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Abstract. The eligibility for hormone therapy to treat breast cancer
largely depends on the tumor’s estrogen receptor (ER) status. Recent stud-
ies show that the ER status correlates with morphological features found
in Haematoxylin-Eosin (HE) slides. Thus, HE analysis might be sufficient
for patients for whom the classifier confidently predicts the ER status and
thereby obviate the need for additional examination, such as immunohis-
tochemical (IHC) staining. Several prior works are limited by either the
use of engineered features, multi-stage models that use features unspecific
to HE images or a lack of explainability. To address these limitations, this
work proposes an end-to-end neural network ensemble that shows state-of-
the-art performance. We demonstrate that the approach also translates to
the prediction of the cancer grade. Moreover, subsets can be selected from
the test data for which the model can detect a positive ER status with a
precision of 94% while classifying 13% of the patients. To compensate for
the reduced interpretability of the model that comes along with end-to-
end training, this work applies Layer-wise Relevance Propagation (LRP)
todetermine the relevant parts of the images aposteriori, commonly visual-
ized as a heatmap overlayed with the input image. We found that nuclear
and stromal morphology and lymphocyte infiltration play an important
role in the classification of the ER status. This demonstrates that inter-
pretable machine learning can be a vital tool for validating and generating
hypotheses about morphological biomarkers.
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1 Introduction and Motivation

Determining the estrogen receptor (ER) status of a tumor is of high clinical
importance for the management of breast cancer patients because it specifies
the eligibility for hormone therapy. So far, the gold standard for determining
the ER status is immunohistochemical (IHC) staining. However, recent work
shows that the ER status also correlates with morphological features found in
Haematoxylin-Eosin (HE) slides even though these features are hardly apparent
to pathologists [10,32,36]. This would make an additional IHC staining unnec-
essary if the ER status can already be determined from the HE stain with high
confidence and therefore save both time and budget in clinical routine. Further-
more, it can provide a valuable “second opinion” in assessing the ER status,
especially if one considers that up to 20% of IHC-based ER and progesterone
status assessments might be inaccurate [14]. Nevertheless, it remains unclear
what features are used by the learning machine to determine the ER status;
analysis was so far limited to low-resolution heatmaps that indicated certain
importance of stromal regions [36].

To address this, our work presents a novel end-to-end deep neural network
(DNN) ensemble trained on pooled random patches that shows competitive per-
formance compared with prior work [10,32,36] for the prediction of the ER
status and pathological cancer grade in terms of area under the ROC curve
(AUC). Based on the validation data, a minimum classifier confidence can be
chosen below which a sample is rejected from the classification; by doing so,
the model reaches a high precision (94%) while still classifying a considerable
amount (13%) of patients. For these patients, in principle no additional staining
would be needed.

A disadvantage of deep end-to-end learning can be the lack of interpretabil-
ity of the model. We try to alleviate this issue by analyzing relevance heatmaps
of model predictions. This showed that the model mostly relies on stromal tex-
ture and nuclear features to identify ER-positive samples and demonstrate how
explanation methods can be used to not only verify machine learning models but
also to validate and generate biomedical hypotheses. Moreover, by using these
explanation methods one can validate whether a trained model relies on unstable
features, such as discussed in [26].

2 Glossary

Breast Cancer Grading: Morphological assessment of a breast cancer that
measures the degree of differentiation. It consists of the evaluation of the per-
centage of tubuli formation, the degree of nuclear pleomorphism and the number
of mitoses. These three morphological features are assigned a score in a semi-
quantitative way and then combined to an aggregated cancer grade score, that
can be 1, 2 or 3 [12].

End-to-End Learning: Opposed to the classical pattern recognition pipeline,
where features are usually chosen by the developer and only the classifier is
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learned, end-to-end learning means that everything from the input data to the
classifier output, i.e. including the features, is learned from the data. A very
successful instance of end-to-end learning are deep neural networks.

Estrogen Receptor Status: This is an important parameter for prognosis
and the prediction of therapy response in breast cancer. A lack of ER receptor
is correlated with a higher rate of recurrence and shorter survival as well as a
decreased probability of responding to endocrine therapy [30].

