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Abstract. We present the formulation and implementation of a stochas-
tic Computational Fluid Dynamics (CFD) solver based on the widely
used finite volume library - OpenFOAM. The solver employs General-
ized Polynomial Chaos (gPC) expansion to (a) quantify the uncertainties
associated with the fluid flow simulations, and (b) study the non-linear
propagation of these uncertainties. The aim is to accurately estimate the
uncertainty in the result of a CFD simulation at a lower computational
cost than the standard Monte Carlo (MC) method. The gPC approach
is based on the spectral decomposition of the random variables in terms
of basis polynomials containing randomness and the unknown determin-
istic expansion coefficients. As opposed to the mostly used non-intrusive
approach, in this work, we use the intrusive variant of the gPC method in
the sense that the deterministic equations are modified to directly solve
for the (coupled) expansion coefficients. To this end, we have tested the
intrusive gPC implementation for both the laminar and the turbulent
flow problems in CFD. The results are in accordance with the analytical
and the non-intrusive approaches. The stochastic solver thus developed,
can serve as an alternative to perform uncertainty quantification, espe-
cially when the non-intrusive methods are significantly expensive, which
is mostly true for a lot of stochastic CFD problems.

Keywords: Uncertainty quantification · Uncertainty propagation ·
Intrusive Polynomial Chaos · Computational Fluid Dynamics ·
Turbulence

1 Introduction

In simulating a physical system with a model, uncertainties may arise from var-
ious sources [15], namely, initial and boundary conditions, material properties,
model parameters, etc. These uncertainties may involve significant randomness
or may only be approximately known. In order to enhance the predictive reliabil-
ity, it is therefore important to quantify the associated uncertainties and study
its non-linear propagation especially in CFD simulations.

In order to reflect the uncertainty in the numerical solution, we need efficient
Uncertainty Quantification (UQ) methods. Broadly there exists two classes of
UQ methods, the intrusive method, where the original deterministic model is
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replaced by its stochastic representation, and the non-intrusive method, where
the original model itself is used without any modifications [11,14]. Monte Carlo
(MC) sampling is one of the simplest non-intrusive approaches. However, due
to its requirement of a large number of samples, MC method is computationally
expensive for application in CFD. As an alternative, we can use Generalized
Polynomial Chaos (gPC) representations which has been proven to be much
cheaper than MC [6,15]. This approach is based on the spectral decomposition
of the random variables in terms of basis polynomials containing randomness and
the unknown deterministic expansion coefficients. In this paper, we focus mainly
on the Intrusive Polynomial Chaos (IPC) method, where a reformulation of the
original model is performed resulting in governing equations for the expansion
coefficients of the model output [20].

As the model code, we use OpenFOAM [2], which is a C++ toolbox to
develop numerical solvers, and pre-/post-processing utilities to solve continuum
mechanics problems including CFD. OpenFOAM (a) is a highly templated code,
enabling the users to customize the default libraries as needed for their applica-
tions, and, (b) gives access to most of the tensor operations (divergence, gradi-
ent, laplacian etc.) directly at the top-level code. This avails enough flexibility to
implement the IPC framework for uncertainty quantification in CFD. To obtain
the inner products of polynomials we use a python library called chaospy [3], as
a pre-processing step to the actual stochastic simulation.

First, the idea of generalized polynomial chaos is presented with a focus on
the intrusive variant. A generic differential equation is used to explain the steps
involved in IPC, leading to a simple expression for the mean and variance as a
function of the expansion coefficients. Next, we present the set of deterministic
governing equations followed by its stochastic formulation using IPC. In particu-
lar, a Large Eddy Simulation (LES) method is used to model turbulence, which
includes an uncertain model parameter. Thereafter, we discuss the algorithm
and implementation steps required for the new stochastic solver in OpenFOAM.
The stochastic version of the Navier-Stokes equations has a similar structure to
the original system. This allows reusing the existing deterministic solver with
minimal changes necessary.

The stochastic solver developed so far is tested for various standard CFD
problems. Here we present two cases, the plane Poiseuille flow with uncertain
kinematic viscosity, and the turbulent channel flow with uncertain LES model
parameter. The results are found to be in accordance with the non-intrusive gPC
method.

