure with a probability of 80.15% that the egress time
is lower than F (if the egress time follows a normal distribution).

Now we need to have an estimate of the number of times we need to repeat the
simulation in order to have a stable value of the statistical indicators. To do that,
some numerical tests have been produced. The simulator has been run for a number
M of times, and this block of M simulations have been repeated for 256 times. For
each block, we can compute the expected value and the variance: after that, we can
also analyze statistically the 256 blocks, computing the effective value and variance
of the elementary expected value. Results are reported in Fig. 10.

The experimental probability distribution (EPD) of the expected value for the
different blocks of simulations is reported in Fig. 11. From this picture, it is evident
that a stable value of the expected value cannot be obtained if the number of
simulations for each block is lower than 128. This information is also deducible
observing the right sub-graph of Fig. 10: the expected value becomes stable for
the indicated number of simulations. As a consequence, in the following 256
simulations will be applied in order to evaluate the qualities of a room configuration.
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Fig. 10 Expected value and variance as a function of the number of simulations

Fig. 11 Experimental probability distribution of the expected value for the different blocks of
simulations

4.2 Optimization Algorithm

In this study, a heuristic optimization algorithm is adopted, namely the Imperialist
Competitive Algorithm (ICA). In its original formulation [13], the ICA is described
as an evolutionary algorithm. A number of trial vectors of parameters, each defining
a different configuration of the system (county), are distributed onto the design space
and assigned to different groups: each group is called empire. The county presenting
the most convenient value of the objective function inside an empire is called
imperialist, and each county is placed under the control of a single imperialist.
Since here we are referring to a minimization problem, the most convenient value



Mathematical Models and Methods for Crowd Dynamics Control 187

is represented by the lower value of the objective function. More details about the
algorithm can be found in [13]. In the original formulation, the initialization of the
counties is performed randomly. The counties are then assigned to an imperialist
on the base of their relative power, so that, at the beginning, the most powerful
imperialist have the control of a larger empire. At each iteration, three main actions
are performed:

• Shifting the counties: each county is moved toward the imperialist according to
the equation

Xkt+1 = Xkt + rβ(Xi − Xkt ), (22)

where X is the generic vector of the coordinates of a point in the design variable
space, Xi is the position of the (fixed) imperialist controlling the moving kth

county Xk , t is the current iteration, k is identifying the county, β is the so-
called assimilation coefficient, controlling the attractive action of the imperialist
on the county, and r is a random number in between 0 and 1. If the product rβ
is greater than the unit value, the county will overpass the imperialist, changing
the side from which the county observes the imperialist. The displacement vector
(Xkt+1 − Xkt ) is further deviated from the indicated direction by a random angle
in between −θ and +θ , θ to be fixed.

• Change of the imperialist: if a county finds a value of the objective function
smaller than the value owned by the referenced imperialist, the positions of the
county and the imperialist are swapped.

• Imperialistic competition: the power of each empire is computed as the power
of the imperialist plus a fraction ξ of the sum of the powers of the single counties
of the empire. The worst county of the worst empire is re-assigned to the best
empire. In a minimization process, the average value of the power of the counties
is summed up to the power of the imperialist: lower value means higher power.

• Empire elimination: if, after the Imperialistic Competition, an Imperialist has
no more counties under his control, the empire is eliminated.

Looking at Eq. (22), we can observe the full equivalence with the one dimen-
sional, first-order, autonomous, linear differential equation that governs the evolu-
tion of a state variable

yt+1 = ayt + b. (23)

In fact, Eq. (23) is absolutely equivalent to Eq. (22) once we rewrite it in the
reference frame of the imperialist. Since the value of the state variables is assigned
at the beginning, that is, the relative position of the county with respect to the
imperialist, at the first step we have

y1 = ay0 + b. (24)

Applying Eq. (23), we have that at step t
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yt = aty0 + b
t−1∑

i=0

ai. (25)

If b = 0, we can demonstrate that, if 0 < a < 1, the series converges to
the zero value (the origin of the reference frame) [46]. Since the local reference
frame of an Empire coincides with an imperialist, each county converges toward
the corresponding imperialist. To be more explicit, we can simplify Eq. (22) by
rewriting it in the reference frame of the imperialist: the term Xi disappears, and the
equation now reads

Xt+1 = Xt − rβXt = (1 − rβ)Xt .

We are clearly in the case of Eq. (23) where b = 0 and a = (1 − rβ). The motion
is developing along the direction connecting the initial position of the county and
the origin of the reference frame (that is, the imperialist). The county is converging
on the corresponding imperialist: convergence is monotone or not depending on the
value of β. Since the coefficient a needs to be positive and smaller than the unit
value in order to have convergence [46], we have convergence if

0 < 1 − rβ < 1 ⇒ β <
1

r
; rβ > 0.

The different terminology adopted for the description of the algorithm is hiding
a substantial similarity between ICA and the multi-swarm Particle Swarm Opti-
mization (PSO) formulation [55]. With respect to the original formulation of PSO,
the ICA has not a personal memory, so that the new position of a county is
not influenced by the positions previously visited by itself, while PSO is using
this information. Conversely, both PSO and ICA show a limited interaction with
the other elements of the empire: in fact, the Imperialist is the equivalent of the
best element of PSO, that is, the best visit of the whole swarm/empire. The great
difference with PSO is the aforementioned proof of convergence of ICA, while for
PSO an incomplete proof of convergence can be obtained [27].

An improvement of the original ICA is proposed in [73], namely hICA, and this
version of the algorithm is here applied. The improvements obtained by ICA can be
addressed mainly to the following modifications:

1. The initial distribution of the counties is not random, but it is produced using a
Uniformly Distributed Sequence.

2. The coefficients in Eq. (22) have been optimized.
3. The empires are re-initialized if only a single empire is survived.
4. A local search algorithm (Simplex method) is applied if we have no improve-

ments of the current best solution after a certain number of iterations. This is
surely one of the main improvements of the algorithm.
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4.3 Test Case

In order to empathize the ability of a fixed obstacle to efficiently redirect the flow
of a group of pedestrians, such that the evacuation time is minimized, a very simple
test case has been designed. Four entrance and four exit are symmetrically placed
in a square room. The entrances are at the corners, the exit at the center of each side
of the room. The role of the obstacle(s), in this case, is to break the symmetry of the
flow, avoiding indecision (and the subsequent dead time) when different sub-groups
are colliding, exploiting also all the exits.

