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Abstract. This paper reviews guidelines on how medical imaging analy-
sis can be enhanced by Artificial Intelligence (AI) and Machine Learning
(ML). In addition to outlining current and potential future developments,
we also provide background information on chemical imaging and discuss
the advantages of Explainable AI. We hypothesize that it is a matter of
AI to find an invariably recurring parameter that has escaped human
attention (e.g. due to noisy data). There is great potential in AI to illu-
minate the feature space of successful models.
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1 Introduction and Motivation

In this paper, our approach is to discriminate between: general challenges to
AI/ML image analysis (irrespective of the specific approach); challenges specific
to Black Box methods; challenges that Explainable AI alone can help to over-
come; and challenges that Black Box methods together with Explainable AI can
help to overcome. In addition to outlining the challenges and our hypotheses,
we also include an extensive review to assess the use of AI and ML-enhanced
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Fig. 1. Graphical abstract (brain images from [52])

magnetic resonance imaging (MRI) for the evaluation of neurodegenerative dis-
eases in comparison to the use of histological information (Fig. 1).

2 Glossary

The following abbreviations and terms are used in this manuscript:
AD Alzheimer Disease
AI Artificial Intelligence
CAG Cytosine-adenine-guanine
CV Cross Validation
DL Deep Learning
Explainable AI Explaining the behavior of otherwise black-box models
fMRI functional Magnetic Resonance Imaging
HD Huntington’s Disease
LDA Linear Discriminant Analysis
ML Machine Learning
MRA Magnetic Resonance Angiography
MRI Magnetic Resonance Imaging
Neurodegenera- Diseases caused by the death of neurons and/or other
tive diseases cells in the brain
NMR Nuclear Magnetic Resonance
PCA Principal Component Analysis
PD Parkinson’s disease
RF Random Forests
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RFDA Regularized Fisher Discriminant Analysis
SC-CNN Spatially Constrained Convolutional Neural Network
SPECT Single Photon Emission Computed Tomography
Virtual Autopsy The use of imaging to diagnose cause of death
USG Ultrasonography

3 State-of-the-Art

3.1 Role of AI/ML

We define AI as the whole field working on understanding intelligence towards
context-adaptive systems; the backbone, however, is ML as a methodological
subset of AI, whilst e.g. Deep Learning (DL) is just one specific methodological
subset of ML [24]. In the following we only briefly point to some of the manifold
possibilities which AI/ML offer for the topic of this paper. The most important
methods for classification of brain states include Linear Discriminant Analysis
(LDA) and regularized Fisher Discriminant analysis (RFDA) to get a classi-
fier, Independent Component Analysis (ICA) and Principal Component Analysis
(PCA) for dimensionality reduction of the input data, several cross-validation
(CV) schemes for model evaluation/selection, however, keeping potential pitfalls
in mind [35,52].

The human brain has a significantly high individual variability with substan-
tial amount of information that needs to be analysed. To count neurons manually
can be an extremely time-consuming process to perform by human eye observa-
tions alone. Non-homogeneous brain shrinkage is one major challenge where, in
combination, imaging and AI/ML may be effective. By providing a huge amount
of information for histology, several ML methods can help to validate in vivo
MRI findings and MRI limitations. This leads to improving and enhancing the
capabilities of MRI through the identification of even more alterations. More-
over, in brain informatics problems include the detection and interpretation of
volume changes in neurodegenerative diseases and more global aspects such as
brain volume, gyration, cortical thickness, hippocampal shape changes and allo-
metric studies correlating, for example, cortical volume with hippocampal and
subcortical nuclear volume in schizophrenics.

As a first step, by using different contrasts in MRI, one can obtain more
information, not only regarding volume quantification, but also iron deposition,
myelin quantification and brain parcellation with myeloarchitectonics [39] and
other sequences. Architectonics is considered to reflect the functional properties
of the brain and its surface. The manifold problems with such approaches include
the high-dimensionality of the data, which would make standard approaches of
AI awkward, yet impossible to use, therefore, it is necessary to harness the full
potential of current AI/ML. As a next step, one can attempt to quantify the
architectonics, the size of defined fields, and correlate with their normative data
for different diseases and normal ageing. Due to the high individual variability
of the brain, these studies will require investigating extensive data. For this
step, accessing and analysing the large database using simple methods will most
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likely lead to a null finding. We hypothesize that this is a matter of AI to find
an invariably recurring parameter that has escaped human attention (e.g. due
to noisy data).

