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Abstract. Interpolation and approximation methods are used in many fields
such as in engineering as well as other disciplines for various scientific dis-
coveries. If the data domain is formed by scattered data, approximation methods
may become very complicated as well as time-consuming. Usually, the given
data is tessellated by some method, not necessarily the Delaunay triangulation,
to produce triangular or tetrahedral meshes. After that approximation methods
can be used to produce the surface. However, it is difficult to ensure the con-
tinuity and smoothness of the final interpolant along with all adjacent triangles.
In this contribution, a meshless approach is proposed by using radial basis
functions (RBFs). It is applicable to explicit functions of two variables and it is
suitable for all types of scattered data in general. The key point for the RBF
approximation is finding the important points that give a good approximation
with high precision to the scattered data. Since the compactly supported RBFs
(CSRBF) has limited influence in numerical computation, large data sets can be
processed efficiently as well as very fast via some efficient algorithm. The main
advantage of the RBF is, that it leads to a solution of a system of linear equa-
tions (SLE) Ax = b. Thus any efficient method solves the systems of linear
equations that can be used. In this study is we propose a new method of
determining the importance points on the scattered data that produces a very
good reconstructed surface with higher accuracy while maintaining the
smoothness of the surface.
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1 Introduction

Interpolation and approximation techniques are used in the solution of many engi-
neering problems. However, the interpolation of unorganized scattered data is still a
severe problem. In the one dimensional case, i.e., curves represented as y ¼ f xð Þ, it is
possible to order points according to the x-coordinate. However, in a higher dimen-
sionality this is not possible. Therefore, the standard approaches are based on the
tessellation of the domain in x; y or x; y; z spaces using, e.g. Delaunay triangulation [7],
etc. This approach is applicable for static data and t-varying data, if data in the time
domain are “framed”, i.e. given for specific time samples. It also leads to an increase of
dimensionality, i.e. from triangulation in E2 to triangulation in E3 or from triangulation
in E3 to triangulation in E4, etc. It results in significant increase of the triangulation
complexity and complexity of a triangulation algorithm implementation. This is a
significant factor influencing computation in the case of large data sets and large range
data sets, i.e. when x; y; z values are spanned over several magnitudes.

On the contrary, meshless interpolations based on Radial Basis Functions
(RBF) offer several significant advantages, namely:

• RBF interpolation is applicable generally to d-dimensional problems and does not
require tessellation of the definition domain

• RBF interpolation and approximation is especially convenient for scattered data
interpolation, including interpolation of scattered data in time as well

• RBF interpolation is smooth by a definition
• RBF interpolation can be applied for interpolation of scalar fields and vector fields

as well, which can be used for scalar and vector fields visualization
• If the Compactly Supported RBFs (CSRBF) are used, sparse matrix data structures

can be used which decreases memory requirements significantly.

However, there are some weak points of RBF application in real problems solution:

• there is a real problem for large data sets with robustness and reliability of the RBF
application due to high conditionality of the matrix A of the system of linear
equations, which is to be solved

• numerical stability and representation is to be applied over a large span of x; y; z
values, i.e. if values are spanned over several magnitudes

• problems with memory management as the memory requirements are of O N2ð Þ
complexity, where N is a number of points in which values are given

• the computational complexity of a solution of the linear system, which is O N3ð Þ,
resp. O kN2ð Þ, where k is a number of iteration if the iterative method are used, but k
is relatively high, in general.

• Problems with unexpected behavior at geometrical borders

Many contributions are solving some issues of the RBF interpolation and
approximation available. Numerical tests are mostly made using some standard testing
functions and restricted domain span, mostly taking interval h0; 1i or similar. However,
in many physically based applications, the span of the domain is higher, usually over
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several magnitudes and large data sets need to be processed. Also large data sets are to
be processed.

As the meshless techniques are easily scalable to higher dimensions and can handle
spatial scattered data and spatial-temporal data as well, they can be used in many
engineering and economical computations, etc. Polygonal representations (tessellated
domains) are used in computer graphics and visualization as a surface representation
and for surface rendering. In time-varying objects, a surface is represented as a tri-
angular mesh with constant connectivity.