Immunohistochemical Staining: The different immunohistochemical stains
allow the detection and localization of chemical compounds, e.g. proteins, by
binding marked antibodies to them. Amongst others, there are stains to detect
hormone receptors, such as the estrogen and progesterone receptors.

Model Explanation and Interpretability: Montavon et al. (2017) define
interpretation as a “mapping of an abstract concept (e.g. a predicted class) into
a domain that the human can make sense of.”, such as images or text [29]. An
explanation is then “the collection of features of the interpretable domain, that
have contributed for a given example to produce a decision (e.g. classification or
regression).” A common explanation for image data are heatmaps that visualize
which pixels were relevant for the model output. Furthermore, they divide inter-
pretability into two subgroups: post-hoc interpretability that aims at analysing a
given trained model and interpretability incorporated into the model (sometimes
called ante-hoc interpretability [17]).

Nested Crossvalidation: A method for model selection and performance eval-
uation of a machine learning model, that makes optimal use of the available data
and is therefore suitable for small datasets.

3 State of the Art

3.1 Prediction of ER Status Using DNNs

Recently, several studies applied DNNs to the classification of ER status from
HE images. Rawat et al. (2018) constructed spatial maps of engineered features
that describe nuclear morphology from HE images [32]. These features are then
classified by a DNN into ER+ and ER− with an AUC of 0.72. The approach
requires prior segmentation of the nuclei and manual feature engineering. This
adds to the complexity of the method but on the other hand the results are
better interpretable. Furthermore, the method was developed on a relatively
small sample (57 train and 56 test samples).

Couture, Williams et al. (2018) trained an ensemble of calibrated SVMs on
intermediate VGG16 features to predict patch-wise scores for the ER status and
other quantities such as the tumor grade [10]. These scores were then aggregated
into quantiles and classified by another SVM to get the final patient-wise predic-
tion. This yielded 84% accuracy, 88% sensitivity and 76% specificity. A possible
limitation of this work is that it is not an end-to-end model, i.e. that the used fea-
tures are not necessarily well-suited for HE images. Moreover, even though the
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sample size is significantly larger than in [32] (571 train and 288 test samples), it
is still small enough that the estimation of the performance on unseen data might
be heavily perturbed if only a single hold-out set is used for evaluation.

Recently, Shamai et al. (2019) presented a ResNet model that was trained
to predict the ER status from tissue microarray (TMA) samples [36], similar to
our work. The model was trained on two cohorts of 20600 HE TMAs of 5356
patients in total. This resulted in an AUC of 0.84 and 0.88, for the two cohorts
respectively, that decreased to 0.73 and 0.84 when only one TMA image per
patient was used. Furthermore, they report a balanced accuracy of 77% and
82% for both cohorts, respectively. Even though the authors showed response
maps of the classifier indicating relevant parts of the input image by overlaying
the final feature maps with the image, these response maps were in a lower
spatial resolution as the input image.

3.2 Post-hoc Model Explanation

A variety of methods have been developed to explain the output of neural net-
work classifiers [2], with applications including histopathology [7,13,25]. For
image data, many of these methods aim to produce explanation heatmaps that
indicate the “importance” of each pixel, such that the user can see which struc-
tures the model considered relevant. For instance, Smilkov et al. (2017) developed
a method called SmoothGrad that averages gradient maps of several noisy ver-
sions of an input image [37]. Selvaraju et al. (2017) presented GradCAM that
aims to project the activations of the last feature extraction layer of a DNN
back to the image space [35]. Bach, Binder et al. (2015) proposed Layer-wise
Relevance Propagation (LRP), that decomposes the classifier output in a layer-
by-layer fashion to propagate the output signal back to the input space [4].
In the PatternNet and PatternLRP approaches proposed by [22], explanations
are learned from the data by optimizing a quality criterion that is based on
the observation that an input signal is composed of an informative signal and
uninformative noise.

