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Abstract. Traditionally, histopathological evaluations of tissue sections are per-
formed for the diagnosis and grading of cancers using subjective appraisal of the
tissue and cell phenotypes. In the last decade, a combination of unprecedented
advances in imaging and computing technologies and novel machine learning-
based algorithms has driven the field of histopathology into a new dimension.
Machine learning and deep learning methodologies applied on digitalized hema-
toxylin and eosin stained tissue sections have out-performed conventionalmethods
to accurately identify cancer cells or classify tumors into prognostic groups. Nev-
ertheless, we believe that a precise, standardized measurement of nuclear mor-
phology and chromatin texture based on a DNA stain can further improve the
diagnosis of cancers and identify patients with high-risk of recurrence, alone or in
combination with other clinical, pathological or molecular information. Changes
in themorphology of cell nuclei and tissue architecture are intrinsic characteristics
and hallmarks of cancer. Nuclei from cancerous samples exhibit different mor-
phological and chromatin texture than nuclei from normal cells, thus, reflecting
the structural and molecular effects of genetic and epigenetic alterations driving
cancer processes. By image analysis, the chromatin texture can be measured in
high-resolution breaking down the components of the nuclear changes into multi-
ple quantifiable units that can be studied independently and in combination using
advancedmachine learningmethods. This allows the investigator to examine asso-
ciations of such changes with cancer progression and clinical outcomes. There is
now increasing interest in developing new algorithms and platforms to decipher
spatial relationship between cell subpopulations in whole tissue sections.
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1 Introduction and Motivation

Traditionally, the histopathological diagnosis and grading of cancers are based on the
appraisal of the changes in the morphology of the cells and tissue organization which
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are the intrinsic hallmarks of cancers. Nuclei from cancerous samples exhibit different
shapes and chromatin textures than nuclei from normal samples reflecting the structural
and molecular effects of genetic and epigenetic alterations driving cancer processes
[1–3]. For instance, increased proportion of heterochromatin condensation is a nuclear
characteristic for high-risk cancer [4]. In the last twodecades, advances in pathology slide
scanning technologies and image processing algorithms have enabled the breakdown of
the subjective and qualitative nuclear and architectural changes used by the pathologists
into objective quantifiable units that can be studied independently and/or in combination
using advanced statistical and machine learning methods [5]. In 2011, Beck et al. [6]
developed an algorithm to quantify epithelial and stromal changes in H&E slides of
more than 500 breast cancer patients and demonstrated that a scoring system based on
these measurements was strongly associated with overall survival and was independent
of clinical, pathological and molecular factors. After the first FDA approval of a slide
scanner device for primary clinical diagnosis [7], the adoption of digital pathology has
gained an exponential popularity in the community of pathologists and is expected
to unlock a large number of research and development opportunities including digital
applications for diagnosis, prognosis and prediction of treatment response in cancer
diseases [8, 9]. While most of the digital pathology algorithms have been developed
using the traditional H&E or Papanicolaou slides and artificial neural networks to assist
pathologists inmany tasks, alternative staining techniques and image analysis processing
should not be disregarded, in particular if they can capture the changes in nuclear and
chromatin features with improved performances [10], strong consistency [11] and have
a proven track of diagnostic, prognostic and predictive clinical applications in a variety
of cancer types [12–15]. In fact, the diversity of information (e.g. clinical, imaging
and molecular data), high quality of data and integration of multiple machine learning
approaches should be further encouraged for the success of artificial intelligence in
oncology and other fields of medicine in general [16–18]. In this chapter, the authors
review the use of Feulgen as the best stoichiometric stain for accurate quantification of
DNA and better representation of the nuclear chromatin texture. Examples of successful
applications of computer-assisted image analysis and machine learning in both cytology
and histopathology specimens using Feulgen staining will be discussed regarding their
accuracy and clinical utility.