2 Generalized Polynomial Chaos

The Generalized Polynomial Chaos approach is based on the spectral decom-
position of the random variable(s) f , in terms of basis polynomials containing
randomness ψi (known a priori) and the unknown deterministic expansion coeffi-
cients fi, as f(x, q) =

∑∞
i=0 fi(x)ψi(q). There are two methods to determine the

expansion coefficients, namely, the Intrusive Polynomial Chaos (IPC) and the
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Non-intrusive Polynomial Chaos (NIPC). In IPC, a reformulation of the original
model is performed resulting in governing equations for the PC mode strengths
of the model output, while in NIPC, these coefficients are approximated using
quadrature for numerical evaluation of the projection integrals.

The level of accuracy of these methods can be associated with the degree
of gPC. To attain the same level of accuracy, particularly for a higher dimen-
sional random space, IPC requires the solution of a much fewer number of equa-
tions that needed for NIPC. Moreover, for such a random space, the aliasing
error resulting from the approximation of the exact gPC expansion in the NIPC
method can become significant. This suggests that, for a multi-dimensional prob-
lem, the IPC method can deliver more accurate solutions at a much lower com-
putational cost than the NIPC method [18].

Since the current work is based on IPC, we would introduce here the impor-
tant features of the intrusive variant and we refer to the literature [5,16,19] for
more details about NIPC and gPC in general.

Intrusive Polynomial Chaos. In order to demonstrate the application of IPC,
we first consider a general stochastic differential equation

L(x, t, ω;v(x, t, ω)) = S(x, t, ω), (1)

where L is usually a nonlinear differential operator consisting of space and/or
time derivatives, v(x, t, ω) is the solution and S(x, t, ω) is the source term. The
random event ω represents the uncertainty in the system, introduced via uncer-
tain parameters, the operator, source term, initial/boundary conditions, etc. The
complete probability space is given by (Ω,A,P), where Ω is the sample space
such that ω ∈ Ω, A ⊂ 2Ω is the σ-algebra on Ω and P : A �→ [0, 1] is the
probability measure on (Ω,A).

We now employ the Galerkin polynomial chaos method, which is an IPC
method for the propagation of uncertainty [16]. It provides the spectral repre-
sentation of the stochastic solution and results into higher order approximations
of the mean and variance. Galerkin polynomial chaos method is a non-statistical
method where the uncertain parameter(s) and the solution become random vari-
ables. These random variables are approximated using the polynomial chaos
(polynomial of random variables) as follow [5]

v(x, t, ω) ≈
P∑

i=0

vi(x, t)ψi(ξ(ω)). (2)

It is worth noting that the expansion (2) is indeed the decomposition of
a random variable into a deterministic component, the expansion coefficients
vi(x, t) and a stochastic component, the random basis functions (polynomial
chaoses) ψi(ξ(ω)). Here, ξ(ω) is the vector of d independent random variables
{ξ1, ..., ξd}, corresponding to d uncertain parameters. Based on the dimension of
ξ (which here is d) and the highest order n of the polynomials {ψi}, the infinite
summation has been truncated to P + 1 = (d + n)!/(d!n!) terms.
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An important property of the basis {ψi} is their orthogonality with respect
to the probability density function (PDF) of the uncertain parameters, 〈ψiψj〉 =
〈ψ2

i 〉δij . Here, δij is the Kronecker delta and 〈·, ·〉 denotes the inner product in the
Hilbert space of the variables ξ, 〈f(ξ)g(ξ)〉 =

∫
f(ξ)g(ξ)w(ξ)dξ . The weight-

ing function w(ξ) is the probability density function of the uncertain param-
eters. Such polynomials already exist for some standard distributions which
can be found in the Askey scheme [19], for example, a Normal distribution
leads to Hermite-chaos, while Legendre-chaos corresponds to a Uniform distri-
bution. For other commonly used distributions or any arbitrary distribution, one
can for example use Gram-Schmidt algorithm [17] to construct the orthogonal
polynomials.

Substituting (2) in the general stochastic differential Eq. (1), we obtain

L
(

x, t, ω;
P∑

i=0

viψi

)

≈ S. (3)

In order to ensure that the truncation error is orthogonal to the functional
space spanned by the basis polynomials {ψi}, a Galerkin projection of the above
equation is performed onto each polynomial {ψk},

〈

L
(

x, t, ω;
P∑

i=0

viψi

)

, ψk

〉

= 〈S, ψk〉, k = 0, 1, ..., P. (4)

After using the orthogonality property of the polynomials, we obtain a set of
P + 1 deterministic coupled equations for all the random modes of the solu-
tion {v0,v1, ...,vk}. Following the definition, the mean and the variance of the
solution are given by

E[v] = μv = v0(x, t), V[v] = σ2
v =

P∑

i=1

vi(x, t)2〈ψ2
i 〉. (5)

As the coefficients vi(x, t) are known, the probability distribution of the solution
can be obtained.