The full number of pedestrians has been fixed to 100, in order to have a good
balance between interactions and computational time. Simulation has been repeated
256 times for each configuration of the room in order to derive statistical variables,
as from the indications collected previously (Fig. 10).

The only constraint is related to the distance between the wall and the obstacle,
in order to avoid blockage effects (and also the exclusion of an exit or an entrance).

Regarding the selection of the obstacle(s), two different cases have been con-
sidered: one or two linear walls. A single wall is defined using four variables: two
for the barycentre of the wall, one for its full length and one for the orientation (in
between 0 and 90◦). The width of the wall is fixed. As a consequence, we have four
design variables for a single wall and eight design variables for a couple of walls.
The design variables are selected in order to reduce the possibility of violation of
the constraint, so that the barycentre of the wall cannot stay on the border of the
room. Minimum and maximum length of the walls are also fixed.

Stopping criterion for the optimization algorithm is represented only by the full
number of evaluations of the objective function: in order to balance the opportunities
of the two optimization problems, in accordance with [73], the maximum number
has been fixed at 1000×NDV , where NDV is the number of design variables.
Consequently, the problem with more design variables takes longer to complete.

Due to the symmetry of entrance and exit, the solution of the problem is cyclical,
since four configurations can be obtained by a rotation of 90◦ around the center of
the room.

4.4 Numerical Results

In Fig. 12, the convergence history of the two optimization problems is reported.
The rate of convergence of the two problems is very similar as soon as, in the case
of two walls, the optimizer is able to identify a new solution improving largely the
egress time, further refined in the last part of the optimization problem solution. On
the contrary, the identification of the optimal solution for the problem with a single
wall appears to be pretty fast, and only marginal improvements are obtained after a
couple of iterations: this is probably connected with the simplicity of the shape of
the obstacle, unable to create a great variety of convenient situations.
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Fig. 12 Convergence history of the optimization problems: case of the room with one obstacle
and room with two obstacles

Table 3 Expected value, most probable value, variance, and objective function for the different
optimal configurations plus the case of empty room

EV 	% Most probable 	% σ 	% EV + σ 	%

Empty 133.22 114.43 39.99 173.21

1 Obs. 114.66 −14.10% 100.73 −12.28% 36.94 −7.63% 151.60 −12.48%

2 Obs. 93.50 −29.82% 59.71 −48.00 % 37.22 −6.93% 130.72 −24.53%

Statistics are obtained performing 100,000 simulations

The expected value, the most probable egress time, the variance of the egress
time and the objective function value for the original and for the optimal room
configurations are reported in Table 3. One might therefore imagine that the
regularization of the pedestrian flow, obtained through the obstacles, would also
reduce the variability of the dwell time into the room. The reason of the small
reduction of the variance can be linked with the constraint on the distance between
the wall and the sides of the room: there is still a quite large gap between the
obstacles and the borders. This gap has been introduced considering the fact the
main function the room is designed for must be preserved after the insertion of the
walls, so that their impact on the environment should be limited. As a consequence,
the pedestrians, although driven toward the exit, have still a quite large space to
explore, and the random component of the individual speed plays a not negligible
role. As a consequence, the variance of the egress time is substantially not changing.

It is really interesting to compare the EPD of the egress times for the case of
empty room with the ones of the optimized solutions. For these three configurations,
100,000 simulations have been produced in order to increase the stability and
credibility of the statistic indicators. The most probable value of the egress time
is shifted to the lower values passing from empty room to one obstacle to two
obstacles, as it is also evident from Table 3. In this last case, the higher probability
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Fig. 13 Experimental probability distribution of the egress time in the case of empty room, room
with one obstacle and room with two obstacles

is very close to the minimum egress time, representing a very good feature of the
optimal configuration (Fig. 13).

In Fig. 14, the trajectories of the pedestrians are reported: from top to bottom the
number of walls is increasing, while the time of the simulation is running from left
to right. Best solution among 100,000 simulations is reported, and this is particularly
advantageous for the case of the empty room, since the probability of the reported
configuration is relatively small. The final outcome from this study is that a single
wall is redirecting a single group of pedestrians. Naturally, if no wall is adopted,
all the pedestrians are converging at the center of the room. This is connected with
this specific configuration: in fact, when a pedestrian is entering the room, in order
not to hit the boundaries s/he moves toward the center of the room following the
bisector of the corner. The following pedestrians have a further attraction, that is, the
trajectory of the preceding pedestrian(s), so that typically all the groups are moving
(on average) along the bisector of the angle between the walls. The elimination of
one or more groups from this path is facilitating the deviation of the converging
part of the group to one of the exits. When a single obstacle is used, one group
is segregated, and it moves toward the closest exit. If two obstacles are utilized,
two groups are eliminated from the central area and the remaining two groups are
moving together toward the opposite exit. In the particular case reported in Fig. 14,
the tail of the right upper group is shifted to the top by a subset of the group entering
from the lower right corner: this way, all the exits are exploited, and the congestion
at the exits is reduced, also lowering the overall egress time.

We can then conclude that the use of an optimizer for the determination of the
best configuration is essential for at least two distinct reasons. Firstly, although the
final configuration appears to be logical, it is not easy to be identified without an
aid (the paradox of the egg of Columbus). Secondly, the fine tuning of the general
layout of the walls is providing an advantage impossible to obtain by a simple
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Fig. 14 Flow of the pedestrian in the case of empty room, room with a single wall and room with
two walls

manual positioning. Finally, these two aspects have been pointed out in the case of
a relatively simple room geometry: a much more complex geometry would include
more and more difficulties in the determination of the optimal configuration, and the
use of an optimization algorithm becomes vital.

