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Abstract. In breast cancer histology, there are three important features
for tumor grading, where the proliferation score presents a key compo-
nent. The mitotic count strategy is among the used methods to predict
this score. However, this task is tedious and time consuming for pathol-
ogists. To simplify their work, there is a recognized need for computer-
aided diagnostic systems (CADs). Several attempts have been made to
automate the mitosis detection based on both machine and deep learning
(DL) methods. This study aims to provide the readers with a medical
knowledge on mitosis detection and DL methods, review and compare
the relevant literature on DL methods for mitosis detection on H&E
histopathological images, and finally discuss the remaining challenges
and some of the perspectives.
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1 Introduction and Motivation

Breast cancer (BC) is considered as the most diagnosed cancer among women
[12]. In histopathology, the pathologist observes stained BC biopsies with hema-
toxylin and eosin (H&E) under a microscope for grading. With the availability of
whole slide scanners, the glass slides are digitized as whole slide images (WSIs).
Their analysis is important for tumor assessment, diagnosis, and treatment.

The proliferative activity is one of the three prognostic parameters in BC,
where the mitotic index is among the used methods to measure it [10]. Usu-
ally, the pathologist counts manually mitoses on the selected high power fields
(HPFs) from WSIs. Though, this task is tedious, time-consuming and prone to
subjectivity and inter-variability between pathologists. To reduce their work-
load, computer-aided diagnostic systems (CADs) are proposed. These systems
are based on machine [84] and deep learning [18] methods.

The first automated experimental study on H&E tissue sections was reported
by Kaman et al. in 1984 [81] for mitosis count. In 1993, Kate et al. [42] have
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computerized this task on stained specimens by Feulgen owing to its capacity to
highlight the DNA content. Traditionally, researchers have used machine learn-
ing (ML) to automate the mitosis detection task [84]. However, these methods
suffer from some serious drawbacks related to their dependency on data repre-
sentation. Since 2012, the interesting obtained error rate in the ImageNet large
scale visual recognition challenge (ILSVRC) has encouraged the image vision
community to exploit deep learning (DL) methods due to their capacity to learn
data representation. In most recent studies, a considerable literature has been
published on DL techniques for mitosis detection. Where, a significant number
of published papers is based on convolutional neural networks (CNNs) [6,79].

In recent years, there has been an increasing amount of relevant review papers
on the exploitation of DL methods in biomedicine [14], healthcare [59,65], med-
ical [55], and histopathological [82] image analysis. Specifically, the analysis of
breast cancer images got a significant interest in different reviews: mammogra-
phy and MRI [13], breast histology [6] and nuclei detection [39,95].

The paper on deep learning in mammography and breast histology [33] details
10 relevant papers on the mitosis detection by DL methods. However, since
2018, researchers have shown an increased interest in DL strategies for mitosis
detection. Despite this concern, no one as far as we know has published a related
review paper. The purpose of this contribution is to provide a comprehensive
review on the proposed DL methods for the mitosis detection task. The mitosis
detection can be carried out on time-lapse phase-contrast microscopy images [76]
and stained images by PHH3 [80] or H&E [15]. In this review, we were interested
in DL mitosis detection methods on H&E stained images due to their extensive
use and availability.

In this review, 28 publications have been collected from the literature review
papers on DL methods for medical image analysis and Google Scholar. We
used the following keywords to search for publications: ‘mitosis detection’, ‘deep
learning’, ‘breast cancer’, ‘convolutional neural networks’. First, we selected the
period 2012–2019, then 2018–2019 for a maximum of recent investigations. The
second strategy was to filter the concerned researches among all works that cited
ICPR12 [69], AMIDA13 [86], MITOSIS-ATYPIA-14 [68], and TAUPAC16 [83]
papers.

The remaining part of this chapter proceeds as follows: Sect. 2 defines the
used terms in this review. Section 3 explains the background of mitosis detection
and deep learning, and the related works on DL methods. The purpose of this
section is to provide the DL experts with sufficient medical knowledge on breast
cancer, in particular, the mitosis detection task, and to detail the DL methods
to the medical image analysis community. Section 4 details the open problems
and discuses some future outlook. Finally, the last section concludes this work.

1.1 Glossary

– Breast Cancer (BC). An uncontrolled proliferation of cells in the breast.
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– Hematoxylin and Eosin (H&E). Staining procedure that helps to high-
light the structural morphology of cells and the other features under the
microscope.

– Histopathology. A branch of pathology, where changes in tissues are stud-
ied.

– Mitotic Index. An index that reveals the number of cells undergoing nuclear
divisions (mitosis).

– Whole Slide Images (WSIs). High resolution images that represent a
complete microscope slide.

– Whole Slide Digital Scanners (WSD). A scanner that digitizes glass
slides into virtual slides, presented as whole slide images (WSIs).

– Computer Aided Diagnostic Systems (CAD). Systems that assist spe-
cialists in their diagnostic process and help them to make more robust deci-
sions.

– Machine Learning (ML). A branch of artificial intelligence, this field helps
to extract exploitable and relevant knowledge from big volumes of data.

– Deep Learning (DL). A branch of machine learning, based essentially on
neural networks.

– Convolutional Neural Network (CNN). A deep learning network,
inspired by the visual cortex and composed of three types of layers: con-
volutional layers, pooling layers, and fully connected layers.

– Fully Convolutional Network (FCN). A CNN variant, composed of con-
volutional, pooling and upsampling layers.

2 State of the Art

2.1 Deep Learning

2.1.1 Convolutional Neural Networks (CNN)

Convolutional neural networks are inspired by the visual cortex. In 1962, Hubel
et al. [38] proposed a hierarchical model based on complex (C) and simple (S)
neuronal cells. According to their observations, Fukushima et al. [28] have devel-
oped a deep neural network for pattern recognition. This architecture was par-
ticularly useful in Lecun et al. [47] investigation, where they demonstrated the
efficiency of CNN networks (LeNet) for supervised learning.