However, one must take care when discussing AI in the context of initial/early
stages of neurodegenerative or neuropsychiatric diseases. It is necessary to per-
form both MRI and volumetry when there is no access to the tissue. It is also
important to take into consideration that changes other than visible changes (e.g.
volume) are causing symptoms in the early and later stages of schizophrenia or
depression. In addition, from a clinical and neuropsychiatric view, schizophrenia
itself is very challenging and complicated. It is the same matter as assessing pro-
ficiency based on the size of the brain. Many would assume that bigger brains are
more proficient than smaller brains, however, the contrary can be true because
one can find small brains in highly intelligent people and vice versa.

Generally, next to imaging there are genetic biomarkers for disease classi-
fication but these are applicable only in specific cases. Established biomarkers
for Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease
(HD) are based on visual analysis including MRI. Genetic variants of apolipopro-
tein E, tau as well as amyloid precursor protein or presenilin 1 and 2 are sig-
nificant for AD, however, they are not imperative for the development of the
disease, thus, are not reliably applicable for diagnosis. So far, AD is diagnosed
clinically by a patient’s detailed history and mental state and finally determined
pathologically by brain autopsy [10,70].

The use of imaging to to diagnose the cause of death (virtual autopsy) has
already proven its value, although it has limitations, especially regarding micro-
scopic changes [52]. The possibility of having postmortem MRI in a high number
of cases, with histology included, is an invaluable combination to validate the
usefulness of MRI in this setting. This is in regards to, not only cases, but also
healthy controls, and it provides more understanding to populational variability.
Imaging yields an immense number of data and data needs to be interpreted.
There is a region of transition between pure statistical analysis of data and inter-
pretation by AI. One strategy is the investigation of brains from persons with
well-characterized disabilities. A good example is Alzheimer’s Disease, where the
visual inspection of neuroimagery is susceptible to limitations of human vision;
here AI methods have shown to be equally or even more effective than human
clinicians in diagnosing dementia from neuroimages [16].

Pathognonomic indicators include cerebral atrophy and neurofibrillary tangle
and amyloid plaque pathology. The likelihood and/or course of HD can be genet-
ically tested by the determination of the number of cytosine-adenine-guanine
(CAG)-repeats [12] of Huntingtin; the gene product of the affected gene on chro-
mosome 4. The neuropathological interaction between early striatal and cortical
atrophy proved to be puzzling [17] and imaging of prodromal cerebral corti-
cal changes is difficult to detect [48]. An exemplary novel approach of disease
characterization has been recently described for AD. The technique is based on
imaging of brain structural connectivity atrophy in combination with a multiplex
network for generating a classification score [1]. Automated differentiation of PD
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has been described also based on various ML derived classification algorithms
using quantitative MRI data [19].

3.2 AI/ML Methods

A myriad of different AI and ML methods exist, so we scratch the surface here
and focus our description only on Deep Learning (DL), which we recommend
for these particular studies. We refer the reader to [21] for an overview of ML
in general, and to [6,14,20] for more specific details. AI-aided diagnosis has
been used as a supporting tool for physicians for a long time [5,63]. Due to the
increasing computational power and available storage capacities, many methods,
which proved to be computationally-demanding in the past, can now sufficiently
be used in daily routine. Standard examples of state-of-the-art methods today,
include not only DL [2], but also Support Vector Machines (SVM) [11] and
Random Forests (RF) [7].

Among these methods, DL is rapidly proving to be the state-of-the-art foun-
dation, leading to improved accuracy. It has also opened up new frontiers in
biomedical data analysis generally, and in clinical medicine specifically, with
astonishing rates of progress [15]. In favour of AI-aided diagnosis, quantitative
changes could be evaluated in combination with functional neuroimaging and
interpretation of big data in a longitudinal setting.

Recent work has been performed relating to automatic detection and clas-
sification of cell nuclei in histopathological images of cancerous tissue [61]. The
authors applied DL [33] and produced encouraging results by applying a so-
called Spatially Constrained Convolutional Neural Network (SC-CNN) [53] to
perform nucleus detection. SC-CNN regresses the likelihood of a pixel being the
centre of a nucleus, where high probability values are spatially constrained to
locate in the vicinity of the centers of nuclei.

