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Abstract. Forest fires severally affect many ecosystems every year, lead-
ing to large environmental damages, casualties and economic losses.
Established and emerging technologies are used to help wildfire analysts
determine fire behavior and spread aiming at a more accurate predic-
tion results and efficient use of resources in fire fighting. Natural hazards
simulations need to deal with data input uncertainty and their impact
on prediction results, usually resorting to compute-intensive calibration
techniques. In this paper, we propose a new evaluation technique capable
of reducing the overall calibration time by 60% when compared to the
current data-driven approaches. This is achieved by means of the pro-
posed adaptive evaluation technique based on a periodic monitoring of
the fire spread prediction error ε estimated by the normalized symmet-
ric difference for each simulation run. Our new strategy avoid wasting
too much computing time running unfit individuals thanks to an early
adaptive evaluation.

Keywords: Forest fires · Urgent computing · Data uncertainty · Data
driven prediction

1 Introduction

Fire is a natural element of many ecosystems and even large wildfires are part
of a defined disturbance regime [20]. For that reason, the challenge from both a
prevention and a suppression point of view is to anticipate and reduce the spread
potential of large wildfires, and the succeeding risk for lives, property and land
use systems [7]. Wildfires have a relatively unpredictable nature as their spread
can vary based on the flammable material and can differ by their extent and
wind speeds. Forest fire prevention strategies for detection and suppression have
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improved significantly through the years, both due to technological innovations
and the adoption of various skills and methods. Nowadays, wildfire researchers
use technologies that integrate data on weather prediction, topography and other
factors to predict how fires spread.

Nevertheless, wildfires still occur widely and represent a permanent threat
whose consequences may be catastrophic both in terms of human fatalities,
ecosystem degradation and economic losses. For example, years marked by
intense drought and dry conditions contribute to the high levels of wildfire activ-
ity which could be turned into natural disasters. In the last years, unusually
large wildfires severely damaged forests in Indonesia, Canada, United States,
Spain, Chile, Portugal, and Australia, just to name a few. Actually, some stud-
ies suggests that over the past few decades, the number of wildfires has indeed
increased [9,15,17,18].

In light of this situation, forest fire prediction, prevention and management
measures have become increasingly important over the decades. Systems for wild-
fire prediction represent an essential asset to back up the forest fire monitoring
and extinction phase, to predict forest fire risks and to help in the fire control
planning and resource allocation.

When dealing with the extinction phase, an accurate prediction of the fire
propagation is a critical issue to minimize its effects. Actually, in order to be used
in a fire extinction activity, a wildfire spread prediction is a hard-deadline-driven
task. For instance, a complex wildfire simulation that could accurately predict the
perimeter of a wildfire, can drive firefighters to put firebreaks where they would
be most effective to stop the fire propagation. In this particular case, an accurate
prediction that comes up late compared to the actual event is useless to the task
of fire suppression. These characteristics represent an urgent computing system,
from which the simulation results are needed by relevant authorities in making
timely informed decisions to mitigate financial losses, manage affected areas and
reduce casualties [14]. The following three urgent computing requirements can
be found in the mentioned forest fire propagation system:

a The computation operates under a strict deadline after which the computa-
tion results may give little practical value (“late results are useless”);

b The beginning of the event that demands the computation is unpredictable;
c The computation requires significant resource usage.

To fulfill those requirements, a solution must be deadline-driven, on-demand
provisioned and scalable. To deal with those kind of applications, High Perfor-
mance Computing (HPC) community usually rely on high-end clusters, on super-
computers or on distributed computing platforms. As deadline-based resource
management like resource reservation schedulers and minimum latency dispatch
are key-components to urgent computing procedures, much work have been con-
ducted to address this issue [5,11–13,23]. In particular, HPC resources involved
into simulation should be provisioned and managed in a way that the computa-
tion process will be finished within a defined time limit. Those are technologies
that aim to support urgent computation dynamically and yet preserve overall
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machine utilization and the productivity of the other users working daily on the
platforms being used.

The use of simulators for forest fire propagation models requires sufficient
time for the processing, a precise fuel model data and an accurate knowledge
of small and large-scale interaction of weather and topography [7]. To start a
simulation, it is necessary a plethora of input parameters, which include spatial
data describing the elevation, slope, aspect, and fuel type. Figure 1 illustrates
the input data commonly used for fire simulations.

Fig. 1. Fuel and topographic grid data used for wildfire simulations.