4 Methods

4.1 Data and Preprocessing

The data are taken from TCGA “BRCA” project 1. From the whole-slide HE
images, a board-certified pathologist selected representative regions of interest
(ROIs) of 2000 × 2000 px. The ROIs were preprocessed using the method by [38]
to account for the variability in staining. In total, 702 cases had labels for the
ER status. The classes were imbalanced with 176 (25%) ER− and 526 (75%)
ER+ samples. For grading, we used the annotations by [8] where 469 cases were
available from which 53 had grade 1, 219 grade 2 and 197 grade 3. We combined
grade 1 and 2 to a class “low grade” resulting in 272 (58%) low-grade and 197
(42%) high-grade samples.
1 Available at https://portal.gdc.cancer.gov/projects/TCGA-BRCA/.

https://portal.gdc.cancer.gov/projects/TCGA-BRCA/
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4.2 Training and Evaluation

We designed an ensemble of DNNs for ER status prediction that is trained end-
to-end. The core of the model is a ResNet18 [16] that was truncated after the
third (out of four) residual block. This allowed benefitting from transfer learn-
ing but at the same time limited the number of parameters to reduce overfitting
(see Table 3). After the final residual block, the feature maps were spatially aver-
aged to yield a 256-d feature vector. For each ROI, multiple small patches (size
64 × 64 px) were processed individually by this feature extraction part of the
DNN in order to regularize by limiting the context size. The resulting feature
vectors were then fused by averaging over the patches to yield a combined rep-
resentation of the entire image. This averaged feature was then fed to a dense
layer with two output dimensions and softmax activation. Before the processing,
each ROI was downsampled to half resolution since this performed consistently
better than full resolution (see Table 3). The patches were sampled with uniform
probability since more sophisticated, novel sampling strategies did not exhibit
a significant performance gain (see Sect. 5). The model was trained using the
Adam optimizer [23] with a learning rate of 10−4 and a cross entropy loss where
each class was weighted proportional to the inverse of its frequency in the train-
ing data (weights are normalized such that they sum to 1).

Different strategies of random patch sampling have been explored in this
paper. The first one is a simple uniform sampling where all patch locations are
sampled with equal probability. Secondly, the complement of the red channel (“1
- red”) in RGB space was used to undersample regions with high stromal tissue
content. The third sampling strategy is intended to focus on nuclei by focusing
on the Haematoxylin channel (computed using the method by [38]). Areas with
high Haematoxylin content therefore were sampled more frequently.

Model selection and performance evaluation are performed by stratified
nested crossvalidation (CV) [39]. This procedure and the terminology used in
this paper are sketched in Fig. 1. In the outer CV loop, the dataset was ran-
domly partitioned into five folds with class stratification, i.e. each of the folds
had approximately the same number of positive and negative samples, respec-
tively. Then, 4 of these folds were combined (called “development” fold in this
paper) and used for training and validation in the inner CV procedure. The
remaining fold (called “test” fold) was used to estimate the generalization per-
formance of the models trained in the inner CV procedure. This procedure was
repeated five times such that each fold served as a test fold once. In the inner CV
loop, the respective development fold was further split randomly into five folds
with stratification. Each fold was once excluded from the training and used for
validation and early stopping (called “validation” fold). The remaining 4 folds
were combined to a “training” fold and used to learn the weights and biases of
the model. The mean validation performance over the five inner splits was used
as estimate of the performance for this particular outer split. This quantity was
used for model selection, i.e. to rank different hyperparameter settings.

After five-fold inner CV for hyperparameter tuning, the final classifier was
obtained by forming an ensemble of the five individual models by averaging
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their output probabilities. This ensembling not only reduces the variance of the
estimator [15] but also does not require resource-intensive retraining and no
additional validation data for early stopping. Both outer and inner splits were
the same for all experiments to facilitate comparison.

Fig. 1. Illustration of the nested CV procedure for model selection and performance
evaluation. See text for details.

The performance on unseen data is estimated by averaging the test perfor-
mances over five outer splits, that are not used for training or model selection.
Following [32], we used AUC (averaged over inner folds) as model selection met-
ric because of its applicability to imbalanced data [9]. To evaluate the final
performance, we report ROC curves, balanced accuracy, precision and accuracy.

4.3 Visual Explanation of ER Status Predictions

Layer-Wise Relevance Propagation. [4] A feedforward DNN processes an
input signal x0 by propagating it through a sequence of layers and hence com-
putes a mapping f(x0). In each layer l, the signal is recombined by a linear
projection parametrized by weights W and biases b2 and usually passed through
a non-linear activation function σ:

xl+1 = σ(W lxl + bl) = σ(zl) , (1)

where z denotes the preactivation of the layer. By doing so, the network extracts
features from the input signal, that grow more and more abstract and complex
after each layer. For a classification task, the feature of the last layer is usually

2 Note that this formulation includes both fully-connected and convolutional layers.
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the output of a fully-connected layer and converted into probabilities via the
softmax function.

