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Abstract. The automated extraction of claims from scientific papers via
computer is difficult due to the ambiguity and variability inherent in nat-
ural language. Even apparently simple tasks, such as isolating reported
values for physical quantities (e.g., “the melting point of X is Y”) can be
complicated by such factors as domain-specific conventions about how
named entities (the X in the example) are referenced. Although there
are domain-specific toolkits that can handle such complications in cer-
tain areas, a generalizable, adaptable model for scientific texts is still
lacking. As a first step towards automating this process, we present a
generalizable neural network model, SciNER, for recognizing scientific
entities in free text. Based on bidirectional LSTM networks, our model
combines word embeddings, subword embeddings, and external knowl-
edge (from DBpedia) to boost its accuracy. Experiments show that our
model outperforms a leading domain-specific extraction toolkit by up to
50%, as measured by F1 score, while also being easily adapted to new
domains.
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1 Introduction

The scholarly model has long relied on publication as a means of documenting
and disseminating results. As such, scientific papers often contain the ultimate
source of truth about a particular scientific entity, for example how it was pro-
duced, analyzed, and processed. Unfortunately, this approach to dissemination
has obvious shortcomings, most notably that data and results are inaccessible to
machines due to their esoteric encoding. Further, given the enormous number of
publications—estimated to be over 2.5 million every year [31] and exponentially
growing [12]—it is increasingly infeasible for individual researchers to locate
important data in publications. A researcher might have to read dozens if not
hundreds of papers just to get a rough idea of the state-of-the-art research in an
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area, and even after they have done so, there is no guarantee that they have not
missed important results.

One potential solution to this publication deluge is to extract scien-
tific facts from free text articles and then to store these facts in struc-
tured searchable databases. A researcher might then be able to issue queries
such as “SELECT (*) from polymers WHERE glass transition temperature
>= 100” to obtain data of interest when needed. However, while such databases
can avoid redundant effort, building them in the first place requires extensive
manual extraction and curation effort, that is furthermore complicated by the
difficulty and uncertainty of extracting scientific facts from text [16].

Crowdsourcing provides one method for performing manual, human-oriented
tasks in an efficient and cost-effective manner [3,4,7]. However, the expertise
required to extract scientific facts makes crowdsourcing impractical. The few
existing scientific databases and repositories, such as the Japanese Polymer Data
Handbook [19], are curated by domain experts and thus costly to maintain; as
a result, they quickly become out of date.

Since it is infeasible to rely solely on humans to extract scientific facts from
publications, automatic approaches are needed to address the increasing rate
of publication. A first problem to be tackled when extracting facts from pub-
lications is the identification of scientific entities (e.g., a chemical, sample, or
anatomical region): a problem that we call scientific Named Entity Recognition
(NER).

Considerable progress has been made in machine learning (ML) and natural
language processing (NLP) in the last decade, with state-of-the-art models out-
performing humans in various tasks [9]. However, most such efforts are centered
on day-to-day language corpora, such as news articles, Twitter posts, and online
product reviews. Little attention has been paid to the unique challenges asso-
ciated with understanding scientific texts, such as idiosyncratic writing styles,
specialized article organizations, and domain-specific vocabularies that are not
common in other texts. A previous study of the biomedical literature from
PubMed shows that the quality of machine learning models depends on the
training corpora, model architectures, and hyper-parameters used [6]. Hence, to
obtain high quality scientific NER, models must be trained on corpora from the
same domain.

In this paper, we present SciNER, a NER model that is specifically designed
for recognizing named entities in a scientific context. We show that this model
is generalizable and can be trained on and applied to different domains. Our
primary contributions are:

1. Development of SciNER using bidirectional LSTM networks and conditional
random fields.

2. Integration of several word embedding models and lexicons from DBpedia as
an external source of knowledge to boost learning performance.

3. Evaluation of the accuracy of SciNER on two different scientific NER prob-
lems and comparison with a domain-specific, state-of-the-art toolkit.
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The paper is organized as follows. In Sect. 2 we discuss the specific problem we
aim to solve and introduce the architecture of our proposed model. In Sect. 3 we
describe the word embedding and lexicon features used in our model. In Sect. 4
we evaluate the accuracy of SciNER on two different scientific named entity
recognition problems. Finally, we explore related work in Sect. 5 and summarize
our approach in Sect. 6.

