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Abstract. Today deep learning techniques (DL) are the main focus in
classification of disease conditions from histology slides, but this task
used to be done by more traditional machine learning pipeline algorithms
(MLp). The first can learn autonomously, without any feature engineer-
ing. But some questions arise: can we design a fully automated MLp? Can
that MLp match DL, at least in some tasks? how should it be designed?
Can both be useful and/or complement each other? In this chapter we try
to answer those questions. In the process, we design an automated MLp,
build DL architectures, apply both to cancer grading, compare accuracy
experimentally and discuss the remaining issues. Surprisingly, a carefully
designed MLp procedure (acc. 86.5%) compared favorably to deep learn-
ing (best acc. 82%) and to humans (acc. 84%) when detecting degree
of atypia for breast cancer prognosis on limited-sized publicly available
Mytos dataset, with the same DL architectures that achieved accura-
cies of 97% on a different cancer classification task. Most importantly,
we discuss advantages and limitations of alternatives, in particular what
features make DL superior and may justify that choice, but also how
MLp can be almost fully automated and produce useful structures char-
acterization. Finally, we raise challenges, identifying how MLp and DL
should evolve to offer explainability and integrate humans in the loop.

Keywords: Digital pathology · Deep learning · Machine learning ·
Classification

1 Introduction

1.1 The Problem and Motivation

The definitions and procedures related to cancer prognosis based on histopathol-
ogy analysis are well described in [6]. If a tumor is suspected to be malignant, a
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doctor removes all or part of it during a procedure called a biopsy. A pathologist
then examines the biopsied tissue to determine whether the tumor is benign or
malignant and the tumor’s grade, identifying other characteristics of the tumor
as well. The tumor grade is the description of a tumor based on how abnormal
the tumor cells and the tumor tissue look under a microscope. It is an indicator
of how quickly a tumor is likely to grow and spread. Lower grade tumors, with a
good prognosis, can be treated less aggressively, and have a better survival rate.
Higher grade tumors are treated more aggressively, and their intrinsically worse
survival rate may warrant the adverse effects of more aggressive medications. An
important aspect of expert analysis of the tissue is to detect variations in tissue
and on its structures between different degrees of illness. Automatic grading of
histopathology slides offers interesting challenges in terms of classification due
to the convolved properties of the tissues and structures in histopathology slides.
Deep learning (DL) using convolution neural networks (CNN) is state-of-the-art
in this task, due to high accuracy and autonomous learning capabilities. Figure 1
shows an example from our own experiments classifying degree of atypia using
DL on Mytos Atypia dataset [40], where the left image was correctly classified
as grade 2 with 99.5% confidence, and the right image was correctly classi-
fied as grade 3 with 87.4% probability. DL has displaced techniques based on
machine learning pipelines (MLp) that require custom-made code to segment,
identify, extract and represent features of specific structures. The need to hand-
code parts is usually identified as the main problem of MLp approaches, but in
fact the crucial advantage of deep-learning approaches is end-to-end autonomous
backpropagation learning, where a large number of iterations of gradient descent
on error backpropagation allows the networks to adjust their weights until they
have learnt how to estimate the required quantities as best as possible.

Fig. 1. Inception-V3 example classifications.

Given the lack of backpropagation learning and dependence on coding and
operations choices in MLp, it is easy to design it in a very sub-optimal way,
lacking the ability to extract and pick the best features for classification. This
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raises two main questions: can we design a code-free fully automated MLp, or
close to such, that is potentially competitive with DL, at least in some tasks?
Can both be useful and/or complement each other? We also investigate future
challenges in the context of classification of disease conditions from histology
slides and in other medical imaging classification tasks. Those challenges include
how the techniques should evolve to enhance their clinical/medical usefulness,
how to provide explainability and how to integrate humans in the loop.

1.2 Contributions

In order to answer the questions posed we build state-of-the-art DL classifiers
to be applied in the classification of histology slides, and we develop an auto-
mated MLp approach that is as optimized as we can possibly devise to maximize
accuracy. The design of the MLp approach with its ability to find the appropri-
ate features is an important contribution. Another contribution concerns apply-
ing the two experimentally and comparing the results in a specific problem of
atypia grading using a publicly available dataset (Mytos Atypia), the same DL
architectures also being applied to another well-known cancer detection prob-
lem (BreakHis) to confirm their capabilities. We conclude that the well-design
MLp approach is competitive and even surpasses DL in the atypia grading prob-
lem with limited dataset, achieving (acc. 86.5%), versus deep learning (best acc.
82%) and humans (acc. 84%). Another contribution in this work is to discuss
how the two paradigms can be used and/or complement each other. We expect
this discussion to help in terms of clarifying the strengths of each paradigm and
pointing directions for research. As part of future challenges, we highlight the
need to make both DL and MLp more interpretable and explainable [1] and the
need to work further in integration of humans in the loop [2]. We also discuss
briefly how analysis of features in MLp can in the future be explored to help the
objective of explainability. The study of MLp versus DL and the discussions on
how to address future challenges based on these two techniques are very relevant
in the definition of how future clinical/medical AI systems should be designed.

