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Abstract. Scheduling problems have attracted the attention of
researchers and practitioners for several decades. The quality of differ-
ent methods developed to solve these problems on classical computers
have been collected and compared in various benchmark repositories.
Recently, quantum annealing has appeared as promising approach to
solve some scheduling problems. The goal of this paper is to check exper-
imentally if and how this approach can be applied for solving a well-
known benchmark of the classical Job Shop Scheduling Problem. We
present the existing capabilities provided by the D-Wave 2000Q quan-
tum annealing system in the light of this benchmark. We have tested
the quantum annealing system features experimentally, and proposed a
new heuristic method as a proof-of-concept. In our approach we decom-
pose the considered scheduling problem into a set of smaller optimiza-
tion problems which fit better into a limited quantum hardware capac-
ity. We have tuned experimentally various parameters of limited fully-
connected graphs of qubits available in the quantum annealing system for
the heuristic. We also indicate how new improvements in the upcoming
D-Wave quantum processor might potentially impact the performance of
our approach.

Keywords: Quantum annealing · Job Shop Scheduling Problem ·
Heuristic

1 Introduction

Quantum computing has attracted the attention of many researchers and pro-
vides a new challenge for solving certain classes of combinatorial problems more
efficiently than on classical computers. Moreover, quantum computers are start-
ing to approach the limit of classical simulation, and consequently entering an era
of unprecedented ways to explore quantum algorithms [1]. There are many ongo-
ing efforts to run new experiments and benchmarks with quantum computing to
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discover new applications and solve real-world problems. Many researchers have
been trying to find efficient ways of approaching NP-hard scheduling problems
over the last decades. A comprehensive study to the theory and applications of
scheduling in advanced planning and computer systems as well as various prac-
tical industrial, real-time engineering, management science, business adminis-
tration and information systems use cases were presented in [3]. Recently, there
has been much interest in the possibility of using quantum annealing, which is
a derivative of adiabatic quantum optimization, e.g. in [4,5,7,9]. In general, the
main assumption in adiabatic quantum optimization is that there is a quantum
Hamiltonian HP whose ground state encodes the solution to a considered prob-
lem, and another Hamiltonian H0, whose ground state is easy-to-implement. We
first prepare a quantum system to be in the ground state of a known H0, and
then adiabatically change the Hamiltonian for a time T by the following formula:

H(t) = (1 − t

T
)H0 +

t

T
HP (1)

Next, if T is large enough, and H0 and HP do not interchange, the quantum
system will remain in the ground state for all times by the adiabatic theorem
of quantum mechanics. At time T , measuring the quantum state will return a
solution of a considered problem.

The emerging quantum technologies support mostly 2-local interactions, thus
the problem Hamiltonian HP , containing only 2-local terms between the qubits,
can be expressed by the formula:

H(σ) =
N−1∑

i=0

hiσi +
N−2∑

i=0

N−1∑

j=i+1

Jijσiσj (2)

The aim is to minimize the energy of a 2-local Ising Hamiltonian function,
where hi ∈ R, Jij ∈ R and σi ∈ {−1,+1}. This physics formula version is often
called in short Ising. Various strategies together with useful techniques for map-
ping a wide variety of NP-hard problems to Ising formulations to benefit from
adiabatic quantum optimization have already been demonstrated, e.g., in [8]. In
fact, an alternative problem formulation when translated to an objective func-
tion, the 2-local condition on the problem Hamiltonian means that the objective
function can also be expressed in the form used in Operations Research commu-
nity:

Obj(x) =
N−1∑

i=0

aixi +
N−2∑

i=0

N−1∑

j=i+1

bijxixj (3)

Thus, the problem is to minimize quadratic pseudo-Boolean objective func-
tion which is known as the Quadratic Unconstrained Binary Optimisation
(QUBO), where ai ∈ R, bij ∈ R, and xi ∈ {1, 0}. In a nutshell, to program
a quantum annealer we have to provide an appropriate list of ai and bij values.
One should also note that the conversion between these two formula versions
requires only a linear transformation, as xi = (σi+1)

2 .
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Several questions are still open in the field of quantum computing in practice.
Technical challenges include the preparation of a quantum physical system and
its operation at temperatures close to absolute zero isolated from the surrounding
environment in order to behave quantum mechanically. There are also various
limits on the quantum system controllability, noise and imperfections. However,
in the context of this paper, we address the question what scheduling problems
can be solved today using the existing quantum hardware.