2 Glossary

DNA Ploidy: DNA ploidy is a cytogenetic term describing the number of chromosome
sets (n) or deviations from the normal number of chromosomes in a cell. In cytometry,
the expression is used either to describe the DNA content in a cell or the total DNA
distribution in a cell population.

Digital Image Analysis: Image analysis is the extraction of meaningful information
from images using a computer device or electrical device combined to digital image
processing techniques. It involves the fields of computer or machine vision, and medi-
cal imaging, and makes heavy use of pattern recognition, digital geometry, and signal
processing.
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Test Performance: Diagnostic test performance evaluates the ability of a qualitative or
quantitative test to discriminate between two subclasses of subjects.

Test Accuracy: Diagnostic test accuracy measures the ability of a test to detect a
condition when it is present and detect the absence of a condition when it is absent.

Screening: Screening is defined as the presumptive identification of unrecognized dis-
ease in an apparently healthy, asymptomatic population by means of tests, examinations
or other procedures that can be applied rapidly and easily to the target population.

Diagnostic Biomarker: A diagnostic biomarker is used to confirm that a patient has
a particular health disorder. Diagnostic biomarkers may facilitate earlier detection of a
disorder than can be achieved by physical examination of a patient.

Prognostic Biomarker: Aprognostic biomarker is a clinical or biological characteristic
that provides information on the likely patient health outcome (e.g. disease recurrence)
irrespective of the treatment.

Predictive Biomarker: Apredictive biomarker indicates the likely benefit to the patient
from the treatment compared to their condition at baseline.

3 State of the Art

3.1 Feulgen Stain and DNA-Based Image Analysis

The Feulgen technique is generally accepted as a stoichiometric DNA stain that is used
to quantify the amount of DNA in cell nuclei in a reproducible and standardized manner
[19]. Feulgen reaction allows the precise densitometric measurement of nuclear DNA
because the amount of the dye bound per nucleus is proportional to its DNA content.
Briefly, theDNA is submitted tomild acid hydrolysis to split off the purine bases from the
double-stranded DNA. The result is an apurinic acid presenting aldehyde groups at the
C1-position. A Schiff’s base binds to these aldehyde groups and produces a blue-violet
color with 545 nm maximum absorption wavelength [20]. The DNA image analysis is
performed using a digital camera that captures images of Feulgen-stained individual
nuclei in the specimen. The images are divided into image elements (picture elements
- pixels). The gray tone value for each pixel represents the intensity of DNA specific
staining. The value is saved in the computer which numerates between 0 (black) and
1023 (white). In-house image analysis software is used to measure the relative amount
of DNA in each nucleus (DNA ploidy) by summing the optical density of all the pixels
in the nucleus (Fig. 1).

In addition, due to the optimal object-to-background contrast of Feulgen stain, the
software can measure the morphometric features including the size, shapes and border
smoothness of nuclei. Changes in the nuclear chromatin appearance are common in dys-
plastic and cancer cell. Features describing the chromatin distribution pattern are referred
to as chromatin texture features. Using Feulgen stain, they can be assessed by mathe-
matical formulas that describe the distribution of gray levels in groups of pixels [21].
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Fig. 1. Feulgen stain and ploidy measurement by image analysis.

For instance, Markovian texture features characterize gray-level correlation between
adjacent pixels in the image. Non-Markovian texture features describe the local max-
ima and minima of gray-level differences in the object. Fractal texture features compare
local differences integrated over the object at multiple resolutions. Run-length texture
features measure the length of consecutive pixels with the same compressed gray-level
value along different orientations (0°, 45°, 90°, 135°). Several studies investigated the
suitability of Papanicolaou and hematoxylin staining, which are routinely used for daily
cytopathology and histopathology, for DNA-based image analysis or ploidy measure-
ment. Unfortunately, the coefficient of variation (CV) is broader in Papanicolaou and
hematoxylin stains resulting in significant disproportionality and less reproducibility
of the optical density and ploidy values [22, 23]. These studies confirmed that Feul-
gen remains the gold standard stain for the precise densitometric measurement of DNA
content in nuclei [10] (Fig. 2).