1.3 Structure

This chapter is structured as follows: Sect. 2 is the glossary, introducing used
terms to ensure a common understanding. Section 3, state-of-the-art, describes
both related work, the state-of-the-art DL architectures used and the design
of the automated MLp approach. Then it discusses materials and methods for
the experimental data on grading and classifying cancers, reports and compares
results and concludes. Section 4 discusses challenges and open issues. In the light
of the experience gained with the designs and experiments, we discuss the advan-
tages and limitations of the two paradigms. Section 5, Future Outlook, proposes
how automated MLp approaches and DL approaches may evolve to play together,
complement or simply improve their capabilities.
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2 Glossary

Artificial Intelligence, AI - a broad concept related to models and algorithms
that make computer systems able to perform tasks normally requiring human
intelligence.

Machine learning, ML - the term machine learning is defined as algorithms
and statistical models designed to perform tasks without explicit instructions,
relying on patterns and inference instead.

Machine learning pipeline, MLp - in this chapter we define MLp as a sequen-
tial pipeline consisting of the machine learning steps of segmentation, feature
extraction, feature selection and classification.

Deep Learning, DL - Deep learning is a class of machine learning algorithms
that uses multiple layers to progressively extract higher level features from the
raw input. The word deep comes from having many layers and the word learning
from the capacity to learn a model from data.

Convolution neural network (CNN) - The convolution neural network is the
most frequent type of DL used to classify images into categories. It uses multiple
layers with convolutions based on a large number of filters to capture proper-
ties automatically from more local fields of view, then it progressively extracts
higher level features as it merges the feature maps into smaller, more generalized
convolutions.

Segmentation - the process of partitioning a digital image into multiple seg-
ments or regions. The goal of segmentation is to delineate and locate structures
or objects and boundaries in images.

Semantic segmentation - the task of classifying each and very pixel of an
image as a class. The classes are the structures or objects that are to be discov-
ered, such that all pixels belonging to those structures should be classified as
such.

Feature extraction, features - given some image or data, feature extraction
derives a set of values (features) intended to describe the main characteristics of
the original data, to be used in subsequent learning, classification and general-
ization steps. In the case of image classification, the features are most frequently
numeric quantities summarizing some properties of regions, e.g. colour, texture
or shape properties.

Feature selection - feature selection means selecting a subset of all features
that were extracted from the image. In general, in a classification problem,
“good” features are features that contribute significantly to distinguish the class,
and redundant features are features that are highly correlated. Feature selection
should try to find the best describing features and drop redundancy as much as
possible.

Dimensionality reduction - the process of reducing the number of features by
obtaining a smaller set of principal variables. Dimensionality reduction can be
obtained by either feature selection or feature projection. Feature selection was
defined previously, feature projection involves a transformation of the variables
into a space of fewer dimensions. An example of feature projection is principal
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components analysis, where the variables are replaced by a smaller set of prin-
cipal components that are computed from those variables and “summarize” the
most relevant characteristics of those variables.

Classification - the problem of identifying to which of a set of categories
an observation belongs, usually training from a set of data observations (or
instances) whose category is known.