The impressive obtained error rate in the ILSVRC by the AlexNet network
[46] has encouraged the computer vision community to propose more optimized
architectures. Overfitting is one of the most challenging drawbacks in this field.
To solve this issue, the main inspiration was to highlight the role of parameter
reduction techniques. In the VGGNet architecture [75], the size of filters has
been reduced to F = 3 to propose deeper configurations with a small number
of parameters. While the Inception network [78] has assessed the significance of
inception blocks. ResNet [34] has considered the use of residual blocks to prevent
the vanishing gradient problem. Inception-ResNet [77] has examined the impli-
cation of residual connections in inception blocks. These findings contributed to
a better exploitation of deep neural networks for medical image analysis.
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2.1.2 Fully Convolutional Network (FCN)

The fully convolutional network (FCN) is a CNN variant, composed of convolu-
tional, pooling and upsampling layers. This network was largely exploited within
the semantic segmentation [52] due to its capacity to performpixel-wise prediction.
Upsampling layers play an important role in semantic segmentation, their purpose
is to upsample the output of convolutional layers to obtain the same input size.

2.1.3 Region Convolutional Neural Network (R-CNN)

The region convolutional neural network (R-CNN) [31] is a CNN variant,
designed for object detection. This architecture has proved its efficiency com-
pared to the pixel-wise CNN classification method in terms of computational
complexity. First, this method performs a selective search on the input image
to propose the candidate regions. Then, the CNN is used as a feature extrac-
tor. Finally, the generated feature vectors are used to train the bounding box
regressor based on the SVM classifier.

To speed up the R-CNN training and the prediction run time, the Fast-RCNN
[30] architecture was proposed. Despite R-CNN, this architecture performs end-
to-end learning, where the feature vectors are supplied to the region of interest
pooling layer. Then, the obtained vector is used for classification and bounding
box prediction. The faster R-CNN [67] proposes the exploitation of a separated
network for the candidate regions selection instead of the selective search method
to reduce the fast R-CNN computational complexity.

2.2 Generalities on Breast Cancer and Mitotic Count

The cancer is defined as an uncontrolled proliferation of cells, the most com-
monly diagnosed cancer among women is breast cancer (BC) with 11.6% of total
cancers death [12]. For BC detection, screening tests are employed such as mam-
mography [41,72], ultrasound [98], and MRI [20]. The ultrasound has proved its
efficiency compared to the mammography test in the diagnosis of solid breast
lesions [102]. These tests help for earlier detection and therefore improve the
chance for surviving.

After an abnormal screening test, a breast biopsy is recommended for tumor
assessment, diagnosis, and treatment. There are different types of breast biopsies:
fine-needle aspiration (FNA), core needle biopsy (CNB) and excision biopsy
(EB). The CNB is known as the preferred technique for histological evaluation
and surgical management [91]. Since it is less expensive than the EB, and in
contrast to FNA, it highlights the overall histological structure [61]. During the
CNB process, a core tissue is extracted by the expert. To extract accurately
the tissue from the region of interest, the ultrasound-guided core needle biopsy
strategy is used [26]. Then, the tissue is sent to the pathologist for examination.

The pathologist prepares the specimens by formalin fixation and embedding
in paraffin then cuts paraffin sections at 3–5µm thickness [1]. The staining helps
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to highlight the structural morphology of cells and the other features under the
microscope. There are different types of staining protocols, where the hema-
toxylin and eosin (H&E) is the most used staining protocol, H stains the cell
nuclei with blue-black and E stains the other structures with various degrees of
pink [25].

The pathologist observes the stained biopsies under a brightfield microscope
or a whole slide digital scanner. The scanner digitizes glass slides into virtual
slides, presented as whole slide images (WSIs), under a specific magnification.
Then, the pathologist selects regions of interest (ROIS) from these WSIs and
analyses them based on specialized software [24]. Figure 1 highlights the differ-
ence between WSI and ROI1.

Fig. 1. The difference between a whole slide image and a region of interest from the
TAUPAC16 dataset. (Color figure online)

The analysis of the stained specimens helps the pathologist to verify the pres-
ence of breast cancer. When the BC is detected, the pathologist performs a histo-
logical classification and checks the extent of cancer (in situ or invasive). The BC
can be developed in epithelial (carcinoma) or stromal tissues (sarcomas), and car-
cinomas can be located in milk ducts or milk-producing glands, referred as ductal
carcinoma (DC) or lobular carcinoma (LC) respectively [56]. The ductal carcinoma
in situ is the most diagnosed cancer among women with 83% of cases [90].

The pathologist uses the grading and the staging systems as prognostic fac-
tors to assess the cell’s appearance, size of the tumor and its proliferative behav-
ior. Nowadays, the Nottingham grading system [27] is used for breast cancer
grading.

The Nottingham histological system [27] is based on three morphological
features: tubule formation, nuclear pleomorphism, and mitotic count. These fea-
tures are scored from 1 to 3. The tubule formation score presents an indicator

1 http://tupac.tue-image.nl/node/3.

http://tupac.tue-image.nl/node/3
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of the percentage of tubular structures in the tumor area, nuclear pleomorphism
indicates the degree of variability of nuclei compared to normal cell nuclei, and
the mitotic count specifies the number of mitotic in the tumor and its prolifera-
tive behavior [8].

The proliferative activity presents an important prognostic parameter in the
BC, it is related to the aggressiveness of cancer, where the high proliferative
activity is associated with an uncontrolled cell division and therefore reveals a
high risk. This activity can be measured by various methods including S-phase
fraction, immuno-histochemistry of proliferation-associated to antibodies (Ki-67)
and mitotic activity [10].

In oncology, the mitotic index reveals the number of cells undergoing nuclear
divisions (mitosis). In the mitosis process, there are four basic phases: prophase,
metaphase, anaphase, and telophase. The mitotic nucleus appears denser com-
pared to the normal ones at the beginning of mitosis and transforms into a cell
with two nuclei in telophase.

To compute the mitotic index, the pathologist identifies the representative
regions of interest (ROIs) at a low magnification since the WSI may contain
tens of thousands of HPFs. Each ROI corresponds to 2 mm2 or 10 high power
fields (HPFs). Then mitoses are counted manually under ×40 magnification to
score ROIs from 1 to 3 according to the number of mitotic per region. The
mitotic count process is tedious, time-consuming (from 5 to 10 min per ROI
[29]) and suffers from inter and intra-variability between pathologists [60]. This
variability is related to several factors: (a) the subjective selection of the most
mitotically active ROIs [11], (b) the various morphology of mitosis within its
transformation process, (c) its similar appearance to other structures such as
necrotic nuclei and compressed nuclei which can result a high false-positive rate,
(d) the small number of mitosis compared to the normal cells nuclei. Hence, to
enhance the detection task, a strict protocol must be followed [22]. As a solution
to these limitations and to reduce the pathologist’s workload, computer-aided
diagnostic systems are proposed to automate the mitosis detection task.