LRP aims at computing a score for every input dimension, which denotes the
contribution of the input dimension to the classification result [4]. The output
signal rL := f(x0) is distributed backwards through the network, using the same
topology as in gradient backpropagation, yet with message functions different
from the gradient. During this backward pass, LRP computes for every neuron
xl+1
j relevance messages Rxl

i←xl+1
j

from the neuron xl+1
j to each of its inputs

xl
i. The relevance of a neuron xl

i is then computed as the sum of all incoming
relevance messages.

The key idea of LRP is that in each decomposition step, the signal is con-
served, i.e. the total signal rl+1 in a layer l + 1 should be approximately equal
to the total signal rl in the previous layer l:

∑

i

rli ≈
∑

j

rl+1
j . (2)

Once the signal is backpropagated until the input layer l = 0, a score is assigned
to each input dimension that measures by how much this dimension contributed
to the output. Indeed, the relevances are an approximate decomposition of the
output signal: ∑

i

r0i ≈ f(x0) , (3)

which directly follows from Eq. 2. This quantity—termed relevance—can hence
be interpreted as the “importance” of this dimension for the predicted output.
For images, the input relevances can be conveniently visualized as a heatmap.

The conservation property is ensured by applying specific decomposition
rules, that determine how the relevance of a layer is distributed to the neurons
in the previous layer, as described in the following section.

z-rule: The basic intuition is that a neuron i in layer l receives a share of the
relevance of each connected neuron j in the following layer l + 1 and this share
should be proportional to its relative contribution to the input of j:

rli =
∑

j

zli∑
k zlk

rl+1
j . (4)

Note that this rule is commonly not directly used in practice but serves as basis
for further, improved rules, as described below.

ε-rule: Equation 4 is ill-defined for
∑

k zlk = 0 and therefore, a small positive
constant ε can be added to the denominator that relaxes the conservation prop-
erty but enhances numerical stability:

rli =
∑

j

zli∑
k zlk + ε sign(

∑
k zlk)

rl+1
j . (5)

αβ-rule: Positive relevance indicates that a neuron increased the output score;
negative relevance means decrease. In some applications, positive and negative
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relevance should be interpreted differently. In order to weight them separately,
this rule thus introduces two parameters α and β:

rli =
∑

j

(
α

max(0, zli)∑
k max(0, zlk)

+ β
min(0, zli)∑
k min(0, zlk)

)
rl+1
j . (6)

Both parameters are related by α + β = 1 to ensure relevance conservation.
Common choices are (α = 1, β = 0) and (α = 2, β = −1).

|z|-rule: Modern DNNs often apply batch normalization [20]. Hui et Binder
(2019) demonstrated that other LRP rules often perform poorly for batch nor-
malization layers and devised a sign-invariant alternative that should be used
instead [19]:

rli =
∑

j

∣∣wl
ijx

l
i

∣∣
∣∣wl

ijx
l
i

∣∣ +
∣∣blj

∣∣ + ε
rl+1
j . (7)

For further methods, applications and implementation details of LRP, we
refer to [1,11,26,28].

Application to ER Status Predictions. In order to elucidate which features
were used by the model to classify a tumor sample into ER+ and ER−, we
applied LRP to create relevance heatmaps. In particular, we applied the ε-rule
(ε = 0.1) to dense layers and the |z|-rule proposed by [19] to Batch Normalization
layers. To convolutional layers, the αβ-rule (α = 1, β = 0) was applied. In order
to create heatmaps for an ROI, the LRP-decomposition was restricted to the
logit of the highest scoring class by clamping the respective other logit to zero.
Relevances were summed over color channels.