3 State-of-Art

3.1 Related Work

The field of cancer detection and classification using computerized techniques
has gained increasing popularity during the last decade or so, given a large
increase of computational power, the enormous advances in machine learning
and the proposal and evolution of procedures that are able to analyze medical
images automatically and classify or detect a degree of disease from those. Up
to around 2013, most image analysis and classification techniques were machine
learning pipelines (MLp), following a certain sequence of vaguely defined steps
to segment, extract features and further analyze the images. Then Convolution
Neural Networks (CNNs) started to gain popularity as highly accurate classi-
fiers, new architectures were developed and beat previous approaches in terms
of accuracy [16]. Looking at results from past works, accuracies on the order of
95% or 100% are very common in both MLp and DL paradigms. For instance,
in [7] MLp using features describing characteristics of the cell nuclei present in
the image result in accuracies of 96% to 97.5% using repeated 10-fold cross-
validation. Likewise, state-of-the-art CNN approaches for classes cancer/no can-
cer on the BreakHis dataset [8] achieved 80 and 90% accuracy and, using patches
and a myriad of modifications, others [9,10] report more than 95% accuracy
on the same problem. But in [7], there seems to be a considerable amount of
manual work to achieve the result. Can we automate all the steps, to make it
less disadvantageous when compared with DL? And are there possible advan-
tages in the use of MLp to complement DL? In MLp approaches segmentation
and feature extraction that individualizes cells and measures a set of specific
properties of those cells is needed. For instance, Loukas et al. [11] explored a
technique that pre-selected 65 regions of interest to grade cancer into 3 degrees
of malignancy (I-III), the neural network classifier achieving 90% accuracy; [12]
achieved 80 to 95% accuracy grading prostate and breast cancers using three
scales of low-level pixel values, high-level information based on relationships,
and structural constraints; [13] used multi-wavelet grading of prostate patholog-
ical images, achieving a precision of 97% discriminating prostate tissue cancer/
no cancer and 81% for different degrees of low and high Gleason. More related
works exploring analysis of regions of interest or structures can be reviewed in
[14] and [15]. In our own previous work we also explored regions characteriza-
tion [4] and [5]. More recently Convolution neural networks (CNNs) achieved top
accuracies [8–10] and replaced feature extraction by convolution layers applying
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convolution operations [18]. Given the prior work on MLp and the highly prac-
tical and accurate CNN paradigm, a question arises on whether it is possible to
design a fully automated MLp that might also be easy to apply and accurate.
The closest to our intended MLp design would be CellProfiler in [21–23], since
it at least offers some interface for deciding and collecting features, but using it
in a complete MLp still requires a lot of manual human intervention to code,
test and experiment with alternatives in steps of the pipeline, from segmenta-
tion to feature selection and classification. The automated MLp extracts objects,
characterizes them and processes the extracted structures to build the classifier
model automatically, and is applied automatically to classify new images as well.

Explainability/causability is another very relevant issue related to this kind
of systems. In medicine there is growing demand for AI approaches that are
trustworthy, transparent, interpretable and explainable for a human expert, and
this is especially relevant in the clinical domain [1]. The authors in [1] argue
that the best performing statistical approaches today are black-boxes and do not
foster understanding, trust and error correction. This implies an urgent need for
explainable models, explanation interfaces and causability. The systems should
give answers to questions such as “Why did the algorithm do that?”, “Can I trust
these results?”, “How can I correct an error?”, so that the medical expert would
be able to understand why, learn and correct errors and re-enact on demand.
The need to make both DL and MLp more interpretable and explainable should
be answered in the future, and post-processing of the features extracted by MLp,
DL or mixed approaches can be explored further to improve explainability. We
call the attention to this future research challenge, at the same time that we
briefly illustrate with a small example how MLp features can be useful for further
analysis and explainability. We believe DL and MLp can “collaborate” in this
issue using extracted features to explain better what is happening and why.

3.2 Deep Learning Architectures Used

MatlabTM 2018’s InceptionV3 [20] and Resnet-101 [19] networks are pre-trained
implementations of the state-of-the-art InceptionV3 and Resnet architectures
pre-trained on more than a million images from the ImageNet database to clas-
sify images into 1000 object categories. Not only each of these represents specific
architectural details, as the number of layers increases as we move from Incep-
tionV3 to Resnet. While InceptionV3 is a 48 layers deep network based on the
Inception architectural features, Resnet-101 is a 101 layers deep network follow-
ing the Resnet architecture.

