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Abstract. In this paper we address the problem of medical data scarcity
by considering the task of detection of pulmonary diseases from chest
X-Ray images using small volume datasets with less than thousand sam-
ples. We implemented three deep convolutional neural networks (VGG16,
ResNet-50, and InceptionV3) pre-trained on the ImageNet dataset and
assesed them in lung disease classification tasks using transfer learning
approach. We created a pipeline that segmented chest X-Ray (CXR)
images prior to classifying them and we compared the performance of
our framework with the existing ones. We demonstrated that pre-trained
models and simple classifiers such as shallow neural networks can com-
pete with the complex systems. We also validated our framework on the
publicly available Shenzhen and Montgomery lung datasets and com-
pared its performance to the currently available solutions. Our method
was able to reach the same level of accuracy as the best performing mod-
els trained on the Montgomery dataset however, the advantage of our
approach is in smaller number of trainable parameters. Furthermore, our
InceptionV3 based model almost tied with the best performing solution
on the Shenzhen dataset despite being computationally less expensive.

Keywords: Lung disease classification - Transfer learning - Deep
learning

1 Pixel/Voxel-Based Machine Learning

The availability of computationally powerful machines allowed emerging meth-
ods like pixel/voxel-based machine learning (PML) breakthroughs in medi-
cal image analysis/processing. Instead of calculating features from segmented
regions, this technique uses voxel/pixel values in input images directly. There-
fore, neither segmentation nor feature extraction is required. The performance
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of PML’s can possibly exceed that of common classifiers [16] as this method
is able to avoid errors caused by inaccurate segmentation and feature extrac-
tion. The most popular powerful approaches include convolutional neural net-
works (including shift-invariant neural networks). They resulted in false posi-
tive (FP) rates reduction in computer-aided design framework (CAD) for detec-
tion of masses and microcalcifications [12] in mammography and in lung nodule
detection in chest X-ray CXR images [13], neural filters and massive-training
artificial neural networks including massive-training artificial neural networks
(MTANNS) including a mixture of expert MTANNSs, Laplacian eigenfunction
LAP-MTANN and massive-training support vector regression (MTSVR) for clas-
sification, object detection and image enhancement in malignant lung modules
detection in CT, FP reduction in CAD for polyp detection in CT colonography,
bone separation from soft tissue in CXR and enhancement of lung nodules in
CT [11).

2 Bone Separation from Soft Tissue in Chest Radiographs
Using MTANNSs

Chest X-Ray is one of the most frequently used diagnostic modality in detect-
ing different lung diseases such as pneumonia or tuberculosis. Roughly 1 million
of adults require hospitalization because of pneumonia, and about 50,000 dies
from this disease annually in the US only. Examination of lung nodules in CXR
can lead to missing of diseases like lung cancer. However, not all of them are
visible in retrospect. Studies show that 82-95% of lung cancer cases were missed
due to occlusions (at least partial) by ribs or clavicle. To address this prob-
lem researchers examined dual-energy imaging, a technique which can produce
images of two tissues, namely “soft-tissue” image and “bone” image. This tech-
nique has many drawbacks, but undoubtedly one of the most important ones is
the exposure to radiation.

The MTANNSs models have been developed to address this problem and serve
as a technique for ribs/soft-tissue separation. The idea behind training of those
algorithms is to provide them with bone and soft-tissue images obtained from a
dual-energy radiography system. The MTANN was trained using CXRs as input
and corresponding boneless images. The ribs contrast is visibly suppressed in
the resulting image, maintaining the soft tissue areas such as lung vessels.

3 Deep Learning Approaches in Chest X-Ray Analysis

Recent developments in Deep Neural Networks [2] lead to major improvements in
medical imaging. The efficiency of dimensionality reduction algorithms like lung
segmentation was demonstrated in the chest X-Ray image analysis. Recently
researchers aimed at improving tuberculosis detection on relatively small data
sets of less than 103 images per class by incorporating deep learning segmentation
and classification methods from [4]. We will further explore these techniques in
this paper.
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3.1 Dataset

In this paper we combine two relatively small datasets containing less than 103
images per class for classification (pneumonia and tuberculosis detection) and
segmentation purposes. We selected 306 examples per “disease” class (306 images
with tuberculosis and 306 images with pneumonia) and 306 of healthy patients
yielding the set of 918 samples from different patients. Sample images from both
datasets are shown in Fig. 1.