5 Conclusions and Research Directions

This survey has been devoted to present some recent results in the mathematical
modeling and control of crowd dynamics. We discussed the various level of
modeling, from the microscopic scale of agent-based systems to the macroscopic
scale of the crowd density and bulk velocity, through the mesoscopic scale based
on a statistical description of the system. Several corresponding control problems,
aimed at minimizing the escape time of the crowd from a given environment, have
been illustrated and solved by numerical methods.

These results allow us to draw some conclusions. First of all, we can say that
while the modeling (i.e., the mathematical description) of pedestrian flows has
now reached a stage of maturity, the same cannot be said for the optimization of
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pedestrian flows. In this field there is still room for many experiments, both virtual
and real.

In the case of control through leaders, their impact on the crowd is not yet
completely understood. In particular, in crowd management it is of paramount
importance to be able to secure crowd evacuation through minimal intervention in
order to avoid adversarial behaviors against authorities, and de-escalate tensions.
Indeed, we have shown that few agents may change completely the behavior of the
whole system, breaking initial uncertainties. A further research direction concerns
the optimal positioning and amount of leaders within the crowd at the time of the
first movement.

In the case of optimization through obstacles, basically no experiment was
conducted on real people (we do not consider here the experiments investigating the
effect of small obstacles in front of exit doors). Although the simulations suggest
the existence of multiple optimal configurations of the obstacles, and it is therefore
not easy to choose which to put into practice, virtual experiments all lead in the
same, clear direction: breaking of symmetry is beneficial to pedestrian flows. This
means, e.g., that clogging can be avoided by redirecting people through asymmetric
paths, which lead people at exits at different times. Moreover, the perception of the
walking area can be completely upset by using smart obstacles, in such a way that
naturally chosen exit paths are rebuilt for a more efficient exit usage.
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Mixed Traffic Simulation of Cars and
Pedestrians for Transportation Policy
Assessment

Hideki Fujii, Hideaki Uchida, Tomonori Yamada, and Shinobu Yoshimura

Abstract In this chapter, the authors report on the construction of a new framework
for simulating mixed traffic consisting of cars, trams, and pedestrians that can be
used to support road management, signal control, and public transit. More specif-
ically, a layered road structure, originally designed for car traffic simulations, was
extended to interact with a one-dimensional tram model and one-/two-dimensional
pedestrian models. The newly implemented pedestrian models and interaction rules
were verified through simulations involving simple road environments, and the
resulting simulated values were found to be in near agreement with the empirical
data. The proposed framework is then used to assess the impact of a tramway
extension plan for a real city. Those simulation results showed that the impact of
the proposed tramway on existing car traffic would not be severe, and by extension,
implied that the proposed framework could help stakeholders decide on expansion
scenarios that would be agreeable to both tram users and private car owners.

1 Introduction

Road traffic is a key part of the infrastructure that supports mobility through the
transportation of humans and goods. However, at the same time, it is also the
cause of various types of urban and environmental issues including traffic jams,
accidents, and heavy energy consumption. In addition, engine emission contributes
to problems such as air pollution and global warming.

The promotion of public transportation usage is among the most effective
methods for addressing such issues. Herein, the authors focus on the extension
of a tramway into a rail station square, which is an important topic because the
connectivity of public transportation services (such as railways and tramways) is
regarded as an index for transportation service accessibility [34, 35]. Furthermore,
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improved public transportation services can suppress excessive public dependence
on private cars. However, careful consideration must be taken given the fact that
policies aimed at improving tram convenience might also impair the use of the
private cars that must share the same limited available road space.

Furthermore, since it is very difficult to restore a road environment to a previous
condition once it has been changed, it is strongly desirable to accurately estimate
the impact of transportation policies quantitatively. This is why simulations have
been playing an important role in the field of traffic engineering, and why various
types of traffic simulators have been developed and utilized (e.g., [6, 26]). This is
also why a number of mixed traffic simulation models that can be used to support
the validity of novel signal control methods or public transport planning efforts have
been proposed in recent years.

In this chapter, the authors report on a multi-agent-based traffic simulator for
mixed traffic of cars, pedestrians, and trams. The contents are based on the previous
article [15] with some new findings. More specifically, pedestrian and tram agent
models were implemented into an existing car traffic simulator and interaction
rules among these agents were set. This simulator was then applied to a case study
involving a tramway extension plan in an actual city.

2 Existing Simulation Models

2.1 Simulation Models for Pedestrian Traffic

Pedestrian traffic simulation models are generally classified into two categories:
macroscopic and microscopic.

In the macroscopic models, partial differential equations that express pedestrian
behavior as a continuous density and velocity distributions and are based on the
equation of continuity, which is the law of conservation of mass in continuum
mechanics, have been proposed (e.g., [20, 22, 40, 41]). Such models are solved
by the finite difference method or mesh-based methods such as the discontinuous
Galerkin method.

In the microscopic models, each pedestrian is modeled as a kind of particle.
Microscopic models can be divided according to the road structure representation,
which comes in two types: continuous and discretized. In the continuous road repre-
sentation group, a base road structure is modeled as a continuous one-dimensional
(1D) or two-dimensional (2D) space. In the discretized road representation group,
road space is discretized by homogeneous cells.

The social force model (SFM) [18] and centrifugal force based models (CFM)
[10, 45], in which pedestrian agents move in two-dimensional (2D) road space, have
already been successfully used in continuous road model groups. The predictive
performance of those models was enhanced by introducing the capability to
anticipate pedestrian actions [4] and by adding stride adaptation mechanisms [39]. A
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1D pedestrian model [42] in which the SFM spatial dimensions are compressed into
one has been applied to evacuation simulations. Furthermore, the discrete choice
model [2] is among the continuous road models with discretized decision-making
rules for each pedestrian agent that are now in use.

Meanwhile, the floor field model (FFM) [7] and Muramatsu’s lattice-gas-based
model [30] belong in the discretized road representation group.

2.2 Simulation Models for Car and Mixed Traffic

Microscopic models used for car traffic simulations are classified as well. In the con-
tinuous road representation group, the behavior of car agents is often implemented
by applying car-following theories (e.g., [5, 8, 16, 19, 24, 32, 36, 38, 47]). In the
discretized road representation group, the behavior of car agents is expressed using
transition rules such as cellar automata (e.g., [13, 25, 31, 37]).