3.3 Design of the Machine Learning Pipeline (MLp)

The building of the typical MLp has steps (1) segment, (2) extract features,
(3) characterize the image, (4) reduce features space and (5) build classifier.
The first part of MLp is an approach to characterize an image based in three
main steps (segment, extract features, characterize the image). In each step it is
necessary to take precautions to avoid losing information that is important for
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accuracy of the approach. In step (1), the image is segmented, and structures
are identified from the resulting regions. In the case of histopathology slides,
examples of structures include cells of specific types, interstitial tissue, groups of
cells, adipocytes and others. The outcome of this step is a set of image regions,
I = ri and a mapping from regions to structures. In this step it is important not
only to segment the structures well, but also to do it such that each image pixel
will be assigned to some structure (semantic segmentation). This is important
since tissue modifications related to disease conditions can occur in any type
of structure that is present in the images. As an example, the fabric/texture
of interstitial tissue is expected to change in a cancer condition, therefore the
interstitial tissue should be one of the classes. Also, the classes should be aligned
with the output of segmentation. For instance, since cells are frequently over-
lapped, class “cell cluster” is created to represent that structure. In step (2) a
set of features [Fj] are extracted per region, so that each region ri is mapped
into that set of features. While in DL end-to-end error backpropagation tunes
feature extraction automatically, the only way to avoid losing important features
in MLp is to define all potentially useful features and extract them all. Step (3)
builds structure probability distribution functions (sPDF). Given the regions of
each type of structure Sl, and for each feature Fj, the sPDFlj is represented
as a histogram Hlj where, for each interval of possible values, the probability
of occurrence is recorded (FPy). This histogram represents the probability that
some structure takes some value in an interval for some specific feature. The
second part of MLp concerns reduction of the feature space and building of the
classifier. Next we provide more details on the steps.

Segmentation of Histopathology Slides. Segmentation algorithms that
could be used have been studied extensively in the past, including traditional
unsupervised approaches (e.g. [24–28,30,32–35]) or semantic segmentation using
in deep learning networks [36] (e.g. fully convolutional network [37], U-net [38]
or deeplab [39]). For our purpose, the most relevant issue in the design of the
MLp is not segmentation algorithm but a tool that separates the image into
meaningful regions, such as what CellProfiler does [21–23]. As in CellProfiler,
we created a tool for the user to obtain segmentations and tune segmentation
parameters. Figure 2 shows an example output after we configured it to define
12 structures. Note that the different structures can overlap partially. The tool
options are threshold intervals, morphological operations, geometric properties
and grids (to divide regions that may extend over the whole image), and to
individualize regions the tool uses labeling of connected components (bwlabel).
Note that Fig. 2 structures include cells, clusters of cells, interstice, adypocits,
but also halos or aureoles. A halo is also a structure but one which captures the
vicinity of another type of structure.

After the user configures segmentation the MLp becomes autonomous seg-
menting any image of that type, and since all the remaining MLp steps are
completely autonomous, the whole pipeline runs automatically for both training
and use.
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Fig. 2. A segmentation into 12 structures.

Describe Characteristics of Regions. The objective of this step is to char-
acterize discovered regions using visual properties useful for distinguishing dis-
ease conditions. Since MLp does not learn which features to extract, it needs
to extract all region features that could potentially be relevant for classifica-
tion. The features that cover all properties that might be useful are counts and
densities (D), shapes (S), geometries (G), texture (T) and color (C). Counts
and densities (D) are aggregate measures counting the number of occurrences
of each type of structure (number of regions of each structure) in images, and
the number of occurrences per unit area in each of a number of grid divisions of
the image (a nxn grid). A histogram describes the densities encountered. These
details can capture for instance an abnormal concentration of small black cells,
or any other abnormality in terms of densities of structures. Geometry (G) is
a set of aggregate measures taken on each individual region that characterize
the extent of the region (the pixels) as an aggregate. Shape (S) characterizes
the form of the contours, not as aggregates (captured by geometry), but how
the contour curves evolve. Texture (T) captures modifications in the general
fabric of a specific structure such as interstitial tissue or cells. The ensemble of
all extracted features is denoted as DSGTC features (Density, Shape, Geom-
etry, Texture and Colour). All these features are extracted independently for
each region, and since each region is of a specific structure type, structures are
characterized by the distributions of those properties for all regions of the struc-
ture. The feature extraction process is completely automated, with no human
intervention in any phase.
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Feature Selection. Feature selection is needed to eliminate useless features,
reduce the dimensionality of the dataset and to reveal the contribution of indi-
vidual features to the outcome. Given ns structures, nf DSGTC features and
nbin bins per histogram, the final number of probability features, describing all
structures for a specific disease condition, is given by n = ns × nf × nbin. The
value n is expected to be very large, since it represents all probability histogram
bins for an already large number of features and for each structure. As an exam-
ple, we had n= 12 structures × 600 features × 10 bins = 12 × 6000 probability
features. Only a small fraction of those are relevant to determine the class (e.g.
degree of atypia). Either feature projection or feature selection could be applied
at this stage. We applied feature selection separately to each structure, reducing
from 6000 to 50 most revealing features per structure. Three feature selection
methods were used in conjunction: correlation analysis of each feature to the
class (Y-correlation), correlation analysis between pairs of features (X1X2 corre-
lation) and sequential feature selection (sequentialfs). Sequentialfs creates candi-
date feature subsets by sequentially adding each of the features not yet selected.
For each candidate feature subset, sequentialfs performs 10-fold cross-validation
by repeatedly evaluating classification with different training and test subsets,
choosing the candidate feature with best accuracy. The number of features is
reduced from 6000 to 100 by correlation analysis prior to calling sequentialfs.