We believe that one of the most important applications of quantum anneal-
ing is in the category of scheduling. In this paper, however, we have limited our
experiments to solve only a certain class of scheduling problems. We wanted to
validate experimentally a new quantum annealing heuristic applied for solving
a well-known benchmark of the classical Job Shop Scheduling Problem (JSSP).
In terms of computational complexity, the JSSP is NP-hard in the strong sense
[2]. Consequently, in practice optimal solutions can not be found within a rea-
sonable time. Thus, several polynomial-time heuristics have been developed for
finding suboptimal solutions and tested experimentally [16]. Various heuristics
have been proposed based on traditional models of computing to find the best-
known solutions for JSSP benchmark instances. According to the recent com-
prehensive literature study in [10], half of them have been based on tabu search
algorithms, followed by local search, shifting bottleneck, and branch and bound,
and also simulated annealing techniques. The simulated annealing metaheuristic
is a probabilistic technique for approximating the global optimum of a given
function, successfully applied for solving various scheduling problems, includ-
ing the JSSP [12] and the MRCPSP (Multi-mode Resource-Constrained Project
Scheduling Problem) [13]. In principle, the classical simulated annealing meta-
heuristic has much in common with a physical process of heating a material and
then slowly lowering the temperature to decrease defects, thus minimizing the
system energy. There is also a mathematical analogy to the adiabatic theorem
of quantum mechanics adopted in quantum annealing processes implemented in
the existing quantum hardware.

The rest of this paper is organized as follows. In Sect. 2 we formulate the con-
sidered scheduling problem. The procedure of mapping the JSSP to the QUBO
formula together with variable pruning techniques are presented in Sect. 3. Our
heuristic approach is briefly explained in Sect. 4. The obtained results are pre-
sented in Sect. 5. We conclude our paper and present future work in Sect. 6.

2 Problem Formulation

The JSSP can be described by a set of jobs J = {j1, . . . , jN} that must be
scheduled on a set of machines M = {m1, . . . ,mR}. Each job jn consists of a
sequence of Ln operations that have to be performed in a predefined order:

jn = {On1 → On2 → · · · → OnLn
} (4)

To simplify the notation, we enumerate the operations of all jobs in a lexico-
graphical order, in such a way that:
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j1 = {O1 → O2 → · · · → Ok1}
j2 = {Ok1+1 → O2 → · · · → Ok2}

. . .

jN = {OkN−1+1 → O2 → · · · → OkN
} (5)

The processing time of an operation Oi, i = 1, 2, . . . , kN , is pi which is a
positive integer. Moreover, each operation requires for its processing a particular
machine. Let qi be the index of the machine mqi on which operation Oi is to be
executed. By Im we will denote the set of indices of all of the operations that are
to be executed on machine mm, i.e., Im = {i : qi = m}. There can only be one
operation running on any given machine at any given point in time, and each
operation of a job needs to be completed before the following one can start. The
objective is to schedule all operations in a valid sequence in order to minimize
the schedule length (or the makespan), which is the completion time of the last
running job.

The JSSP is usually formulated as an optimization problem. However, it can
be easily transformed into a decision problem, which is limited to decide whether
there exists a feasible solution (schedule) with a makespan smaller than or equal
to a given time. The JSSP can be easily mapped to a constraint satisfaction prob-
lem (CSP), and the existence of a solution to a CSP can be viewed as a decision
problem. The decision version of the JSSP, together with its formulation suit-
able for a quantum annealing solver was presented in detail in [14]. The obtained
results have encouraged us to perform further empirical investigations. We have
followed the proposed time-indexed decision version of the JSSP to implement
basic steps in our quantum annealing heuristic. However, we have added new
conditions and extensions to be able to potentially apply it for practical use.
Among many existing JSSP test instances we have decided to focus on the first
benchmark set proposed in [15] to analyse various capabilities and properties
supported by the D-Wave 2000Q quantum chip. In our preliminary studies, as
a proof-of-concept, we have selected a small JSSP test instance denoted as ft06
(6 jobs and 6 machines), but large enough to investigate several schedule vari-
ables and properties relevant in a quantum annealing process aiming at the next
generation of D-Wave QPU [17].

Any JSSP instance can be represented as the disjunctive graph G = (V,C ∪
D), where V is the set of nodes, representing the operations of the jobs. Each
node i has a weight which is equal to the processing time pi of the corresponding
operation Oi, and there are two special nodes, a source 0 and a sink ∗, whereby
p0 and p∗ are equal to 0. C is the set of conjunctive arcs which reflect the job-
order of all the operations, and the set of these arcs is denoted by D, see Fig. 1
for the selected ft06 JSSP test instance. Bidirectional connections representing
operations executed on the same machine are depicted as nodes with the same
colour for better reading. The scheduling decision is to define ordering among
all those operations which have to be processed on the same machine. In the dis-
junctive graph representation it is done by turning undirected arcs into directed
ones. A selection S defines a feasible schedule if and only if every undirected arc
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has been fixed, and the resulting graph G(S) = (V,C ∪ S) is acyclic, where S is
called a complete selection. For a complete selection S the makespan is equal to
the length of the longest weighted path (i.e., critical path) from the source 0 to
the sink ∗ in the acyclic graph G(S) = (V,C ∪ S).