We chose to overlap patches by striding with half the patch size in order to
average out potential border effects and translation dependence of the prediction,
as recommended by [29]. To distinguish between positive and negative predic-
tions in the final heatmap tile, the sign of the relevances of predicted negative
patches was flipped before averaging. For visualization, relevances were clipped
at the 0.995 quantile of the averaged heatmap tile; by doing so, extremely high
relevance values did not influence the colormap substantially. This normaliza-
tion process was performed for negative and positive relevances separately. In
this paper, we restrict the heatmap analysis to a single CV fold.

Furthermore, visualizations were computed using SmoothGrad [35]. The
magnitude of the gradient was averaged over 15 samples and sign-flipped for
ER−predictions for visualization purposes, similar to above. For visualization
we clipped the relevances at the 0.98 quantile to achieve a similar appearance as
the LRP heatmaps.

5 Experiments

5.1 Hyperparameter Tuning and Performance Evaluation

For the ER status, we tuned the following hyperparameters on the validation
sets: learning rate, image resolution, depth of the network and sampling method
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Table 1. AUC (in %) for ER status and cancer grade for validation and testing for
our end-to-end method and the method by [10] (“SVM”) for all outer folds.

Fold Val. (ER) Test (ER) Val. (Grade) Test (Grade)

SVM Our SVM Our SVM Our SVM Our

0 79.4 82.6 81.1 73.0 74.7 78.0 81.8 84.8

1 79.7 80.1 72.5 80.8 77.0 80.3 71.9 74.2

2 78.5 80.7 76.1 79.6 76.9 80.6 72.6 71.5

3 78.5 80.8 75.4 75.9 71.6 77.4 78.6 86.5

4 73.5 78.0 86.7 92.0 76.1 81.4 70.0 76.2

Avg. 77.9 80.5 78.4 80.3 75.2 79.5 75.0 78.6

Table 2. Comparison of the mean AUCs (in %) of the individual models (each trained
on one inner fold) to the AUC (in %) of an ensemble of them for all outer folds.

Fold Mean AUC (individual) Ensemble AUC

0 72.5 73.0

1 78.6 80.8

2 77.4 79.6

3 73.3 75.9

4 89.2 92.0

(see Table 3 for results from hyperparameter tuning following the procedure
described in Sect. 4.2). The validation and test results for our end-to-end method
and a state-of-the-art method [10] for both ER status and cancer grade are sum-
marized in Table 1.

No significant difference between the different sampling methods (uniform,
“1 - red” and Haematoxylin oversampling) could be observed (see Table 3).
Hence, we chose to remove this hyperparameter from the model selection and
constantly used uniform sampling instead because it has the fewest assumptions
and is therefore not prone to introducing any bias.

After determining hyperparameters during model selection, the final perfor-
mance was estimated by averaging the test performance over all outer splits. As
expected, the ensemble performed better than the individual models on aver-
age (see Table 2). This yielded an AUC of 0.80 (see Table 1), balanced accuracy
of 73%, precision of 72% and accuracy of 79%. The AUC is thus substantially
higher than in [32].

In order to test whether the benefit of end-to-end learning translates to other
clinically relevant variables, we trained the same architecture to predict the
pathological cancer grade. As before, we applied stratified nested CV. Without
additional hyperparameter optimization, i.e. using the same configuration as for
the ER status, the model achieved an average test AUC of 0.79 (see Table 1) and
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a balanced accuracy of 72%. This could be further increased to an AUC 0.81
and balanced accuracy of 73% by hyperparameter optimization (see Table 3).

5.2 Comparison to a State-of-the-Art Method

We applied the method by [10] (“SVM”) to our dataset with the following
minor modifications: Instead of 800× 800 px patches with 400 px overlap, we
used 600 × 600 px with 300 px overlap since the downscaled images only had a
size of 1000 × 1000 px. Furthermore, we used standard Platt scaling [31] instead
of isotropic regression for the calibration of the first SVM. We found that balanc-
ing the classes during training deteriorates the validation performance and thus,
we did not apply any reweighting (see Table 3). Apart from that, the method
was applied as described in [10].

A comparison showed an improvement by our method compared to the SVM
method in all folds during validation (see Table 1). Similarly to our method, half
resolution yielded a higher AUC than full resolution. Furthermore, the SVM
method performed better with VGG16 features as in [10] compared to the trun-
cated ResNet features (see Table 3). Our method performed better not only in
the validation but also in the test phase, where the SVM method scored on
average an AUC of 0.78 (see Table 1), balanced accuracy of 70%, precision of
70% and accuracy of 78%. The ROC curves of the two methods are compared
in Fig. 2.