However, the current approaches in ML and neuroimaging do not facilitate
essential mechanistic investigations validation by way of histology. Rather than
only showing the ability to detect patterns of brain alterations, ML can also
benefit from improving knowledge about algorithm choices and particular char-
acteristics of precision power related to specific disease mechanisms.

3.3 Multimodal Deep Learning in Medical Imaging

In the machine learning context, algorithms dealing with data from multiple
heterogeneous sources are referred to as “multimodal” or “multi-view” learn-
ing algorithms [47]. The advantages of using multimodal deep learning in the
biomedical context are: (i) they require little or no pre-processing input data,
because both features and fused representations are learned from data; (ii) they
perform implicit dimensionality reduction within the architecture, which is a
desired property in feature-rich biomedical datasets; (iii) they support early,
late, or intermediate fusion [69]. However, they usually require powerful graph-
ics processing units (GPUs) for reasonable training time.
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Multimodal deep learning can be used to solve complex machine learning
problems in areas of high dimensional unstructured data like computer vision,
speech and natural language processing. The main advantage of deep learning is
that, it automatically learns hierarchical representation for each modality instead
of manually designing modality-specific features that are then fed with machine
learning algorithm. In medical image analysis, the medical expert can use mul-
tiple image modalities information, e.g. computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound imaging for diagnosis and treatment.
Therefore, multimodal deep learning is suitable for medical applications issues
like tissue and segmentation, multimodal medical image retrieval and computer-
aided diagnosis. There are however two significant challenges faced by the med-
ical applications community when using multimodal deep learning, namely the
difficulty in obtaining sufficient labelled data, and class imbalance [57].

Multimodal deep learning is widely used for brain imaging studies. Collecting
data of magnetic resonance imaging (MRI) of multiple modalities of the same
individual is popular in brain imaging studies. Multimodal brain imaging study
can provide a more comprehensive understanding of the brain and its disorders.
For instance, it can inform us about how brain structure shapes brain function, in
which way they are impacted by psychopathology, and which structural aspects
of physiology could drive human behaviour and cognition [9].

Multimodal medical image fusion techniques are the most significant meth-
ods to identify and investigate disease to provide complementary information
from different multimodalities. Multimodal medical images can be categorized
into several types, which include computed tomography (CT), magnetic reso-
nance angiography (MRA), magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), ultra sonography (USG), nuclear magnetic resonance
(NMR) spectroscopy, single photon emission computed tomography (SPECT),
X-rays, visible, infrared and ultraviolet. Structural therapeutic images are MRI,
CT, USG and MRA, which provide high-resolution images. Functional ther-
apeutic images are PET, SPECT and functional MRI (fMRI) which provide
low-spatial resolution images with useful information.

Multimodal medical image fusion increases the effectiveness of image-guided
disease analysis, diagnosis and assessment of medical problems. Image fusion has
several applications like medical imaging, biometrics, automatic change detec-
tion, machine vision, navigation aid, military applications, remote sensing, dig-
ital imaging, aerial and satellite imaging, robot vision, multi focus imaging,
microscopic imaging, digital photography and concealed weapon detection [55].
Due to their versatility, multimodal algorithms can be used in wider biomedical
applications involving genomics, proteomics, metabolomics and other types of
omics data. Interestingly, they have been successfully used when the features
originate from different domains, and some of them are generated by mechanis-
tic models [67]. In this case, preprocessing of the features, coupled with late or
intermediate fusion should be preferred to early fusion. This approach, based on
computational systems biology and machine learning, could provide key mecha-
nistic insights into neurological disorders [60].



Developments in AI and Machine Learning for Neuroimaging 313

Medical image segmentation is a challenging task in medical image analy-
sis. Multimodal deep learning has been used in medical imaging, especially for
providing multi-information about the target (tumour, organ or tissue). Segmen-
tation using multimodal has been implemented as a fusion of multi-information
to improve segmentation [36]. Deep learning provides state-of-the-art perfor-
mance in image classification, segmentation, object detection and tracking tasks.
Recently, deep learning has gained interest in multimodal image segmentation
because of its self-learning and simplification ability over a large amount of
data [71].