On the other hand, all polygonal based techniques, in the case of scattered data,
require tessellations, e.g. Delaunay triangulation with O N d=2þ 1b c� �

computational
complexity for N points in d-dimensional space or another tessellation method.
However, the complexity of tessellation algorithms implementation grows significantly
with dimensionality and severe problems with robustness might be expected, as well.

In the case of data visualization smooth interpolation or approximation on
unstructured meshes is required, e.g. on triangular or tetrahedral meshes, when physical
phenomena are associated with points, in general. This is quite a difficult task espe-
cially if the smoothness of interpolation is needed. However, it is a natural requirement
in physically-based problems.

2 Meshless Interpolation

Meshless (meshfree) methods are based on the idea of Radial Basis Function
(RBF) interpolation [1, 2, 22, 23], which is not separable. RBF based techniques are
easily scalable to d-dimensional space and do not require tessellation of the geometric
domain and offer smooth interpolation naturally. In general, meshless techniques lead
to a solution of a linear system equations (LS) [4, 5] with a full or sparse matrix.

Generally, meshless methods for scattered data can be split into two main groups in
computer graphics and visualization:

• “implicit” – F xð Þ ¼ 0, i.e. F x; y; zð Þ ¼ 0 used in the case of a surface representation
in E3, e.g. surface reconstruction resulting into an implicit function representation.
This problem is originated from the implicit function modeling [15] approach,

• “explicit” – F xð Þ ¼ h used in interpolation or approximation resulting in a func-
tional representation, e.g. a height map in E2, i.e. h ¼ F x; yð Þ.

where: x is a point represented generally in d-dimensional space, e.g. in the case of 2-
dimensional case x ¼ x; y½ �T and h is a scalar value or a vector value.

The RBF interpolation is based on computing of the distance of two points in the d
–dimensional space and it is defined by a function:

f xð Þ ¼
XM
j¼1

kju x� xj
�� ��� � ¼ XM

j¼1

kju rj
� � ð1Þ
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where: rj ¼ x� xj
�� ��

2 def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj
� �2 þ y� yj

� �2q
(in 2-dimensional case) and kj are

weights to be computed. Due to some stability issues, usually a polynomial Pk xð Þ of
a degree k is added [6]. It means that for the given data set hxi; hiif gM1 , where hi are
associated values to be interpolated and xi are domain coordinates, we obtain a linear
system of equations:

hi ¼ f xið Þ ¼
XM
j¼1

kj u xi � xj
�� ��� � þPk xið Þ i ¼ 1; . . .;M x ¼ x; y : 1½ �T ð2Þ

For a practical use, a polynomial of the 1st degree is used, i.e. linear polynomial
P1 xð Þ ¼ aTx in many applications. Therefore, the interpolation function has the form:

f xið Þ ¼ PM
j¼1

kj u xi � xj
�� ��� �þ aTxi hi ¼ f xið Þ i ¼ 1; . . .;M

¼ PM
j¼1

kj ui;j þ aTxi
ð3Þ

and additional conditions are to be applied:

XM
j¼1

kixi ¼ 0 i:e:
XM
j¼1

kixi ¼ 0
XM
j¼1

kiyi ¼ 0
XM
j¼1

ki ¼ 0 ð4Þ

It can be seen that for the d-dimensional case a system of Mþ dþ 1ð Þ linear system
has to be solved, where M is a number of points in the dataset and d is the dimen-
sionality of data. For d ¼ 2 vectors xi and a are in the form xi ¼ xi; yi; 1½ �T and

a ¼ ax; ay; a0
� �T

, we can write:

u1;1 :: u1;M x1 y1 1

: . .
.