We compared different resolutions for the prediction of the grade, for each
of which the end-to-end method was superior in terms of AUC, even by a larger
margin than for the ER status prediction (see Table 3). As for the ER status, half
resolution performed best. Using the same hyperparameters as for the ER status,
the SVM method scored an AUC of 0.75 (see Table 1) and a balanced accuracy
of 70% on the test set which is outperformed by our end-to-end approach.

5.3 Variance over the Splits

We observed that the test AUC varied significantly between the different outer
CV splits (see Table 1). Thus, the test performance computed on a single outer
split is an unreliable estimate of the true generalization performance. Even more
concerning is the fact that this variance can be substantial: In our experiments,
the test AUC ranged from 0.73 to 0.92 (see Table 1). Hence, if the evaluation
relied on a single train-test split only, the real-world performance could have
been severely over- or underestimated. Figure 2 shows the ROC curves for the
different outer splits to demonstrate this variance.

Interestingly, the outer fold with the best mean validation performance
(fold 0) has the worst test performance. This means that the test set of fold
0 is particularly hard (i.e. harder than average) to classify; vice versa, its train
and validation sets are particularly easy since they are disjoint from the test
set. This leads to an overly optimistic validation performance in fold 0 (and to
a overly pessimistic validation performance in all the other folds) whereas the
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Fig. 2. (a): ROC curves for all outer test sets for our method. (b): Average test ROC
curves comparing our end-to-end method to the SVM method by [10].

test performance in fold 0 is overly pessimistic. Similarly, the fold with the worst
validation performance (fold 4) shows the best test performance.

5.4 Rejection Option

The clinical relevance of HE-based determination of the ER status largely
depends on the amount of patients that are classified correctly with high confi-
dence3 because these patients would not require additional examination e.g. by
IHC stains. On the other hand, cases that cannot be classified confidently should
be rejected by the classifier and undergo additional examination, such as IHC
staining.

Therefore, we investigated whether a threshold on the classifier output (“con-
fidence”) can be chosen on the validation data such that a reasonable amount
of test data can be classified with high confidence, similar to [10] and [21]. To
this end, the ER+ precision of the model, i.e. the ratio of true ER+ patients of
all patients classified as ER+, as well as the ratio of non-rejected samples, i.e.
patients classified as ER+, were plotted against the confidence threshold (see
Fig. 3). For the validation data, we averaged over the inner splits.

The confidence threshold was chosen based on the validation data for each
outer split individually such that the precision was maximized while classifying
more than 10% of the cases. These thresholds are shown as vertical lines in
Fig. 3. Introducing this rejection option resulted in a precision of 97% and 94%
for validation and test data, respectively, and a ratio of non-rejected samples of
20% and 13%, respectively (averaged over the outer folds).

3 The output of a DNN typically does not represent the true confidence of the model
in terms of probability since it is not properly calibrated. However, here, we stick
with the term “confidence” to denote the output probability of the highest scoring
class as it is commonly used that way in the literature.
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Fig. 3. Precision and ratio of classified (not rejected) samples when introducing a
rejection option. Confidence thresholds (depicted as vertical lines) are chosen on the
validation data for each fold individually.

5.5 Visual Explanation

The resulting LRP heatmaps for classifying the ER status were inspected visu-
ally. From this, the following findings are deduced:

– Stroma is an important indicator for the model for ER+. This is in line
with previous findings that suggest that stromal morphology correlates with
survival [5] and the ER status [36]. Nevertheless, we consider this a potential
issue of the learned predictor (see Sect. 6).

– Lymphocyte infiltration is an indicator for ER−. This is plausible because
it has been reported in the literature that increased lymphocytic infiltration
correlates with decreased ER activity [24,27].

– A high nuclear grade (prominent nucleoli, nuclear pleomorphism), i.e. poor
differentiation, and mitoses are an indicator for ER−, in line with [27].

– The model responds to cells arranged in an “indian file”-like pattern. This
pattern is typically observed in infiltrating lobular carcinoma, a histological
subtype of breast cancer that correlates with a positive ER status [3].