Fig. 1. The example ft06 (6 jobs, and 6 machines) JSSP test instance represented as
the disjunctive graph.

3 JSSP Mapping to QUBO

In this section we present how the considered JSSP can be mapped to QUBO,
and then how all the QUBO variables are embedded into a specific quantum
hardware, in our case - the D-Wave 2000Q quantum processing unit (QPU).
From the QUBO problem formulation perspective, it is essential to note that
the QPU is a hardware implementation of an undirected graph with qubits as
vertices and couplers as edges among them. For instance, in the D-Wave 2000Q
QPU there are 2048 qubits logically mapped into a 16 × 16 matrix of unit
cells of eight qubits. Each qubit is connected to at most six other qubits. The
D-Wave 2000Q has been designed to solve QUBO problems, where each qubit
represents a variable, and couplers between qubits represent the cost associated
with qubit pairs. The limited qubits connectivity in the D-Wave 2000Q QPU is a
fundamental quantum hardware property which affected the quality of obtained
results and in various experiments reduced scheduling problem instances solved
by quantum annealing based heuristic methods. However, according to recent
publicly available technical specifications, the limited qubits connectivity will
be significantly improved in the upcoming D-Wave Pegasus QPU. Therefore,
while designing our new heuristic quantum annealing heuristic we have taken
this upcoming feature into account.

Following the example JSSP time-indexed QUBO formulation, we define nO∗
T binary variables for the JSSP, where nO is a total number of operations and T
is the upper bound for a given JSSP instance. During the initial QUBO mapping
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phase, we have to assign a set of binary variables for each operation and its
various possible discrete starting times:

xit =

{
1 : operation Oi starts at time t

0 : otherwise
(6)

The upper bound T for the JSSP can be simply calculated as the sum of the
execution times of all operations, where t is smaller than or equal to T .

3.1 Quadratic Constraints and the Objective Function

Let us introduce a set of penalty functions and corresponding constraints
expressed as quadratic constraints, as proposed in [14]. To force the order of
operations within a job, the following formula was proposed to count the num-
ber of precedence violations among consecutive operations:

h1(x) =
∑

n

(
∑

kn−1<i<kn

t+pi>t′

xitxi+1,t′) (7)

Then, there can be only one job running on each machine at any time:

h2(x) =
∑

m

(
∑

(i,t,k,t′)∈Rm

xitxkt′) (8)

where Rm = Am ∪ Bm, and Am = {(i, t, k, t′) : (i, k) ∈ Im × Im, i �= k, 0 ≤
t, t′ ≤ T, 0 < t′ − t < pi}, Bm = {(i, t, k, t′) : (i, k) ∈ Im × Im, i < k, t′ =
t, pi > 0, pj > 0}. To prevent operation Oj from starting at t′ if there is another
operation Oi started at time t and t′ − t < pi, the set Am was defined. Then,
the set Bm was defined so that two jobs can not start at the same time unless
at least one of their execution time is zero.

The last penalty function expressed as the quadratic constraint was defined
to force that an operation must start once and only once:

h3(x) =
∑

i

(
∑

t

xit − 1)2 (9)

The considered JSSP Hamiltonian as the objective function can be expressed
simply as the sum of the quadratic constraints defined above:

HT (x) = ηh1(x) + αh2(x) + βh3(x) (10)

The penalty constants η, α, and β must be larger than 0 and in practice
setup experimentally to ensure that unfeasible solutions do not have a lower
energy than ground states. One should also note that the index of HT indicates
the strong dependence of the Hamiltonian on the timespan T , which affects
the number of variables, and is one of the critical challenges for running JSSP
time-indexed QUBO formulations for reference JSSP benchmark instances on
the D-Wave 2000Q QPU.
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3.2 Variable Pruning

One of the challenging tasks in our experimental studies was to eliminate as
many as possible variables during the variable pruning process. We disabled all
of the variables 0 ≤ xij < S, where S is the sum of execution times of all the
operations prior to the considered one in the same job. Then, we also disabled
all of the variables T − S ≤ xij < T , where S is the sum of execution times of
all the operations after the considered one in the same job. Finally, in our public
available source code, we introduced a set of parameters for selecting any point
in schedule time and corresponding variable or removing a certain time-frame in
a schedule.

