
Chapter 7
Optimal Heating of an Indoor Swimming
Pool

Monika Wolfmayr

7.1 Introduction

Modeling the heating of an object is an important task in many applicational
problems. Moreover, a matter of particular interest is to find the optimal heating of
an object such that it has a desired temperature distribution after some given time.
In order to formulate such optimal control problems and to solve them, a cost func-
tional subject to a time-dependent partial differential equation (PDE) is derived. One
of the profoundworks paving the way for PDE-constrained optimization’s relevance
in research and application during the last couple of decades is Lion’s work [9] from
1971. Some recent publishedmonographs discussing PDE-constrained optimization
as well as various efficient computational methods for solving them are, e.g., [1, 6],
and [11], where the latter one is used as basis for the discussion on solving the
optimal heating problem of this work.

The goal of this work is to derive a simple mathematical model for finding the
optimal heating of the air in a glass dome represented by a half sphere, where a
swimming pool is located in the bottom of the dome and the heat sources (or heaters)
are situated on a part of the boundary of the glass dome. The process from the model
to the final numerical simulations usually involves several steps. The main steps in
this work are the setting up of the mathematical model for the physical problem,
obtaining some analytical results of the problem, presenting a proper discretization
for the continuous problem and finally computing the numerical solution of the
problem. The parabolic optimal control problem is discretized by the finite element
method in space, and in time, we use the implicit Euler method for performing
the time stepping. The used solution algorithm for the discretized problem is the
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projected gradient method, which is for instance applied in [5] as well as in more
detail discussed in [4, 6, 8, 10].

We want to emphasize that the model and the presented optimization methods for
the heating process of this work are only one example for a possible modeling and
solution. In fact, the stated model problem has potential for many modeling tasks for
students and researchers. For instance, different material parameters for the dome
as well as for air and water could be studied more carefully. The optimal modeling
of the heat sources could be stated as a shape optimization problem or instead of
optimizing the temperature of the air in the glass dome, one could optimize the
water temperature. This would correspond to a final desired temperature distribution
corresponding to the boundary of the glass dome, where the swimming pool is
located, for the optimal control problem. Another task for the students could be
to compute many simulations with, e.g., Matlab’s pdeModeler to derive a better
understanding of the problem in the pre-phase of studying the problem of this work.
However, we only want to mention here a few other possibilities for modeling,
studying and solving an optimal heating problem amongst many other tasks, and
we are not focusing on them in the work presented here.

This article is organized as follows: First, the model of the heating process
is formulated in Sect. 7.2. Next, Sect. 7.3 introduces the optimal control problem,
which describes the optimal heating of the glass dome such that the desired
temperature distribution is attained after a given time. In Sect. 7.4, proper function
spaces are presented in order to discuss existence and uniqueness of the optimal
control problem. We derive the reduced optimization problem in Sect. 7.5 before
discussing its discretization and the numerical method for solving it, the projected
gradient method, in more detail in Sect. 7.6. Numerical results are presented as well
as conclusions are drawn in final Sect. 7.7.

7.2 Modeling

This section presents the modeling process. The physical problem is described in
terms of mathematical language, which includes formulating an initial version of
the problem, but then simplifying it in order to derive a version of the problem
which is easier to solve. However, at the same time, the problem has to be kept
accurate enough in order to compute an approximate solution being close enough
to the original solution. That is exactly one of the major goals of mathematical
modeling. In the following, we introduce the domain describing the glass dome,
where an indoor swimming pool is located in the bottom of the dome, and the
position of the heaters. The concrete equations describing the process of heating and
the cost functional subject to them modeling the optimization task are discussed in
next Sect. 7.3.

We have an indoor swimming pool which is located under a glass dome. For
simplicity, it is assumed that we have an isolated system in the glass dome, so no
heat can leak from the domain. The swimming pool covers the floor of the glass
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Fig. 7.1 The domain Ω

reduced from 3d to 2d due to
symmetry properties
describing the glass dome and
its heaters placed at the
ground of the glass dome next
to the floor, hence subdividing
the boundary Γ = ∂Ω into
four parts Γ1, Γ2, Γ3 and Γ4

dome and we assume that the heaters are placed next to the floor up on the glass
all around the dome. The target of the minimization functional is to reach a desired
temperature distribution at the end of a given time interval (0, T ), where T > 0
denotes the final time, with the least possible cost.