The tissue sections are analyzed using in-house developed image analysis software
(Getafics; BCCA,Vancouver, Canada). This softwarewas specifically designed for semi-
automatic analysis of DNA content, nuclear morphology, chromatin texture and tissue
architecture. Briefly, after the Feulgen-stained tissue sections ae digitalized by a whole
slide scanning system, the operator selects the region of interest by delineating the
boundaries. A threshold algorithm is applied to the image, followed by a segmentation
algorithm to separate touching and overlapping nuclei. Autofocusing and edge relocation
algorithms are applied to the nuclei to locate the edge of the objects precisely and
automatically segment the contour of the highest local gray-level gradient. The digital
gray-level images of individual segmented nuclei are stored in a gallery and analyzed the
nuclear or architecture features are extracted using computer calculations. The calculated
values of these features are used as datasets that will be tested by multiple machine
learning and classifier algorithms (Figs. 3 and 4).
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Fig. 2. Measurement of morphometric and chromatin texture features based on Feulgen stain.

Fig. 3. In-house software for quantitative image analysis.

3.2 Cancer Screening

Population-based cervical cancer screening programs have been effective in reducing
the incidence and mortality of cervical cancers [24]. Pap tests (liquid-based cytology
or conventional smears) are widely adopted in developed countries as the gold standard
screening method where cells are collected from the cervix to generate Papanicolaou-
stained cytology slides for examination under the microscope [25]. However, there are
many countries in the world where large scale screening programs have not yet been
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Fig. 4. Machine learningmodel using quantifiable features generated by image analysis software.

implemented due to several challenges including the shortage of cytopathologists and
lack of skilled cytotechnologists who need to review high volumes of Papanicolaou-
stained cytology slides. In addition, many cervical screening programs in resource-
limited countries have a high false negative rate [26, 27]. Over the last decades, several
automated imaging technologieswere developed and clinically implemented to assist the
cytotechnologists in reviewing the Pap slides review (i.e. BD FocalPoint Imaging Sys-
tem, ThinPrep Imaging System). Overall, the performance of the automated system has
been well accepted and the list of benefits includes improved sensitivity in detection of
squamous intraepithelial lesions and increased productivity compared to manual review
of conventional Pap smears [28]. However, the adoption of the FDA-approved systems
comes with increased costs (equipment and maintenance) and they may not be suitable
for low-volume cytology laboratories. The British Columbia Cancer Agency group has
developed a series of inexpensive fully automated systems combining point-of-care slide
scanners with image analysis software that measures the ploidy of the cells to detect ane-
uploid cancerous cells based. Briefly, barcoded Feulgen-stained slides are placed in a
slide loader and the operator initiates scanning on a supervisor computer. Although such
machines can scan smears, liquid base cytology (LBC) slides are generally preferred to
generate monolayers of cells simplifying the task of automated imaging. Autofocusing,
image capture, segmentation of the nuclei, morphometric and ploidy measurements are
all performed automatically without operator intervention. Reporting is done at the con-
clusion of an interactive review of the scan data for each slide which are comprised of
stored images of the cell nuclei, counts of various cell types, and histograms and scatter
plots of cell DNA index (calculated by the normalization of a cell DNA content to a
population of normal diploid cells) and other morphometric features of the cell nuclei
(i.e. nuclear size, smoothness of nuclear boundaries, etc.). The reviewer follows a very
simple checklist procedure to systematically examine the data, looking: (a) first to check
that the DNA scale (normalization) is valid, then; (b) checking the presence of aneuploid
cell nuclei (DI > 2.5), then; (c) looking for aneuploid “stemlines”, then; (d) assessing
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cell proliferation rate (proliferative cells contains between 2 to 4 copies of DNA); and
(e) if none of these are present, then the case is negative.