: : : :
uM;1 :: uM;M xM yM 1
x1 :: xM 0 0 0
y1 :: yM 0 0 0
1 :: 1 0 0 0

2
66666664

3
77777775

k1
:
kM
ax
ay
a0

2
6666664

3
7777775
¼

h1
:
hM
0
0
0

2
6666664

3
7777775

ð5Þ

This can be rewritten in the matrix form as:

B P
PT 0

� 	
k

a

� 	
¼ f

0

� 	
Ax ¼ b aTxi ¼ axxi þ ayyi þ a0 ð6Þ
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For the two-dimensional case and M points given a system of Mþ 3ð Þ linear
equations has to be solved. If “global” functions, e.g. u rð Þ ¼ r2lg r, are used, then the
matrix B is “full”, if “local” functions CSRBFs are used, the matrix B can be sparse.

The RBF interpolation was originally introduced by Hardy as the multiquadric
method in 1971 [5], which was called Radial Basis Function (RBF) method. Since then
many different RFB interpolation schemes have been developed with some specific
properties, e.g. 4 uses u rð Þ ¼ r2lg r, which is called Thin-Plate Spline (TPS), a

function u rð Þ ¼ e� 2rð Þ2 was proposed in [23]. However, the shape parameter 2 might
leads to an ill-conditioned system of linear equations [26].

The CSRBFs were introduced as:

u rð Þ ¼ 1� rð ÞqP rð Þ; 0� r� 1
0; r[ 1



ð7Þ

where: P rð Þ is a polynomial function and q is a parameter. Theoretical problems with
numerical stability were solved in [4]. In the case of global functions, the linear system
of equations is becoming ill conditioned and problems with convergence can be
expected. On the other hand, if the CSRBFs are taken, the matrix A is becoming
relatively sparse, i.e. computation of the linear system will be faster, but we need to
carefully select the scaling factor a (which can be “tricky”) and the final function might
tend to be “blobby” shaped, see Table 1 and Fig. 1.

The compactly supported RBFs are defined for the “normalized” interval r 2 0; 1,
but for the practical use a scaling is used, i.e. the value r is multiplied by shape
parameter a, where a[ 0.

Meshless techniques are primarily based on the approaches mentioned above. They
are used in engineering problem solutions, nowadays, e.g. partial differential equations,
surface modeling, surface reconstruction of scanned objects [13, 14], reconstruction of
corrupted images [21], etc. More generally, meshless object representation is based on
specific interpolation or approximation techniques [1, 6, 23].

Table 1. Typical examples of “local” functions – CSRBF (“þ ” means – value zero out of
h0; 1i)

ID Function ID Function

1 1� rð Þþ 6 1� rð Þ6þ 35r2 þ 18rþ 3ð Þ
2 1� rð Þ3þ 3rþ 1ð Þ 7 1� rð Þ8þ 32r3 þ 25r2 þ 8rþ 3ð Þ
3 1� rð Þ5þ 8r2 þ 5rþ 1ð Þ 8 1� rð Þ3þ
4 1� rð Þ2þ 9 1� rð Þ3þ 5rþ 1ð Þ
5 1� rð Þ4þ 4rþ 1ð Þ 10 1� rð Þ7þ 16r2 þ 7rþ 1ð Þ
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The resulting matrix A tends to be large and
ill-conditioned. Therefore, some specific
numerical methods have to be taken to increase
the robustness of a solution, like preconditioning
methods or parallel computing on GPU [9, 10],
etc. In addition, subdivision or hierarchical
methods are used to decrease the sizes of com-
putations and increase robustness [15, 16, 27].

It should be noted, that the computational
complexity of meshless methods actually covers
the complexity of tessellation itself and inter-
polation and approximation methods. This
results in problems with large data set process-
ing, i.e. numerical stability and memory
requirements, etc.

If global RBF functions are considered, the
RBF matrix is full and in the case of 106 of points, the RBF matrix is of the size approx.
106 � 106 ! On the other hand, if CSRBF used, the relevant matrix is sparse and
computational and memory requirements are decreased significantly using special data
structures [8, 10, 20, 27].

In the case of physical phenomena visualization, data received by simulation,
computation or obtained by experiments usually are oversampled in some areas and
also numerically more or less precise. It seems possible to apply approximation
methods to decrease computational complexity significantly by adding virtual points in
the place of interest and use analogy of the least square method modified for the RBF
case [3, 12, 17, 25].