4 Heuristic

In order to eliminate variables in the JSSP time-indexed QUBO formulation, and
consequently be able to run bigger problem instances on the limited number
of qubits available, we propose a new hybrid heuristic method which extends
the basic variable pruning techniques. The main idea behind the heuristic is to
define a processing window and move it in time till the end of a schedule, so
only a limited number of operations is considered. In other words, we iterate the
processing window in time, and check all the operations if they fit into one of
three categories, where:

– si is the start time of operation i;
– wbegin is the start time of the processing window;
– wend is the end time of the processing window;
– pi is the execution time of operation i.

A schematic view of the processing window used in our heuristic is presented
in Fig. 2. The example operations filled with the red colour are reaching out
of the processing window, and therefore they are treated differently. Given that
operations A and B belong to the same job, the operation A will not be scheduled
when operation B occurs, even though operation B will be removed from the
schedule.

A: Inside the processing window
{

si ≥ wbegin

si + pi < wend

(11)

We include those operations in a new dictionary of jobs, creating a smaller
instance.

B: Reaching out of the processing window from the left side
{

si < wbegin

si + pi < wend

(12)
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Thanks to our modular heuristic implementation we are able to prune addi-
tionally variables corresponding to the machines when those operations occupy
them and prevent the next operation in the same job from starting before the
one ends.

C: Reaching out of the processing window from the right side

si + pi ≥ wend (13)

Respectively to B, we are able to disable a machine when those operations
take place and prevent the previous operation in the same job from interfering
with this one.

Fig. 2. Dividing a schedule into a set of processing windows for many machines and
job operations. (Color figure online)

5 Results

5.1 Jobs vs. Operations

First, we wanted to check which parameters were especially crucial for the quality
of generated solutions. In order to ensure that no other parameters interfered
with the obtained results, we designed the second simple experiment. During
the experiment, we compared schedules of one job consisting of many operations
with many jobs consisting of only one operation. Each operation execution time
was equal to 1, and it was performed on the same machine, see Fig. 3.

Based on the performed parameters tuning experiments, we discovered that
the maximum processing window was around 14 time-units to be able to run
the JSSP ft06 instance on the D-Wave 2000Q QPU. Additionally, during the
pre-processing step we defined three classes of job operation length, namely
short,medium, long, to reduce a number of time-indexed variables and the pro-
cessing window size down to 5 time-units. The example initial steps in our heuris-
tic improving the scheduling solution by turning undirected arcs into directed
ones within the given processing window are presented in Fig. 4.
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Fig. 3. The quality of solutions for a different number of jobs and operations.

Fig. 4. The initial disjunctive graph representation of the feasible scheduling solution
within a processing window with the undirected arcs O11, O31 and O21, O61 turned by
the heuristic into directed arcs during the optimization process.
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5.2 Embedding and Qubits Chain Strength

In Sect. 3 we represented the JSSP in the QUBO form as a theoretical graph of
qubits and corresponding variables. However, the next challenge in our exper-
imental studies was the embedding procedure of QUBO structures onto the
quantum hardware with limited fully-connected graphs of qubits. The graph
configuration implemented in the existing D-Wave hardware is called a Chimera
structure. In fact, the tested D-Wave 2000Q QPU is a lattice of interconnected
qubits. While some qubits connect to others via couplers, the D-Wave QPU is not
fully connected, and qubits are arranged in sparsely connected groups of at most
six other qubits. Currently, D-Wave provides a set of automated programming
tools and APIs to find and perform an embedding automatically. Nevertheless,
many quits must be chained together, so the chain is used as a single qubit.
The chain strength value c must be set up carefully, as there is no methodol-
ogy for choosing an optimal value [18]. To evaluate the embedding procedure
we designed the following experiment: we randomly generated a set of schedules
consisting of 4 jobs, each job consisted of 4 operations, and we assigned rela-
tively short execution times to all operations, so the makespan was T ≤ 7, and
we solved the JSSP problem 100 times. Note that long schedules impose a large
number of variables for the JSSP time-indexed QUBO formulation, and then
the embedding procedure. Thus, we used different values of the chain strength
c to discover what is optimal for our problem, see Fig. 5. Based on the obtained
results, we were able to assign the strength value c = 3, but we observed a
significant impact of its different values on the number of error solutions gener-
ated by the D-Wave quantum annealer. To quantify the quality of a generated
solution, we simply counted the number of feasible schedules after the quantum
optimization procedure.