Head-to-head comparison of automated ploidy-based cytometry versus conventional
Pap cytology was performed in multiple studies. In a cohort of 1,555 patients seen in
MD Anderson Cancer Center [29], the test performance of DNA-based ploidy (59%
sensitivity, 93% specificity, 92% NPV, 63% PPV) was found equivalent to the local
cytology laboratory (47% sensitivity, 96% specificity, 90% NPV, 70% PPV). In China,
the studies found substantially increased sensitivity (up to the double). For instance,
in a cohort of 9,950 screened women [30], the test performance of DNA-based ploidy
was 54% sensitivity, 97% specificity, 92% NPV and 58% PPV while conventional Pap
cytology performed in local hospital showed 25% sensitivity, 99% specificity, 85%NPV
and 54% PPV. Since 2005, the use of DNA-based cytometers in China has continuously
expanded to over 1 million tests per year. There are over 70 publications comparing
the performance of DNA-based ploidy to conventional Pap smears; however, most of
the studies published studies are observational and suffer from missing data or lack
of follow-up cervical biopsies as the gold standard method to confirm the presence
of high-grade dysplasia or malignancy when one or two tests are positive [31–33].
Overall, three conclusions can be drawn from these ground studies. First, the ploidy-
based cytometry is a simple and reproducible technique. Second, it can be taught much
more quickly than cytology. Records in China have demonstrated that it is routinely
possible to teach the technology from slide preparation and staining, to operation of the
cytometer, review of the DNA ploidy data and report generation in 10 working days.
Third, the test performance of ploidy-based cytometry is comparable to conventional
or liquid-based cytology performed by experienced and highly trained cytologists. The
diffusion of the automated quantitative image cytometry is expected to expand as the
various vendors continue to receive regulatory approvals [34, 35] and endorsement by
medical societies and expert groups (Fig. 5).

3.3 Early Cancer Diagnostics

Although the importance of early diagnosis in improving the mortality and morbidity
of cancer has long been recognized, the disease is still frequently diagnosed late and
prognosis has not dramatically changed for the last decades. A major challenge for early
diagnosis of epithelial cancers is our ability to recognize precursors or premalignant
lesions at risk of progressing into invasive carcinomas. The progression appears to occur
through a low-grade dysplasia (low risk of progression) to high-grade dysplasia (high
risk of progression) to carcinoma sequence. One of the most significant challenges con-
fronting the diagnosis of premalignant lesions is the poor agreement among pathologists
in the histopathological diagnosis and grading of dysplasia. In Barrett’s esophagus for
instance, significant intra- and interobserver variability in the interpretation of biopsy
specimens has been well documented, even between expert pathologists, especially at
the lower end of the dysplasia spectrum (i.e. benign reactive cytologic atypia versus
low-grade dysplasia) [36, 37]. In the context of digital pathology, there is an interest in
developing tissue imaging biomarkers both to predict which patients may develop carci-
noma (and therefore be offered surgical therapy with curative intent) and to aid guiding
surveillance intervals following therapy. Using different image analysis and statistical
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Fig. 5. Portable slide scanner for cervical cancer screening. (A)Microscope with slide loader and
automated slide scanning, (B) Data review station, (C) and (D) Second generation slide scanner.

methods, the potential of image analysis to measure the grade of dysplastic lesions has
been demonstrated in different tissues types, such as skin, ovary or prostate [38–40].
For instance, our group has previously shown that measuring the chromatin texture fea-
tures alone can detect serial nuclear changes in the sequential progression of Barret’s
esophagus from normal epithelium to dysplastic epithelium to invasive carcinoma, and
objectively distinguish reactive epithelial changes (indefinite for dysplasia) from low-
grade dysplasia [12]. In addition, our results suggest that quantitative measurement of
chromatin texture features has a better correlationwith the class of dysplasia (low- versus
high-grade). As opposed to morphologic features measuring changes in nuclear sizes
and shapes, chromatin texture features are less sensitive to sectioning variation and could
have a superior contribution in the differential diagnosis of Barrett’s esophagus classi-
fication. We previously observed similar findings in multiple human epithelium sites,
including the oral cavity [41], lung [42], cervix [43] and breast [44]. We believe that
measurement of nuclear chromatin texture is significant because such changes are an
indication of genetic or epigenetic changes that lead toward malignant transformation.