Exemplary heatmaps are shown in Fig. 4, where red indicates evidence for
ER+, blue for ER− and green is neutral (for more examples, see Fig. 6). In the
following, we discuss these example cases in more detail.
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TCGA-A2-A0CR (see Fig. 4(a)): Cancer cells aligned in an “indian file”-like
pattern are evidence for ER+. This pattern is typical for infiltrating lobular
carcinoma that more frequently is ER+. Additionally, stroma and the low-grade
nuclear morphology are evidence for ER+. Lymphocyte infiltration is evidence
for ER−. It is correctly predicted ER+ with confidence of 0.989.

TCGA-E2-A1LL (see Fig. 4(b)): This tumor features a bad differentiation and
a high nuclear grade and thus, nuclear morphology is an indicator for ER−.
Similarly, mitoses are correlated with uncontrolled tumor growth and are hence
evidence for ER−. The small ratio of stromal tissue is however evidence for ER+.
It is correctly predicted ER− with confidence 0.923.

TCGA-E2-A158 (see Fig. 4(c)): The large portion of stroma in this tumor is
evidence for ER+; lymphocytes are evidence for ER−. The model falsely predicts
ER+, albeit with a relatively low confidence of 0.834.

TCGA-C8-A12P (see Fig. 4(d)): This is a tumor with a medium degree of dif-
ferentiation. The large number of lymphocytes is evidence for ER−. Even though
the stroma indicates ER+, the model correctly predicts ER− with confidence
0.804.

A comparison of LRP heatmaps to SmoothGrad heatmaps showed that these
findings are consistent with a differently motivated explanation method (see
Fig. 5) and not a special finding of LRP. However, note that the SmoothGrad
heatmaps come along with a significantly higher computational effort compared
to LRP because they require an average over multiple gradient maps.

6 Discussion

It is common knowledge in machine learning that training models end-to-end
is beneficial because not only the classifier but also the features are adapted
specifically to the task at hand [6]. We demonstrated that this also holds for the
classification of ER status and cancer grade from HE images even though our
sample was relatively small: The end-to-end method compared favorably with
recent prior DNN-based methods.

The high variance of the test performance between different outer folds shows
that it can be misleading to rely on the performance on a single outer fold only
to estimate generalization performance because it can be biased either too pes-
simistically (e.g. as in fold 0) or too optimistically (e.g. fold 4) and this bias
can be substantial. This is due to the high variance with which the generaliza-
tion performance is estimated that arises from the relatively modest sample size.
This dilemma can be solved by averaging the test performances over the different
outer splits which gives a more reliable estimate because the averaging reduces
the variance of the estimator [15]. We argue that, while this might be irrelevant
in general computer vision where usually large labeled datasets are available,
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(a) TCGA-A2-A0CR

(b) TCGA-E2-A1LL

(c) TCGA-E2-A158

(d) TCGA-C8-A12P

Fig. 4. Examplary images and LRP-heatmaps (overlayed on image) for the detection
of ER status. (a) Cell patterns typical for lobular breast carcinoma indicate ER+
(red). Lymphocyte infiltration indicates ER− (blue). (b) High nuclear and mitotic
grade and lymphocyte infiltration indicate ER−. (c) Stromal patterns indicate ER+.
(d) Lymphocyte infiltration indicates ER−. (Color figure online)
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(a) TCGA-A2-A0CR

(b) TCGA-E2-A1LL

(c) TCGA-E2-A158

(d) TCGA-C8-A12P

Fig. 5. Comparison of LRP - (left) and SmoothGrad (right) heatmaps (overlayed on
image), analogous to Fig. 4. This highlights similar features for both methods. (Color
figure online)
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in many medical image analysis tasks this variance is a serious problem because
the datasets are much smaller. Furthermore, especially in the medical domain
it is highly relevant to reliably estimate the performance of a machine learn-
ing model. Thus, we hope to focus the attention of the field to methodically
sound model tuning and evaluation procedures, such as nested CV, even if this
comes along with a considerably higher computational burden. We claim that
in the context of machine learning applied to medicine, a reliable performance
estimation should always have priority over finding an optimal hyperparameter
setting because otherwise, trust of medical professionals and patients in learning
machines can easily be undermined.