2.3 Computer Aided Diagnostic Systems (CAD)

Computer-aided diagnostic (CAD) systems assist specialists in their diagnos-
tic process and help them to make more robust decisions. CADs are based on
machine (ML) [50] and deep learning (DL) methods [65].

Machine learning methods (ML) rely on data representation. Where the fea-
ture extraction process is required before the training task. These features are
extracted according to the field of application and described as handcrafted fea-
tures. The extraction process requires prior knowledge in the area of interest,
especially in case of medical data. In computer vision, the majority of previous
studies on CAD systems have emphasized the use of ML methods, due to their
limited requirements in terms of computational resources and volume of data.

Deep learning (DL) is defined as a multi-level representation learning and
based mainly on deep neural networks such as convolutional neural networks
(CNN) and recurrent neural networks (RNN). In recent years, there has been an
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increasing amount of literature on deep learning methods in different domains
[32,35,45,50,100]. These rapid developments were influenced by various factors
related to (a) the remarkable obtained error rate on the ImageNet dataset [46],
(b) the availability of the powerful graphics processing units (GPUs), and (c)
the massive available volumes of data.

One major important advantage of using DL methods is their capacity to
learn data representation from raw data, which involves less human intervention
compared to the traditional ML algorithms. However, despite their efficiency,
DL algorithms suffer from major drawbacks: the overfitting problem on a limited
volume of data, their high computational complexity, and memory requirements.

The main challenge of DL algorithms for medical image analysis is the lim-
ited number of accessible medical images. Moreover, the manual annotation of
thousands of images for training requires a considerable effort by experts. On
the other hand, the high resolution of histopathological images can cover these
limitations by generating a large volume of patches form one digital image based
on data augmentation techniques. A considerable amount of literature has been
published on the application of DL methods for histopathological image analysis
[82]. In the breast cancer histology, the exploitation of DL algorithms has cov-
ered several applications such as invasive breast cancer detection [19], epithelial
and stromal regions segmentation [96], nuclear atypia scoring [97], and mitosis
detection [18].

Several attempts have been made to propose automated methods for the
mitosis detection task, in both machine [51] and deep learning [18] fields. The
purpose of these studies was to resolve the different obstacles related to this
automation. The mitosis has highly variable biological structures, and a similar
appearance to other structures and artifacts, which can lead to a high false-
positive rate. For example, in telophase, the cell contains two separated nuclei
and highlights the presence of one mitosis. Furthermore, their low frequency and
the limited number of cells undergoing mitotic compared to the normal nuclei
cells are leading causes to the data unbalancing problem. Moreover, biopsies
preparation, staining, and digitization are key issues in the generation of non-
uniform histological images.

The following part reviews the proposed automatic deep learning methods
for mitotic figures detection.

2.4 Datasets

The main obstacle faced by many researchers for histopathology images analysis
was the availability of public big data, this issue is related to several restric-
tions: (a) privacy, (b) the extensive time and effort for their annotation, and
(c) the variability of staining and digitization methods and scanners between
laboratories.

To promote the development of robust frameworks for breast cancer
histopathological image analysis, many challenges have been organized. Their
purpose was to improve the performance on open access and high quality anno-
tated datasets, where different tasks have been covered: metastasis detection
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in lymph nodes (CAMELYON16, CAMELYON17), mitosis detection (ICPR12
[69], AMIDA13 [86], MITOS-ATYPIA-14 [68])), nuclear atypia scoring (MITOS-
ATYPIA-14 [68]) and tumor proliferation scoring (TUPAC16 [83]).

Table 1 compares between the proposed datasets for the mitosis detection
task.

Table 1. Publicly available datasets for mitosis detection.

Dataset ICPR12 AMIDA13 MITOS-ATYPIA-14 TUPAC16 TUPAC16 auxiliary

Scanners Aperio (A)

Hamamatsu (H)

Microscope (M)

Aperio (A) Aperio (A)

Hamamatsu (H)

Aperio (A) Aperio (A)

Leica SCN400

scanner (L)

WSI Total 5 23 – 821 73

Dimension – – – 50000 × 50000 –

HPF Total 50 596 136 – 656

Dimension A 2084 × 2084 2000 × 2000 1539 × 1376 – 2000 × 2000

H 2252 × 2250 – 1539 × 1376 L: 5657 ×
5657

M 2767 × 2767 – –

Mitoses Train 226 550 – – 1552

Test 100 533 –

Pathologists 1 2 3 – 3

Winner IDSIA [18] IDSIA [86] CUHK team LUNIT [62] LUNIT [62]

The (a) ICPR 2012 is a small size dataset composed of 5 WSIs, which have
been collected from one laboratory and annotated by one pathologist. This
dataset has not considered the problem of inter variability between patholo-
gists and laboratories, which limits the power of the trained models in terms
of generalization. To improve the proposed systems, more challenging datasets
have been published: AMIDA13 and MITOS-ATYPIA-14. The (b) AMIDA13
has been collected at different time points and contains a considerable number
of annotated HPFs (596) by 2 pathologists. The MITOS-ATYPIA-14 is a larger
dataset composed of 1136 HPFs and annotated by 3 pathologists. However, these
datasets have not automated the full grading task, since, the ROIs were selected
manually by pathologists. Moreover, the pathologist computes manually the pro-
liferation score according to the detected mitosis by the automatic system. For
a fully automatic workflow, the TUPAC16 dataset addresses the possibility to
predict automatically the tumor proliferation score from the WSI, where two
auxiliary datasets have been provided: TUPAC16 auxiliary for mitosis detection
and regions of interest for the automatic selection of ROIs. TUPAC16 auxiliary
is an extension of the AMIDA13 dataset with 50 supplementary WSIs.

