
Chapter 8
Some Basic Epidemic Models

Danijela Rajter-Ćirić

8.1 Introduction

Spreading of infectious diseases has always been a threat to human health and
people have been trying to fight against it (which is especially important nowadays
when contagious diseases are spreading faster and further than ever). So far great
achievements have been made. In order to prevent the spread of a particular disease,
one should first try to understand and explain the mechanism how it spreads in the
population. However, no experiments are possible due to ethical (and many other)
reasons. Therefore, mathematical models present a very useful tool. Although they
are only theoretical and usually simplify the real situation, they still describe the
behaviour of population members well enough so that they can be successfully used
for describing the dynamics of a disease, predicting epidemics, measuring the effects
of some prevention measures, etc.

At the beginning of the twentieth century Dr. Ross, later awarded the Nobel Prize
for Medicine for his significant contribution to research, used a differential equation
model to describe malaria transmission between humans and mosquitoes. Later,
William Kermack and AndersonMcKendrick formulated a model to study the Black
Death outbreak in London and the plague outbreak in Mumbai. They published
their results in 1927 in the paper “A Contribution to the Mathematical Theory in
Epidemic”. They have used one of the simplest forms of, so-called, SIR model
which has been studied, improved and generalized afterwards by many authors.

Today there are many different mathematical epidemic models and mathematical
approach to the epidemic modelling is widespread. In this paper we introduce
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the readers to some of these models. All mathematical models can roughly be
divided into two groups: deterministic and stochastic models. In the paper, we first
describe a few deterministic models for spreading of a contagious diseases in a large
population, which are based on the, so-called, mass action law (populationmembers
make contacts to other members independently of each other and each individual has
an equal chance of contacting any other individual). Further on, we present a few
ideas of how a stochastic approach can be used in epidemic modelling. A stochastic
approach is reasonable and it is justified by the fact that a population does not behave
in a precisely determined way as it is assumed in deterministic models.

It is important to emphasize that in this paper models are presented on a very
basic level, without complicated mathematical proves and getting deeper into the
theory. The paper should simply serve to introduce readers into a beautiful field
of applied mathematics called epidemic modelling and to present how nicely
mathematics can be applied to such a serious research area. There are no original
results in the paper. The models presented here have been considered in many
student books and papers.

8.2 Some Deterministic Models

Deterministic models assume that the population behaves exactly as assumed in
the model and there are no randomness in the behavior of the population. The
population is large and divided in groups by the epidemic state of individuals. The
number of groups depends on the disease and hence on the model, as the reader
will see. Here we present only some of many models. In all of presented models
ordinary differential equation approach has been proposed. Although in most cases,
corresponding systems of ordinary differential equations describing the model are
not solvable (if not analytically, these ordinary differential equation systems can be
solved numerically), they still play a significant role in the mathematical analysis of
the disease spread and in the prediction of epidemics. For more about deterministic
epidemic models we refer the reader, for instance, to [2, 3].

8.2.1 SIR Model

An SIR model is a very simple epidemic model that one can use to calculate the
number of individuals infected with an epidemic (a contagious) disease in a large
population over time. One of the simplest SIR models is the Kermack-McKendrick
model.

We consider the population of size N , where N is a constant, and assume
that the population consists of three types of individuals based on the state of the
individual concerning the disease. In this model we assume that there are only three
possible states: a subject is sensitive, infected or immune to a virus. Therefore, the
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population is divided into three different groups. The first group consists of those
individuals who have not developed immunity against the virus. That is the group of
susceptibles (population members that are not infected but could become infected).
The second group consists of infectives (subjects who are infected with the virus
which means that they have the disease and can transmit it to the members of the
group of susceptibles). Finally, members of the third group are individuals who have
recovered from the disease and gained lasting immunity or who have died from the
disease. In both cases, those individuals are said to be removed. (Some authors call
the third group Recovered instead of Removed since they consider the individuals
who have died from the disease being the same, from the epidemic point of view,
as those who have recovered, since both recovered and dead are, in some sense,
immune to the virus).

So, basically, there is a very simple “rule” in SIR model: After becoming
infected a susceptible subject immediately enters the infected group. Afterwards
(after recovering or dying from the disease) the subject enters the group of removed.

The numbers of group members for these three groups are denoted by the letters
S, I and R, respectively, which is the reason why this is called SIR model. All these
numbers are actually functions of time t:

S(t) − denotes the number of susceptibles at time t

I (t) − denotes the number of infectives at time t

R(t) − denotes the number of removed at time t .