Several researchers have proposed simulation frameworks for mixed traffic of
two or more models. For example, Yang et al. [43] proposed a framework for pedes-
trian road crossing behavior in Chinese cities in which they determined the criteria
used by pedestrians to decide whether to start crossing a road after considering
vehicle flows. While the model itself was relatively simple, the simulation results
(with adjusted parameters) agreed well with the observed values. In another study,
Zeng et al. [46] modeled pedestrian-vehicles interactions at crosswalks by adding
external force to the SFM in order to minimize pedestrian-vehicle collisions, while
Anvari et al. [3] used the SFM to model mixed car and pedestrian traffic scenarios
by extending the SFM for car dynamics and integrating a car-following model.

Meanwhile, Huang et al. [21] also developed a 2D car behavior model based on
the SFM and integrated it with the proportional-integral-derivative (PID) control
algorithm, while Huynh et al. [23] extended the SFM to model the behavior of
motorcycles, passenger cars, and buses for use in a mixed traffic simulation at a
signalized intersection. However, while these SFM-based car models are capable
of being naturally integrated with the SFM-based pedestrian models, significant
disadvantage of existing car traffic simulators based on car-following models is
that they are hard to apply to this approach. Furthermore, generally speaking, the
computational loads of 2D models are much higher than those of 1D models.

Additionally, Crociani and Vizzari [11] proposed an integrated simulation model
by combining a 1D car-following model and a 2D floor field pedestrian model
in which they employed a hierarchical road environment structure to exploit the
different representations of cars and pedestrians. In this model, the specific agent
types are situated in the lower level and comprehensive views of the overall situation
are given at the higher level.

Furthermore, Dobler and Lämmel [12] integrated multi-modal simulation mod-
ules into the existing framework of MATSim, which is a large-scale traffic simula-
tion framework that is based on the queueing model [9]. Their integration approach
was based on locally replacing simple queue structures with continuous 2D space at
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sections with higher traffic flows. The behavior rules of agents in the 2D space are
based on the SFM.

Moreover, Krajzewicz et al. [28] introduced pedestrian and bicycle agent models
into the Simulation of Urban Mobility (SUMO), which is a widely used traffic
simulator belonging to the continuous road model group [27], and then used it
to consider and verify their agents qualitatively, even though the pedestrian and
bicycle agents had relatively simple behavior rules by which they moved in 1D
virtual trajectories.

3 Models in Proposed Framework

In this research, mixed traffic conditions refer to those in which cars, trams, and
pedestrians coexist simultaneously. Simulating such traffic conditions requires agent
models for all of those travel modes. And continuous road models are suitable
for simulating the precise behavior of cars, trams, and pedestrian agents. For
that reason, the authors chose The multi-agent-based car-traffic simulator, which
is named ADVENTURE_Mates (Mates refers to “Multi-Agent-based Traffic and
Environment Simulator”), has already been published as a module of the authors’
open-source software (OSS) project [44]. The simulator employs a continuous road
model for car traffic and has been used as bases of various previous researches,
e.g., a vehicle emissions prediction [14], an origin-destination estimation [1], and a
speeding-up of dynamic route search [29].

In this chapter, mixed traffic conditions refer to those in which cars, trams,
and pedestrians coexist simultaneously. Simulating such traffic conditions requires
agent models for all of those travel modes. Additionally, continuous road models
are suitable for simulating the precise behavior of car, tram, and pedestrian agents.
Therefore, the authors chose ADVENTURE_Mates as the basis of the research.

3.1 Road Environment Representation

A three-layer road network model based on directed graphs (Fig. 1) is employed
in this simulator. The virtual driving lane is the fundamental unit for modeling
the actual road structure. Car agent maneuvering is restricted to movement along
the lane, except when lane-shifting. Each lane is equipped with various kinds of
information related to its length, connection with other lanes, speed limit, and
other accompanying attributes. The road environment provides such information
if the agent requests it. Two types of lane bundle objects, basic road sections and
intersections, are located in the second layer. Each object consists of virtual driving
lanes and their connectors. Lane bundle objects are organized as a global road
network.



Mixed Traffic Simulation of Cars and Pedestrians for Transportation Policy Assessment 203

Basic 
road section 

Road network Lane bundle Virtual driving lane 

Intersection 

Fig. 1 Overview of layered road network
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Fig. 2 New road structure (red indicates newly implemented structures for mixed traffic simula-
tions)

A new structure that possesses a 2D domain, called a subsection, was introduced
to divide lane bundles based on the access right differences for each different traffic
mode. A street subsection is limited to virtual driving lanes for cars (and a tram
lane if necessary), while a crosswalk subsection definition also includes a pedestrian
crosswalk. Figure 2 shows the new road structure concept. In this research, since the
authors were attempting to assess the impact of road policy on car traffic, pedestrians
were restricted to walking on crosswalks. However, the proposed layered road
network concept can be applied to general-purpose mixed traffic simulations as well.

3.2 Car Agent Definition

For driving route planning, the A* algorithm [17] is implemented in the simulator.
It should be noted here that since the simulator does not include a planning process
in which the origin and destination (OD) points are decided, users need to input
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a proper OD matrix a priori. A search is conducted for the optimum route every
time a car is generated at a terminal node, and the results are stored and reused.
The route that minimizes the trip distance or the expected trip time from the origin
to the destination is selected by the A* algorithm. When searching for a route that
minimizes the expected trip time, the cost of each link is given as the required time
average of all cars that have already passed the link, and this average is updated
every 10 min.