3 Governing Equations

We first discuss the governing equations in the deterministic setting. The Navier-
Stokes equations for an incompressible flow is given by

∂u

∂t
+ (u · ∇)u = −∇p + ∇ · (ν∇u), ∇ · u = 0, (6)

where u is the velocity, p is the pressure and ν is the kinematic viscosity.
In Large Eddy Simulation, the reduction in the range of scales in a simulation

is achieved by applying a spatial filter to the Navier-Stokes Eqs. [12]. This results
into

∂u

∂t
+ (u · ∇)u = −∇p + ∇ · (ν∇u) − ∇ · τ , ∇ · u = 0 (7)
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where u is the filtered velocity, p is the filtered pressure and τ = uu − u u is
the so-called subgrid-scale (SGS) stress tensor. The subgrid-scale stress tensor
represents the effect of the small (unresolved) scales on the resolved scales, and
has to be modeled in order to close the filtered Navier-Stokes equations.

A popular class of SGS models is the eddy-viscosity models. In order to
take account of the dissipation through the unresolved scales, the eddy-viscosity
models, locally increases the viscosity by appending the molecular viscosity with
the eddy viscosity. Mathematically, these models specify the anisotropic part of
the subgrid-scale tensor as

τ − 1
3

tr(τ ) = −2νtS, (8)

where νt is the eddy-viscosity and S = (∇u + (∇u)T )/2 is the resolved strain
tensor. Substituting into the filtered momentum Eq. (6), we obtain

∂u

∂t
+ (u · ∇)u = −∇p + ∇ · ((ν + νt)∇u), (9)

where the incompressibility constraint is used to simplify the equation. The
pressure here is altered to include the trace term of Eq. (8).

Smagorinsky model [13] is one of the oldest and most popular eddy-viscosity
SGS model. The eddy viscosity of the Smagorinsky model is expressed as

νt = C2
s Δ2|S|, (10)

where Cs is the Smagorinsky coefficient, Δ is the LES filter width and |S| =√
2S : S. It should be noted that the coefficient Cs must be known prior to

the simulation and is usually adapted to improve the results [12]. For example,
Cs = 0.2 is used for isotropic homogeneous turbulence, while a value of Cs = 0.1
is used in case of channel flow. Similar values (Cs 
 0.1−0.12) are realized from
the shear flow studies based on experiments [10].

3.1 Stochastic Formulation

Let us consider the Navier-Stokes Eqs. (6) with some uncertainty in the system.
The sources of the uncertainty considered here are boundary conditions, material
properties and model parameters. We employ the IPC method (see Sect. 2) by
presuming the dimensionality (d) and probability density function of the uncer-
tain random variables {ξ1, ξ2, ...ξd} to be known, allowing us to construct the
finite set of orthogonal polynomial basis {ψi}.

In order to obtain a rather generic formulation, unless specified otherwise, we
consider uncertainty in all sources listed above. Thus, the associated polynomial
chaos expansion (PCE) for kinematic viscosity is given by

ν ≈
P∑

i=0

νiψi(ξ). (11)
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Note that the coefficients νi are assumed to be known. The dependence of the
flow variables, i.e. velocity and pressure, on the stochastic variables is expressed
by the following PCEs

u(x, t) ≈
P∑

i=0

ui(x, t)ψi(ξ), p(x, t) ≈
P∑

i=0

pi(x, t)ψi(ξ), (12)

where ui and pi are the unknown polynomial chaos mode strengths of velocity
and pressure fields, respectively. For deterministic boundary conditions, ui and
pi are all zero for i = 1, 2, ..., P . In case of uncertain boundary conditions with
a known (or modeled) probability density function, ui and pi, for i = 0, 1, ..., P ,
can be estimated.