In reality, the input data describing the actual scenario where the fire is
taking place is usually subject to high levels of uncertainty that represents a
serious drawback for the correctness of the prediction [22]. In this paper, we build
up our work on a calibration phase that uses a Genetic Algorithm (GA) as an
optimization technique, proposing a new evaluation strategy capable of reducing
the overall calibration time by 60% when compared to the current state-of-the-
art data-driven approach for the problem at hand [2]. The new adopted strategy
avoid wasting too much computing time running unfit individuals thanks to an
early adaptive evaluation for the fitness function.

The remainder of this document is organized as follows. Related works are
discussed in Sect. 2 whereas Sect. 3 describes the fire spread simulation model
and the two-stage prediction method employed to deal with input-data uncer-
tainty. Section 4 presents the proposed evaluation strategy. A case study and
computational experiments are presented in Sect. 5. Finally, Sect. 6 contains some
concluding remarks.

2 Related Works

In a scenario with uncertainties regarding input data, to accurately predict a fire
spread under a strict deadline constraint represents a challenge for any designed
solution. Current state-of-the-art presents different approaches to tackle data-
uncertainty problem, ranging from applying ensemble strategies to soften the
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uncertainty of input parameters effects to apply Kalman filter to certain input
variables in order to tune their values [21]. Another approach is to resort on
computing-intensive methods to relieve such data uncertainty effects, namely a
Two-Stage prediction method, composed of a Calibration and a Prediction stage,
wherein the former the input parameters values are adjusted to better reproduce
the observed past behaviour of the fire, and the latter where those calibrated
parameters are used to forecast the forest fire spread evolution [8].

With regard to fire simulators, FARSITE [10] is a well-known fire growth
simulation modeling system which uses spatial information on topography and
fuels along with weather and wind inputs. To improve the accuracy of wildfire
spread predictions, Srivas [21] extended FARSITE to incorporate data assimila-
tion techniques based on noisy and limited spatial resolution observations of the
fire perimeter. The adjustment is calculated from the Kalman filter gain in an
Ensemble Kalman filter, based on a Monte-Carlo implementation of the Bayesian
update problem. Uncertainty on both the measured fire perimeter and the sim-
ulated fire perimeter is used to formulate optimal updates for the prediction of
the spread of the wildfire.

In order to cope with the input data uncertainty related with fire spread
simulation, Abdalhaq [1] proposed a two-stage methodology to calibrate the
input parameters in an adjustment phase so that the calibrated parameters are
used in the prediction stage to improve the quality of the predictions. Cencer-
rado [6] applied Genetic Algorithm as the calibration technique in the adjust-
ment phase, which requires the execution of many simulations to generate the
best calibrated set of input parameters. Similar work was also carried over by
Méndez-Garabetti et al [16]. Cencerrado also devised one strategy based on
Decision Trees to identify long running execution individuals of a fire spread
simulation. Such strategy was the base for a classification method that allows
to estimate in advance the execution time of a simulation given a certain set of
input parameters.

More recently, Artés [2] proposed and evaluated a set of resource allocation
policies to assign more computing resources to estimated long running execu-
tions and less resources to the fast ones, allowing to reduce the adjustment stage
time to a more acceptable deadline. That was possible due to the use of a parallel
version of FARSITE model that could reduce long running execution times by
35% [3]. To work in a time-constrained fashion, a hybrid MPI-OpenMP appli-
cation based on the Master-Worker paradigm was developed to take advantage
of the execution in a parallel HPC cluster environment. The Two-Stage frame-
work has been proved to be a good methodology to deal with the input data
uncertainties and it is leveraged in this current work.

3 Two-Stage Prediction Method

Usually, to predict forest fire behavior a simulator takes the initial state of the
fire front perimeter (P0) along with other parameters as input. As output, the
simulator then returns the fire front spread prediction for a later instant in time
(P̂1). After comparing the simulation result with the actual advanced fire front
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Fig. 2. Two-stage prediction method.

(P1), the predicted fire line tends to differ from the actual one. Besides the nat-
ural phenomena modeling complexity uncertainty, the reason for this mismatch
is that the classic scheme calculation is based solely on a single set of input
parameters, affected by the aforementioned data uncertainty. To overcome this
drawback, a simulator independent data-driven prediction scheme was proposed
to calibrate model input parameters [8].