(A) tuber culosis (B) pneumonia

Fig. 1. Sample Chest X-Ray images containing traces of tuberculosis (A) and pneu-
monia (B) from Shenzhen dataset [2,6].

The Shenzhen Hospital dataset (SH) [2,6] containing CXR images was cre-
ated by the People’s Hospital in Shenzhen, China. It includes both abnormal
(containing traces of tuberculosis) and standard CXR, images. Unfortunately,
the dataset is not well-balanced in terms of absence or presence of disease, gen-
der, or age. We extracted only 153 samples of healthy patients (153 from both
datasets) and 306 of those labeled with traces of tuberculosis. Selecting infor-
mation about one class from different resources ensures that the model is not
contaminated by the features resulting from the method of taking images, e.g.,
the lens.

Pneumonia is an inflammatory condition of the lung affecting the little air
sacs known as alveoli. Standard symptoms comprise of a blend of a dry hack-
ing cough, inconvenience breathing, chest agony, and fever. The Labeled Opti-
cal Tomography and Chest X-Ray Images for Classification dataset [9] includes
selected images of pneumonia patients from the Medical Center in Guangzhou.
It consists of data with two classes - normal and those containing marks of pneu-
monia. All data come from the patient’s routine clinical care. The volume of the
complete dataset includes thousands of validated optical coherence tomography
(OCT) and X-ray images yet for our analysis we wanted to keep the dataset tiny
and evenly distributed thus only 153 images were selected (other 153 images
come from the tuberculosis dataset) from the resources labeled as healthy and
306 as pneumonia - both chosen randomly. External segmentation of left and
right lung images (exclusion of redundant information: bones, internal organs,
etc.) was proven to be effective in boosting prediction accuracy. To extract lungs
information and exclude outside regions, we used the manually prepared masks
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included in the extension of the SH dataset, namely, the segmented SH dataset,
see Fig. 2. Due to nonidentical borders and lung shapes, the segmentation data
has high variability although its distribution is quite similar to the regular one
when compared to image area distribution.

1

A

(A) X-Ray image (8) Correspond-
ing lungs mask

Fig. 2. An X-Ray image and its corresponding lungs mask.

3.2 Image Data Augmentation

Model-based methods greatly improve their predictions when the number of
training samples grows. When a limited amount of data is available, some trans-
formations have to be applied to the existing dataset to synthetically augment
the training set. Researchers in [10] employed three techniques to augment the
training dataset. The first approach was to randomly crop of a 224 x 224 pixel
fixed-size window from a 256 x 256 pixel image. The second technique was flip-
ping the image horizontally, which allowed capturing information about reflec-
tion invariance. Finally, the third method added randomly generated lighting to
capture color and illumination variation.

3.3 Transfer Learning in Lung Diseases Classification

Transfer learning is a very popular approach in computer vision related tasks
using deep neural networks when data resources are scarce. Therefore, to launch
a new task, we incorporate the pre-trained models skilled in solving similar
problems. This method is crucial in medical image processing due to the shortage
of real samples. In deep neural networks, feature extraction is carried out but
passing raw data through models specialized in other tasks. Here, we can refer
to deep learning models such as ResNet, where the last layer information serves
as input to a new classifier. Transfer learning in deep learning problems can be
performed using a common approach called pre-trained models approach. Reuse
Model states that pre-trained model can produce a starting point for another
model used in a different task. This involves incorporation of the whole model
or its parts. The adopted model may or may not need to be refined on the
input-output data for the new task. The third option considers selecting one of
the available models. It is very common that research institutions publish their
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algorithms trained on challenging datasets which may fully or partially cover the
problem stated by a new task.

ImageNet [3] is a project that helps computer vision researches in classifi-
cation and detection tasks by providing them with a large image dataset. This
database contains roughly 14 million different images from over 20 thousand
classes. ImageNet also provides bounding boxes with annotations for over 1 mil-
lion images, which are used in object localization problems.