Introducing these expansions in Eqs. (6) and taking a Galerkin projection
onto each polynomial {ψk} while using the orthogonality of the polynomial chaos
and finally dividing by 〈ψkψk〉, results, for k = 0, 1, ..., P , into the following set
of deterministic equations:

∂uk

∂t
+

P∑

i=0

P∑

j=0

(ui ·∇)ujMijk = −∇pk +
P∑

i=0

P∑

j=0

∇ · (νi∇uj)Mijk, ∇ ·uk = 0,

(13)

where Mijk =
〈ψiψjψk〉
〈ψkψk〉 . Note that the original system of Eqs. (6) is transformed

into a system of (P +1) divergence-free constraints on velocity modes and (P +1)
coupled equations in velocity and pressure modes. A detailed discussion on the
solution procedure adopted for this large system of equations is deferred to
Sect. 4.

Similarly, for the filtered momentum Eq. (7) with Smagorinsky model for
turbulence, applying the above steps, results in

∂uk

∂t
+

P∑

i=0

P∑

j=0

(ui · ∇)ujMijk = −∇pk +
P∑

i=0

P∑

j=0

∇ · (νi∇uj)Mijk

+
P∑

i=0

P∑

j=0

P∑

l=0

P∑

m=0

∇ · (Csl
Csm

Δ2|S|i∇uj)Mijklm,

(14)

where Mijklm =
〈ψiψjψkψlψm〉

〈ψkψk〉 . Note that |S|2 = 2S : S, and applying the IPC

steps to this identity - using polynomial chaos expansion and projecting on each
basis polynomial, we obtain

P∑

i=0

P∑

j=0

|S|i|S|jMijk = 2
P∑

i=0

P∑

j=0

Si : SjMijk, (15)

where Si is the resolved strain tensor based on ith velocity mode. The above
corresponds to system of (P +1) non-linear equations in the unknown expansion
coefficients of |S|. This system is solved using Picard iterations with |S|i =√

2Si : Si as the initial guess.



Intrusive Polynomial Chaos for CFD Using OpenFOAM 683

4 Algorithm and Implementation

OpenFOAM uses the finite volume method (FVM) for the disretization of partial
differential Eqs. [4]. Among the various fluid dynamic solvers offered by Open-
FOAM, we choose the solver called pimpleFoam [2], which allows the use of
large time-steps to solve the incompressible Navier-Stokes Eqs. (6). This solver
is based on the PIMPLE algorithm for pressure-velocity coupling using Rhie and
Chow type interpolation [7].

From the previous section, it can be realized that the system of govern-
ing Eqs. (14) for the evolution of the velocity and pressure modes uk, pk for
k = 0, 1, ..., P , has a structure similar to the original deterministic Navier-Stokes
Eqs. (6). Due to the coupling via convection and diffusion terms, the size of this
new system is P + 1 times its deterministic version. It can be observed that the
divergence-free velocity constraints are decoupled and can be solved indepen-
dently. Based on this observation, a fractional step projection scheme has been
previously implemented [8]. In the first fractional step, the convection and dif-
fusion terms are integrated followed by enforcing the divergence-free constraints
in the second fractional step.

Our approach of the stochastic solver is based on the development of the
existing deterministic solver (pimpleFoam) such that it can accommodate and
solve (P + 1) coupled Navier-Stokes like systems in uk, pk for k = 0, 1, ..., P .
We solve each of these systems sequentially, by using the initialized/updated
velocity and pressure modes, and repeat until convergence. Figure 1(a), provides
a graphical representation of this approach. Depending on the type of flow,
the value of P and a few other parameters; it usually takes about 3–6 explicit
iterations (Ie) to realize convergence at every time-step. The default value of Ie

is set to P + 1. Following the conventions of OpenFOAM, we call this solver,
gPCPimpleFoam. In contrast to the fractional step scheme, this approach admits
better stability, stronger coupling and faster convergence; with an efficient data
management and minimal changes in the exiting solver.

In Fig. 1(b), we highlight the most important steps needed to develop
gPCPimpleFoam, over the existing solver, pimpleFoam. In contrast to the deter-
ministic solver, two nested loops are introduced. The first loop is over the explicit
iterations (Ie), which updates the mode strengths between the two consecutive
time-steps. For every explicit iteration, the second nested loop solves the Navier-
Stokes like system (uk, pk) for each mode strength k, while employing the exist-
ing, however modified, structure of the PIMPLE scheme. The modifications are
inevitable due to the summations in the convection and the diffusion terms of the
stochastic equations. It is realized that the mean mode (u0, p0) changes slowly
as compared to the other modes. Thus, in order to increase the stability, we start
solving the last system (uP , pP ) first, and updating all the modes before solving
the first system (0th mode) representing the mean.