Due to the symmetry properties of the geometry as well as the uniform
distribution of the water temperature, we reduce the three dimensional (3d) problem
to a two dimensional (2d) one. The dimension reduction makes the numerical
computations more simple. In the following, the 2d domain is denoted by Ω and
its boundary by Γ = ∂Ω . We assume that Ω ⊂ R

2 is a bounded Lipschitz domain.
We subdivide its boundary Γ into four parts: the glass part Γ1, the floor which is the
swimming pool Γ2 and the heaters Γ3 and Γ4. The domain Ω and its boundaries are
illustrated in Fig. 7.1.

7.3 Optimal Control Problem

In this section, the optimal control problem is formulated, where an optimal control
function u has to be obtained corresponding to the heating of the heat sources on
the boundary ΓR := Γ3 ∪ Γ4 such that the state y reaches a desired temperature
distribution yd after a given time T . This problem can be formulated in terms of a
PDE-constrained optimization problem, which means minimizing a cost functional
subject to a PDE and with u being the control function.

Let QT := Ω × (0, T ) denote the space-time cylinder with the lateral surface
Σ := Γ × (0, T ), where T > 0 denotes the final time. The optimal control problem
is given as follows:

min
(y,u)

J (y, u) = 1

2

∫
Ω

(y(x, T ) − yd(x))2 dx + λ

2

∫ T

0

∫
ΓR

u(x, t)2 ds dt (7.1)

such that

yt − �y = 0 in QT := Ω × (0, T ), (7.2)

∂y

∂n
= 0 on Σ1 := Γ1 × (0, T ), (7.3)
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y = g on Σ2 := Γ2 × (0, T ), (7.4)

∂y

∂n
+ αy = βu on ΣR := ΓR × (0, T ), (7.5)

y(0) = y0 in Ω, (7.6)

where g is the given constant water temperature, λ ≥ 0 is the cost coefficient or
control parameter, and α and β are constants describing the heat transfer, which are
modeling parameters and have to be chosen carefully. The control u denotes the
radiator heating, which has to be chosen within a certain temperature range. Hence,
we choose the control functions from the following set of admissible controls:

u ∈ Uad = {v ∈ L2(ΣR) : ua(x, t) ≤ u(x, t) ≤ ub(x, t) a.e. on ΣR}, (7.7)

which means that u has to fulfill so called box constraints. Equations (7.3)–
(7.5) are called Neumann, Dirichlet and Robin boundary conditions, respectively.
Equation (7.3) characterizes a no-flux condition in normal direction. Equation (7.4)
describes a constant temperature distribution. Regarding Eq. (7.5), α = β would be
a reasonable choice from the physical point of view because this would mean that
the temperature increase at this part of the boundary is proportional to the difference
between the temperature there and outside. However, a decoupling of the parameters
makes sense too, see [11], and does not change anything for the actual discussion
and computations, since α = β could be chosen at any point.

The goal is to find the optimal set of state and control (y, u) such that the cost is
minimal.

7.4 Existence and Uniqueness

In this section, we discuss some basic results on the existence and uniqueness of
the parabolic initial-boundary value problem (7.2)–(7.6), whereas we exclude the
details. They can be found in [11]. We first introduce proper function spaces leading
to a setting, where existence and uniqueness of the solution can be proved.

Definition 7.1 The normed space W
1,0
2 (QT ) is defined as follows

W
1,0
2 (QT ) = {y ∈ L2(QT ) : Diy ∈ L2(QT ) ∀i = 1, . . . , d} (7.8)

with the norm

‖y‖
W

1,0
2 (QT )

=
(∫ T

0

∫
Ω

(|y(x, t)|2 + |∇y(x, t)|2) dx dt

)1/2

, (7.9)
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where Diy denotes the spatial derivative of y in i-direction and d is the spatial
dimension.

For the model problem of this work, the dimension is d = 2. In the following, let
{V, ‖ · ‖V } be a real Banach space. More precisely, we will consider V = H 1(Ω)

in this work.