In the simplest SIR model that we first consider, a short time scale has been
assumed so that births and deaths (other than deaths from this disease) can be
neglected. One can consider the case when births and deaths are taken into account
which yields to a slightly more complicated model as we will see later.

The usual assumptions for SIR model are:

1. Individuals infect each other directly rather than through disease vectors.
2. Contacts between individuals are random.
3. Immediately after a contact with the infected person, susceptible person shows

symptoms and can infect someone else.
4. An arbitrary population member makes βN contacts (within the population) in a

unit of time, where β denotes disease transmission rate.
5. The number of population members that move from the group of infectives to

the group of removed in the unit of time is αI (t), where α denotes, so-called,
recovery rate.

Now we want to answer the question: How S(t), I (t) and R(t) vary with time?
As an answer, the SIR model proposes a system of ordinary differential equations

representing the transition from one group to another. More precisely, the numbers
of susceptibles, infectives and removed change according to the system:

S′(t) = −βS(t)I (t) (8.1)
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I ′(t) = βS(t)I (t) − αI (t) (8.2)

R′(t) = αI (t). (8.3)

Assuming that every population member belongs to one of the three groups one
has that, at every time t ,

S(t) + I (t) + R(t) = N.

Therefore Eq. (8.3) can be omitted.
Note that, based on one of the model assumptions, every infected individual

makes βN different contacts i.e., contacts with βN members of population, but

the chance to make the contact with a susceptible person is
S

N
. Thus

βN
S

N
I = βSI

is the number of individuals who move from the susceptible group to the group
of infected in unit of time. Therefore, S(t) decreases, while I (t) increases for that
number. This explains the differential equations in the model above.

The dynamics of the infectious group depends on the ratio R0 = β

α
. The number

R0 = βN

α

is the, so-called, basic reproduction number and it represents the expected number
of new infections from a single infection in a population where all subjects are
susceptible. (For more about this number we refer the reader, for instance, to [4].)

The basic reproduction number is very important since it is a good epidemic
indicator. IfR0 > 1, many susceptible individuals will be infected, i.e., the epidemic
will start. If R0 = 1 the disease becomes endemic. If one wants to prevent the
epidemic, it is necessary to keep R0 less than 1. For instance, the vaccination is a
possible way for keeping the basic reproduction number lower than 1. Assume that
p is the proportion of population members who have been successfully vaccinated
before the appearance of the first infected individual. For preventing the epidemic
the following condition has to be satisfied:

R0 = β

α
(1 − p)N < 1,

i.e.,

p > 1 − 1

R0
= 1 − α

βN
.
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In the model above the function F = βI models the transition rate from the
group of susceptible individuals to the group of infectious individuals. Therefore, it
is called the force of infection. For many contagious diseases it is more realistic
to consider a force of infection that does not depend on the absolute number

of infectious subjects, but on their fraction F = β
I

N
. Some authors have even

proposed nonlinear forces of infection to model more realistically the processes of
contagious diseases.

Let us just briefly mention the more general case when birth and death rates
influence the model. Suppose that λ denotes the birth rate and that μ denotes the
death rate in the population. We still assume that the size of the population is
constant. In that case, the SIR model is described by the following system:

S′(t) = λ − μS(t) − βI (t)S(t) (8.4)

I ′(t) = βI (t)S(t) − αI (t) − μI (t) (8.5)

R′(t) = αI (t) − μR(t). (8.6)

Also, one can go a step further and study the (more realistic) SIR model that
includes the vital dynamics (birth and death rates) in the population of size which is
not a constant anymore, but varies with time. Here we will not consider that case.

8.2.2 SEIR Model

Now we present a modification of the SIR model that is very realistic for many
infectious diseases. Instead of the assumption that after every contact with an
infected subject a susceptible subject gets immediately infected and can infect
others, here we assume that there is an incubation period during which the
individuals have been infected but are not yet infectious themselves. That period
is significant for many contagious diseases. Therefore, in this model another group
of population members is formed - the group of exposed members (individuals who
are in the incubation period), which means that now the population is divided in
four groups: susceptible, exposed, infected and removed. Newly infected members
do not immediately move from the susceptible group to the infected group, but first
they go into the exposed group. Same as in SIR model, after being in the group of
infected, subjects move to the group of removed.