In this work, we will experiment with three deep models (VGG16, ResNet-50,
and InceptionV3) pre-trained on the ImageNet dataset.

3.4 Deep Nets in Lung Diseases Classification

The following deep nets have been considered: VGG16, ResNet-50 and Incep-
tionV3. The VGG16 convolutional network is a model with 16 layers trained
on fixed size images. The input is processed through a set of convolution layers
which use small-size kernels with a receptive field 3 x 3. This is the smallest size
allowing us to capture the notion of up, down, right, left, and center. The archi-
tecture also incorporates 1 x 1 kernels which may be interpreted as linear input
transformation (followed by nonlinearity). The stride of convolutions (number
of pixels that are shifted in every convolution - step size) is fixed and set to
1 pixel; therefore the spatial resolution remains the same after processing an
input through a layer, e.g., the padding is fixed to 1 for 3 x 3 kernels. Spatial
downsizing is performed by five consecutive pooling (max-pooling) layers, which
are followed by some convolution layers. However, not all of them are followed
by max-pooling. The max-pooling operation is carried over a fixed 2 x 2 pixel
window, with a stride of 2 pixels. This cascade of convolutional layers ends with
three fully-connected (FC) layers where the first two consist of 4096 nodes each
and the third one of 1000 as it performs the 1000-way classification using soft-
max. All hidden layers have the same non-linearity ReLU (rectified linear unit)
[10].

The ResNet convolutional neural network is a 50-layer deep model trained on
more than a million fixed-size images from the ImageNet dataset. The network
classifies an input image into one of 1000 object classes like car, airplane, horse
or mouse. The network has learned a large amount of features thanks to training
images diversity and achieved 6.71% top-5 error rate on the ImageNet dataset.
The ResNet-50 convolutional neural network consists of 5 stages, each having
convolutions and identity blocks. Every convolution block consists of 3 convo-
lutional layers. ResNet-50 is related to ResNet-34, however, the idea behind its
sibling model remains the same. The only difference is in residual blocks; unlike
those in ResNet-34 ResNet-50 replaces every two layers in a residual block with a
three-layer bottleneck block and 1 x 1 convolutions, which reduce and eventually
restore the channel depth. This allows reducing a computational load when a
3 x 3 convolution is calculated. The model input is first processed through a layer
with 64 filters each 7 x 7 and stride 2 and downsized by a max-pooling operation,
which is carried over a fixed 2 x 2 pixel window, with a stride of 2 pixels. The
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second stage consists of three identical blocks, each containing a double convo-
lution with 64 3 x 3 pixels filters and a skip connection block. The third pile of
convolutions starts with a dotted line (image not included) as there is a change
in the dimensionality of an input. This effect is achieved through the change of
stride in the first convolution bloc from 1 to 2 pixels. The fourth and fifth groups
of convolutions and skip connections follow the pattern presented in the third
stage of input processing, yet they change the number of filters (kernels) to 256
and 512, respectively. This model has over 25 million parameters.

The researchers from Google introduced the first Inception (InceptionV1)
neural network in 2014 during the ImageNet competition. The model consisted
of blocs called “inception cell” that was able to conduct convolutions using dif-
ferent scale filters and afterward aggregate the results as one. Thanks to 1 x 1
convolution which reduces the input channel depth the model saves computa-
tions. Using a set of 1 x 1, 3 x 3, and finally, 5 x 5 size of filters, an inception unit
cell learns extracting features of different scale from the input image. Although
inception cells use max-pooling operator, the dimension of a processed data is
preserved due to “same” padding, and so the output is properly concatenated.

A follow-up paper [17] was released not long after introducing a more effi-
cient InceptionV3 solution to the first version of the inception cell. Large filters
sized 5 x 5, and 7 x 7 are useful in extensive spatial features extraction, yet their
disadvantage lies in the number of parameters and therefore computational dis-
proportion.