In addition to the exiting modules, we require to either modify or create
some completely new routines for turbulence, pre- and post- processing etc.
Restricting the verbosity, we attempt to provide an overview of the major imple-
mentation steps: (a) Creation of new variables (vectors) for the list of mode
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Fig. 1. (a) Evolution of modes (for P = 3) between two consecutive time-steps via
sequential updating and explicit iterations, (b) Important steps of the algorithm imple-
mented in the gPCPimpleFoam solver.

strengths of all the uncertain parameters, flow variables and derived variables
for post-processing, (b) For the solver to read these inner products (obtained
using chaospy library [3]), only a small routine is added. Another similar lines of
code are added to read in the values of d, n, Ie, etc, (c) Very subtle changes are
needed in the transport model in order to read in the transport properties for all
the mode strengths. To accommodate for reading and initializing the turbulence
models, a few minor changes are made in the LES model library. Significant
changes are required specially for the Smagorinsky model which allows auto-
matic reading of all the mode strengths of Cs from the input file, and (d) To
estimate the mean and the variance of flow variables and other derived quan-
tities, a separate routine is added to the post-processing step of the solver. We
use the IPC steps to calculate the derived quantities (like Reynolds Stresses)
using the resolved expansion coefficients of the flow variables and the known
coefficients of other parameters.
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The order of accuracy and the convergence rate are governed by the large
variety of space and time disretization schemes and iterative solvers offered by
the OpenFOAM library.

5 Test Cases

5.1 Plane Poiseuille Flow

We first consider a 2D steady laminar flow in long rectangular channel (with
a height of 2δ) in the absence of any external forces. For a given average inlet
velocity uavg, the fully developed flow has an analytical solution known as the
Hagen-Poiseuille solution.

u(x, y) =
3
2
uavg

[

1 −
(y

δ

)2
]

, v(x, y) = 0,
∂p

∂x
= −3νuavg

δ2
,

∂p

∂y
= 0. (16)

Therefore, the velocity field is independent of the viscosity and at y = 0, u =
umax = 3

2uavg. We assume the boundary condition to be deterministic and
presume a known PCE for the uncertain kinematic viscosity, ν =

∑P
i=0 νiψi(ξ).

Also, we consider a Gaussian random variable to model the viscosity, for which
the associated polynomial chaoses ψi(ξ), are the Hermite polynomials. Using
PCE of pressure gradient and random viscosity, for i = 0, 1, ..., P , we obtain

∂pi

∂x
= −3uavg

δ2
νi. (17)

The use of polynomial chaos for incompressible laminar flow in a 2D channel
has been previously investigated [8], and as a validation case, we carry out a
similar study with the IPC solver developed using OpenFOAM.

A uniform velocity is used at the inlet with no-slip boundary conditions at
the top and bottom walls, and the gradient of velocity is set to zero at the outlet.
Note that the use of deterministic boundary condition implies, for i = 1, ..., P ,
the unknown mode strength and/or their derivatives are by default set to zero
at the boundaries. The Reynolds number, Re = 2δuavg/ν0, is set to 100. Fifth-
order 1D Hermite polynomials are employed for all the PCEs, i.e. P = 5. The
coefficient of variation (CoV = σ/μ) for the uncertain viscosity is set to ∼20%,
with ν1/ν0 = 2 × 10−1 and ν2/ν0 = 8 × 10−5. The remaining mode strengths of
viscosity are assigned a value of zero. The simulation is performed in a domain
with L/δ = 50 and a 250 × 100 mesh with a near-wall grading. Second-order
disretization schemes are used both in space and time, and time-step size Δt =
10−2δ/uavg is specified.