Denote by E(t) the number of exposed individuals at time t .
Assuming that the average of the incubation period is κ−1 and that births and

deaths (other than deaths due to the disease) have no influence to the model,
the SEIR model is represented by the following system of ordinary differential
equations:

S′(t) = −βS(t)I (t) (8.7)



108 D. Rajter-Ćirić

E′(t) = βS(t)I (t) − κE(t) (8.8)

I ′(t) = κE(t) − αI (t). (8.9)

The same as in the SIR model that we considered above, it is enough to consider
only three out of four differential equations, since S(t) + E(t) + I (t) + R(t) = N

is a constant.
If infectivity of an exposed person can be reduced by some factor δ then one

obtains more general SEIR model represented by the system:

S′(t) = −βS(t)I (t) − δβS(t)E(t) (8.10)

E′(t) = βS(t)I (t) + δβS(t)E(t) − κE(t) (8.11)

I ′(t) = κE(t) − αI (t). (8.12)

Note that Eq. (8.10) describes the following: The number of susceptible subjects
decreases by contacts with an infected subject or with an exposed subject but not
every contact with an exposed person leads to infection transmission (the number of
contacts that lead to infection is reduced by factor δ).

The basic reproduction number is now given by:

R0 = βN

α
+ δβN

κ
.

It shows how many subjects can be infected by one exposed subject entering the
group S and it can be explained in the following way: An exposed person makes
βN

κ
different contacts in the group during the incubation period of the length

1

κ
,

but not every contact leads to infection, as we mentioned above. Therefore there are
δβN

κ
newly infected subjects. After the incubation period, the exposed person from

above becomes infected and can make
βN

α
contacts but now every contact leads to

the infection transmission.
In the end, let us briefly remark that, similarly as in SIR model, one can consider

SEIR model assuming the presence of birth and death rates. It is very common
to consider the case with birth and death rates that are equal. If μ denotes the
birth/death rate, one has the model:

S′(t) = μN − μS − β
I

N
S

E′(t) = β
I

N
S − (μ + κ)E

I ′(t) = κE − (α + μ)I

R′(t) = αI − μR.
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Here we wrote all four equations although we could have omitted the last one since
S(t) + E(t) + I (t) + R(t) = N is a constant due to the assumption that birth and
death rates are equal. However, in general N is a variable, not a constant.

8.2.3 SLIAR Model

This model includes a, so-called, latent period during which the person is infected,
but there are still no symptoms of the disease and the person cannot transmit the
virus to other members of the population. This is the case with influenza, and some
authors call this model an influenza model.

For this model first it is necessary to form a population group of individuals
that are in the latent period. When an individual gets out from the latent period,
symptoms of the disease may or may not develop. If symptoms develop, then the
individualmoves into the infected group, and if that does not happen, then the person
is in the, so-called, asymptomatic periodwhen he or she does not have the symptoms
of the disease but can transmit the infection to the others with a reduced factor ε.
So, the model requires one more group to be formed—the group that consists of
population members who are in the asymptomatic period.

Denote by L(t) the number of population members who are in the latent period
and by A(t) the number of population members who are in the asymptotic period.

We also assume that the proportion of p out of the total number of those who are
in the latent period goes into the infected group, which implies that the proportion
of 1-p goes into the group of those who are in the asymptomatic period.

The model is called SLIAR model by the first letters of the names of five groups:
Susceptible, Latent, Infected, Asymptotic and Removed.

The system of ordinary differential equation that describes the SLIAR model is:

S′(t) = −βS(t) [I (t) + εA(t)]

L′(t) = βS(t) [I (t) + εA(t)] − κL(t)

I ′(t) = pκL(t) − αI (t)

A′(t) = (1 − p)κL(t) − ηA(t).

From the first equation one sees that the number of susceptibles decreases after the
contact with an infected subject or with a subject which is in asymptotic period
(but not every contact with a subject in an asymptotic period yields to the infection,
that is why one has ε multiplying A in the equation). As in previous cases, the
equation that shows how R(t) varies has been omitted due to the fact that number
S(t) + L(t) + I (t) + A(t) + R(t) = N is a constant.
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The basic reproduction number in the SLIAR model is:

R0 = p
βN

α
+ (1 − p)

εβN

η

and it shows how many susceptible population members get infected by one subject
who is in the latent period.

8.2.4 SIS Model

This model describes the disease that is endemic. It is a model of a disease in which
the infected do not acquire immunity after recovery. This means that there are only
two groups here: the group of the vulnerable and the group of the infected ones.
After recovery the infected subjects return back to the sensitive group. Such a model
can be applied in modeling the spread of diseases caused by a bacterium, because
then immunity is not acquired against a new infection caused by the same bacterium.
Amodel that does not include birth and death rates will be considered first. We again
assume that the population size is constant. Then the system of differential equations
corresponding to this model is as follows

S′(t) = −βS(t)I (t) + αI (t)

I ′(t) = βS(t)I (t) − αI (t).