The InceptionV3 model contains over 23 million parameters. The architec-
ture can be divided into 5 modules. The first processing block consists of 3
inception modules. Then, information is passed through the effective grid size
reduction and processed through four consecutive inception cells with asym-
metric convolutions. Moving forward, information flows to the 17 x 17 pixels
convolution layer connected to an auxiliary classifier and another effective grid
size-reduction block. Finally, data progresses through a series of two blocs with
wider filter banks and consequently gets to a fully-connected layer ended with
a Softmax classifier. Visualization of the network architecture can be found in
Fig. 3.

4 Experiments

4.1 Image Segmentation Using Deep Neural Networks

Many vision-related tasks, especially those from the field of medical image pro-
cessing expect to have a class assigned to every pixel, i.e., every pixel is associated
with a corresponding class. To conduct this process, we propose so-called U-net
neural network architecture described in [18] and in Sect. 4.2. This model works
well with very few training image examples yielding precise segmentation. The
motivation behind this network is to utilize progressive layers instead of a build-
ing system, where upsampling layers are utilized instead of pooling operators,
consequently increasing the output resolution. High-resolution features are com-
bined with the upsampled output to perform localization. The deconvolution
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Fig. 3. InceptionV3 architecture. Batch normalization and ReLU units are used after
every convolution layer.

layers consist of a high number of kernels, which better propagate information
and result in outputs with higher resolution. Owing to the described procedures,
the deconvolution path is approximately symmetric to the contracting one and
so the architecture resembles the U shape. There are no fully connected layers,
therefore, making it possible to conduct the seamless segmentation of relatively
large images extrapolating the missing context by mirroring the processed input.

4.2 TU-Net Architecture

The network showed in Fig. 4 consists of an expansive path (right) and a con-
tracting one(left). The first part (contracting) resembles a typical convolutional
neural network; the repeated 3 x 3 convolutions followed by a non-linearity (here
ReLU), and 2 x 2 poling with stride 2. Each downsampling operation doubles
the number of resulting feature maps. All expansive path operations are made
of upsampling of the feature channels followed by a 2 x 2 deconvolution (or
“up-convolution”) which reduces the number of feature maps twice. The result
is then concatenated with the corresponding feature layer from the contracting
path and convolved with 3 x 3 kernels, and each passed through a ReLU. The
final layers apply a 1 x 1 convolution to map each feature vector to the desired
class.

4.3 Lung Segmentation

Following the approaches presented in the literature we wanted to use deep con-
volutional neural networks to segment lungs [8] before processing it through the
classification models mentioned in Sect. 3.4. Researchers in [8] indicate that U-
Net architecture and its modifications outperform the majority of CNN-based
models and achieve excellent results by easily capturing spacial information
about the lungs. Thus, we propose a pipeline that consists of two stages: first
segmentation and then classification.
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Fig. 4. U-net architecture (example for 32 x 32 pixels in the lowest resolution). Each
blue box corresponds to a multichannel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

4.4 Dataset

The phase of extracting valuable information (lungs) is conducted with a model
presented in Sect. 3.2 Our algorithms trained for 500 epochs on an extension of
the SH dataset. The input to our U-shaped deep neural network is a regular
chest X-Ray image, whereas the output is a manually prepared binary mask of
lung shape, matching the input.

4.5 Software and Hardware

The code for the transfer-learning models is publicly available through a python
API, Keras. Our algorithms were trained on servers equipped with GPU provided
by Helios Calcul Québec, which consists of fifteen computing nodes each having
eight Nvidia K20 GPUs and additionally six computing nodes with eight Nvidia
K80 boards each. Every K80 board includes two GPU’s and so the total of 216
GPU’s in the cluster.

4.6 Training

As mentioned before, our model was trained for 500 epochs using a dataset
partitioned into 80%, 10%, and 10% bins, for training, validation and test parts,
respectively using the models introduced in Sect. 3.4 using the batch size of
8 samples, augmentation techniques briefed in Sect. 3.2, Adam optimizer and
categorical cross-entropy as a loss function for pixel-wise binary classification.
The training results are shown in Fig.5. As we can easily notice, the validation
error is slowly falling throughout the whole training, whereas there is no major
change after the 100th epoch. The final error on the validation set is right below
0.05 and slightly above 0.06 on the test set.
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Fig. 5. U-Net training and validation losses change during training.