Another known problem in early cancer diagnosis is the difficulty to diagnose
the well differentiated intraepithelial neoplasia based on traditional morphology. For
instance, differentiated vulvar intraepithelial neoplasia (DVIN) possesses a high onco-
genic potential but the high degree of differentiation often results in DVINs being mis-
takenly diagnosed as benign lesions (i.e. lichen simplex chronicus, lichen sclerosus).
The p53 immunohistochemistry marker can be used to support the DVIN diagnosis;
however, the characteristic suprabasal p53 overexpression can be encountered in any
benign condition in which there is increased epithelial proliferation. The lack of p53
specificity encourages the development of alternative aid tools for DVIN diagnosis. We
recently investigated the role of chromatin-based image analysis in distinguishing DVIN
versus benign mimickers. Sixty-five vulva biopsy specimens with three major diagnosis
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categories were selected: Lichen simplex chronicus (n = 34); (2) Lichen sclerosis (n
= 21); DVIN (n = 20). A total of 44,483 nuclei were individually captured from the
squamous epithelium of the 65 study cases and analyzed for over 100 parameters that
assess the shapes, DNA content, chromatin texture and overall architecture of the nuclei.
The averages of individual parameters in each specimen are included in a stepwise dis-
criminant analysis. Limiting the classifier model to only 2 nuclear texture features, we
achieved an overall accuracy of 95.5% in distinguishing DVIN versus lichen simplex
chronicus (sensitivity of 80% with 95% CI: 45% to 98%; specificity of 98% with 95%
CI: 90% to 99.9%), and overall accuracy of 96.8% in distinguishing DVIN versus lichen
sclerosus (sensitivity of 100% with 95% CI: 69% to 100%; specificity of 95% with 95%
CI: 76% to 100%). Limiting the classifier to 2-parameters would increase the chances
for reproducibility in independent cohorts. Additional test sets are needed to validate or
improve the classifier performances (Figs. 6, 7 and 8).

Fig. 6. Histological groups of Barrett’s Esophagus with progressive levels of dysplasia (NEG:
negative; IND: indefinite for dysplasia/reactive changes; LGD: low-grade dysplasia; HGD: high-
grade dysplasia; IMC: intramucosal carcinoma; INV: invasive carcinoma).

3.4 Cancer Prognostics

Breast cancer is the leading cause of cancer-related deaths among women worldwide.
Adjuvant systemic therapy, including hormonal and chemotherapy, has reduced mortal-
ity from breast cancer. As chemotherapy is toxic and has a negative impact on quality of
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Fig. 7. Correlation of nuclear features with dysplasia progression in Barrett’s Esophagus (A and
B: examples of morphometric features; C and D: examples of chromatin texture features).