Introducing a previous adjustment stage (see Fig. 2), the set of input param-
eters is calibrated before every prediction step. Thus, the solution comes from
reversing the problem, coming up with a parameter configuration such that the
fire simulator would produce predictions that match the actual fire behavior.
After detecting the simulator input that better reproduces the observed fire
propagation, the same set of parameters is used to describe the conditions for
the next prediction (P̂2), assuming that meteorological circumstances remain
constant during the next prediction interval. Then, the final prediction becomes
the result of a series of automatically adjusted input configurations. The process
can be applied again for subsequent fire perimeters (P̂3), (P̂4), (P̂5) and so on.

In order to enhance the quality of the predictions, as a data-driven scheme,
the two-stage method is applied continuously, providing calibrated parameters
at different time intervals and taking advantage of observed fire behavior and
helping to reduce the negative effects related to the input-data uncertainty. This
approach has been proven to be appropriate in order to enhance the quality of
the predictions. In particular, a Genetic Algorithm based adjustment technique
gives accurate results [8] although not being able to give fast response times even
when using multi-core allocation strategies, as showed in Sect. 5.

3.1 Forest Fire Spread Prediction Model Simulator

In the field of forest fire behavior modeling, there is a few fire propagation sim-
ulators, based on different physical models, whose main objective is to predict
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the fire evolution. Among those, FARSITE [10] is a well-known fire growth sim-
ulation modeling system which uses spatial information on topography (terrain)
and fuels along with weather and wind inputs. With FARSITE it is possible to
compute wildfire growth and behavior for long time periods under heterogeneous
conditions of terrain, fuels, and weather. It incorporates existing models for sur-
face fire, crown fire, spotting, post-frontal combustion, and fire acceleration into a
two-dimensional fire growth model. A FARSITE simulation generates a sequence
of fire perimeters representing the growth of a fire under given input conditions.
For that purpose, it incorporates, among others, the simple but effective Rother-
mel’s surface fire spread behavior model [19] along with the Huygens’s Principle
of wave propagation [10]. Although being a deterministic modeling system, a for-
est fire spread simulated with FARSITE is a process inherently complex, from
which a long execution time for an individual simulation is not atypical.

3.2 Genetic Algorithm Implementation

The adjustment stage is based on a genetic algorithm implemented in a Master-
Worker paradigm. The calibration starts from an initial random population of
individuals, each one representing a scenario to be simulated. An individual is
composed of a set of different genes that represent input variables such as dead
fuel moisture, live fuel moisture, wind speed and direction, among others.

Each individual is simulated and it is evaluated comparing the predicted and
the real fire propagation by estimating the fitness function (or prediction error
function) based on the normalized symmetric difference between predicted and
real burned areas. Eq. 1 defines how such difference is calculated, where Real is
the area burned by the real fire at a certain time and Pred is the area burned
by the predicted fire at the same time instant.

SymDiff =
⋃

(Real, Pred) − ⋂
(Real, Pred)

Real

=
Misses + FalseAlarms

Misses + Hits

(1)

Fig. 3. Different categories present in forecast verification.
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As illustrated in Fig. 3, the areas around the simulation map that have not
been burned by neither the real fire nor the simulated fire are considered Correct
Negatives. Areas that have been burned by both fires are called Hits. The areas
that have been burned only in the real fire are called Misses whereas areas that
have been burned only in the simulated fire are called False Alarms.

Due to the high parallelizable characteristics of GAs, its implementation in
a Master-Worker paradigm is straightforward. One can take advantage of stable
tools, platforms and programming language support to exploit the execution in a
parallel HPC cluster environment. Figure 4 illustrates how the adjustment phase
may be implemented in a Master-Worker paradigm, with one worker node per
individual and the master node acting as a coordinator.

Fig. 4. Genetic Algorithm implemented in a Master-Worker paradigm.

In the current implementation, those individuals whose execution time is
estimated to be longer than a preset value are discarded. In this type of situation,
if the GA drives the system to a search space associated with parameter settings
whose correspondent simulation takes longer than the preset value, this search
space will never be considered. In the following section, a technique to overcome
this drawback is proposed.

4 Early Adaptive-Evaluation Strategy

In order to overcome the slow time-to-result characteristic of the genetic algo-
rithm, we propose an adaptive evaluation technique based on a periodic mon-
itoring of the fire spread prediction error ε estimated by the normalized symmet-
ric difference, as defined in Eq. 1, for each execution of the individuals. Figure 5a
shows the steps done by the monitor process to determine whether the monitored
individual should be early terminated or not. Figure 5b depicts two individuals
being executed and monitored according to the monitor flow defined in Fig. 5a.
The one described in Fig. 5b(I) terminates normally whereas the other described
in Fig. 5b(II) is early terminated by the monitoring agent due to its unfitness
based on its ongoing prediction error.