After determining the global route on a road network, each car follows the
selected route and drives from the origin to the destination. The simulator employs
the generalized force model (GFM) [19] in order to determine the car agent
acceleration. The model concept is shown below:

dVi

dt
= F 0

i (Vi)+ Fi,i−1 (Xi, Vi,Xi−1, Vi−1)+ ξi, (1)

where Xi and Vi are the position and the speed of the i-th car, respectively,
(dXi/dt = Vi). The first term on the right-hand side of Eq. (1) represents the
acceleration toward the driver’s desired speed:

F 0
i (Vi) =

V 0
i − Vi
τi

, (2)

where V 0
i and τi are the desired speed and the acceleration time of car agent i,

respectively. The second term of Eq. (1) represents the virtual repulsive force from
interactions with the preceding (i − 1 th) car agent:

Fi,i−1 = V opt (Si, Vi)− V 0
i

τi
− 	Vi (	Vi)

τ ′i
exp

(
S(Vi)− Si

R′i

)
, (3)

with

V opt (Si, Vi) = V 0
i

{
1 − exp

(
S(Vi)− Si

Ri

)}
, (4)

	Vi = Vi − Vi−1, (5)

Si = Xi−1 −Xi − Li−1, (6)

S(Vi) = Di + TiVi, (7)

where V opt (Si, Vi) is a distance-and-speed-dependent optimal velocity.  (·) is the
Heaviside function.	Vi and Si indicate the relative speed and the distance between
the i-th and its preceding car, respectively. Li , Di , τ ′i , and Ti are the body length,
the minimal car distance, breaking time, and safe time headway of car agent i,
respectively. S(vi) indicates a speed-dependent safe distance. Ri and R′i can be
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interpreted as the range of the acceleration and the braking interaction, respectively.
The third term of Eq. (1) is a fluctuating force that may include driver’s individual
variations.

The GFM is a model in which a driver determines acceleration using only
the distance and the speed difference from the preceding car. However, speed
determinants include not just the preceding car but also the traffic lights, the forward
intersection situation, and other urban traffic conditions. Therefore, the authors
expanded the GFM so that the virtual preceding cars reflect the forward road
conditions, and Eq. (1) is applied to each virtual preceding car. Additionally, in
order to facilitate collision avoidance between cars and pedestrians, the existence of
pedestrian agents on the forward road subsection is given as a virtual preceding car
to car agents. As a result, the need for modifications to the existing simulator code
can be minimized, and the independence of each traffic mode simulation model is
strictly maintained.

Cars are also provided with a lane-shifting function. When shifting lanes, the car
agent must simultaneously consider the cars in both its current driving lane and the
adjacent lane. To facilitate this, a dummy of the car agent that is going to change
lanes is virtually created in the adjacent lane, appropriate speeds are evaluated for
both lanes, and the slower one is selected to minimize collision risks.

3.3 Tram Agent Definition

Since the car is modeled to permit it to drive on 1D virtual driving lanes (not 2D
space) on the simulator, the tram driving on 1D tracks can be easily modeled by a
little extension of the car agent. More specifically, the authors created a tram lane by
starting with the same structure used for the virtual driving lane for cars, modified it
to prevent it from joining or branching with car lanes, and removed lane-shifting and
route-searching functions from a tram agent. The tram agent attributes, such as body
size (12.2–18.0 m length used in our simulation scenario, to be described later),
speed limit (30–40 km/h based on Japanese law), max acceleration, and deceleration
performance (2.5 km/h/s and 4.4 km/h/s, respectively), were given as parameters.

Additionally, unlike car agents that flow into the road network stochastically at
the terminal nodes, tram agents flow into the network deterministically based on a
given timetable. The car-following model itself is the same as that for car agents,
but the scheduled departure time is added as a factor for determining the speed of
the tram agents. This model was created based on information obtained during an
interview with a tram operator. The actual procedure used to determine the tram’s
speed is described below:

Step 1 If the tram is stopped at a tram stop and its scheduled departure time
is pending (considering time for passengers to embark/debark from the
vehicle), the tram remains stopped. Otherwise, go to Step 2.
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Step 2 The tram’s speed is calculated like those of cars by applying the GFM. Go
to Step 3.

Step 3 If the tram needs to stop at the next tram stop, the deceleration necessary to
come to a halt at the proper position is calculated, and the speed determined
in Step 2 is overwritten. To calculate the proper deceleration, a virtual
preceding car is placed at the tram stop to create a situation that matches
cars stopping at traffic lights.

3.4 Pedestrian Agent Definition

Since pedestrians are assumed to interact with cars and trams only in crosswalks in
this research, a pedestrian agent is defined as it appears stochastically at a crosswalk
endpoint and disappears when it gets to the other endpoint. Pedestrian agents have
no route-searching ability.

There are two options for pedestrian behavior modeling: one is the bifurcation
pedestrian model (BPM), and the other is the extended one-dimensional pedestrian
model (ExOPM).

3.4.1 Bifurcation Pedestrian Model (BPM)

In this model, a pedestrian is represented by a circle with a fan-shaped view range
(Fig. 3). For programmers, the use of a circle has a significant benefit when used for
geometrical calculation. The circle diameter r is set to 0.49 m, which is the average
width of an adult body. The view range depth Rview is set to 3.0 m, and the view
angle θ is set to 160◦.

The concept of BPM is roughly categorized into the discrete choice model group.
A pedestrian agent searches for the nearest pedestrian within its view range and

Fig. 3 Representation of
pedestrian agent

= 160∘

nearest
pedestrian
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Fig. 4 Pedestrian agent decision-making flow

Momentary stop Overtaking Following Collision avoidance Free walk

Fig. 5 Pedestrian agent movement

determines its behavior based on the walking direction, relative speed, and the
position of the nearest pedestrian. Although it is understood that in the real world,
a pedestrian has a continuously changing number of walking behavior choices, the
authors discretized the available choices for simplification. As a result, this model is
applicable to simple crosswalks but not to more complex crossings where there are
more than two directions of travel to choose from.

The decision-making flow of the model is shown in Fig. 4, an overview of each
movement is shown in Fig. 5. The j -th pedestrian agent needs to determine its
walking speed vj and walking direction vector dj for every time step, the concrete
methods used to compute these are listed below.