2.5 Deep Learning Methods for Mitosis Detection

Figure 2 displays the distribution of the 28 selected papers per year. It highlights
a considerable amount of researches in 2018 including January 2019. The first
contribution was published in 2008, most studies in this period have emphasized
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the use of machine learning approaches because of: their large exploitation in
computer vision, the lack of powerful resources and publicly available mitosis
detection datasets. Since 2012, there has been a growing interest in deep learning
methods due to the availability of datasets, the optimization of DL architectures,
open-source libraries and pre-trained models.

Fig. 2. The distribution of mitosis detection papers per year.

The mitosis detection task with DL methods has several drawbacks related
to:

– The limited number of medical data.
– The limited number of mitotic figures because of their low frequency.
– The high false positive rate.
– The high variance between the digitized histopathological images under dif-

ferent conditions.
– Overfitting problems.
– The required computational resources and memory storage.

To solve these limitations, several attempts have been made in the state of the
art, where different strategies have been exploited, such as:

– Regularization strategies to reduce overfitting problems.
– Transfer learning, fine tuning, and the exploitation of CNN as a feature

extractor to reduce the training run time complexity and overfitting prob-
lems.

– FCN and deep detection methods to enhance the precision and to reduce the
computational complexity.

– Regression networks to reduce the inference time.
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– Multi-scale learning to exploit the contextual information and to enhance the
detection task.

– Two stages learning methods to solve the high false positive rate problem.

2.5.1 Regularization Methods

Despite the availability of mitosis detection datasets, the number of simple
remains limited for DL applications. Moreover, these datasets are unbalanced,
since, the number of mitotic figures is restricted compared to the other struc-
tures. Thus, to address these complexities, prior studies have noted the impor-
tance of regularization methods, such as: the exploitation of small models
[18,21,88], the data augmentation techniques (random patch extraction, transla-
tion, rotation, mirroring and flipping), transfer learning [15], fine-tuning [16,94],
the use of CNNs as feature extractors [5], ensemble learning [15] and learning
from crowds [4]. The purpose of these investigations was to improve the gen-
eralization capacity of the generated models. Another key component was the
exploitation of stain normalization techniques [44,54,66] to reduce the inter vari-
ability between labs. The purpose of these strategies is to covert the processed
slides under various conditions to a normalized space [54]. This step is important
for the exploitation of the generated models within other labs.

Table 2 resumes the used stain normalization techniques as a preprocessing
before the application of DL methods. As far as we know, the SVD-geodesic
based stain normalization technique [54] is the most commonly employed in
the automatic mitosis detection field [4,21,62,64,85,99]. For more information,
Saafin et al. [70] reviewed the relevant literature on stain normalization methods
for digital pathology image analysis. Despite the importance of this preprocess-
ing, many significant papers have ignored this step [15,18]. However, the stain
normalization is not required when training and testing a model on generated
images under common conditions, but it helps to exploit this model within het-
erogeneous labs.

Table 2. The used stain normalization techniques in the proposed mitosis detection
methods.

Reference Stain normalization method

(Albarqouni et al.) [4] SVD-geodesic based stain normalization technique [54]

(Das et al.) [21]

(Veta et al.) [85]

(Paeng et al.) [62]

(Zerhouni et al.) [99]

(Rao et al.) [64]

(Wu et al.) [94] Color transfer between images [66]

(Kausar et al.) [43]

(Akram et al.) [2]

(Beevi et al.) [7] A nonlinear mapping approach using image-specific color

deconvolution [44]

(Shah et al.) [74] Stain specific standardization method [9]
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2.5.2 Pixel-Wise and Patch-Wise Classification Strategies

Many recent papers have used DL methods for mitosis counting on the H&E
stained slides. To the best of our knowledge, Malon et al. [57] have made the
first attempt to automate this task based on convolutional neural networks.
They used a set of 728 images at ×400 magnification, then the SVM classifier
was trained on the obtained results to automate the grading process. Tables 3
and 4 present the proposed deep learning methods for mitosis detection.

The proposed DL methods for automatic mitosis detection are categorized
into pixel [4,18,85,99] and patch wise classification [40,94] strategies. The pixel-
wise classification method is considered as a semantic segmentation, where each
pixel is labeled separately as mitosis or non-mitosis. Cireşan et al. [18] proposed
a max-pooling CNN as a pixel-wise classifier for mitosis detection, where they
averaged the output of three classifiers to improve the generalization capacity.
The best-obtained results in both ICPR and AMIDA challenges provide strong
evidence on the efficiency of this method. However, one major drawback of this
approach is its high inference time: 8 min per HPF. Moreover, the pathologist
selects many ROIs (HPFs) from the same WSI for analysis. This makes this
method time consuming and not feasible for clinical use.

To reduce the time complexity, the patch wise classification strategies have
been widely considered. First, patches or mitosis candidates are generated and
subsequently, trained as mitosis or not mitosis. In the patch generalization pro-
cess, the images are converted to blue ratio to highlight the candidate nuclei,
due to their high blue intensity in the stained digital slides. Then a segmen-
tation method is performed based on different mechanisms: globally fixed and
local dynamic thresholding [88], k-means clustering algorithm [5], aggressive and
weaker color threshold and grid search [58], krill held algorithm (KHA) [7], otsu’s
thresholding method [21,62], globally binary thresholding [87].

The related literature to the classification of mitosis candidates has high-
lighted several use cases of DL methods: training a network from scratch [21,40],
transfer learning [15] or fine tuning [43,94], the use of CNNs as feature extractors
[5,7] and the combination between handcrafted and CNN features [58,71,88].

2.5.3 Training from Scratch and Fine-Tuning

Janowczyk et al. [40] trained the cifar-10 AlexNet network to classify the mitosis
candidates, based on extracted patches at x20 magnification. However, this low
magnification can be a major source of uncertainty for CNN. In another study,
Das et al. [21] have evaluated the effectiveness of a shallower CNN on the decom-
posed sub-patches by the Haar wavelet decomposition method. These methods
proved their efficiency for mitosis classification. On the other hand, training a
network from scratch is time-consuming and can lead to an overfitting prob-
lem due to the limited amount of data. To overcome these limitations, transfer
learning and fine-tuning methods have been explored in several studies [43,94].
In these methods, pre-trained models are adapted to the new classification task,
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Table 3. Deep learning methods for mitosis detection (1).