24 E. Fraga et al.

(a) Monitor activity diagram.

(b) Termination Scenarios.

Fig. 5. Individual termination strategies.
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The reasoning behind the early termination is to avoid wasting computing
time running individuals that are doomed to unfitness. If along its execution the
monitor agent detects that the prediction deviates too much from the actual fire
spread, it is considered safe to early terminate the individual. Each monitoring
agent is launched with a prediction error threshold T, i.e. a maximum tolerable
error above which the monitoring agent must early terminate the individual, and
a monitoring period P, usually defined in the order of dozen of seconds.

For example, if we consider the canonical scenario of a fire prediction evolu-
tion described in Fig. 6, together with their corresponding normalized symmetric
difference (prediction error ε) calculated as described in Eq. 1, we notice that as
the prediction overspread beyond the real fire, the prediction error increases at
a rate higher than the ones circumscribed to the real fire perimeter. Therefore,
if at an earlier stage of the prediction a monitor configured with a threshold
T=2.0 detects a fire evolution similar to the one showed in Fig. 6f, then, the
execution can be terminated as the individual is considered unfit to represent
the real fire.

Fig. 6. normalized symmetric difference calculated along fire spread prediction.

In the current implementation, as described in Sect. 2, the strategy used to
early terminate and then discard individuals was based on a deadline previously
defined to avoid delaying an entire generation due to longer individuals. Or,
even worse, previously filtering out those individuals whose execution time is
estimated to be longer than a preset value. The problem regarding early termi-
nation is its impact on the population diversity, a crucial characteristic to the
genetic algorithm’s ability to continue fruitful exploration of the search space.

Another difference from previous works, where the normalized symmetric
difference was directly used as the fitness function for the evaluation of the
individual, is that, in this proposal, we use a weighted version of it, in order to
take into account early terminations. The formula showed in Eq. 2 is a weighted
version for the normalized symmetric difference in which PredictionTime is the
total time to be simulated whereas SimulatedTime is the total time simulated
until a normal or an early termination takes place.

fitness =
PredictionT ime

SimulatedT ime
× SymDiff (2)
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In Fig. 5b(I), in the scenario of a normal termination, for a total simulated
time equals to 270 min, we can see that the simulated and prediction time are
equals, then the fitness function is equals to the normalized symmetric differ-
ence. On the other hand, in the early termination scenario showed in Fig. 5b(II),
the penalty is directly proportional to the simulated time left to a normal ter-
mination, i.e., fitness = 270

150 × SymDiff = 1.8 × SymDiff . The idea is to be
able to compare unfinished individuals results against the actual burned area,
considering how much has been simulated until the moment of the early termi-
nation: the sooner the termination, the greater should be the penalty. Therefore
the main advantage of such strategy is to avoid wasting too much computing
time running indubitably unfit individuals. Nevertheless, thanks to the weighted
normalized symmetric difference those individuals can still be evaluated and be
unlikely selected to the following generations, ensuring more diversity to the
evolution process.

4.1 Adaptive-Evaluation and Deadline-Driven Strategies
Comparison

Due to the fork-and-join characteristic of the evolution stream defined by a
genetic algorithm, the response time of each generation and therefore for the
entire evolution is limited by the slowest individual’s execution time. Previous
works [6] have identified that the execution time distribution of randomly gener-
ated individuals follows the characteristic of a power law, with a few small values
dominating the distribution, complemented by a long tail representing the slow-
est individuals. Unfortunately, like in all unusual extreme events modelled by
power laws, those infrequent occurrences are responsible for the worst damage
to the calibration phase capacity to provide shorter response time.

Then, in order to decrease the overall calibration time, it is crucial to be
able to consistently decrease the random individuals execution time. The violin
plots in Fig. 9(a) compare the FARSITE execution time for a 1 h deadline-driven
strategy and the adaptive-evaluation for a real forest fire scenario (see Sect. 5).
Considering those two execution time distributions, it would be expected that
the new strategy helps to calibrate the input data approximately three times
faster than any strategy based solely on a deadline-driven approach set to 1 h
per generation. In Sect. 5 we evaluate the adaptive strategy applied to the afore-
mentioned real fire scenario.