Fig. 8. Comparison between morphometric and chromatin texture features in distinguishing
reactive changes (IND: indefinite for dysplasia) and low-grade dysplasia (LGD).
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life, it should ideally be given only to those patients who gain significant benefit from
it. At present, many patients are over-treated [45]. Apart from traditional prognostic
markers that include TNM stage, Estrogen receptor (ER), Progesterone Receptor (PR),
human epidermal growth factor receptor (HER2) and pathological features (grade), new
genomic profiling tests are being developed to aid refinement in treatment recommenda-
tions. Recent recommendations fromASCO support the use of several biomarker assays,
includingOncotypeDXRecurrence Score (RS), EndoPredict, PAM50 andBreast Cancer
Index [46]. The most commonly used assay is OncotypeDX, a multigene reverse tran-
scriptase (RT)-PCR assay designed to quantify the 10-year risk of metastatic recurrence.
The major obstacles of this assay are the high cost (about $4,000 per test) and the neces-
sity to ship specimens to California for centralized testing which delays patient care.
Our group investigated the contribution of quantitative image analysis in the discrimi-
nation between survivors and deceased patients with more than 10 years follow-up after
surgery [14]. Feulgen-stained tissue sections of 80 breast carcinomas were processed
by our in-house image analysis software. A random forest algorithm selected the best
five nuclear texture features and generated a survival score. This classifier model could
discriminate between survivor and deceased breast cancer patient with a sensitivity of
88% and a specificity of 85%. Using a multivariate Cox proportional hazards analysis,
we assessed the added prognostic value of survival score with other clinical and patho-
logical factors, such as age, lymph node status, tumor size and grade. The survival score
was significantly associated with 10-year survival, independent of any tumor grade (1, 2
or 3) or other clinical factors (p= 0.005). In earlier studies, our group pioneered the use
of imaging analysis to detect changes in early precancerous breast tumors (DCIS) and
demonstrated continuous morphometric changes from hyperplasia to invasive cancers
[47, 48] (Figs. 9 and 10).

Fig. 9. Nuclei with clumps of high-density chromatin are found in higher frequency in tissue of
deceased Breast cancer patients.
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Fig. 10. Overall survival of low-grade (1 and 2) and high-grade (3) Breast cancers based on image
analysis-based scoring system.

3.5 Cancer Theranostics

Prostate cancer is the most commonly diagnosed form of cancer in men worldwide.
PSA screening has led to a steep increase in incidence of indolent PSA-detected cases,
which ultimately do not contribute significantly to the overall mortality rates. Although
some prostate cancers behave aggressively andwill result in death, most of PSA detected
cancers are non-aggressive, slow growing, and do not require immediate intervention.
Active surveillance is a preferred approach for PSA detected early prostate cancer. Sig-
nificantly, 5–10% of individuals with low-risk disease treated up-front with prostate
brachytherapy or radical prostatectomy will experience poor outcomes. Additionally,
>50% of active surveillance patients will progress, and will require treatment 5 years
after initial diagnosis [49]. The effectiveness of active surveillance is limited without a
tool to accurately provide prognostic information. Current treatment recommendations
are based on PSA levels (iPSA), clinical staging, and Gleason score. Molecular assays
are being proposed to predict the risk of clinical metastasis within 5 years of radical
prostatectomy surgery; however, these molecular assays have financial and logistical
limitations similar to those described in breast. We investigated whether image analy-
sis of nuclear features and tissue architecture can distinguish patients with biochemical
failure from biochemical non-evidence of disease (BNED) after radical prostatectomy
(RP) for prostate cancer [15]. Of the 78 prostate cancer tissue cores collected from
patients treated with RP, 16 who developed biochemical relapse (failure group) and 16
who were BNED patients (non-failure group) were included in the analyses (36 cores
from 32 patients). A section from this TMA was stained stoichiometrically for DNA
using the Feulgen methodology and stained slides were scanned. Prostate TMA core
classification as biochemical failure or BNED after RP was conducted (a) based on cell
type and cell position within the epithelium (all cells, all epithelial cells, epithelial >2
cell layers away from basement membrane) from all cores, and (b) based on epithelial
cells more than two cell layers from the basement membrane using a Classifier trained



258 S. El Hallani et al.

on Gleason 6, 8, 9 (16 cores) only and applied to a Test set consisting of the Gleason
7 cores (20 cores). Successful core classification as biochemical failure or BNED after
RP by a linear classifier was 75% using all cells, 83% using all epithelial cells, and 86%
using epithelial>2 layers. Overall success of predicted classification by the linear Clas-
sifier of (b) was 87.5% using the Training Set and 80% using the Test Set. The success
of predicted progression using traditional morphologic Gleason score alone was 75%
for Gleason >7 as failures and 69% for Gleason >6 as failures. Combination of Tissue
Architecture score and Gleason score yielded an overall accuracy of 89% suggesting
that the combination of image analysis and conventional morphologic assessment can
have a synergistic impact (Fig. 11).