Method Segmentation Classification Training Dataset

[57] Color histogram CNN

SVM

From scratch A set of 728 images

at 400X

magnification

IDSIA [18] Max pooling CNN From scratch ICPR12

[40] Blue-ratio CNN: cifar-10

AlexNet network

From scratch –

[21] Blue-ratio +

Otsu’s

thresholding

CNN From scratch ICPR12

MITOS-ATYPIA-14

FF-CNN [94] Blue-ratio FF-CNN Fine tuning:

AlexNet model

MITOS-ATYPIA-14

[5] K-means

clustering

CNN for feature

extraction

SVM for

classification

From scratch MITOS-ATYPIA-14

[7] Krill Held

Algorithm (KHA)

CNN for feature

extraction

Softmax for

classification

Fine tuning: caffe

VGGNet model

MITOS-ATYPIA-14

Regional Cancer

Centre (RCC)

HC + CNN [88] Blue-ratio images

+ laplacian of

Gausian +

globally fixed and

local dynamic

thresholdings

Logistic regression

model on CNN

features Random

forest classifier on

handcrafted

features

From scratch ICPR12

[58] Aggressive and

weaker color

threshold and grid

search

CNN (LeNet) for

feature extraction

SVM for

classification

From scratch ICPR12

[71] Blue-ratio images

+ morphological

erosion and

dilation

operations

CNN From scratch ICPR12

MITOS-ATYPIA-14

AMIDA13

CasNN [15] FCN CNN Fine tuning (CNN) ICPR12

MITOS-ATYPIA-14

DeepMitosis [48] Segmentation: FCN Detection: faster

R-CNN Verification: CNN

(ResNet50)

–Fine tuning

(FCN) from

VGGNet16–

Transfer learning

(R-CNN) from

VGG CNN M 1024

–From scratch

(CNN)

ICPR12

MITOS-ATYPIA-14

MITOS-RCNN [64] MITOS-RCNN

based on

faster-RCNN

Fine tuning

VGG-16 layers

ICPR12

MITOS-ATYPIA-14

AMIDA13

[49] Lightweight R-CNN From scratch ICPR12

MITOS-ATYPIA-14

[16] DRN Fine Tuning from

[17]

ICPR12

[93] DRN + Hough voting From scratch AMIDA13

AggNet [4] – Multi-scale CNN From scratch AMIDA13

MFF-CNN [43] Blue-ratio MFF-CNN Fine tuning from a

caffeNet model

MITOS-ATYPIA-14

[87] Blue ratio +

global binary

thresholding

CNN From scratch ICPR12

TAUPAC16

(continued)
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Table 3. (continued)

Method Segmentation Classification Training Dataset

MSSN [53] – CNN From scratch ICPR12

MITOS-ATYPIA-14

[2] – CNN From scratch MITOS-ATYPIA-14

TAUPAC16

Wide resNet [99] CNN (wide ResNet) From scratch ICPR12

MITOS-ATYPIA-14

TAUPAC16

L-view [62] Otsu’s method +

binary dilatation

–CNN (L-view

based on residual

blocks)

–SVM for tumor

scoring

From scratch TAUPAC16

[92] Blue-ration +

thresholding

methods

– DRN + Hough

transform

–Decision tree for

tumor scoring

From scratch TAUPAC16

Table 4. Deep learning methods for mitosis detection (2).

Method Segmentation Classification Training Dataset

[85] Max pooling CNN From scratch AMIDA13
Dataset from
two pathology
labs in the
Netherlands
[3]

[63] Max pooling CNN with one
dropped fully connected layer

From scratch AMIDA13

[80] Brown and
blue cannels

CNN From scratch TAUPAC16
Dataset from
three different
hospitals in
the
Netherlands

[74] Otsu’s method
+ binary
dilatation

MitosNet
(CNN variant)

From scratch Dataset from
three
international
pathology
centers

where the weights are transferred to another target network, then a subset of
layers is retrained according to the new classification problem.

Wu et al. [94] fine-tuned their deep fully fused convolutional neural network
(FF-CNN) based on the AlexNet model. The FF-CNN fuses multi-level fea-
tures by linking the output of Conv3 and Conv4 to the fully connected layer.
Their application has outperformed the winner of the ICPR2014 challenge, which
proves the capacity of fine-tuning in the mitosis detection task. One additional
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advantage of using fine-tuning strategies is their limited computational require-
ments in terms of GPU’s capacity, where a standard CPU is enough to complete
this task.

2.5.4 Feature Extraction with CNN

In other investigations, CNNs have been used as feature extractors. Albayrak
et al. [5] employed the CNN network for feature extraction, LDA and PCA
methods for feature reduction and the SVM algorithm for classification. For
a more optimized run-time complexity in the feature extraction phase, other
studies [7] suggest the use of fine-tuned models as feature extractors, where the
last four convolutional layers of the Caffe VGGNet model have been retrained.

Both machine and deep learning strategies proved their efficiency in the mito-
sis detection task. ML methods are based on handcrafted or DL based features.
Thus, to take advantage of these two techniques, several studies have addressed
the hybridization between both handcrafted and DL features. Wang et al. [88]
proposed a cascade approach (HC + CNN), where they trained separately clas-
sifiers with CNN-based features and handcrafted features, followed by a third
classifier in case of confusion between the decision of the two classifiers. The
final class was computed based on an averaging between the generated models.
In further studies, Malon et al. [58] combined nuclear features (texture, color,
and shape) and CNN features (LeNet 5 [47]), and Saha et al. [71] incorporated 24
handcrafted feature in the first fully connected layer of the CNN. These investi-
gations highlight the efficiency of the hybridization compared to the handcrafted
or CNN features when employed separately.

2.5.5 FCN and Deep Detection Methods

To reduce the considerable inference time for the mitosis detection process, other
researches have suggested the exploitation of the fully convolutional network
(FCN) as a coarse retrieval. Chen et al. [15] proposed a hybrid method based
on the FCN to retrieve mitosis candidates and a fine-tuned CaffeNet model for
classification. This method has reduced the inference time from 8 min [18] to
0.5 s per HPF. Other investigations suggest converting the obtained DL models
into FCNs to speed up the detection process [2,62,94].