Classification. Any classifier model can be tried in this step. We experi-
mented a set of classifiers that included neural networks, random trees ensemble
classifiers and nearest-neighbour. The classifiers were built using 5-fold cross-
validation over the dataset, and the accuracy metrics collected over the test
folds included precision, recall and F-Score, which were used to compare with
DL.

3.4 Experimental Setup

The Mytos Atypia contest has provided a set of selected and annotated slides
of breast cancer biopsy. The slides were stained with standard hematoxylin and
eosin (H&E) dyes and they have been scanned by two slide scanners: Aperio
Scanscope XT and Hamamatsu Nanozoomer 2.0-HT. In each slide, the patholo-
gists selected several frames at X20 magnification located inside tumours. These
X20 frames were used for scoring nuclear atypia. A X20 frame scanned using
Aperio Scanscope XT is 755.649 × 675.616 µm2, 1539 × 1376 pixels, one from
Hamamatsu Nanozoomer 2.0-HT is 755.996474 × 675.76707 µm2, 1663 × 1485
pixels. The number of frames is variable from slide to slide. In the training data
set there are 284 frames at X20 magnification. Note that the dataset is limited
in size, both patching and data augmentation were included as experiments to
increase the size and variability in DL training. The frames are RGB bitmap
images in TIFF format. The nuclear atypia score is provided as a number 1, 2
or 3. Score 1 denotes a low grade atypia, score 2 a moderate grade atypia, and
score 3 a high grade atypia. This score has been given independently by two
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different senior pathologists. There are some frames for which the pathologists
disagree and gave a different score. We account those as incorrect classifications
by human experts. In those cases a third senior pathologist would give the final
score. Nuclear atypia score is a value, 1, 2 or 3, corresponding to a low, mod-
erate or strong nuclear atpyia respectively. Instead of focusing on segmenting
and measuring the nuclei solely, both the DL and MLp approaches developed
and tested in this work take the whole tissue images and detect atypical charac-
teristics that dictate the degree of atypia. For experiments, the image datasets
were collected and 5-fold cross-validation was applied. In 5-fold cross-validation
5 runs are ran with 80% training, 10% testing and 10% validation data. Patching
refers to dividing the images of the dataset into multiple smaller images (e.g. 128
× 128 patches) to be fed to the DL. Those can better individualize structures
and may provide a convenient degree of detail about regional structures, while
also augmenting the dataset, by dividing an image into many patches. A stride
(e.g. start a patch every 10 pixels) can be defined to obtain overlapping patches.
Data augmentation is a different technique designed to increase the size and
variability of the training dataset based on simple operations such as scaling,
rotation, shearing or translation. This can contribute to increase the variability
of training images, resulting in more and more diverse training instances.