2 The SciNER Model

We focus on the task of identifying scientific named entities in scientific publi-
cations. In this section we first define our extraction problem and then outline
the Bidirectional LSTM and Lexicon-infused LSTM models used in SciNER.

2.1 Problem Definition

Given a publication, comprised of sections containing natural language text, our
task is to identify scientific named entities of interest. For example, in materials
science publications about polymers, we want to identify polymer names, such
as “polystyrene” in the following:

“We measured the viscosity of unentangled, short-chain polystyrene films
on silicon at different temperatures and found that ...” [33]

In social science publications, the task is slightly different. Here researchers
explore hypotheses and make assertions based on analysis of known datasets but
the dataset are often not cited like other artifacts. The authors do not always
use the full names when referencing datasets in the natural language text of the
paper. When given the following paragraph from a social science paper, we want
to extract the boldfaced words.

“By analyzing data from 3279 individuals who participated in the Longi-
tudinal Study of American Youth, this study examines ...” [25]

While these two examples are from different domains, their named entity
extraction tasks are similar: in each case, we want a model that, without altering
its structure, can adapt to the task of identifying a certain class of scientific
named entity (polymers and social science datasets, respectively) in scientific
text.

2.2 The Basic Model: Bidirectional LSTM with CRF

The Long-Short Term Memory (LSTM) network has shown promise for various
natural language processing tasks. LSTMs, like the human mind, can retain
knowledge of previous tokens (i.e., words or punctuation marks) and use them
to better understand the meaning of the next token in its context. SciNER aims
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to build upon this prior work by adapting LSTM-based approaches to the specific
challenges associated with scientific NER.

Figure 1 shows an overview of the structure of a basic LSTM network model.
One major advantage that LSTM has over other traditional methods is that it
does not require any specific (and often manually selected) features. A common
approach for applying LSTMs to NER tasks is to assign labels that indicate the
entities to be extracted. For example when using beginning-inside-outside (BIO)
labeling [22], a label “B,” “I,” or “O” is assigned to each token in the training
corpus. “B” is assigned to the first word in a named entity or a single-word
named entity, “I” marks a subsequent word in a multi-word entity, and all other
(non-named entity) words are given the label “O.”

Fig. 1. Overall structure of the proposed neural network model.

For NER tasks, LSTM reads the input in one pass and assigns a BIO label
to each word. However, in some cases, it is hard to tell whether a word is part
of a named entity by looking at only the words preceding it in the sentence. For
example, upon seeing the word “New” in a sentence, it is difficult to determine
whether it should be given the label “B” or “O.” However, if the next word is
“York,” then we can determine that it is likely a named entity. Bidirectional
LSTM (Bi-LSTM) is used in natural language processing to address this need to
exploit information about the words that come before and after a given word.

The Bi-LSTM network predicts a label for every word. This, however, means
that the network has no awareness of the validity of the label sequence that it
generates. Thus, it may output sequences (e.g., “OIO”) that are invalid under
the BIO labeling scheme. To penalize such invalid label sequences, we add a
Conditional Random Field (CRF) layer on top of the Bi-LSTM network.

2.3 A Lexicon-Infused Bi-LSTM Network

The Bi-LSTM model can learn only about the order of the words. For example,
seeing “poly(vinyl methyl ether)” in the training data would not indicate that the



312 Z. Hong et al.

unseen text “poly(ethylene glycol)” is also a polymer name. However, knowledge
that both vinyl methyl ether and ethylene glycol are chemical compounds and
they both follow the pattern “poly([chemical compounds])” could be used to
determine that both are in fact polymer names.

Fig. 2. The model with external lexicon knowledge.

To further improve the accuracy of our model, we introduce an external
source of knowledge, by mapping words to classes obtained from DBpedia. Sim-
ply put, DBpedia is a structured version of Wikipedia, which consists of 4.2
million entries that are categorized in 774 distinct classes such as people, orga-
nization, location, and chemical compound [1]. Previous studies have explored
the use of DBpedia classes for standard NER tasks such as CoNLL [6]; however,
to the best of our knowledge such approaches have not been applied to scien-
tific NER problems. Encoding lexicon features and feeding them to the LSTM
gives the network more opportunities to capture the internal structure of named
entities. Thus the network may be able to recognize “poly(ethylene glycol)” as a
polymer name even when it has not been seen by the network before.