Figure 2 shows the profile of the mean and the standard deviation of velocity.
The mean depicts the gradual transition in the flow along the channel length
from a uniform inlet profile to a parabolic profile with maximum on the center-
line. The uncertainty in velocity at inlet is zero, which is indeed the consequence
of the deterministic boundary condition. In the developing region, a higher stan-
dard deviation is realized in the channel center as well as in the boundary layer



686 J. Parekh and R. Verstappen

Fig. 2. Profiles of the mean and the standard deviation of velocity.

with two lobes close to the walls. A significant variation in the modes (and thus
the standard deviation) is realized up to 10–12 channel half-widths and further
downstream, these modes become less significant. Figure 3 provides the axial
velocity profile with confidence region (±2σ) at different locations in the down-
stream direction. The uncertainties tend to zero in the fully developed region,
which is in accordance with the theory where the velocity is independent of
the viscosity (see Eq. (16)). Figure 4 shows the estimated ratios of the modes of
pressure gradient with respect to the mean pressure gradient along the channel
centerline. Clearly, after the recirculating regions near the channel inlet, these
ratios gradually reach their constant values further downstream. For x/δ > 20,
the results are identical to analytical predictions (see Eq. (17)), characterizing
the uncertainty in pressure due to the uncertainty in viscosity. Velocity mode
strengths are shown in Fig. 5. As evident, the results from the intrusive variant
are in accordance with the non-intrusive counter-part, and due to the fast spec-
tral convergence of the polynomial chaos representation, the magnitudes of the
modes decrease as P increases.

5.2 Turbulent Channel Flow

A turbulent channel flow is a theoretical representation of a flow driven by a
constant pressure gradient between two parallel planes extending infinitely. A 3D
schematic is shown in Fig. 6. Since the computational domain has to be finite, in
addition to channel width h, we fix the stream- and span-wise truncation lengths,
lx and lz, respectively. The values of h, lx and lz are adopted from [1]. These
values ensures that the computational domain is large enough to accommodate
the turbulent structures in the flow.

In order to maintain an equivalent flow, instead of the pressure gradient,
the bulk velocity can also be prescribed, Ub = 1

h

∫ h

0
〈u〉dy. The bulk Reynolds

number is then defined as Reb = hUb/ν. In context of turbulent channel flows,
another characteristic velocity called the friction velocity is usually introduced
in terms of the wall shear stress τw and the fluid density ρ, as uτ =

√
τw/ρ.

The friction Reynolds number is then defined as Reτ = δuτ/ν, where δ = h/2
is the channel half-width. Then the pressure gradient and the wall shear stress
relates as − dp̃

dx = τw
δ , where p̃/ρ = p. Thus we have a choice between prescribing

the bulk Reynolds number via bulk velocity and the friction Reynolds number
via pressure gradient. Since we have to study the effect of the uncertain model
parameter on the flow profile, we decide to fix the pressure-gradient and compute
Ub through (stochastic) simulation.
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Fig. 3. Normalized axial velocity pro-
files at different cross-sections.

Fig. 4. Pressure gradient ratios along
the centerline.

Fig. 5. Modes strengths of velocity at x/δ = 2, for IPC (blue) and NIPC (red) methods.
(Color figure online)

The stochastic LES Smagorinsky model, as discussed in Sect. 3, is employed
to solve for the turbulence. Since the model parameter CS may take a range of
values, we assume it to be uncertain with a known PCE. We consider a Uniform
random variable to model the parameter, for which the associated polynomial
chaoses ψi(ξ) are the Legendre polynomials. Table 1 summarizes the physical
parameters used in the deterministic and stochastic simulations. 1D third-order
Legendre polynomials are used for all the PCEs. The value of CS1 is set equal to
the standard deviation, while the remaining mode strengths of CS are assigned
a value of zero. Periodic boundary condition are applied in the stream- and
span-wise directions, while no-slip boundary condition is used at the walls. The
simulation results will be compared to the Direct Numerical Simulation (DNS)
data from [9] at Reτ = 395. Based on the study of the effect of computational
grid size from [1], we use a reasonably fine mesh with the details in Table 1. Note
that Δx+ = Δxuτ/ν, Δz+ = Δzuτ/ν and y+ = yuτ/ν, are calculated using
value of uτ , corresponding to the value of Reτ in the DNS database. In order to
capture the sharp gradients in the near-wall region, we specify a grading along
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Table 1. Details of the physical parameters and the computational mesh.

Parameter Value Units
Kinematic viscosity (ν) 2× 10−5 m2s−1

Pressure gradient (−dp0/dx) 5× 10−5 ms−2

Target Reynolds number (Reτ ) 395 -
Smagorinsky parameter (CS) U(0.075, 0.125) -

Mesh Cells along x, y, z Total cells Δx+ Δz+ y+

M1 80× 100× 60 480000 19.75 13.16 0.96

y direction. We use the van Driest damping function to correct the behavior of
the Smagorinsky model in the near-wall region [1].