Definition 7.2 The space Lp(0, T ; V ), 1 ≤ p < ∞, denotes the linear space of all
equivalence classes of measurable vector valued functions y : [0, T ] → V such that

∫ T

0
‖y(t)‖p

V dt < ∞. (7.10)

The space Lp(0, T ; V ) is a Banach space with respect to the norm

‖y‖Lp(0,T ;V ) :=
(∫ T

0
‖y(t)‖p

V dt

)1/p

. (7.11)

Definition 7.3 The space W(0, T ) = {y ∈ L2(0, T ; V ) : y ′ ∈ L2(0, T ; V ∗)} is
equipped with the norm

‖y‖W(0,T ) =
(∫ T

0
(|y(t)|2V + |y ′(t)|2V ∗) dt

)1/2

. (7.12)

It is a Hilbert space with the scalar product

(u,w)W(0,T ) =
∫ T

0
(u(t), w(t))V dt +

∫ T

0
(u′(t), w′(t))V ∗ dt. (7.13)

The relation V ⊂ H = H ∗ ⊂ V ∗ is called a Gelfand or evolution triple and
describes a chain of dense and continuous embeddings.

The problem (7.2)–(7.6) has a unique weak solution y ∈ W
1,0
2 (QT ) for a given

u ∈ Uad. Moreover, the solution depends continuously on the data, which means
that there exists a constant c > 0 being independent of u, g and y0 such that

max
t∈[0,T ] ‖y(·, t)‖L2(Ω) + ‖y‖

W
1,0
2 (QT )

≤ c(‖u‖L2(ΣR) + ‖g‖L2(Σ2)
+ ‖y0‖L2(Ω))

(7.14)

for all u ∈ L2(ΣR), g ∈ L2(Σ2) and y0 ∈ L2(Ω). Hence, problem (7.2)–(7.6)
is well-posed in W

1,0
2 (QT ). Furthermore, since y ∈ W

1,0
2 (QT ) and it is a weak

solution of problem (7.2)–(7.6), y also belongs to W(0, T ). The following estimate
holds:

‖y‖W(0,T ) ≤ c̃(‖u‖L2(ΣR) + ‖g‖L2(Σ2)
+ ‖y0‖L2(Ω)) (7.15)
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for some constant c̃ > 0 being independent of u, g and y0. Hence, problem (7.2)–
(7.6) is also well-posed in the space W(0, T ).

Note that the Neumann boundary conditions on Γ1 are included in both estimates
(7.14) and (7.15) related to the well-posedness of the problem (as discussed in [11]).
However, the Neumann boundary conditions (7.3) are equal to zero.

Under the assumptions that Ω ⊂ R
2 is a bounded Lipschitz domain with

boundary Γ , λ ≥ 0 is a fixed constant, yd ∈ L2(QT ), α, β ∈ L∞(ΣR), and
ua, ub ∈ L2(ΣR) with ua ≤ ub a.e. on ΣR , together with the existence and
uniqueness result on the parabolic initial-boundary value problem (7.2)–(7.6) in
W(0, T ), the optimal control problem (7.1)–(7.7) has at least one optimal control
ū ∈ Uad. In case of λ > 0 the optimal control ū is uniquely determined.

7.5 Reduced Optimization Problem

In order to solve the optimal control problem (7.1)–(7.7), we derive the so called
reduced optimization problem first.

Since the problem is well-posed as discussed in the previous section, we can
formally eliminate the state equation (7.2)–(7.6) and the minimization problem
reads as follows

min
u

J̄ (u) = 1

2

∫
Ω

(yu(x, T ) − yd(x))2 dx + λ

2

∫ T

0

∫
ΓR

u(x, t)2 ds dt (7.16)

such that (7.7) is satisfied. The problem (7.16) is called reduced optimization
problem. Formally, the function yu denotes that the state function is depending
on u. However, for simplicity we can set again yu = y. In order to solve the
problem (7.16), we apply the projected gradient method. The gradient of J̄ has to
be calculated by deriving the adjoint problem which is given by

−pt − �p = 0 in QT , (7.17)

∂p

∂n
= 0 on Σ1, (7.18)

p = 0 on Σ2, (7.19)

∂p

∂n
+ αp = 0 on ΣR, (7.20)

p(T ) = y(T ) − yd in Ω. (7.21)