To encode the knowledge from the external lexicon, we use the same BIO
labels as described above, as shown in Table 1. When overlaps occur between
classes, as in this example (or within a single class, as in the case of “US Bureau
of Labor Statistics” and “Bureau of Labor Statistics,” both present in the Orga-
nization lexicon), we choose the longest match. We add a concatenation layer
to combine these the word embeddings with the lexicon features and feed the
concatenated vector to the LSTM, as illustrated in Fig. 2.
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Table 1. An example showing how external knowledge from DBpedia is encoded for
the Lexicon-infused Bi-LSTM Network. The first line is a sample sentence from a paper.
The next two lines shows how BIO labels are assigned to the words that match entries
in the Location or Organization categories in DBpedia.

The U.S Bureau of Labor Statistics Industry Injury and Illness Data reveals that · · ·
LOC O B O O O O O O O O O O O · · ·
ORG O B I I I I O O O O O O O · · ·

3 Features

SciNER’s LSTM models can consume input features beyond the word labels
described above. To capture the context and meaning of scientific text we add
various word embedding models and lexicon features as input to the models.

3.1 Word Embeddings

The LSTM models require that input sentences are represented as numerical
data (i.e., vectors). The simplest way to convert words to vectors is one-hot
encoding, but it is not ideal because significant syntactic and semantic properties
of the word would be lost. One approach for capturing these properties is through
word embeddings. In the remainder of this subsection, we introduce and compare
several different word embedding models. In Sect. 4 we explore the performance
of SciNER when using each of these word embedding models.

Randomly Initialized Trainable Word Embeddings. As shown in Fig. 1,
the input layer is connected to the Bi-LSTM layer via the Embedding layer. By
default, the weights of this layer, i.e., the word embedding matrix, is randomly
initialized and is trained along with the whole neural network. No special algo-
rithm is applied in this case, the word embedding matrix is treated in the same
way as any other trainable parameters in the network.

Continuous Bag-Of-Words Model (CBOW). CBOW [17] is a popular
method for training word embedding models. The core idea is that the semantic
and syntactic information of a word can be determined (or represented) based
on the context in which the word appears. Hence comes the idea of a fixed-sized
window around the center word. Reusing the same sentence as in Fig. 1 (“...
analysis with polystyrene as standard ...”), If the center word is “polystyrene”
and the window size is 2, then “analysis,” “with,” “as,” and “standard” are all
in the window and are considered as context for the word “polystyrene.” The
context words are treated as a bag of words so the order does not matter. When
given any one of these four context words, the CBOW model could predict the
word “polystyrene.”
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Skip-Gram Model. Skip-gram [18] is another widely used method for training
word embedding models. The major difference between CBOW and Skipgram
is that CBOW predicts the center word based on the surrounding words within
the context window, while Skip-gram does it the opposite way. When trained on
the sample input “...analysis with polystyrene as standard ...”, the Skip-gram
model can predict any of its context words, “analysis”, “with”, “as”, “standard”
based on the center word “polystyrene.”

Empirical data have suggested that CBOW is more efficient computationally,
whereas Skip-gram works better when the training corpus is relatively small [11].

As pre-trained word embedding models cannot accurately represent the
meaning of words in scientific contexts. We train word embeddings using CBOW
or Skip-gram on the texts from the target domain, and then use them as the
fixed (i.e., untrainable) word embedding matrix for the embedding layer in the
neural network (grey box in Fig. 1).

FastText Word Embedding Model. The FastText model from Facebook [2]
provides yet another architecture for creating word embeddings. Aside from rep-
resenting a word based on its context, FastText also makes use of character
n-grams. Words are mapped to character n-grams, which are then embedded in
vectors. The n-gram vectors will make up a part of the embeddings for the words
that do not appear frequently enough and thus do not have sufficient context
in the training corpus. The addition of n-gram embeddings also greatly helps
when the target word is not in the vocabulary of the pre-trained word embed-
dings. There is little that classic methods such as CBOW or Skip-gram can do
when faced with an unknown word. They may either give it a random vector
or the average of all the other vectors in the vocabulary, but, unsurprisingly,
such a vector does not reflect the actual meaning of the out-of-vocabulary word.
FastText, meanwhile, can capture the meaning of an unknown word better by
making a word vector out of its character n-grams.