3.4 Databases for AI/ML

Reproducibility, validation and prediction benefit from existing imaging data and
related information. There already exist some databases that provide open data
for modeling, testing and inferring [28,41,54]. Thereupon these web resources,
some information is provided about AI or ML approaches. However, both reli-
able data containing patient data as well as ML performance depend largely on
the studied disease and its features. Some example of data from animal mod-
els include the Cambridge MRI database (this provides open phenotypic data
for animal models of HD [59]), and the Mouse Tumor Biology Database (this
provides different kinds of information on tumors in mice [8]). Moreover, the
project BRAINS provides anonymised images and related clinical information
from healthy subjects across human life span via data request and access agree-
ment [29]. The Open Access Series of Imaging Studies provides MRI data sets of
subjects clinically diagnosed with Alzheimer’s disease [37]. Functional MRI data
from subjects with Huntington’s disease can be found within Track-HD study
[64]. The Parkinson’s Disease Biomarkers Program provides access to brain scans
and related information for researchers [49].

Classification of disease subtypes, subjects, brain regions, and gradings are
often based on ML approaches via automatically segmenting brain MRI data
[23]. Making use of such databases, ML not only helps in (semi-)automatically
segmenting images, but it is also a tool for trying to answer several research ques-
tions, for example predicting tumor growth [27] or investigating minimal tumor
burden and therapy resistance by cancer patients [50,51]. Some case reports
also show AI outperforming human domain experts [18,31,56]. Recent advances
already try to bridge imaging and genetic studies. Imaging genetic studies com-
bine investigations of genotype and imaging phenotype to better understand
brain structure, function and the further cause and effects of a specific disease.
Imaging genetics studies improve our understanding of pathways that are related
to the cause or effect in cerebral disorders [30]. Genome-wide association studies
suggest genetic relationships for structural as well as functional measures among
family members [65].
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3.5 AI-Aided Disease Classification Using Chemical Imaging

Further use of chemicals, such as metabolic biomarkers, on imaging basis could
be included, for example, in therapy monitoring on a cellular basis [46]. AI-
aided diagnosis for clinical purposes and computational models for prediction
could involve quantitative changes next to functional imaging built upon brain
MRI data. In this regard, molecular fMRI techniques exhibit the specificity for
neural pathways or signaling components at cellular-level specificity [4]. The
method of fMRI has been used to study time-resolved volumetric measurements
of dopamine release [34]. Chemical exchange saturation transfer allows for signal-
amplification of, for example, deoxyglucose and its phosphorylated metabolite
in order to image glucose uptake [45]. This technique of MR imaging has been
used to image glucose uptake in head and neck cancer [66]. Proton MRS is com-
monly used for studies on brain metabolites, including the marker of neuroaxonal
integrity N-acetylaspartate, cholin for membrane turnovers, (phospho) creatine
for energy metabolism and myo-inositol for astroglial activation [44].

MR techniques for imaging brain metabolism can assist in the studying
of brain disorders, in aid of novel MRI contrasts for visualizing neuronal fir-
ing across brain regions, pH imaging of glioma and both glutamatergic neu-
rotransmission and cell-specific energetics [26]. The understanding of oxidative
metabolism plays a fundamental role in many diseases, which supports demand
for the development of non-invasive methods for routine analyses [42].

3.6 Explainable AI

There are several methods which are relevant for further studies and for testing
whether and to what extent they can be useful to contribute towards the afore-
mentioned use-cases. Six of the most relevant include: BETA, LRP, LIME as well
as GAMs, Bayesian Rule Lists and Hybrid Models, particularly with a human-
in-the-loop. BETA (Black Box Explanations through Transparent Approxima-
tions) is a model-agnostic framework for explaining the behavior of black-box
classifiers by instantaneously optimizing for fidelity to the original model and
interpretability of the explanation [32]. There is also a more general solution to
the problem of understanding classification decisions by pixel-wise decomposi-
tion of nonlinear classifiers which allows visualizing the contributions of single
pixels to predictions for kernel-based classifiers over bag of words features and
for multilayered neural networks [3].