Fig. 11. Tissue Architecture analysis in Prostate cancers and assessment of nuclear features by
epithelial layers.

4 Open Problems

So far, most of the image analysis algorithms applied to digital pathology are focused
on the characterization of the tissue phenotype; however, cell proliferation, immune
evasion, hypoxia and tumor heterogeneity are also important hallmarks of cancer. A
better understanding of their individual role and of their mutual interactions is needed
to unlock all the valuable information in the glass slide. Advances in optical imaging
and immunohistochemistry technologies will allow us to decipher with unprecedented
details, precision, and depth the individual expression and intensity of multiple mark-
ers as well as the spatial interaction of cell subpopulations (“cell sociology”) in large
histological images.
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5 Future Outlook

TheBritishColumbiaCancerAgency groupdeveloped several hyperspectralmicroscopy
systems to rapidly collect 7–16 wavelength specific images (from 400 to 780 nm) across
entire slides. These hyperspectral images can be used to spectrally un-mix the compo-
nents within a slide that have unique features [50]. As an example, using the absorption
spectra of each immunohistochemistry antibody, the stains are computationally unmixed
to determine the concentration of each stain for every pixel in the selected area. Our pro-
gram basically makes the assumption that every pixel in the recorded images (16 wave-
lengths) are a linear combination of the concentration of the individual stains occurring
at that pixel weighted by the absorption characteristics of each of the stains occurring at
that pixel. Themethodwe used to separate these linear combinations of absorption stains
with different concentration at each pixel was theMultivariate Curve Resolution – Alter-
nating Least Squares algorithm. Different immunohistochemistry stains are available to
assess each component of the tumor microenvironment. High expression of Ki-67 pro-
tein is known to be associated with aggressive cancers. Ki-67 is a robust marker due to
the reproductive and strong signal of his antibody (Mib1). The tumor microenvironment
is a complex mixture of tumor epithelium, stroma and immune cells, and the immune
component of the tumor microenvironment is highly prognostic for tumour progression
and patient outcome. The role of the immune evasion pathways (PD-1/PD-L1-CD8) and
T lymphocytes (CD3-CD8) can be studied by immunohistochemistry markers which are
currently being used to guide immunotherapy. Cell sociology approachmay be critical to
examine immune cell function, as anti-tumor immune activation depends on a complex
network of interactions between antigen presenting cells, T cells, and target cells. Impor-
tantly, quantification via cell sociology has the potential to provide greater prognostic
or predictive insight than cell density readings have historically provided. Recently, we
showed that the characterization of the spatial tumor-immune cell interactions is asso-
ciated with lung cancer recurrence [50]. The presence of poorly oxygenated (hypoxic)
cells is associated with poor outcome after radiation, chemotherapy, and surgery in a
wide range of solid tumors.Hypoxia can bemeasured by quantifying endogenous expres-
sion of hypoxia-induced proteins by immunohistochemistry (e.g., carbonic anhydrase-9;
CA9 or glucose transporter-1; Glut-1).

Overall, we believe the application of hyperspectral imaging combinedwith cell soci-
ology studies will significantly increase our understanding of cancer biological behavior
and facilitate the development of robust imaging biomarkers to improve risk stratifi-
cation and complement clinical prognostic factors. Moreover, hyperspectral imaging
platform can also improve the ability of some nuclear morphometric and chromatin tex-
ture features to differentiate between cell groups. We discovered that diffraction effects
in microscopy images can be readily separated from Feulgen stained material (sharp
absorption max at 600 nm). Removal of these diffraction effects simplifies all down-
stream image analysis including segmentation and differentiation of overlapping cells
(Fig. 12).
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Fig. 12. Hyperspectral cell sociology platform (courtesy of Dr. Martial Guillaud).
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