Nevertheless, Li et al. [48] have critiqued the use of the FCN to infer the
location of mitosis, since, it ignores the regional information. To enhance this
process, they showed for the first time the role of deep detection methods for
mitosis detection. Their hybrid framework (Deepmitosis) is composed of deep
detection (DeepDet), verification (DeepVer) and segmentation (DeepSeg) net-
works. The main component is the DeepDet network, which localizes mito-
sis based on the faster R-CNN [67]. Another earlier study by Rao et al.
[64] proposed a novel variant of the faster R-CNN (MITOS-RCNN) for small
object detection. In another research, Li et al. [49] developed a lightweight
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region-based CNN inspired by the RCNN [31], their main purpose was to propose
a fast system on CPU computers.

2.5.6 Regression Networks

Another strategy to adjust the inference time for the clinical use was to formu-
late the mitosis detection task as a regression problem [16,92,93]. Chen et al. [16]
proposed a method based on the deep regression network (DRN) with fully con-
volutional kernels. This network is composed of convolutional (CLs) and decon-
volutional layers (DLs). The CLs perform the down-sampling phase for feature
extraction, whereas DLs are used to restore the original input size. To prevent
overfitting, they fine-tuned the off-the-self deepLab model [23]. Wollmann et al.
[93] combined between the deep residual network and the hough voting method.
The architecture of this network is composed of three parts: downsampling, fac-
tor disentangling part and a pixel-wise classification. The pixel-wise classifica-
tion provides two branches, which are combined based on the hough voting layer.
This method reduces the computational time compared to the other ensemble
learning methods due to its single training process.

2.5.7 Multi-scale Learning

The previous studies have suggested training DL methods on a single scale image.
On the other hand, the contextual information is important, since the pathologist
can observe digital slides from different scales. For an accurate detection task,
other studies have been interested in multi-scale learning. Albarqouni et al. [4]
proposed an augmented architecture (AggNet), based on a multi-scale CNN and
an aggregation layer. To improve the generalization, this network was retrained
based on the crowd’s annotation labels. This study has been the first attempt
to thoroughly examine the CNN networks for generating ground truth labeling
from non-expert crowd annotations, in the biomedical context. In another paper,
Kausar et al. [43] developed a multi-scale FCNN model (MFF-CNN) based on
two different scales FF-CNNs [94] and a fusion layer.

2.5.8 Two Stages Learning Methods

The mitoses are characterized by their low frequency, which can bias the nature
of the generated dataset for classification. For example, Cireşan et al. [18] have
generated a training set that includes only 6.6% of mitosis pixels. Hence, this
may cause a serious class unbalancing and a high false-negative (FN) rate issues.
Various approaches have been proposed to solve these limitations [2,40,48,53,87]
by exploring the advantages of the two stages learning methods.

Wahab et al. [87] proposed a method based on a two-phase CNNs. In
the first stage, the CNN classifies mitosis into easy, normal and hard non-
mitosis, the mitosis candidates and the hard non-mitosis are augmented by both
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rotations and flipping, while the easy non-mitoses are under-sampled by the blue
ratio histogram-based clustering. Then, the generated dataset is retrained by
the second phase CNN. In another research, Ma et al. [53] proposed a two-stage
deep method. First, a multi-scale and similarity learning convnets (MSSN) was
used to treat the FN problem. Subsequently, a similarity prediction model was
trained to reduce the high false-positive rate. Akram et al. [2] proposed a deep
learning-based self-supervised algorithm. First, CNN was trained on the two sets:
BG-rand and FG-Lab which contains the background samples and the centred
patches on mitosis. Then, the false-positive detected samples noted as BG-hard
were exploited with FG-WSI for retraining the CNN model. This work has ana-
lyzed the effect of semi-supervised learning through the use of the extracted
mitosis patches from the unlabelled dataset (FG-WSI). Li et al. [48] developed
a DeepVer to verify the false positives that have been provided by the Deep-
Det network. Even though the efficiency of these hybrid systems, the obtained
results reveal that the DeepVer model did not improve the performance on the
ICPR12 dataset. Another strategy to reduce the FP rate was the exploration of
a weighted fitness function [99]. Zerhouni et al. [99] exploited the wide residual
network in a pixel-wise classification strategy. To strengthen their training set,
they fused between three heterogeneous datasets: ICPR12, MITOS-ATYPIA-14
and the auxiliary mitosis detection dataset in the TAUPAC16 challenge.

2.5.9 Detection from WSI

The previously cited studies are restricted to the detection of mitosis from HPFs.
Nevertheless, the pathologist must select manually HPFs from the WSI. Thus,
to automate the full detection task, the manual selection of ROIs should be auto-
mated. In construct to ICPR12, AMIDA13 and MITOS-ATYPIA-14 challenges,
the TUPAC16 has explored the prediction of the proliferation score directly from
WSIs. The availability of this dataset has encouraged many researchers to pro-
pose frameworks for tumor proliferation score prediction [62,92]. These methods
are composed of three main steps: HPFs extraction, mitosis detection, and tumor
proliferation score prediction.

Paeng et al. [62] used Otsu’s method and the binary dilatation to extract
tissue blobs. The extracted patches represent a square of 10 consecutive HPFs.
Then, the L-view network was trained on the associated regions to a high cell
density. Finally, the tumor proliferation score was predicted based on the number
of detected mitosis, 21 handcrafted features, and the SVM classifier. The best
results in the TAUPAC16 challenge provide strong evidence about the efficiency
of this method. Wollman et al. [92] exploited the threshold-based attention mech-
anism for the ROI extraction. Then, a DNN network with the Hough transform
method was employed for mitosis detection. Finally, the decision tree classifier
was trained on the obtained results for the mitosis count.



Deep Learning Methods for Mitosis Detection 295

2.6 Results

Table 5 compares the obtained results by the proposed methods for the mitosis
detection task in terms of recall (R), precision (P) and f-measure or accuracy
(F1/Acc).

Figure 3 highlights the obtained results on the ICPR12 dataset. These results
indicate the efficiency of the faster RCNN for detection [48]. Furthermore, CNNs
[21] tend to perform better than their hybridization with handcrafted features

Table 5. The obtained results by the deep learning methods for mitosis detection.