4.7 Segmentation Results

Our algorithm learns shape-related features typical for lungs and can generalize
well further over unseen data. Figure6 shows the results of our U-Net trained
models. It is clear that the network was able to learn chest shape features and
exclude regions containing internal organs such as heart. These promising results
allowed us to process the whole dataset presented earlier and continue our anal-
ysis on the newly processed images.

)

(A) X-Ray image . (8)  Segmented
lungs

Fig. 6. (A) training X-ray lung image and (B) segmented lung image.

5 Training Deep Learning Models on Segmented Images

We propose a two-stage pipeline for classifying lung pathologies into pneumonia
and tuberculosis consisting of two stages: first for chest X-ray image segmen-
tation and second for lung disease classification. The first stage (segmentation)
is trained during experiments described in the previous section. The second
stage utilizes deep models described in Sect. 3.4, whereas we investigate poten-
tial improvements in performance depending on the type of model used. Our
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classification models were trained using the same setup as described in Sect. 3.4.
Here, we conduct our experiments using the data described in Sect.3.1. The
difference is in prior segmentation, which extracts valuable information for the
task, namely lungs. Figure 6 shows the training samples; the left and right panels
correspond to input and output, respectively.

5.1 Inception Results

We tried all models with three deep net classifiers (VGG16, ResNet-50, Incep-
tionV3) in the task of classification of lung images into two classes: pneumonia
and tuberculosis. We observed that InceptionV3 based model performed best
and thus due to lack of space we display only its performance results. The con-
fusion matrix in Fig.8 (A) shows that the new model improved the number of
true positives (TP) in all classes in comparison with the VGG16 and ResNet-50
based models. Image Fig. 8 (B) shows that the AUC score for healthy, tubercu-
losis and pneumonia cases were 90%, 93%, and 99%, respectively.

Train accuracy change (non segmented data)

Validabion accuracy change (non segmented data)

(A) Training accuracy change

(B) Validation accuracy change

Fig. 7. InceptionV3 based model training and validation accuracy versus number of
epochs.

5.2 Comparison of Results on Non-segmented and Segmented
Images

After comparing the results obtained by models without transfer learning we
observe that transfer-learning models perform well in lung diseases classification
using segmented images tasks even when the data resources are scarce. In this
section, we compare the performance of our models to the results achieved in
the literature over different datasets (Fig.9).

The algorithm that scored the best in the majority results was InceptionV3
trained on the segmented images. What is more, it produced very high scores
for the “disease” classes showing that a random instance containing marks of
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Fig. 8. Classification results obtained by InceptionV3 model on segmented lung images.

Non segmented CXRs Segmented CXRs
VGG16 ResNet-50 InceptionV3 VGG16 ResNet-50 InceptionV3
Accuracy 0.64 0.72 0.81 0.70 0.75 0.82
AUC (healthy) 0.68 0.84 0.89 0.75 0.77 0.90
AUC (pneumonia) 0.80 0.84 0.92 0.81 091 0.99
AUC (tuberculosis) 0.82 0.76 0.87 0.90 0.82 0.93
F1 score (healthy) 0.55 0.66 0.76 0.55 0.62 0.76
F1 score (pneumonia) 0.64 0.82 0.90 0.84 0.89 0.93
F1 score (tuberculosis) 0.72 0.66 0.75 0.79 0.73 0.78
precision (healthy) 0.49 0.77 0.80 0.67 0.66 0.75
precision (pneumonia) 0.87 0.76 0.89 0.92 0.93 0.90
precision (tuberculosis) 0.71 0.67 0.74 0.68 0.71 0.81
sensitivity (healthy) 0.62 0.60 0.73 0.48 0.62 0.77
sensitivity (pneumonia) 0.53 0.88 0.92 0.78 0.85 0.95
sensitivity (tuberculosis) 0.77 0.68 0.77 0.95 0.78 0.75

Fig. 9. Comparison of all results obtained for segmented and non-segmented data.

tuberculosis or pneumonia has over 90% probability to be classified to the cor-
rect class. Although the scores of the healthy class are worse than the diseased
ones, its real cost is indeed lower as it is always worse to classify a sick patient
as healthy. The InceptionV3 based model scored best, reaching better accuracy
than VGG16 algorithms by over 12%. Although the interpretability of our meth-
ods is not guaranteed, we can clearly state that using transfer-learning based
algorithms on small datasets allows achieving competitive classification scores
on the unseen data. Furthermore, we compared the class activation maps shown
in Fig.10 in order to investigate the reasoning behind decision making. The
remaining features, here lungs, force the network to explore it and thus make
decisions based on observed changes. That behavior was expected and addition-
ally improved the interpretability of our models as the marked regions might
bring attention of the doctor in case of sick patients.