Experimental Setup Details. We defined the following alternatives for exper-
imentation: HExpert, MLp, CLASS, Iv3, R101, Iv3 augment, R101patch and
Iv3patch. Hexpert is the accuracy of medical doctors, measured as the degree of
agreement assigning the grades; MLp is the machine learning pipeline described
in this work; CLASS is an ML classifier that does not differentiate structures, it
simply applies segmentation and extracts a set of features (GLCM, LBP, gray
level intensities) from all regions indistinctively, then applies feature reduction
and a neural network classifier. CLASS represents a simpler ML pipeline; Incep-
tionV3 (Iv3), Resnet-101 (R101), InceptionV3 with data augmentation (Iv3 aug-
ment), and versions of Iv3 and R101 with 128 × 128, 10 pixels stride patching
(R101patch, Iv3patch) are DL alternatives built using Matlab 2018 implemen-
tations of state-of-the-art CNNs, including InceptionV3 (Iv3) and Resnet-101
(Res). The imageAugmenter used for data augmentation applied Random X
Reflection, and both X and Y translation. The DL training options included the
following: (stochastic gradient descent with momentum (‘sgdm’), miniBatchSize
10, maxEpochs 700, initial learn rate 1e−4, validation frequency 3. In what
concerns the MLp setup, after tuning with a few images the segmentation tool
divided images into 5 intensity levels based on 3 thresholds (130, 180, 230), fol-
lowed by a sequential set of operations to obtain the types of structures from
those levels. The operations included removal of small noise (removal of very
small regions inside larger regions resulting from thresholding), filling of holes
and closing to fill and improve contours of small dark and mammarian cells,
opening of interstitial tissue regions, individualizing regions by labeling con-
nected regions (bwlabel), dividing white regions based on size, filling and clos-
ing those regions, applying circularity to distinguish rounded from non-rounded
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large white regions, applying a grid to interstice. After these steps comes the
step of creating halo structures, which are structures capturing the vicinity of
the previously individualized regions for each structure type. Creating the halos
involves dilating the regions (imdilate) and then retrieving only the dilation
ring. The resulting regions were ‘darknCells’, ‘cells’, ‘cellsExtraFilled’, ‘fatSmall’,
‘fatLargeRound’, ‘fatLargeNotRound’, ‘interstice’, ‘darknCellsHalo’, ‘cellsHalo’,
‘fatSmallHalo’, ‘fatLargeRoundHalo’, ‘fatLargeNotRoundHalo’. Features of indi-
vidual regions included area, solidity, major axis, minor axis, eccentricity, convex
area, extent and others, contour slopes and variations of slopes (dslope), gray-
level co-occurrence matrix (GLCM) [42], local binary patterns (LBP) [41], plus
2D texture histograms (spatial distance x colour intensity distance). Feature
selection ran automatically and separately per structure. The first step involved
pruning out features with a correlation less than 0.1 with the class. The second
step involved removing features that were correlated above 95% with their class-
correlation-ranked neighbours, followed by an additional class-correlation based
pruning to keep only the top 100 features. Finally, sequential feature selection
was used with the classifier F-score as the criteria to choose the subset of 50
best features for each structure. After this step all chosen 50 × 12 features rep-
resenting all structures were again reduced into 100 final features using the same
procedure. The last step of model building involved building of a classifier based
on the 100 final features. We experimented neural network (see Matlab2018 pat-
ternnet) with a configuration of two hidden layers of 10 neurons each, random
trees ensemble classifier (see Matlab2018’s TreeBagger Bag of decision trees),
with a default number of 10 trees, and k-nn with 3 neighbours. All the classifiers
were built using 5-fold cross-validation over the dataset. From our experiments
we report accuracy metrics that include precision, recall and F-Score.

Hardware Details. Experiments were ran in a PC running windows, with an
intel core i5 at 3.4 GHz, 16 GB RAM and an SSD disk of 1TB. The PC had an
NVIDEA GForce GTX 1070 GPU installed (Pascal architecture with 1920 cores,
8 GB GDDR5, 8 Gbps memory speed), and the experiments were all setup and
ran in Matlab 2018a.

3.5 Experimental Results

Testing Accuracy of DL with BreakHis. In this experiment we tested
Resnet-101 on the (yes/no) problem of detecting cancer on the BreakHis dataset
[8], with 128 × 128 image patches. This served as a calibration test, resulting
in a validation accuracy of 97%, as shown in the screenshot of Fig. 3 (and a test
accuracy of 96.7% as well). This result coincides with results of other authors,
giving us confidence that the DL approaches were well configured.

Results of DL with Mytos Atypia. Table 1 shows the results obtained by
DL on the Mytos Atypia dataset. It reveals accuracies between 73% and 82.5%,
the best approach being Iv3 with data augmentation.
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Fig. 3. Calibration run: Resnet on breakHis patches 128 × 128.

Table 1. Comparison of DL results on Mytos Atypia.

Approach Iv3+augm Iv3 Iv3+patch R101+patch R101

Test accuracy 82.50% 81.20% 79.30% 77.60% 73.00%

C1 = low grade atypia 76.20% 67.10% 77.43% 79.80% 76.20%

C2 = moderate-grade atypia 71.40% 81.30% 73.20% 68.10% 57.20%

C3 = high-grade atypia 100% 95.20% 87.24% 84.90% 85.70%

Results of MLp on Mytos Atypia. Table 2 shows the results we obtained
for MLp, including accuracy, precision and recall. The table shows the metrics
for all classes and the metrics obtained for each class. Precision was 86.5%, and
grade 2 has the lowest precision, probably because the boundary between grades
is fuzzy.