LRP (Layer-Wise Relevance Propagation) is another general solution for
understanding classification decisions via pixel decomposition of nonlinear clas-
sifiers, which allows running the “thought processes” backwards [3,43]. This
enables to retrace which input had which influence on the respective result. In
individual cases, this lets us understand how a deep learning method has come
to a certain medical diagnosis or a risk assessment. LIME (Local Interpretable
Model-Agnostic Explanations) developed by Ribeiro, Singh and Guestrin [58] is a
model-agnostic system, where x ∈ R

d is the original representation of an instance



Developments in AI and Machine Learning for Neuroimaging 315

being explained, and x′ ∈ R
d′

is used to denote a vector for its interpretable rep-
resentation (e.g. x′ may be a feature vector containing word embeddings, with
x′ being the bag of words). The goal is to identify an interpretable model over
the interpretable representation that is locally faithful to the classifier, i.e.

g : Rd′ → R, g ∈ G,

where G is a class of potentially interpretable models, such as linear models,
decision trees, or rule lists etc.; given a model g ∈ G, it can be visualized as
an explanation to the human expert in R

�. LIME works separately with each
instance, they are permuted and a measure of similarity to the original instances
is calculated. Consequently, the complex model provides predictions for each of
these permutated instances and the influences of the alterations can be under-
stood for each instance. In this way, for example, a medical doctor can check
whether and to what extent results can be realistic. All these models cannot
explain why a certain decision has been made, which is a goal of current research
to find out in the context of the aforementioned use cases.

In medical domains, the explainability and interpretability of algorithms are
as critical as their performances [25]. It can be nearly impossible for a doctor
or medical professional to effectively integrate their expert knowledge with a
model’s output unless they can interpret why that model made the decision that
it did [22]. Over the past several decades, AI researchers have developed a wide
range of techniques for interpretable and explainable classification. These tech-
niques fall into four general categories: sensitivity analysis, linear approximation,
rule-based decompositions, and models of causality.

Sensitivity analysis techniques attempt to model which regions of the input
space are most important for the classification decision. For a neural network,
the simplest sensitivity analysis technique is the “input gradient technique,”
which involves taking the (smoothed) gradient of the input features with respect
to the model loss function [62]. Several sensitivity analysis techniques, including
the above-mentioned LRP [43] and LIME [13,58] use a linear model to (locally)
approximate a complex classifier, since linear models can be easily interpreted
based on feature weights. LRP directly decomposes the model output on any
training sample into the weighted sum of the model features, and LIME builds
a linear classifier to approximate model behavior in the region of a particular
training sample.

Rule-based algorithms represent a classification problem as a set of rules on
the input features. These include algorithms like Decision Trees and Bayesian
Rule Lists [68]. The most straightforward way to build these algorithms is to
assemble them directly from the training data, but this approach can have
extremely high variance and is often insufficient for modern applications. A more
modern approach is to use rule-based algorithms to approximate pre-trained clas-
sifiers, similarly to how LIME and LRP approximate complex algorithms with
linear functions. One example of this is the above-mentioned BETA algorithm,
which builds a rule set to approximate a black box classifier [32]. The most direct
way to build an explainable classifier is to directly model the causal relationships
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between the features and the classification output. The classic way to do this
is to use a Bayesian Network [38] to model the conditional independences of
features and latent factors, but this approach can be challenging to scale to the
size of modern datasets and feature spaces.

4 Open Problems and Future Outlook

This paper entails exploring an intriguing subject. Our understanding of brain
disease comes from different sources, but pathology remains to be one of the
most important. However, it is a very time-consuming process because it requires
manually performed tasks. On the other hand, MRI provides a lot of information
on a larger scale, and has already seen major transformations with its use of AI.
For cerebral disorders, we discussed in what way can AI generally, and ML
specifically, contribute.

We hypothesized that AI can help to find invariably recurring parameters
that have escaped human attention (e.g. due to noisy data) to validate diag-
nosis. In addition, AI helps to deal with an ever increasing amount of data
that would take much longer to be analyzed manually. Several ML methods
can help to identify and provide more meaningful information regarding the
signals of different contrasts, location (with high resolution 7 T MRI), texture,
size, dimension, patient information and specific patterns. Moreover, AI could
be used to locate, correlate and compare all brain regions, in order to study
the high individual variability of human gyri and sulci, signal variability, normal
ageing process, clinical records and neurodegenerative diseases.

AI has the potential to go beyond helping filter out noise. One reason humans
may be limited is not only due to the noise, but also due to wrong decisions on
the feature space wrong. For example, in structural MRI, we automatically make
the feature space a voxel. However, that unit results from the measurement tech-
nique, rather than any hypothesis or regularity about the brain or disease. There
is great potential for AI to reveal other meaningful feature spaces, such as vol-
ume, heterogeneity, variability. It is possible that a meaningful feature space
involves voxel-to-voxel relationships, or interdependencies, for example. There-
fore, AI can help us elucidate the right feature spaces, eliminating or reducing
human bias.
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