5.3 Comparison with Other Works

In this section, we compare performance of our models with the results in the
literature using over different datasets. In order to do so we trained our algo-
rithms on the Shenzhen and Montgomery datasets [6] ten times, generated the
results for all the models and averaged their scores: accuracy, precision, sensitiv-
ity, specificity, F'1 score and AUC. Table 1 presents comparison of different deep
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(a) Correctly clas- (B) Class activa- © Correctly (D) Class activa-

sified image as ‘tu- tion map classified image as tion map
berculosis’ “pneumonia’

Fig. 10. Two pairs of correctly labelled images containing traces of tuberculosis and
pneumonia with their class activation maps.

learning models trained on the Shenzhen dataset [6]. Although our approach
does not guarantee the best performance, it is always close to the highest even
though it is typically less complex. Researchers in [5] used various pre-trained
models in the pulmonary disease detection task, and the ensemble of them yields
the highest accuracy and sensitivity. To compare, our InceptionV3-based model
achieves accuracy smaller by only one percent and has identical AUC, which
means that our method gives an equal probability of assigning a positive case
of tuberculosis to its corresponding class over a negative sample. Although we
could not outperform the best methods, our framework is less complicated. Fur-
thermore, in Table 2 we compared the performance of our framework trained on
the Montgomery dataset [6] to the literature. Our InceptionV3-based model tied
with [14] in terms of accuracy, yet showed higher value of AUC. ResNet-50 and
VGG16 based models performed worse, however not by much as they reached
accuracies of 76% and 73% respectively, which is roughly 3 and 6% less than the
highest score achieved.

Table 1. Comparison of different deep learning based solutions trained on the Shenzhen
dataset [6]. Although our result is not the best, it performs better than any single
model (excluding Ensemble). Horizontal line means that corresponding results were
not provided in literature.

Model Accuracy | Precision | Sensitivity | Specificity | F1 score | AUC
1] 0.82 - - - - -

[14] 0.84 - - - - 0.90
VGG16 [5] 0.84 - 0.96 0.72 - 0.88
ResNet-50 [5] 0.86 - 0.84 0.88 - 0.90
ResNet-152 [5] | 0.88 - 0.80 0.92 - 0.91
Ensemble [5] 0.90 - 0.88 0.92 - 0.94
VGGI16 [5] 0.84 0.88 0.80 0.89 0.83 0.86
ResNet-50 [5] 0.85 0.97 0.73 0.98 0.83 0.92
InceptionV3 [17] | 0.89 0.96 0.80 0.97 0.88 0.94
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Table 2. Comparison of different deep learning based solutions trained on the Mont-
gomery dataset [6]. Our average performance is almost identical to [14].

Model Accuracy | Precision | Sensitivity | Specificity | F1 score | AUC
[14] 0.790 - - - - 0.811
[15] 0674 - - - - 0.884
[7] 0.783 - - - - 0.869
VGGI16 [5] 0.727 0.842 0.581 0.872 0.669 0.931
ResNet-50 [5] 0.764 0.814 0.691 0.836 0.744 0.891
InceptionV3 [17] | 0.790 0.822 0.745 0.836 0.779 0.884

6 Conclusions

We created lung diseases classification pipeline based on transfer learning that
was applied to small datasets of lung images. We evaluated its performance in
classification of non-segmented and segmented chest X-Ray images. In our best
performing framework we used U-net segmentation network and InceptionV3
deep model classifier. Our frameworks were compared with the existing models.
We demonstrated that models pre-trained by transfer learning approach and
simple classifiers such as shallow neural networks can successfully compete with
the complex systems.
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