Table 2. Accuracy, precision and recall of MLp.

Approach Acc Precision Recall

All 86.5% 86% 87%

Grade 1 93% 94% 90%

Grade 2 79% 71% 91%

Grade 3 90% 99% 80%

Table 3 shows accuracy of MLp using different classifiers and also CLASS.
The superiority of MLp is clear compared to CLASS, and all MLp classifiers had
good accuracy, with random forests being the best.
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Table 3. Accuracy, precision and recall of MLp.

Classifier MLp CLASS

knn-3 83.5% 74%

Random forest 86.5% 70%

Neural net 82.8% 73.5%

MLp Runtimes. Figure 4 shows image segmentation times (average 1.8 s) and
Fig. 5 shows features extraction time per structure and per image (average 11.3
s). Since regions of 12 structures were extracted, each image took an average of
1.8 + 136 s to be processed. This time is incurred during classifier construction.
For classification of new images, it is possible to speedup execution by extracting
only the 100 selected features. Feature selection takes a lot more time (average
52.5 min in five runs), due to the sequential feature selection step that calls the
classifier on each step. Note however that this step is only necessary during
model building.

Fig. 4. image segmentation (mean = 1.8 s) and per-structure feature extraction (mean
= 11.3 s).

Comparing MLp to DL. Table 4 compares the results of the two best DL
approaches to those of MLp on the Mytos Atypia dataset. We also include the
accuracy of human experts, measured as the fraction of agreement between the
two pathologists labeling the images.

These results show that the state-of-the-art DL approaches did not achieve
as high an accuracy as the well-designed MLp classifier. This can also be seen
from the partial per-class accuracies, with MLp being superior in classifying low,
moderate and high-grade atypia, with the exception of high-grade atypia by Iv3
with data augmentation, but at the expense of the remaining classes.
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Fig. 5. Image segmentation (mean = 1.8 s) and per-structure feature extraction (mean
= 11.3 s).

Table 4. Comparison DL to MLp and others on Mytos Atypia

Approach MLp HExpert Iv3 augm R101patch

Test accuracy 86.30% 84% 82.5% 77.6%

C1 = low grade atypia 93.10% 76.20% 79.80% –

C2 = moderate-grade atypia 79.40% 71.40% 68.10% –

C3 = high-grade atypia 90.20% 100% 84.90% –

4 Open Problems and Challenges

There are open problems and challenges resulting from this study, both related
to the design and use of MLp, the comparative study of MLp and DL, future
improvements of DL and how to benefit from using both.

4.1 Degree of Automation of MLp

The MLp is able to run completely automatically over a dataset, but a prior
human-based configuration of segmentation parameters to elicit structures was
necessary, and the structures that were obtained are an important factor for
accuracy. In the future this pre-configuration step can be replaced by deep-
learning-based semantic segmentation using groundtruth segmentations. In that
case MLp uses DL in one of its steps, and we need to provide the groundtruth
segmentations, but the whole MLp procedure becomes totally automated with no
need to pre-configure anything. Further work would also be required in improving
semantic segmentation based in DL.
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4.2 Accuracy Comparison DL to MLp

We created an automated MLp designed to recognize structures, characterize
them and then classify disease conditions based on properties of those struc-
tures. We had to be careful in every step to avoid losing accuracy, by keeping as
much information as possible up to feature selection, and “learning the best fea-
tures” during feature selection. Our experiments have shown that MLp matched
DL accuracy (and even improved it) in a specific experiment, with a limited
sized dataset (Mytos Atypia). A large effort is welcome in the future to further
compare well-designed MLp to DL in this and other contexts, with different and
larger quantities of imaging data, and to evaluate under which circumstances one
could be better than the other. Even in this experiment, although MLp achieved
better accuracy than DL, it required prior manual configuration and tuning of
segmentation parameters and some iterations of the whole pipeline to tune the
segmentation to achieve top accuracy. Consequently, we have only shown that
MLp can be competitive in some problems, but with some tuning still required.