3.2 Lexicon Features

The current ontology of DBpedia has over 4.2 million entries in 774 classes.
Matching all of them to the training and testing corpus is a computationally
intensive task. Appending the one-hot encodings of the BIO labels for all the
classes to a word vector will result in an extra 774 × 3 = 2322 dimensions, and
for each word vector most of these dimensions will be zero. In other words, the
concatenated vector will be very sparse and inefficient to compute.

To avoid diluting the dense word vector, we use only the few DBpedia classes
that are relevant to the NER task at hand. For example, to identify polymers we
use “Chemical Elements”, “Chemical Compounds”, and “Chemical Substance.”
When identifying social science dataset names we use “Location” and “Organi-
zation” as they are likely to be more suitable.
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4 Experimental Analysis

We evaluate SciNER by applying it to two distinct scientific NER tasks: recog-
nizing polymer names in materials science publications, and identifying dataset
names in social science publications. In this section, we describe the process of
obtaining and cleaning the publications, as well as how the labels were gener-
ated with minimal manual effort. We then explore the affect of using different
combinations of features with SciNER to compare their influence on the extrac-
tion results. Finally, we compare SciNER against other methods for identifying
scientific named entities.

4.1 Datasets

We use two distinct free-text scientific datasets to evaluate the accuracy of our
models: materials science publications that contain polymer names and social
science publications that contain references to datasets.

Our first dataset is a collection of 100 materials science publications from the
journal Macromolecules. We chose this journal because we have established an
agreement with its publisher, the American Chemical Society, that allows us to
access the full text publications. Our second dataset comprises 6368 social science
papers. We chose these papers because they are indexed by the Inter-university
Consortium for Political and Social Research (ICPSR), which provides manually
annotated relationships between datasets and papers in the field of social science.
ICPSR has indexed over 72 000 papers. We selected a set of 6368 papers hosted
by Elsevier for which we can easily download, via an API, the full text in JSON
format.

4.2 Data Preparation

In order to feed our input datasets to the LSTM models we must first process
the raw input publications into labeled collections of words.

Common Representation. The polymer and ICPSR datasets are represented
in raw HTML or JSON formats which contain redundant information such as
HTML tags, document object identifiers (DOIs) and publisher copyright state-
ments. To remove these artifacts and create a clean format for processing, we
parsed each file into a tree structure and removed any non-text related nodes in
the tree. The resulting format includes only the raw text from the publication.

Tokenization. There are two steps in the tokenization process: sentence tok-
enization and word tokenization. First we split each paper into sentences so that
each training sample consists of a sentence, not a whole passage. We do so by
applying the tokenize sents() function from the Python Natural Language
Toolkit (NLTK). The reason why this is required is two-fold. The first is to
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assemble a large enough number of training examples, the second is to ensure
that each training example has a reasonable length for the LSTM network to
learn.

The second step is word tokenization, which converts each sentence from a
string to a list of words and punctuations (tokens), so that it can be labeled in
the next step.

Token Labeling. In order to be processed by our LSTM models each token in
the training set must be labeled (using BIO labeling).

For the social science dataset, we have access to an ontology of named entities
from ICPSR. For the materials science dataset there is no such ontology of named
entities. Here we rely on domain experts to create one. However, instead of asking
them to label every word in the 100 papers, we asked them to produce a list of
unique polymer names from the corpus. Each paper was reviewed by two expert
reviewers to label polymer names, and when disagreement arose a third more
senior domain expert made the final decision. The result is a list of 495 polymer
names identified by experts in the 100 papers [29].

Then, for both datasets, we then applied an automated script to search for
known named entities in the unlabeled texts, and assign a label to each token
according to the BIO scheme described in Sect. 2.2. To reduce the number of
negative examples and create a balanced training set, we removed sentences
that do not have any named entities.