Since N = S(t) + I (t), for every t , the previous system reduces to the equation

I ′(t) = β [N − I (t)] I (t) − αI (t)

The equation above can be written in the form:

I ′ = βI (M − I) ,

where M = N − α

β
. The last equation can easily be solved:

I (t) = M

exp{−M(βt + c)} + 1
, for M > I

I (t) = −M

exp{−M(βt + c)} − 1
, for M < I
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However, in any case one can see that the following holds:

• If M > 0 then limt→∞ I (t) = M .
• If M ≤ 0 then limt→∞ I (t) = 0.

The basic reproduction number in this model is the same as in SIR model: R0 =
βN

α
. Therefore M = N

(
1 − 1

R0

)
and one concludes the following:

• If R0 > 1 then limt→∞ I (t) = M i.e., the disease remains in the population
• If R0 ≤ 1 then limt→∞ I (t) = 0 i.e., the disease vanishes.

Finally, let us just mention that one can consider the SIS model with birth and
death rates both being equal to μ and obtain a generalization of the previous model:

I ′(t) = β [N − I (t)] I (t) − (μ + α)I (t). (8.13)

8.3 Some Stochastic Models

The assumption that a population behaves exactly as assumed in the model is
not very realistic. There are always some randomness that affect the population
behavior. Therefore, a stochastic approach to the epidemic modelling problems
is reasonable. There are different stochastic approaches depending on many fac-
tors and hence there are many different stochastic models. One of the simplest
approaches is the one that uses discrete-time Markov chain models. Thus here we
present a model of that type first. Some other stochastic models involve stochastic
differential equations. Here we just briefly mention one of such models. Finally,
there are many stochastic processes that can be used in epidemic modelling and
here we present how a Poisson process can be used.

8.3.1 SIS Model in the Form of Discrete-Time Markov Chain

In this section we describe the SIS model with birth and death effects in a form
of discrete-time Markov chain (see [1] for details). We assume that birth and death
rates are equal and denoted by μ. The population size is constant and denoted by N .
Therefore, as we concluded in the SIS deterministic case, it is enough to consider
only one variable and this will (again) be the number of infected subjects, I (t).

So, we consider a stochastic process {I (t), t ∈ T }, where T =
{0,Δt, 2Δt, . . . }, as a discrete-timeMarkov chain. From the epidemic point of view
it is reasonable to assume that the number of infectives at a time moment depends
only on the number of infectives in the previous moment, so it is reasonable to
assume that I (t) satisfies the Markov property.
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As we saw in the deterministic case (see (8.13)) the following holds:

I ′(t) = β [N − I (t)] I (t) − (μ + α) I (t).

Since I (t) is number of infected subjects at time t it is obvious that the set of
possible states in this case is S = {0, 1, . . . , N}. The probability that process I is in
the state i ∈ S at time t , is denoted by p(t), i.e. p(t) = P {I (t) = i}. The, so-called,
probability vector is given by

p(t) = [p0(t), . . . , pN (t)]T ,

and p0(t) + p1(t) + · · · + pN(t) = 1.
The next step is to determine the transition probabilities from one state to another

for a short period of time Δt:

pij (t + Δt) = P {I (t + Δt) = j |I (t) = i} .

Based on the deterministic case, we assume that the Markov chain I (t) is homoge-
neous i.e., that transition probabilities do not depend on time. Thus, we can write
pij (Δt) instead of pij (t + Δt).

In order to make the model as simple as possible, we also assume that Δt is small
enough so that during that time period the number of infected subjects can change
for one at most, i.e., there are three possible state changes:

i → i + 1, i → i − 1 or i → i.

Now the transition probabilities are given by:

pij (Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β i (N − i) Δt, j = i + 1

(μ + α) i Δt, j = i − 1

1 − [βi(N − i) + (μ + α)i]Δt, j = i

0, otherwise

(8.14)

If we set bi := βi(N − i) and di := (μ + α)i we obtain:

pij (Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

biΔt, j = i + 1

diΔt, j = i − 1

1 − [bi + di]Δt, j = i

0, otherwise

(8.15)
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Note that Δt has to be small enough to provide that pij ∈ [0, 1]. Therefore, the
following must hold:

max
i∈{1,...,N}{(bi + di)Δt} ≤ 1.

Using the transition probabilities from (8.15) one can determine the probability
that there are i infected subjects at time t + Δt:

p(t+Δt) = pi−1(t)bi−1Δt+pi+1(t)di+1Δt+pi(t) (1 − [bi + di]Δt) , i = 1, . . . , N.