As shown in Table 1, the predictor has a competitive prediction performance.
This is even more remarkable as the total sample size is 702 samples only, whereas
a larger study [36] which reported AUCs of 0.73 and 0.84 was able to employ a
sample size of 5356 patients. Visual explanation revealed several morphological
features that the model considered relevant for classification: stromal features,
lymphocyte infiltration, high nuclear grade and cell arrangement correlated with
a specific histological subtype.

However, we would like to express doubts whether the stroma structure used
as evidence for ER+ is a causal feature, despite work supporting this view like [5]
and [36], that showed that the ER status could be learned from the stroma to a
certain extent. In a larger study, this observation could be validated by inspecting
a larger patient dataset, for which we are unable to obtain sufficient samples
from the used TCGA dataset. While this hypothesis cannot be ascertained at
this stage, this raised concern demonstrates the value of explanation methods
for the development of machine learning models, in particular for features such
as ER status which are not easily recognized by a human expert from HE stains.
This is fundamentally different to many problems in the natural image domain,
where the correctness of a prediction can be verified at a glance by non-experts.

An argument for the latter is the reliable selection of high-confidence predic-
tions that results in high precision. Nevertheless, this study shows that explain-
able AI can be a tool to investigate models for ER status prediction and should
be combined with domain knowledge for verification. This is especially impor-
tant because the prediction of the ER status from HE images has a relatively
modest classification performance [10,32,36] and hence could be more prone to
a confusion of correlation and causation.
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(a) TCGA-E2-A15P

(b) TCGA-D8-A1XB

(c) TCGA-AR-A1AI

(d) TCGA-BH-A0B7

Fig. 6. Additional images and LRP-heatmaps (overlayed on image). (Color figure
online)
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7 Conclusion

This work presents a method to learn the prediction of the ER status of breast
cancer from HE images, a task that is important for patient stratification but
usually not visually apparent to the human observer. In contrast to prior work
that relied on engineered or generic representations, this method uses features
that are learned from the data at hand. This is achieved by training a DNN
ensemble end-to-end on pooled random patches which shows state-of-the-art
performance.

We show how CV naturally gives rise to an ensemble to avoid costly retraining
after model selection. By introducing a rejection class, a considerable amount of
test samples can be classified with high precision. Furthermore, we demonstrate
the importance of robust model selection and performance evaluation, in this
case nested CV, in the context of deep learning-based medical image analysis.
Moreover, the architecture can be applied out-of-the-box to e.g. the prediction
of cancer grade.

After training the model, we computed explanation heatmaps to better
understand the model intrinsics. This revealed a number of biologically plau-
sible features that are used by the model to predict the ER status: stromal
and nuclear morphology, lymphocytic infiltration and disease-specific cell pat-
terns. Explainable AI can thus be an important tool to verify hypotheses about
biomarkers, especially in settings with low predictive performance as in the case
of ER status prediction.

8 Open Challenges and Future Work

More sophisticated sampling strategies that oversample specific tissue structures
had a negligible effect in this paper compared to naive uniform sampling. We
hypothesize that this is due to the fact that the dataset consists of expert-
selected ROIs; uniformly sampling from these ROIs is thus already likely to
yield an informative patch. Thus, future work should investigate whether those
sampling strategies improve the results on whole-slide images where it is more
important to focus the attention to relevant parts of the data than for training
on preselected ROIs.

The interpretation of the explanation heatmaps in this study is done by
visual inspection. To leverage a more objective evaluation, the overlap of the
relevance scores with specific structures in the tissue should be measured quan-
titatively [13]. However, this would require an expensive pixel-level annotation
of e.g. cancer cells, lymphocytes and stroma, and is thus left for future work.

Moreover, the goodness of the explanation heatmaps should ideally be mea-
sured quantitatively [33]. This is a challenging task and no consensus on the
best evaluation method has been reached yet. However, approximations to this
problem exist, e.g. by destroying the information in the image based on the pixel
relevances [34] and—after a possible retraining the model [18]—reevaluating the
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model. These evaluation methods will further help to establish trust in the inter-
pretability methods themselves and can hence be an important ingredient in the
path to applying artificial intelligence in a clinical setting.
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