5 Case Study and Computational Experiments

The Mediterranean area is one of the European regions most affected by for-
est fires during high risk seasons. The selected case study corresponds to a
region within the Mediterranean coast that is frequently affected by forest fires.
In particular, we used a wildfire that occurred in La Jonquera (North-East of
Catalonia, Spain - see Fig. 7) in July 2012 that devastated over 13,000 ha and
caused the death of two people. This wildfire scenario has been thoroughly stud-
ied and compared in previous works [2,4].
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Fig. 7. La Jonquera’ Fire (Catalonia - Spain), and its calibration perimeter

The simulated calibration time period was set to match exactly the real
observed evolution that goes from 22 July 2012 at 12:00 to 22 July 2012 at
20:30, as depicted in Fig. 7. The genetic algorithm has been configured to evolve
for 10 generations, each one with population size set-up to 100 individuals. Prob-
abilities of crossover and mutation used in the executions are 0.7 and 0.3, respec-
tively. Each individual is simulated and the resulting simulated fire perimeter
is compared to the actual fire spread using the weighted normalized symmet-
ric difference between the real burned area and the predicted one, as described
in Sect. 4. Moreover, each monitoring agent is launched with a prediction error
threshold set to 1.5. This implies that the maximum ongoing tolerable error
above which the monitoring agent must early terminate the individual is 1.5. Or
saying in other words: when the predicted area is one and a half times the size
of the one defined by the real fire perimeter, the corresponding simulation will
be terminated.

Figure 8 shows an overview of a single calibration execution using the
adaptive-evaluation strategy and the deadline-driven approach set to 1 h per
generation for a population of 64 individuals where each individual has been
executed sequentially in a single core.

Confronting the two figures, we can notice that the overall calibration time
is reduced from above 8 h to 1 h on average, representing an improvement of
impressive 85%. When compared to the current best data-driven Hybrid MPI-
OpenMP Parallel approach [2,4] dubbed TAC (Time Aware Core allocation), the
calibration time is reduced from above 3 h to the same 1 h on average, resulting
in a 60% time-to-result improvement. The TAC approach, which applies classi-
fication techniques to detect in advance those individuals that will last longer
and allocate more cores to them, was implemented with strict time restrictions:
a time lapse of 4 h was considered to carry out the calibration stage and the final
prediction. This time window was split into two intervals: 3 h for the calibration,
and 1 h for the simulation that will result in the final prediction.
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Fig. 8. Deadline-driven and adaptive evaluation calibration executions overview.
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Fig. 9. Execution time comparisons between the different evaluation strategies.

Figure 9b shows the overall comparison between the three calibration strate-
gies. In relation to the adaptive evaluation metric, the error bars represent the
minimum and the maximum values obtained for 20 different calibrations whereas
the intermediate point is the average value. For the other scenarios, the bar
height represent the average value as reported by Artés et al. [2]. As expected,
the adaptive evaluation indubitably outperforms the other two strategies, rep-
resenting a major improvement even when compared to the TAC strategy.
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6 Concluding Remarks

Forecasting forest fire spread is a complex problem by itself, considering the
plethora of factors capable of influence in this natural phenomena. Apart from
that, input data uncertainty represents an additional challenge to devise an
accurate model. When applied to a real case scenario in production, there is also
an extra key factor that challenge the forecast process, the response time. In
such situation, late results are useless.

For this reason, any approach that focuses on accelerating forest fire spread
prediction without losing accuracy is more than welcome. In this work, we pro-
pose a new strategy able to, at the same time, simplify implementation and
improve response time of the critical adjustment stage of a Two-Stage Predic-
tion Method, implemented as a High Performance Computing framework to deal
with the input data uncertainties. In that methodology, the prediction phase is
preceded by an adjustment stage, the latter being the most time consuming one.
In this stage, a genetic algorithm is carried out to calibrate unknown parameters
such as fuel humidity and meteorological data.

Previous works exploited heavily cluster environments, classification algo-
rithms and core allocation techniques to be able to deliver acceptable response
time under strict time constraints. In contrast, we resort to a monitoring strategy
that, apart from being much simpler to implement and easier to productionize,
managed to achieve better calibration response time results. In order to validate
our proposed strategy, we analyzed a real forest fire scenario that took place in
La Jonquera (Catalonia, Spain) in 2012. Results show that the new technique is
capable of reducing the overall calibration time by 60% when compared to the
current best data-driven time aware core allocation approach.

As future work we intend to propose and evaluate other fitness functions
together with the early termination technique and its impact in the overall pre-
diction accuracy.
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