Dataset Method Precision Recall F-measure/
Accuracy

ICPR12 [21] 0.845 0.837 0.841

DeepMitosis [48] 0.854 0.812 0.832

[87] 0.83 0.76 0.79

[16] 0.779 0.802 0.79

[49] 0.78 0.79 0.784

IDSIA [18] 0.88 0.70 0.782

MSSN [53] 0.776 0.787 0.781

HC+CNN [88] 0.84 0.65 0.7345

[58] 0.747 0.590 0.659

CasNN [15] 0.460 0.507 0.482

AMIDA13 [18] 0.610 0.612 0.611

[93] 0.547 0.686 0.609

AggNet [4] 0.441 0.424 0.433

MITOS-ATYPIA-14 [21] 0.996 0.987 0.981

[5] – – Acc 0.968

[7] 0.874 0.901 0.886

CasNN [15] 0.804 0.772 0.788

MSSN [53] 0.379 0.617 0.470

DeepMitosis [48] 0.431 0.443 0.437

MFF-CNN [43] 0.405 0.453 0.428

[49] 0.40 0.45 0.427

FF-CNN [94] – – 0.393

TUPAC16 auxiliary [87] 0.57 0.53 0.55

[62] – – 0.652

[80] – – 0.480

ICPR12 + MITOS-ATYPIA-14 +
AMIDA13

[71] 0.92 0.88 0.90

MITOS-RCNN [64] – – 0.955

ICPR12 + MITOS-ATYPIA-14 +
TAUPAC16 auxiliary

[99] – – 0.648

MITOS-ATYPIA-14 + TAUPAC16

auxiliary

[2] 0.613 0.671 0.640
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[88], or their exploitation as features extractors [58]. However, their use in a
pixel-wise strategy is too expensive for inference. Thus, the key aspect figures
into gathering the appropriate selection among various parameters: architecture,
strategy, and the network’s hyper-parameters. Despite the fast inference time of
CasNN [15], this method is less accurate compared to the other approaches,
which can be justified by the limits of the FCN for mitosis location inference.

Fig. 3. The obtained results on the ICPR2012 dataset.

Few studies have examined the DL methods on the AMIDA13 dataset. The
best results were obtained by the max pooling CNN in terms of f-measure value
[18], whereas the proposed method by Wollmann et al. [93] yields the best recall
rate. The AggNet [4] reported significantly a lower level of f-measure compared
to the previous results. This can be explained by the noisy annotations by non-
experts in the crowd.

Despite the ICPR12 dataset, the results on the MITOS-ATYPIA-14 dataset
(Fig. 4) highlight the effectiveness of the exploited DL methods as a feature
extractors [5,7] and the cascade method CasNN [15] compared to the other
approaches [43,48,49,53,94]. The reported results by Albayrak et al. [5] reveal
the effectiveness of this approach, where the results have been improved from
0.786 to 0.969 by the feature selection strategy. However, the number of selected
features (10) to distinguish the complex morphology of mitosis may be reviewed.

The obtained results on the ICPR12, AMIDA13 and TUPAC16 auxiliary
datasets provide additional evidence on the problem of inter variability between
pathologists and laboratories. Hence, the annotation of the AMIDA13 by var-
ious pathologists, and collecting the TUPAC16 auxiliary dataset from diverse
laboratories can justify their low accuracy compared to the ICPR12.
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Fig. 4. The obtained results on the MITOS-ATYPIA-14 dataset.

To prevent overfitting, other studies [2,64,99] combined between different
datasets for training and testing. Considerable results were obtained by Saha
et al. [71] and Rao et al. [64] by combining the ICPR12, MITOS-ATYPIA-14,
and AMIDA13 datasets. Saha et al. [71] improved the performance of their deep
learning framework with 14% by including 24 significant handcrafted features
from a total of 55. However, the importance of handcrafted features is not val-
idated in other studies, this could be attributed to the nature of the selected
features and the deep learning architectures.

Table 6 compares between obtained results by the proposed methods for the
automated tumor proliferation scoring (TAUPAC16 dataset). The best results
have been achieved by Paeng et al. [62] in terms of quadratic weighted cohen’s
kappa score.

2.7 Computational Time and Materiel

Table 7 resumes the capacity of the exploited GPUs and the processing time of
the DL methods for mitosis detection. Powerful GPUs were employed [16,48]
and parallelized [64,94] to accelerate the training and the inference time.

The results emphasize the high computational time of the pixel-wise method
[18] compared to the other approaches [15]. For a fair comparison, we regrouped
these methods by GPU type. Some investigations depend on CPUs [87,88] owing
to their restricted requirements related to the shallower CNNs and the small
datasets (ICPR12). However, the achieved inference time by Wang et al. [88]
(1.5 min per HPF) is not feasible for clinical use, which points out the importance
of GPUs.
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Table 6. The obtained results on the TAUPAC16 dataset.

Dataset Method Quadratic weighted
Cohen’s kappa score (K)

Spearmans correlation
coefficient

TAUPAC16 [62] 0.567 [0.464, 0.671] 0.617 [0.581 0.651]

[80] 0.471 [0.340, 0.603] 0.519 [0.477, 0.559]

[92] 0.42 –

The proposed DRN network by Chen et al. [16] is 6 times slower compared
to its use by Wollmann et al. [93] on a less powerful GPU as it was influenced
by other parameters such as the patch size. The most optimized computational
time was obtained on parallel GPUs (<0.5 s) due to their distributed treatment
[43,64,94].

Another important parameter is the complexity of the dataset, where we
observe a noticeable difference between the inference time in [93] on the ICPR12
dataset and the challenging TUPAC16 auxiliary dataset. The considerable infer-
ence time obtained by Wollmann et al. [92] is explained by the end to end
classification on the WSIs (50000 px × 50000 px) instead of HPFs.

Table 7. Computational time and the used materiel in the proposed methods for
mitosis detection.