Due to the CSRBF representation the space of data can be subdivided, interpola-
tion, resp. the approximation can be split to independent parts and computed more or
less independently [20]. This process can be also parallelized and if appropriate
computational architecture is used, e.g. GPU, etc. it will lead to faster computation as
well. The approach was experimentally verified for scalar and vector data used in the
visualization of physical phenomena.

3 Points of Importance

Algorithms developed recently were based on different specific properties of “global”
RBFs or “local” compactly supported RBFs (CS-RBFs) and application areas expected,
e.g. for interpolation, approximation, solution of partial differential equations, etc.,
expecting “reasonable” density of points. However, there are still some important
problems to be analyzed and hopefully solved, especially:

• What is an acceptable compromise between the precision of approximation and
compression ratio, i.e. reduction of points, if applicable?

• What is the optimal constant shape parameter, if does exist and how to estimate it
efficiently [26]?

Fig. 1. Properties of CSRBFs
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• What are optimal shape parameters a for every single u r; að Þ [24, 26]?
• What is the robustness and stability of the RBF for large data and large range span

of data with regard to shape parameters [16, 17]?

In this contribution, we will analyze a specific problem related to the first question.
Let us consider given points of a curve (samples of a signal), described by explicit

function y ¼ f xð Þ. According to the Nyquist-Shannon theorem, the sampling frequency
should be at least double the frequency of the highest frequency of the original signal.
The idea is, how “points of importance”, i.e. points of inflection and extrema can be

used for smooth precise curve approximation.
Let us consider sampled curves in Fig. 2, i.e. a signal without noise (the blue points

are values at the borders, red are maxima, the black are inflection and added points. It
can be seen that the reconstruction based on radial basis functions (RBF) has to pass:

• points at the interval borders
• points at extremes, maxima and minima
• some other important points, like points of inflection etc., and perhaps some

additional points of the given data to improve signal reconstruction.

However, there several factors to be considered as well, namely:

• extensibility from 2 D to 3 D for explicit functions of two variables, i.e. z ¼ f x; yð Þ
and hopefully to higher dimension robustness of computation as given discrete data
are given.

For extrema finding, the first derivative f 0 xð Þ is to be replaced by a standard discrete
scheme. At the left, resp. right margin, forward, resp. the backward difference is to be
used. Inside of the interval, the central difference scheme is recommended, as it also
“filters” high frequencies. The simple scheme for the second derivative estimation is
shown, too. It can be seen, that this is easily extensible for the 3 D case as well.

Fig. 2. Testing functions and resulting approximation based on the points of importance (red
points are extrema, black points are additional points of importance) (Color figure online)

Finding Points of Importance for RBF Approximation of Large Scattered Data 245



f 0 xð Þ � f xiþ 1ð Þ�f xið Þ
xiþ 1�xi

f 0 xð Þ � f xið Þ�f xi�1ð Þ
xi�xi�1

f 00 xð Þ � xiþ 1ð Þ�f xi�1ð Þ
2 xiþ 1�xi�1ð Þ f 00 xð Þ � f xiþ 1ð Þ�2f xið Þþ f xi�1ð Þ

xiþ 1�xið Þ xi�xi�1ð Þ
ð8Þ

So far, a finding of extrema is a simple task, now. However, due to the discrete data, the
extrema is detected by

sign f xiþ 1ð Þ � f xið Þð Þ 6¼ sign f xið Þ � f xi�1ð Þð Þ ð9Þ

as we need to detect the change of the sign, only. This increases the robustness of
computation as well. The points of inflections rely on a second derivative, i.e.
f 00 xð Þ ¼ 0; a similar condition can be derived from (8).

Now, all the important points, i.e. points at the interval borders, maxima, minima
and points of inflection, are detected and found. However, it is necessary to include
some more points at the interval borders (at least one on each side) to respect the local
behavior of the curve and increase the precision of approximation. It is recommended
to include at least one or two points which are closest to the borders to respect a curve
behavior at the beginning and end of the interval. Also, if additional points are inserted
ideally between extreme and inflection points, the approximation precision increases.
Now, the standard RBF interpolation scheme can be applied.