Lexicon Features Labeling. We use the latest release of DBpedia [8] to asso-
ciate class labels. As described in Sect. 3.2, we manually selected which classes
to include for each NER task. For the social science dataset, we selected entries
belonging to “Location” or “Organization.” For the polymer dataset, we selected
entries belonging to “Chemical Element” and “Chemical Compound” classes. We
associated BIO labels automatically for each class following the same procedure
as described above and encoded as additional features using one-hot encoding.
The lexicon features are concatenated to the word embeddings of each word.

Splitting the Datasets. The labeled examples are then split into training,
validation, and test sets.

For the 6368 social science papers, we use a 64–16–20% split, yielding 14 945,
3737, and 4699 sentences in the training, validation, and test sets, respectively.

Splitting the polymer science dataset is trickier because unlike the social
science papers, multiple polymers often appear in one sentence. If we divide
the sentences randomly, we may end up with many polymer names occurring
in both the training and the testing set, in which case our model might learn
specific polymer names rather than general concepts. To mitigate this problem,
we randomly select half of the unique polymers mentioned in the 100 papers and
use the sentences that mention any of those polymers for training and validation,
while the rest makes up the test set. We split the first group 80–20, yielding
3676 sentences for training and 919 sentences for validation, and leaving 2497
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Table 2. Experimental results when applying SciNER using different word embedding
models and lexicon features to the materials science dataset. The table also includes
results from the baseline ChemDataExtractor (CDE) for comparison.

# Model and features With lexicon features Without lexicon features

Precision Recall F1 Precision Recall F1

1 SciNER w/o pre-trained word embeddings – – – 93.0% 78.2% 0.850

2 SciNER with CBOW word embeddings 84.6% 71.9% 0.777 82.1% 70.9% 0.761

3 SciNER with Skip-gram word embeddings 92.3% 81.6% 0.866 85.0% 75.4% 0.799

4 SciNER with FastText word embeddings 89.6% 92.3% 0.909 82.3% 80.6% 0.814

5 CDE (NLP module only) – – – 54.3% 58.3% 0.562

6 CDE (NLP+regex+dictionary) – – – 65.1% 58.7% 0.617

sentences for testing. As a single sentence can contain more than one polymer
name, polymer names can still co-occur in the training and test sets. In practice,
we find that only 18.8% of polymers co-occur in this way, which we view as
acceptable.

4.3 Experimental Results

We now explore the accuracy of the SciNER LSTM models using different word
embedding models and lexicon features. We apply SciNER to both the materials
science and social science datasets to demonstrate its effectiveness and general-
izability. For the polymer name recognition task, we compare our results with a
state-of-the-art domain-specific toolkit, ChemDataExtractor (CDE) [28]. For the
social science dataset, in which we aim to identify dataset names, we could not
identify a readily available toolkit that performs a similar tasks, so we compare
our results with a basic KNN classifier.

Experiments on the Materials Science Dataset. Table 2 compares the
precision, recall, and F1 scores of our LSTM model, when fed with different
word embedding and lexicon features, to those achieved by CDE. As shown
in the table, Tests 1–4 evaluate the effect of different word embedding models
on the performance of SciNER with and without lexicon features. In Test 1,
the word embedding matrix in the Embedding layer is randomly initialized as
described in Sect. 3.1. In Tests 2–4, word embeddings are trained on the same
materials science corpus before being fed to the model as the fixed weights in
the Embedding layer. In Test 2, word embeddings are trained using the CBOW
model (Sect. 3.1). Note that it produces the lowest F1 score among the first
four tests, which is not surprising considering that the words used in academic
papers usually follow a long tail distribution, and CBOW is not good at handling
infrequent words. The model in Test 3 is fed with word vectors trained using the
Skip-gram model, which is designed to better encode rare words, resulting in a
10% improvement in F1 score compared to CBOW. The fourth test uses word
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Table 3. Experimental results for social science corpus

# Model Precision Recall F1 score

7 SciNER w/FastText embeddings & lexicon features 82.5% 87.0% 0.847

8 KNN classifier enhanced by rules [29] 60.0% 58.7% 0.592

embedding generated by FastText, which encodes character n-grams in addition
to contextual information. It produces the best results, achieving an F1 score of
0.909.