Figure 7 presents the normalized time-averaged streamwise component of the
velocity along with the mean and the confidence interval. The profile is compared
with the DNS data, the deterministic solution (DET) at the mean value of CS

and also with the results from non-intrusive polynomial chaos. The stochastic
mean from IPC is found to be close to DET and mean of NIPC, and deviates
slightly from DNS in the same manner as the DET solution. In contrast to
IPC, the NIPC approach under predicts the variance. The uncertainty in the
LES model parameter is reflected in the solution in the regions close to the
wall and the channel center. In Fig. 8 the normalized square-root of the second
order velocity moments and Reynolds shear stress are plotted together with their
confidence regions. As evident, the stochastic mean of stresses are close to that
of NIPC and DET solution. The deviation from DNS can mainly be attributed
to the use of a relatively coarse mesh and the choice of LES model. Both the
IPC and NIPC methods predicts high variance near the wall, with almost zero
uncertainty in the channel center. This is expected as the Smagorinsky model
parameter, when changed, usually affects significantly near the wall as compared
to the channel center. While, the confidence region of intrusive method mostly

Fig. 6. Graphical representation of the
turbulent channel flow.

Fig. 7. Normalized time-averaged
streamwise component of velocity.
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Fig. 8. Normalized square-root of the second order velocity moments (left) and nor-
malized Reynolds shear stress (right). [Legend: Fig. 7]

overlaps with that of the non-intrusive counterpart, in some regions, NIPC still
underestimates the uncertainty.

6 Conclusions

The IPC method, as it involves solving a lesser number of equations than NIPC,
can be of great use when the deterministic simulation is already computationally
expensive. To develop an IPC solver it is important to efficiently decouple the
system of equations and ensure the overhead due to coupling is not significant.

In this work, intrusive polynomial chaos for CFD simulations using a popular
finite-volume library OpenFOAM was presented. The aim was to use the existing
deterministic solver for the incompressible Navier-Stokes equations, to develop
a new stochastic solver for the quantification of the uncertainties involved and
study its non-linear propagation.

To this end, we tested this solver for various standard CFD problems involv-
ing laminar and turbulent flows. The plane Poiseuille flow with uncertain kine-
matic viscosity was discussed first. Here, we realized a significant effect of the
uncertainty in the re-circulation region of the flow. The results were also com-
pared with the non-intrusive counterpart with same polynomial order. The
results from IPC were found to be very close to NIPC, verifying its implemen-
tation using OpenFOAM. Next, we examined the turbulent channel flow with
uncertain LES model parameter. The results were found to be in accordance with
the non-intrusive gPC method. Deviations in the variance predicted by the two
variants of gPC approaches can be attributed to the use of the two very different
numerical methods to estimate the expansion coefficients in both variants.

Through this work, for UQ in CFD, we bring to light an alternate to the MC
and the NIPC approaches. The promising results obtained from IPC method
encourages to further pursue research in this direction. Pseudo-spectral methods
along with early truncated expansions will be some next steps to reduce the
computational cost. As a future work, Parallel-in-Time methods will be tested
to overcome the saturation via space-only parallelization.
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4. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer,
Heidelberg (2002). https://doi.org/10.1007/978-3-642-56026-2

5. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach.
Springer, New York (1991). https://doi.org/10.1007/978-1-4612-3094-6

6. Hosder, S., Walters, R.W.: Non-intrusive polynomial chaos methods for stochas-
tic CFD-theory and applications. In: RTO Meeting Proceedings. Computational
Uncertainty in Military Vehicle Design (2007). http://www.rto.nato.int

7. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-
splitting. J. Comput. Phys. 62(1), 40–65 (1986). https://doi.org/10.1016/0021-
9991(86)90099-9

8. Le Matre, O.P., Knio, O.M., Najm, H.N., Ghanem, R.G.: A stochastic projection
method for fluid flow. I. Basic formulation. J. Comput. Phys. 173(2), 481–511
(2001). https://doi.org/10.1006/jcph.2001.6889

9. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent
channel flow up to Re 590. Phys. Fluids 11(4), 943–945 (1999). https://doi.org/
10.1063/1.869966

10. O’Neil, J., Meneveau, C.: Subgrid-scale stresses and their modelling in a turbu-
lent plane wake. J. Fluid Mech. 349, 253–293 (1997). https://doi.org/10.1017/
S0022112097006885
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