1. Free walk
If there are no other pedestrians in the view range, agent j walks at his/her desired
speed v0

j . The walking direction dj is set as follows:
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dj = d0
j = x0

j − xj , (8)

where xj is the agent’s current coordinate and x0
j is the coordinate of the nearest

point on the target crosswalk border.
2. Collision avoidance

If the nearest pedestrian is walking in the opposite direction, the agent attempts
to avoid collision. vj = v0

j , and dj is set as follows:

dj =
{

d0
j , if |dnpj | sinφ ≥ cpsr,

d
np
j − cpsrnj , otherwise,

(9)

where d
np
j = x

np
j −xj (xnpj is the current coordinate of the nearest pedestrian), nj

is the unit normal vector of d0
j that satisfies d

np
j · nj ≥ 0, φ is the angle between

d
np
j and dj , and cps(= 1.2) is the coefficient used to represent the personal space

pedestrians need to maintain comfort.
3. Momentary stop

If the gap to preceding pedestrian is insufficient (|dnpj | < cpsr), the agent stops
walking temporarily (vj = 0).

4. Overtaking
If the preceding pedestrian is slower, the agent tries to overtake him/her. Then
vj = cacv0

j , and dj is set according to Eq. (9). The coefficient cac(= 1.3) is the
pedestrian’s acceleration for overtaking.

5. Following
If the preceding pedestrian is faster, the agent follows the preceding pedestrian.
vj = v0, and dj is set as follows:

d i =
{

d
np
j , if any other pedestrians are walking oppositely,

d0
j , otherwise.

(10)

Once vj and dj are determined for every time step (	t = 0.1 s in the simulator),
each pedestrian agent updates its position:

xj ← xj + vj dj∣∣dj
∣∣	t. (11)

Here, the pedestrian’s desired walking speed v0
j is set to 1.34±0.20 m/s. Since

cars are prohibited from crossing an intersection if even just one pedestrian is
walking inside it, considering the slower speeds of pedestrians is quite important
when dealing with mixed traffic.
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3.4.2 Extended One-Dimensional Pedestrian Model (ExOPM)

In order to realize a large-scale and microscopic multi-agent crowd simulation, a
1D continuous space model with a low computational load was proposed. In the
original OPM [42], the pedestrian queue is modeled as a virtual lane by utilizing
the property that pedestrians moving in a passage or a room with high density tend
to form lanes. Hence, walking spaces are represented as a network, and a link is
composed of multiple virtual lanes. The ExOPM proposed by the authors defines
sidewalks and crosswalks using the same structure as the original OPM. This is
based on the following assumptions:

• In high-density environments, pedestrians tend to form queues.
• In low-density environments, pedestrian traffic volume is unaffected by whether

pedestrians form queues.

Since the existing OPM targets pedestrian behavior in a high-density environ-
ment such as an evacuation, a single pedestrian cannot overtake other pedestrians
except in the cases where they are passing over links of different widths (represented
by the number of internal virtual lanes).

However, since this is an excessive restriction to apply to a road environment
simulation in a normal situation, in the Extended OPM (ExOPM), it is assumed
that the pedestrian agent receives social force from the N -th pedestrian agent
ahead. Hence, the acceleration dvj /dt of the j -th pedestrian is calculated using
the following equation:

dvj

dt
= a1(v

0 − vj )− a2 exp

(
r − (

xj−N − xj
)

a3

)
, (12)

where a1, a2, and a3 are parameters, and the same values as OPM [42] are used
(a1 = 0.962, a2 = 0.869, a3 = 0.214). v0

i is the desired pedestrian walking speed.
N is a parameter that sets the range a pedestrian agent is affected by the other
pedestrian ahead.

As an example, the behavior of the fourth pedestrian in the link Lm, which is
composed of three virtual lanes (shown in Fig. 6), will be described. The pedestrian
is the second one in the virtual lane �2. Here, the position of the k-th pedestrian in
the virtual lane �n in the Lm link is expressed as x̃j (m, n).

The pedestrian at position x̃2(m, 2) confirms the front of the virtual lanes �1, �2,
and �3, which are included in the same link Lm and obtains distances l1, l2, and l3.
In the case of N = 3, the pedestrian receives social force from the third pedestrian
ahead. Since the third smallest distance is l1, the pedestrian moves to the virtual lane
�1 in the next step, and determines its acceleration using l1.

Considering the above situation based on the positional relationship at the link
rather than at the virtual lanes, the distance between pedestrians is x1 to x4, as shown
in the lower part of Fig. 6. Next, the acceleration is calculated based on the distance
to the pedestrian. In this example, since it does not interact with the first and second
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link ℒ

2( , 2)

4 = 2( , 2)

3 2

1

link ℒ

1 = 1 , 1 2( , 2)

distance between pedestrians: 1 4 = 1

ℓ1

ℓ2

ℓ3

ℓ1, ℓ2, ℓ3: virtual lanes

2 = 1 , 2 2( , 2)

3 = 1 , 3 2( , 2)

Fig. 6 Following relation in ExOPM

nearest pedestrians in front, the pedestrian’s overtaking behavior can be expressed,
even though it is a 1D model.

4 Verification

Prior to being applied to a real-world problem, the pedestrian models in the proposed
framework along with the effects of interactions between cars and pedestrians were
verified independently.

4.1 Verification of Pedestrian Models

A simple crosswalk with a length of 20 m and a width of 2.5 m (shown in Fig. 7)
was created to verify the pedestrian models. Simulations using BPM (Sect. 3.4.1)
and ExOPM (Sect. 3.4.2) were then conducted by varying traffic demand Qped =
1000, 1250, 1500, 1750, 2000, 2250, and 2500 ped./h at both ends and observing
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Qped Qped

20m

2.5m

Density, mean speed observation

Flow rate observationFlow rate observation

Fig. 7 Simulation environment for pedestrian model verification

Fig. 8 Simulation screenshots of BPM (a) and ExOPM (b)

the resulting density, flow rate per unit width, and mean speed at the crosswalk. The
free-flow speed of a pedestrian agent was set to 1.34 ± 0.20 m/s in both models.