B P
PT 0

� 	
k

a

� 	
¼ f

0

� 	
Ax ¼ b aTxi ¼ axxi þ a0 ð10Þ

where: B represents the RBF submatrix, k the weights of RBFs, P represents points for
the polynomial a represents coefficients of the polynomial, f given function values.

It should be noted, that in the case of scattered data, neighbors for each point are to
be found, before the estimation of the derivative is made. In the 2 D case, ordering is
possible, in the 3 D case computation is to be made on neighbors found. If the regular
sampling in each dimension (along the axis) is given, computation simplifies
significantly.

It is necessary to note that the curve reconstruction is at the Nyquist-Shannon
theorem boundary and probably limits of the compression were obtained with very low
relative error, which is less than 0:1%. However, we have many more points available
and if a higher precision is needed, the approximation based on Least Square Error
(LSE) computational scheme with Lagrange multipliers might be used [11]. The RBF
methods usually lead to an ill-conditioned system of linear equations [26]. In the case
of approximation, it can be partially improved by geometry algebra in projective space
[18, 19] approach.

246 V. Skala et al.



4 Experimental Results

The presented approach was tested on several testing functions used for evaluation of
errors, stability, robustness of computation, see Table 2:

Table 2. Examples of testing functions

ID Function ID Function

1 y ¼ sin 15x2 þ 5xð Þ 2 y ¼ cos 20xð Þ=2þ 5x

3 y ¼ 50 0:4 sin 15x2ð Þþ 5xð Þ 4 y ¼ sin 8pxð Þ
5 y ¼ sin 6px2ð Þ 6 y ¼ sin 25xþ 0:1ð Þ= 25xþ 0:1ð Þ
7 y ¼ 2 sin 2pxð Þþ sin 4pxð Þ 8 y ¼ 2 sin 2pxð Þþ sin 4pxð Þþ sin 8pxð Þ
9 y ¼ 2 sin p 2x� 1ð Þð Þþ sin 3p 2x� 1=2ð Þð Þ 10 y ¼ 2 sin p 1� 2xð Þð Þþ sin 3p 2x� 1=2ð Þð Þ
11 y ¼ 2 sin p 2x� 1ð Þð Þþ sin 3p 2x� 1=2ð Þð Þ � x 12 y ¼ 2 sin 2px� p

2

� �þ sin 3p 2x� 1=2ð Þð Þ
13 y ¼ atan 10x� 5ð Þ3 þ atan 10x� 8ð Þ3=2 14 y ¼ 4:88x� 1:88ð Þ � sin 4:88x� 1:88ð Þ2 þ 1

15 y ¼ exp 10x� 6ð Þ � sin 5x� 2ð Þ3 þ 3x� 1ð Þ3 16 y ¼ tanh 9xþ 1=2ð Þ=9

Fig. 3. Examples of approximation for selected functions.
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The experiments have also proven, that for large data and data with a large span of
data a polynomial Pk xð Þ should be Pk xð Þ ¼ a0, i.e. k ¼ 0, see [16, 17].

Selected results of the approximation of some functions are presented at Fig. 3. It
can be seen, that the proposed approximation based actually on RBF interpolation
scheme using points of importance offers good precision of approximation a with good
compression ratio. The functions were sampled in 200 points approx. and 10–20 points
are actually used for the proposed approximation method.

5 Conclusion

This contribution briefly describes a method for efficient RBF approximation of large
scattered data based on finding points of importance. This leads to a simple RBF based
approximation of data with relatively low error with high compression. The precision
of approximation can be increased significantly by covering some additional points.
The approach is easily extensible to the 3D case, especially if data are ordered.
However, if data are scattered, the neighbor points must be evaluated to find points of
importance.

Experiments proved relatively high precision of approximation based on RFB
interpolation using found points of importance leading to high data compression as
well.

In future, deep analysis of an approximation behavior at the interval borders is
expected as it is a critical issue for the 3D case, i.e. z ¼ f x; yð Þ, as the first already made
experiments shown. Also, the discrete points of curves of inflection are to be taken into
account, i.e. discrete points of implicit curves F x; yð Þ ¼ 0.
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