Additionally, we have performed various experiments with our heuristic to
make sure that all the relevant controlling parameters and configurations were
used efficiently. In particular, we have selected the minimum classical gap = 2.0
value experimentally to provide enough energy to differentiate the ground
state from other states in the QPU. Naturally, we can reduce this value and
try to squeeze more problem information onto the QPU, but consequently
it will also reduce the accuracy of results. In our case, the biggest con-
straint is a number of possible variables within a processing window. There-
fore, by decreasing the minimum classical gap = 1.0 we had an opportunity
to increase the processing window to 6 time-units, and further decreasing of
the minimum classical gap = 0.5 value increased the processing window to 7
time-units. However, minimum classical gap values below 2.0 gave more and
more unacceptable solutions and had a negative impact onto the overall quality
of obtained solutions.

The existing Chimera D-Wave QPU architecture and available APIs give
developers a lot of flexibility to implement and improve strategies by increasing
the gap between ground and excited states during the quantum annealing pro-
cess. A set of interesting error suppression techniques using quantum annealing
correction with auxiliary qubits and the energy gap were discussed for instance
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in [11]. Technically speaking, the D-Wave QPU minimizes the energy of an Ising
spin configuration whose pairwise interactions lie on the edges of the Chimera
graph. To automatically minor-embed our problem into a structured sampler
we used the EmbeddingComposite method. However, there are other dimod
composites with various parameters during pre- and post-processing phases
worth considering in our future work. One should note, that the range of cou-
pling strengths available in the D-Wave QPU is finite, so chaining is typically
accomplished by setting the coupling strength to the largest allowed negative
value and scaling down the input couplings relative to that. Thus, we have also
checked various values of the another controlling extended j range parameter to
increase the strength of minor embedding coupling. Typically, using the available
larger negative values of J increases the dynamic J range. According to technical
specifications of the existing D-Wave 2000Q QPU, strong negative couplings can
bias a chain and therefore flux-bias offsets must be applied to recalibrate it to
compensate for this effect. However, we have not noticed a significant impact on
the quality of obtained solutions by changing the extended j range parameter.
Nevertheless, we argue that additional tests and techniques will be required,
in particular the spin-reversal transform can improve results by reducing the
impact of possible analog and systematic errors. We plan to compare all the pre-
sented controlling parameters on the new Pegasus QPU architecture and explore
more precisely the JSSP problem structure and solution space. We will apply
new techniques for encoding discrete variables into Ising model qubits, e.g. [6],
and try to take advantage of new and more connected Pegasus QPU graph for
more efficient embedding of the considered problem.

Fig. 5. The chain strength c bars based on the standard deviation and their impact on
the JSSP solutions quality.
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Fig. 6. The incremental optimization process of improving schedule quality within the
given processing window generated by the hybrid quantum annealing heuristic for the
selected JSSP ft06 instance.

Finally, our hybrid heuristic method improved the quality of solutions by
reducing the makespan of randomly generated schedules down to 60, see Fig. 6.
Nevertheless, it is clear that even simple classical heuristics proposed for the
JSSP outperform our quantum annealing-based approach reaching a set of many
schedules with optimal makespan 55. We expect to use a much bigger process-
ing windows in our heuristic tailored for the upcoming D-Wave Pegasus QPU
architecture. The Pegasus graph will allow each qubit to couple to 15 other
qubits instead of 6 qubits, so we expect to run the same heuristic successfully
for bigger JSSP instances. Our proof-of-concept implementation, including the
heuristic source code, has been published in the GitHub repository for reusing
and external testing [19].

6 Conclusions

We presented a new quantum annealing heuristic for solving the Job Shop
Scheduling Problem (JSSP) on publicly available D-Wave 2000Q QPU. Due
to a limited number of available qubits and couplers among qubits implemented
in a specific topology, we decomposed the JSSP into a set of smaller optimiza-
tion problems as window processing slices. We estimated the number of feasible
solutions during experimental studies on the well-known scheduling JSSP test
instance ft06. We also tuned experimentally QUBO parameters proposed for the
time-indexed decision version of the JSSP, and compared the obtained results
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with optimal solutions generated by classical heuristic methods for the well-
known JSSP benchmark. Our approach can be easily extended, modified and
applied to other scheduling problems by researchers, as we have released the
source code of our heuristic.

In our future work, we intend to consider other scheduling problems, and test
our hybrid heuristic to divide large problem domains into small subproblems.
The existing heuristic has been designed to be modular, open and extensible
source code, so we plan to incorporate additional heuristic techniques, and add
improved variable pruning and selection algorithms. It will also be interesting
to explore the design of such extensions within the existing D-Wave quantum
annealers limits and upcoming Pegasus QPU improvements.
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