Figures 8a and b show the screenshots of BPM and ExOPM, respectively. The
blue dots indicate pedestrians walking from right to left, and the red dots indicate
pedestrians walking from left to right. Forming walking lanes is one of the well-
known emerging phenomena of crowd dynamics. Pedestrians in the ExOPM move
on the walking lanes defined by the model. Meanwhile, pedestrians in the BPM
form walking lanes autonomously by the effect of the behavior of following.

The quantitative results are shown in Fig. 9. Figure 9a–c show the relationships
between speed-density, speed-flow, and flow-density, respectively. The output from
the empirical formula at a pedestrian precinct [33] and the SFM simulation result
by the SFM are also included as references. Because the mean free-flow speed
is also 1.34 m/s in the empirical formula, each simulation result shows good
agreement. However, since the experiment is intended for sidewalks without an
obvious bottleneck, it is necessary to be careful when discussing the reproducibility
of congested situations that exceed the critical density based on these results alone.

For the above-mentioned scenario, the total number of agents at each time step
in the simulation and the computation time required for agent processing were also
measured with each model. Figure 10 shows the results. A computer with an Intel
Core i7 (2.93 GHz) CPU and 4 GB of memory was used.

In the SFM and the BPM, which are 2D models, the computational complexity
is theoretically O(mn) because n pedestrians search surrounding m for other
pedestrians in every time step. Meanwhile, in the ExOPM, which is a 1D model,
each pedestrian is affected by at most one pedestrian ahead. At this time, the
pedestrian ahead can be accessed in constant time by using a sorted list in the
order of distance from the link starting point of the link. Therefore, the computation
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complexity is suppressed to O(n). It is necessary to re-sort the list when overtaking
occurs, but its frequency is sufficiently small compared to the number of agents. As
a result, the ExOPM computation time is much less than that of 2D models.

4.2 Verification of Interaction Between Cars and Pedestrians

One of the impacts of pedestrians on car traffic is a drop in the volume of
cars making left turns (note that cars are driven on the left side of roads in
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1km

10m
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Fig. 11 Simulation environment for mixed traffic verification

Japan). To facilitate understanding, the authors created a four-way intersection
where crosswalks were attached (as shown in Fig. 11). They then conducted 1-h
simulations by varying the car traffic demand Qveh = 50, 150, 300, and 500 veh./h
and the pedestrian traffic demand Qped = 5, 20, 40, and 60 ped./cycle. Next, they
counted the number of cars making left turn, and compared the simulated results
with the empirical formula used in Japan. All of the cars were assigned to make left
turns. The signals were set on a 120 s cycle that turned green for 60 s. The pedestrian
signals were set to turn green for 50 s.

Figure 12 shows the relationship between the number of left-turn cars and the
pedestrian traffic demand. When the car traffic demand was small, the simulated
values were much lower than the empirical values since the traffic flow cannot
reach the saturation flow rate, and all the cars have passed through the crossroad.
In contrast, when the car traffic volume exceeded the saturation flow rate, it was
confirmed that the simulated values were in near agreement with the empirical data.

5 Application to Real-World Problem

5.1 Simulation Target Problem

In Okayama City, which is the capital of Japan’s Okayama Prefecture, many citizens
have chosen private cars as their primary mode of transportation, which results in
various traffic problems. Under these severe circumstances, there are two tram lines
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operating in the city. In December 2014, a large shopping center opened in the front
of Okayama Station, which is located at the center of the city, and, as a result, the
number of persons using Okayama Station increased significantly.

A plan to extend the tramway into the station square had been discussed in order
to improve access and convenience of movement for rail users around the downtown
areas. However, because the tramway crosses the large intersection in front of the
rail station and since the duration of green light time for car traffic would be reduced
by the project, there are concerns that the project would have a negative impact
on car traffic flow. With this point in mind, the authors attempted to quantitatively
assess the impact of the proposed extension by applying the mixed traffic simulation
model described in Sect.3. The BPM was applied to express pedestrian movements
in this simulation.

5.2 Data Preparation

The road network used in this research is shown in Fig. 13.1 The node positions
and connections were set by importing data from OpenStreetMap2 and the precise
lane configuration and signal control information were provided by the Okayama
Prefectural Police.

The time period to be simulated was set as 13:00 to 14:00 on a holiday, which
is one of the time periods with the highest traffic volumes. The traffic demands
resulting from cars and pedestrians in this simulation area were generated from
the link traffic volume observed by the prefectural police. The actual routes and
timetables were provided to the bus and tram agents.

1The aerial photography and the road/tramway/railway center line map were created by editing
Geospatial Information Authority of Japan (GSI) Maps (https://maps.gsi.go.jp/).
2https://www.openstreetmap.org.

https://maps.gsi.go.jp/
https://www.openstreetmap.org
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“Okayama-Ekimae Intersection”
(Intersection in front of Okayama station)

Fig. 13 Target area (top: aerial photography, bottom-left: road/tramway/railway center line map,
bottom-right: simulator screen)

5.3 Simulated Scenarios

In this case study, all drivers were assumed to select the route that provides them
the shortest trip length and no driver was permitted to choose a detour route, even if
traffic jams occurred due to the tramway extension. Although this condition imposes
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Tram stop

Virtual driving lane
Tram lane
Crosswalk
Pedestrian generating point

Fig. 14 Lane configuration at “Okayama-Ekimae Intersection” (intersection in front of Okayama
Station) (top: without tramway extension, bottom: with tramway extension)

a severe and unrealistic assumption against the tramway extension plan, it was set
in order to prevent an overly optimistic evaluation result.

The road environments around the intersection in front of Okayama Station, with
and without the tramway extension, are shown in Fig. 14. The main difference is that
the tram stop is relocated from the east side of the intersection to the station square.
As a result, the signal aspect at the intersection needs to be changed, and it is also
expected that the volume of pedestrians on the east-side crosswalk that are getting
on and off of the tram will be reduced. In this research, simulations were conducted
according to the four scenarios listed below. The distance from the intersection to the
rearmost car agent, which is stopped by a red signal in each scenario, was evaluated
as a performance index.
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• Baseline scenario 1 (BASE-1):
without tramway extension, without pedestrians

• Baseline scenario 2 (BASE-2):
without tramway extension, with pedestrians (current status)

• Extension scenario 1 (EXT-32):
with tramway extension (green light for tram: 32 s, 1 time per cycle), with
pedestrians.