4.3 Autonomous Learning Ability of DL Versus MLp

The advantage of DL compared with MLp is its capacity to learn end-to-end
iteratively, where end-to-end means from the inputs (images) to the output,
classification, based in error backpropagation [17]. Its main potential limitation
is the difficulty to converge its inner weights to find the best solution. In con-
trast, MLp learns using a feature selection algorithm that is given a very large
number of possible features, and a classifier building algorithm that is finding the
most suitable parameters for the classifier. MLp does not learn segmentations
iteratively currently, but that step could be replaced by deep learning-based
semantic segmentation in the future. Still, MLp also does not backpropagate
the classification error from output to input to improve accuracy along epochs
of training. In spite of these limitations, MLp was still more accurate than DL
in our experiment because it was able to find the most discriminating features
among all relevant properties of structures. As a conclusion, DL seems to be the
best choice in general, because it can learn more globally and adapt all of its
weights automatically by back-propagating the error, to tune what it extracts
and from where. Additionally, future work can bring improvements to DL that
might make it more accurate still. But a well-designed MLp can still be more
accurate, at least in some problems, and as long as it is fully or almost fully
automated, it can always be used to provide extra information and characteri-
zation capabilities. The two paradigms can be applied simultaneously, and MLp
can provide complementary information and characterizations.

4.4 Characterization of Disease Markers

MLp can be used to better characterize disease conditions based on which most
relevant features of which structures are modified by disease conditions. We
illustrate this by doing a short study using the MLp results. Figure 6 is taken
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from our results and shows that texture features are important disease markers
in interstitial tissue and in clusters of cells (groups of juxtaposed cells). This
means detection of variations in the texture of the tissue itself and of agglom-
erates of cells helps distinguish disease conditions based on those structures.
That is consistent with the hypothesis that modifications in tissue fabric, such
as hypercellular and more irregular altered tissue architecture, are indicative of
higher cancer grades; In contrast to that analysis, in what concerns mammarian
cells, shape and geometry features gain a lot of importance. Additionally, the mix
for cells clusters also indicates some relevance of shape features, although less
prominent. These observations agree with the fact that increased irregularity of
cells and contours, some bigger cells and more irregular shapes are indicative of
higher grades of cancer. Finally, shape and geometry were also chosen as relevant
discriminators in vacuoles and adipocytes, probably signaling the importance of
detecting more squeezed structures and more irregularity in their shapes due to
altered tissue architecture in higher cancer grades. This study could be enhanced
in the future, with more detailed analysis of which features are most revealing
and so on.

Fig. 6. Feature selection mixes for each structure.

4.5 Towards Explainability/Causability

As reviewed in the related work section, explainability/causability is one of the
most relevant issues for adoption of AI models and techniques in medicine clini-
cal practice [1]. The ability to characterize disease markers that we discussed in
the previous subsection is one of multiple possible mechanisms that can be inte-
grated to build explainable/causable AI systems. This means that MLp might
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be used as part of automated procedures to explain classifications and to estab-
lish causability, and it can be mixed with DL in practical systems as well. Most
importantly, one of the most relevant future challenges in either MLp, DL or a
mix of both is how to achieve explainability/causability instead of just having a
black box system that is unable to provide very relevant explanatory power to
users.

5 Future Outlook

Deep learning has displaced prior approaches and is here to stay. Its superi-
ority is not a guarantee that it achieves better accuracy, but the fact that it
learns autonomously, iteratively and end-to-end is a great advantage. We should
expect future research to improve DL approaches further and to apply them
to most classification and segmentation problems related to medical imaging
in general and digital pathology in particular. If we had to choose only one
approach between DL and MLp, we would choose DL because of its end-to-
end, backpropagation-based learning that tries to optimize accuracy completely
autonomously. MLp also searches for the best features and classifier model, but it
still lacks end-to-end error backpropagation. The future outlook for MLp seems
grimmer than that of DL, but MLp can still have a role together with DL. Since
MLp is fully automated after an initial configuration of segmentation step, we
can apply both in a specific context and test their accuracy; Instead of deciding
between the two, we can have the results of both to gain more evidence. Most
importantly, MLp can complement DL by characterizing structures and provid-
ing explanatory information. It can tell us which types of features and which
features are more discriminative to detect a disease condition, and how those
features reveal the disease condition. More generically, a crucial future challenge
is to design systems that have explainability/causability capabilities using MLp,
DL or both. Another distinctive opportunity to apply MLp together with DL is
to segment medical images into structures using DL and then apply the MLp
pipeline we designed to identify the properties of structures that change with
disease conditions and how they change. It would also be important to fully
integrate humans in the loop in the future, as human experts should be able to
interact with the AI system in much richer ways [2]. That includes integrating
physicians high-level expert knowledge into the process, by acquiring his/her
relevance judgments regarding a set of initial results [3]. Either MLp, DL or
mixed systems should be designed to integrate the human-in-the-loop, adding
interactivity and learning from both sides (humans and algorithms).
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