The gradient of J̄ is given by

∇J̄ (u(x, t)) = βχΓRp(x, T − t) + λu(x, t) (7.22)
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with χΓR denoting the characteristic function on ΓR . The projected gradient method
can be now applied for computing the solution of the PDE-constrained optimization
problem (7.1)–(7.7). We denote by

P[ua,ub](u) = max{ua,min{ub, u}} (7.23)

the projection onto the set of admissible controls Uad.
Now putting everything together, the optimality system for (7.1)–(7.7) and a

given λ > 0 reads as follows

yt − �y = 0 − pt − �p = 0 in QT ,

∂y

∂n
= 0

∂p

∂n
= 0 on Σ1,

y = g p = 0 on Σ2,

∂y

∂n
+ αy = βu

∂p

∂n
+ αp = 0 on ΣR,

y(0) = y0 p(T ) = y(T ) − yd in Ω,

u =P[ua,ub](−
1

λ
βp).

(7.24)

In case that λ = 0, the projection formula changes to

u(x, t) = ua(x, t), if β(x, t)p(x, t) > 0,

u(x, t) = ub(x, t), if β(x, t)p(x, t) < 0.
(7.25)

Remark 7.1 In case that there are no control constraints imposed, the projection
formula simplifies to u = −λ−1βp.

7.6 Discretization and Numerical Method

In order to numerically solve the optimal control problem (7.1)–(7.7), which is
equivalent to solving (7.24), we discretize the heat equation in space by the finite
element method and in time. We use the implicit Euler method for performing the
time stepping.

We approximate the functions y, u and p by finite element functions yh, uh and
ph from the conforming finite element space Vh = span{ϕ1, . . . , ϕn} with the basis
functions {ϕi(x) : i = 1, 2, . . . , nh}, where h denotes the discretization parameter
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with n = nh = dimVh = O(h−2). We use standard, continuous, piecewise
linear finite elements and a regular triangulation Th to construct the finite element
space Vh. For more information, we refer the reader to [3] as well as to the newer
publications [2, 7]. Discretizing problem (7.24) by computing its weak formulations
and then inserting the finite element approximations for discretizing in space leads
to the following discrete formulation:

Mhyh,t
+ Khyh

+ αM
ΓR

h y
h

= βM
ΓR

h uh, y
h
(0) = y0, (7.26)

−Mhph,t
+ Khph

+ αM
ΓR

h p
h

= 0, p
h
(T ) = y

h
(T ) − yd, (7.27)

together with the projection formula

uh = P[ua,ub](−
1

λ
βp

h
) (7.28)

for λ > 0. The problem (7.26)–(7.28) has to be solved with respect to the nodal
parameter vectors

y
h

= (yh,i)i=1,...,n, uh = (uh,i )i=1,...,n, p
h

= (ph,i )i=1,...,n ∈ R
n

of the finite element approximations yh(x) = ∑n
i=1 yh,iϕi(x), uh(x) =∑n

i=1 uh,iϕi(x) and ph(x) = ∑n
i=1 ph,iϕi(x). The values for y

h
are set to g

in the nodal values on the boundary Γ2 and the problems are solved only for the
degrees of freedom. The matrices Mh, M

ΓR

h and Kh denote the mass matrix, the
mass matrix corresponding only to the Robin boundary ΓR and the stiffness matrix,
respectively. The entries of the mass and stiffness matrices are defined by the
integrals

M
ij
h =

∫
Ω

ϕiϕj dx, K
ij
h =

∫
Ω

∇ϕi · ∇ϕj dx.

For the time stepping we use the implicit Euler method. After implementing the
finite element discretization and the Euler scheme, we apply the following steps of
the projected gradient method:

1. For k = 0, choose an initial guess u0h satisfying the box constraints ua ≤ u0h ≤
ub.

2. Solve the discrete forward problem (7.26) corresponding to (7.2)–(7.6) in order
to compute yk

h.
3. Solve the discrete backward problem (7.27) corresponding to (7.17)–(7.21) in

order to obtain pk
h.

4. Evaluate the descent direction of the discrete gradient

dk = −∇J̄ (uk
h) = −(βχΓRpk

h + λuk
h). (7.29)
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5. Set uk+1
h = P[ua,ub](uk

h + γ kdk) and go to step 2 unless stopping criteria are
fulfilled.