GPU Reference Training time Inference time

GPU [18] One day for
each network

8 min

[49] – 6.93 s

Without GPU computation [88] 11.4 h 1.5 min

ICPR12 [87] 15 h 48 s

Nvidia GeForce GTX 750M [4] – –

Nvidia Getforce GTX 970 [93] 2.5 days 2.5 s

Nvidia GeForce GTX titan X [16] - 15 s

[48] – 0.4 s to 0.7 s

[15] – 0.5 s 0.3 s

TAUPAC16 [87] 30 h 1 min

Nvidia Quadro K4200
graphics processor

[21] – 16 s

4 Nvidia Tesla M40 GPUs [94] – 0.375 s

[43] – 0.388 s

5 NVIDIA tesla K80 GPUs
for training AND a single
GPU for testing

[64] 0.5 s

– [92] – 5 min (WSI)

– [71] – 0.3 s
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3 Open Problems and Future Outlook

As discussed in the previous section, different DL methods have been proposed
to solve various problems related to the mitosis detection task, where a variety of
datasets have been published (ICPR12, AMIDA13, MITOS-ATYPIA-14, TAU-
PAC16) to encourage the research within the mitosis detection task. Although,
the main problem lies in the limited number of mitotic figures (1552 as a max-
imum), which restricts the capacity of the trained DL models to distinguish
between the complex morphology of mitosis and other structures. Moreover,
these datasets are collected from a maximum of three different pathology cen-
ters. Therefore, this limits the generalization ability of the generated models.
The solution is to enhance the model’s capacity by learning the whole vari-
ance. Some studies have suggested the use of stain standardization techniques,
whereas many others have ignored this important step on multi-center datasets
[87,92]. The main reason of the restricted number of samples in the medical
image datasets is not related to their availability, but rather to the considerable
workload by expert pathologists for their annotation.

The crowdsourcing is among the proposed solutions to the lack of annotated
data. The study presented by Albarqouni et al. [4] is one of the first investigations
to the exploitation of crowdsourcing in the mitosis detection task. Despite the
efficiency of these techniques in the other domains, their use in the medical field
is critical because of the noisy labels by non-expert participants. More researches
using controlled and validated labels by experts is needed to obtain more robust
results.

Another solution to the lack of annotated data is semi-supervised learning,
which has been previously used to train models on both labeled and unlabelled
samples. This technique presents an alternative method to supervised learning in
case of a limited amount of labeled data. Up to now, the research has tended to
focus on supervised rather than semi-supervised learning for mitosis classification
by DL techniques [2]. Therefore, the exploitation of these methods for future
works can present a good perspective.

Fine-tuning and transfer learning techniques have been proposed to over-
come the overfitting problem related to the lack of annotated data. These tech-
niques present 21% of the selected papers, where the trained models on the
ImageNet dataset have been reused and fine-tuned on the mitosis datasets. This
is explained by the similarity of low-level features (edges and corners). How-
ever, there is no theoretically principles and much uncertainty still exists about
the relationship between these two heterogeneous domains. Consequently, shar-
ing models within the same domain could be more helpful due to the similar
appearance of the histopathological images compared to the other fields.

Other investigations propose the exploitation of shallower networks to pre-
vent overfitting. These networks are characterized by a limited number of lay-
ers, whereas there has been no research based on deep architectures with
parameters reduction techniques such as inceptions [78], MobileNet [37,73], and
suffleNet [101].
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The literature has highlighted the importance of the obtained results espe-
cially on the ICPR12 and MITOS-ATYPIA-14 datasets. Where several samples
from training and testing sets have been collected from the same source. Thus,
the efficiency of the generated models on different sourced samples is not guar-
anteed. The analysis by Kaman et al. [85] provides important insights on the
worst agreement between the automated method and pathologists when eval-
uated on a new dataset from two pathology labs. Consequently, those models
must be validated on new samples and accepted by pathologists. The effective-
ness of the pathologist’s results was justified by their top-down analysis strategy
to include the contextual information, which is related to the size of the patch
in the automated methods. The multi-scale learning was employed to solve the
lack of sufficient context [94], whereas the majority of studies are based on a
single scale learning. Hence, the exploitation of multi-scale contextual networks
[89] could be promising in future works.

In the majority of the proposed DL methods, the architectures were presented
as a black box, where there has been no clear strategy on the choice of layers
and hyperparameters. The progressive visual analytic system (Deepeyes) [63]
reveals the importance of visualization to identify unnecessary filters or layers,
which can present a good tool to analyze the future proposed architectures for
the mitosis detection task. Moreover, more attention is needed to make solutions
comprehensible and understandable. In this context, explainable AI [36] helps to
make results interpretable by medical experts by creating cooperation between
humans and algorithms.

4 Conclusion

The developments in computer vision and digital pathology encouraged the
proposition of computerized methods to automate several challenging tasks in
the medical domain. Mitosis detection is among the laborious tasks for an expert
pathologist, which suffers from inter variability and subjectivity. To solve these
shortcomings, DL methods are used due to their capacity to learn data represen-
tation. However, their main obstacles are resumed in the required computational
resources, the limited amount of data and their unbalanced nature in the medical
domain.

To conclude, the literature identifies the strength of DL methods for mito-
sis detection. Nevertheless, they still suffer from several shortcomings, which
support their use as a second tool to aid pathologists rather than their direct
exploitation for clinical use.
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63. Pezzotti, N., Höllt, T., Van Gemert, J., Lelieveldt, B.P., Eisemann, E., Vilanova,
A.: DeepEyes: progressive visual analytics for designing deep neural networks.
IEEE Trans. Visual Comput. Graphics 24(1), 98–108 (2017)

64. Rao, S.: MITOS-RCNN: a novel approach to mitotic figure detection in breast
cancer histopathology images using region based convolutional neural networks.
arXiv preprint arXiv:1807.01788 (2018)

65. Rav̀ı, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health
Inform. 21(1), 4–21 (2016)

66. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between
images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

67. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

68. Roux, L., et al.: Mitos & atypia. Image Pervasive Access Lab (IPAL), Agency for
Science and Technology & Research Institute for Infocom Research, Singapore,
Technical report, vol. 1, pp. 1–8 (2014)

69. Roux, L., et al.: Mitosis detection in breast cancer histological images an ICPR
2012 contest. J. Pathol. Inform. 4, 8 (2013)

70. Saafin, W., Schaefer, G.: Pre-processing techniques for colour digital pathology
image analysis. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017.
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