Finally, although we will not prove it here, let us mention that for expected
number of infected subjects the following holds:

E (I (t + Δt)) = E(I (t)) + [βN − (μ + α)]E(I (t))Δt − βE(I 2(t))Δt.

Using the fact that E(I 2(t)) ≥ E2(I (t)) and letting Δt → 0 one obtains that

dE(I (t))

dt
≤ β [N − E(I (t))]E(I (t)) − (μ + α)E(I (t)). (8.16)

8.3.2 A Note on Stochastic Differential Equation for SIS Model

Here we introduce and just briefly describe the stochastic differential equation for
SIS model. For details we refer the reader to [5].

As already mentioned, for the SIS model Eq. (8.13) holds. This equation can be
written as

dI (t) = β (N − I (t)) I (t)dt − (μ + α) I (t)dt. (8.17)

Consider the first summand in the sum above: β (N − I (t)) I (t)dt = βS(t)I (t)dt .
It represents the number of the newly infected individuals in the time interval od
the length dt . If we make a reasonable assumption that β is actually the random
variable and that instead of βdt in (8.17) one can write βdt + σdW(t), where
W(t) is standard Brownian motion (Wiener process), then we obtain a stochastic
differential equation:

dI (t) = I (t) ([β(N − I (t)) − (μ + α)] dt + σ (N − I (t)) dW(t)) . (8.18)

One can prove the following: IfRS
0 = R0− σ 2N2

2(μ + α)
= βN

μ + α
− σ 2N2

2(μ + α)
< 1

and σ 2 ≤ β
N
then, for every initial data I (0) ∈ (0, N), the solution I (t) to stochastic
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differential equation (8.18) exponentially tends to zero, almost surely. In another
words, the disease vanishes with probability 1.

8.3.3 A Poisson Process Model for Tracking the Number
of HIV Infections

We present a very simple Poisson process model for tracking the number of HIV
infections, as done in [6].

One of many difficulties with HIV infection is the fact that the incubation period
is relatively long. So, there may be many individuals who are infected with the
virus but still not showing the symptoms. The following model is a very simple
approximation model that helps obtaining a rough estimate of the number of such
individuals.

In this model we assume that

• HIV infections appear in accordance with a Poisson process with unknown rate
λ,

• the time from the moment when an individual becomes infected until symptoms
of the disease appear is a random variable that has a known distribution G,

• the incubation periods of different infected individuals are independent.

Let N1(t) denotes the number of individuals who have shown symptoms of the
disease by time t and N2(t) denotes the number of individuals who are HIV positive
but still don’t show any symptoms of the disease by time t .

Since a subject who gets infected at time s will have symptoms by time t with
probabilityG(t −s) and will not with probability 1−G(t −s) = Ḡ(t −s), it follows
that N1(t) and N2(t) are independent Poisson random variables with means

E(N1(t)) = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y) dy,

E(N2(t)) = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy.

Since λ is unknown, we must estimate it. Suppose that we have reliable records and
that we know how many individuals are ill by time t . Denote that number by n1.
Then we can estimate that

n1 ≈ E(N1(t)) = λ

∫ t

0
Ḡ(y) dy.
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So, we can estimate λ by λ̃ given by

λ̃ = n1∫ t

0 G(y) dy
.

Using this estimation of λ, we can estimate the number of infected individuals with
no symptoms at all at time t by

Ñ2(t) = λ̃

∫ t

0
Ḡ(y) dy = n1

∫ t

0 Ḡ(y) dy∫ t

0 G(y) dy
.

If, for example, G is exponential with mean μ, then Ḡ(y) = e
− y

μ , and

Ñ2(t) = n1μ(1 − e
− t

μ )

t − μ(1 − e
− t

μ )
.

In [6] Ross gives the following concrete example based on the previous assumptions
and calculations: If we suppose that t = 16 years, μ = 10 years, and n1 = 220,000,
then the estimation of the number of infected but symptomless individuals at time
16 is

Ñ2(16) = 220 · 10(1 − e−1.6)

16 − 10(1 − e−1.6)
= 218.96.

So, if the incubation period is exponential with mean 10 years and if the total number
of individuals who have AIDS symptoms during the first 16 years of the epidemic
is 220,000, then we can expect that approximately 219,000 individuals are HIV
positive but with no symptoms at time 16.

So, the model above can be used for getting a rough estimation of number of HIV
infections. However, the assumption that the infection rate λ is a constant is not very
realistic. It would be much better to use an infection rate that changes over time.
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