To explore the benefits of the lexicon features we also ran Tests 2–4 without
the lexicon features. The table shows that the lexicon features improves the F1
score by 11% in the best case (row 4).

Tests 5–6 show the results achieved by CDE, which is the state-of-the-art
model for recognizing chemical entities [28]. When only using CDE’s NLP mod-
ule, we get an F1 score of 0.562. When using the entire CDE pipeline, which
relies on regular expression rules and dictionary, the F1 score increases to 0.617.
In either case, SciNER’s F1 score exceeds CDE by approximately 50%.

Experiments on the Social Science Corpus. For the social science dataset
we apply only FastText word embeddings and lexicon features, as the previous
experiment demonstrated that this configuration performed best of the configu-
rations studied. Table 3 compares the precision, recall, and F1 scores of SciNER
to our previous work, in which we used a KNN classifier and many manually cre-
ated rules [29]. Even in this quite different environment, SciNER achieves an F1
score of 0.847, significantly outperforming our rule-based approach that achieves
an F1 score of 0.592. This result highlights the value of SciNER, as the dataset
names included in social science publications are significantly different from the
polymer names included in materials science publications. Each domain uses a
different set of frequently used words and domain-specific jargon. Another less
obvious, but more challenging, difference is that dataset names are usually much
longer than polymer names. Dataset names with more than ten words are not
uncommon.

5 Related Work

Researchers have explored myriad approaches to scientific NER. Most
approaches rely on crowdsourcing [27,32] or rule-based systems [24]. For exam-
ple, AQL is a declarative rule language used in IBM’s SystemT [15]. With AQL,
users can define a set of rules, which SystemT then uses to optimize and build an
efficient query plan. SystemT can support complex expressions, but like all rule-
based systems, still requires manual effort to define rules, and thus its accuracy
is highly dependent on the proper construction of rules.

In other cases, extraction systems are dependent on rich domain-specific
ontologies via which named entities can be matched directly with terms in the
ontology [13,20,23]. High NER accuracy has been achieved in biomedicine [5,10],
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due to the availability of structured databases (e.g., Uniprot and PDB) and well-
defined, unique identifiers and names (e.g., gene/protein names, diseases, organ-
isms) that can be easily identified in free text (e.g., the string “PDB:1BFM”
denotes the 1BFM protein in the PDB database, in this case a histone protein).
Few other scientific communities have achieved such a high level of standard-
ization, which is one of the reasons that we have chosen to focus on NER in
domains where standard identifiers for named entities are not readily available.

Word embeddings have been shown to be effective at capturing latent infor-
mation in scientific publications, including in materials science [14,30]. Prior
work has shown that the embeddings can capture complex materials science
concepts such as structure-property relationships and the relative positions of
elements in the periodic table [30]. Those results motivated our use of unsuper-
vised word embeddings rather than hand-curated features to represent words as
input to our model.

6 Conclusion

The exponential growth in the number of academic papers has made it infeasible
for researchers to manually discover important scientific facts buried deep within
these free text publications.

SciNER aims to address part of this problem by automatically identifying
scientific named entities in free text publications. SciNER specifiably focuses
on addressing challenges associated with the rare words and terminologies used
in scientific texts. By leveraging external sources of knowledge and training on
scientific texts, SciNER produces more meaningful vectors than traditional word
embeddings.

Our experiments demonstrate that SciNER is able to accurately identify
diverse named entities from materials science and social science publications.
Our best result for identifying polymer names reached an F1 score of 0.909—
far exceeding the 0.617 achieved by ChemDataExtractor, the state-of-the-art
domain-specific toolkit. When applied to the task of extracting social science
dataset names SciNER achieved an F1 score of 0.847, significantly better than
the 0.592 achieved by a KNN-based classifier.

In future work we aim to expand SciNER to more domains (e.g. biomedical
research) and test its performance against widely used domain ontologies (e.g.
the FDA database). We will explore the use of deep neural network-based word
embeddings (e.g., BERT [9] and ELMo [21]) to improve extraction performance
and design a pipeline for identifying relations between entities, of which SciNER
is the first component. Our hope is that the structured data extracted from
publications will benefit many applications, such as discovering new molecule
pathways and enabling targeted material design.
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