• Extension scenario 2 (EXT-64):
with tramway extension (green light for tram: 32 s, 2 times per cycle), with
pedestrians.

The signal cycle at the intersection is fixed at 150 s for all scenarios in order
to maintain coordination with neighboring signals. The minimum time required for
a tram to cross the intersection, based on its estimated performance, is 32 s. The
specific signal control pattern is as shown in Table 1. The unit of each split is in
seconds, “G”, “WG”, “Y”, and “AR” refer to the duration of the green light for
all traffic modes, the green light for pedestrians and bicycles, the yellow light, and
all red (clearance time), respectively. In each split pattern, the black, blue, and red
arrows indicate permitted car, pedestrian, and tram movements, respectively.

Table 1 Signal control pattern in each scenario

B
A

SE
- 1

&
2

1φ 2φ 3φ 4φ
G: 35(GW: 32)

Y: 3
G: 14
AR: 3

G: 66(GW: 64)
Y: 3

G: 23
AR: 3

EX
T-

32

1φ 2φ 3φ 4φ 5φ

G: 25(GW: 21)
Y: 3

G:13
AR: 3

G: 50(GW: 46)
Y: 3

G: 18
AR: 3

G: 32(GW: 25)

EX
T-

64

1φ 2φ 3φ 4φ 5φ 6φ

G: 15(GW: 11)
Y: 3

G:9
AR: 3

G: 32(GW: 25) G: 35(GW: 31)
Y: 3

G: 15
AR: 3

G: 32(GW: 25)
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Fig. 15 Simulation screenshot showing the intersection in front of the station

5.4 Simulation Results

Figure 15 shows a simulation screenshot3 around the intersection in front of the
station for scenario EXT-32. The red, black, blue, and orange rectangles represent
private cars, taxis, buses, and trams, respectively, while the green dots represent
pedestrians. The small squares around intersections indicate traffic light colors or
passage permissions.

As an example of the simulation results, Fig. 16 (left) shows a position compar-
ison of the rearmost stopped car agent in the first lane (where cars are permitted
to turn left or go straight) on the north-side road of the intersection in front of
the station. The mean, minimum, and maximum values of the positions that were
measured once per signal cycle are indicated in the figure. A comparison between
BASE-1 and BASE-2 shows that the existence of pedestrians significantly affects
congestion levels, thereby also implying that the influence of pedestrians must be

3The background image was imported from OpenStreetMap.



Mixed Traffic Simulation of Cars and Pedestrians for Transportation Policy Assessment 219

43.02

161.5
183.13

322.08

15.2

72.05 75.05

171.67

77.03 

267.17 
249.00 

361.49 

0
50

100
150
200
250
300
350
400

BASE-1 BASE-2 EXT-32 EXT-64

Po
si

tio
n 

of
 r

ea
rm

os
t s

to
pp

ed
 

ca
r 

[m
]

53.95

93.84

58.65
46.82

0.00 

59.08 

10.86 
1.20 

109.46 112.19 111.39 109.83

0
20
40
60
80

100
120
140
160
180
200

BASE-1 BASE-2 EXT-32 EXT-64

Po
si

tio
n 

of
 r

ea
rm

os
t s

to
pp

ed
 

ca
r 

[m
]

Fig. 16 Position of rearmost stopped car agent (left: in first lane of north-side road, right: in first
lane of east-side road)

considered in those scenarios. On the other hand, in the comparison between BASE-
2 and EXT-32, even though the average value is declining slightly, it can be seen that
the change is sufficiently small compared with the daily fluctuation level. However,
in EXT-64, it is understood that car traffic is significantly affected by the tramway
extension since the traffic jam length is becoming much longer.

Similarly, Fig. 16 (right) shows the position of the rearmost stopped car agent
in the first lane (where cars are permitted only to turn left) of the east-side road.
In EXT-32 and EXT-64, the congestion length is seen to decrease compared with
BASE-2, and the traffic flow is found to become moderately smooth due to the
changes in the signal control patterns that accompanied the tramway extension.

6 Conclusion

In this chapter, the authors reported on the development of a simulation framework
for mixed traffic that was achieved by newly implementing pedestrian and tram
agents for an existing multi-agent-based car-traffic simulator. The results show that
the presence of pedestrians is not negligible for the traffic policy assessment. It
also indicates the importance of pedestrian modeling and pedestrian simulations.
The layered road structures that the authors modified could be effectively reused in
existing simulation models while maintaining their independence. This flexibility
facilitates the easy implementation of new agents.

The proposed pedestrian models and interaction rules show good agreement
with the observed empirical values, which implies that this multi-agent-based
framework is usable as a platform for evaluating various emerging technologies and
new algorithms related to mixed traffic. When assessing the impact of pedestrian
crossing from the viewpoint of cars, the position of the pedestrian in the direction
of crossing needs to be correctly reproduced. This is because it determines whether
or not a car can pass through. Meanwhile, more detailed models that attempt to
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reproduce the pedestrian position in the direction orthogonal to crossing may be too
high specification for this purpose.

In this study, the authors simulated the tramway extension plan in front of
Okayama Station using the proposed framework and quantitatively assessed its
impact on road traffic. From the simulation results, it was confirmed that the
assessment must consider the influence of pedestrians. Moreover, it was determined
that there was hardly any negative influence on car traffic patterns at the intersection
in front of the station in the case of EXT-32, in which the duration of the green light
for the tram is 32 s × 1 time per cycle, and that the traffic situation on the east-
side road of the intersection actually improved after the tramway extension because
cars would be permitted to turn left during the same period the tram is crossing the
intersection. It was also determined that there are no remarkable changes on the
west- and south-side roads of the intersection in front of the station, or in any other
subareas in the simulation locale.

Although the simulation results in this research were obtained from a limited
number of scenarios, they showed that this kind of mixed traffic simulation of cars,
pedestrians, and trams has the potential to provide objective data to stakeholders for
use in discussions about transportation policies.
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