Remark 7.2 For a first implementation, the step length γ = γ k can be chosen
constant for all k. However, a better performance is achieved by applying a line
search strategy as for instance the Armijo or Wolfe conditions to obtain the best
possible γ k in every iteration step k. We refer the reader to the methods discussed
for instance in [5]. However, these strategies are not subject to the present work.

7.7 Numerical Results and Conclusions

In this section, we present numerical results for solving the type of model optimiza-
tion problem discussed in this article and draw some conclusions in the end. The
numerical experiments were computed in Matlab. The meshes were precomputed
with Matlab’s pdeModeler. The finite element approximation and time stepping
as well as the projected gradient algorithm were implemented according to the
discussions in the previous two sections.

In Fig. 7.2, the nodes corresponding to the interior nodes (‘g.’), the Neumann
boundary Γ1 (‘kd’), the Dirichlet boundary Γ2 (‘bs’) and the Robin boundary ΓR

(‘r*’) are illustrated.
In the numerical experiments, we choose the following given data: the water

temperature g = 20, the parameters α = β = 102, the final time T = 1, the box
constraints ua = 20 and ub = 60, the desired final temperature yd = 30 and the
initial value y0 = 0 satisfying the boundary conditions. For the step lengths γ k

of the projected gradient algorithm, we choose the golden ratio γ k = γ = 1.618
constant for all iteration steps k. The stopping criteria include that the norm of the
errors ek+1 := ‖uk+1

h − uk
h‖/‖uk

h‖ < ε1 or |ek+1 − ek| < ε2 with ε1 = 10−1 and
ε2 = 10−2 have to be fulfilled as well as setting a maximum number of iteration
steps kmax = 20 with k < kmax.

In the first numerical experiment, we choose a fixed value for the cost coef-
ficient λ = 10−2 and compute the solution for different mesh sizes n ∈
{76, 275, 1045, 4073, 16081}. Table 7.1 presents the number of iterations needed
until the stopping criteria were satisfied, for different mesh sizes and time steps.
The number of time steps was chosen corresponding to the mesh size in order to
guarantee that the CFL (Courant-Friedrichs-Lewy) condition is fulfilled.

In the set of Figs. 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8, the approximate solutions yh

defined in Matlab as y are presented for the final time t = T = 1 computed on the
different meshes including one figure, Fig. 7.6, presenting the adjoint state p for the
mesh with 1045 nodes. We present only one figure for the adjoint state, since for
other mesh sizes the plots looked similar.

In the second set of numerical experiments, we compute solutions for different
cost coefficients λ on two different grids: one with mesh size n = 275 and 250 time
steps, and another one with mesh size n = 1045 and 1000 time steps. The numerical
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Fig. 7.2 The nodes marked corresponding to different boundaries and the interior of the domain
Ω on a mesh with 4073 nodes

Table 7.1 Number of
iterations needed to satisfy
the stopping criteria for
different mesh sizes and
numbers of time steps for a
fixed cost coefficient
λ = 10−2

Mesh size Time steps Iteration steps

76 125 7

275 250 5

1045 1000 19

4073 4000 19

16,081 16,000 4

results including the number of iteration steps needed are presented in Table 7.2. It
can be observed that the numbers of iteration steps for the first case (275/250) are
all very similar for different values of λ, even for the lower ones. In the second
case (1045/1000), the numbers of iteration steps are getting higher the lower the
values of λ. However, the results are satisfactory for these cases too. As example
the approximate solution y for the final time t = T = 1 computed for λ = 10−4

is presented in Fig. 7.9. The approximate solution for λ = 10−2 has already been
presented in Fig. 7.5.

The results of Tables 7.1 and 7.2 were included as example how one can
perform different tables for different parameter values or combinations. Students or
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Fig. 7.3 The approximate solution y for final time t = T = 1 on a mesh with 76 nodes

Fig. 7.4 The approximate solution y for final time t = T = 1 on a mesh with 275 nodes
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Fig. 7.5 The approximate solution y for final time t = T = 1 on a mesh with 1045 nodes

Fig. 7.6 The approximate adjoint state p for time t = 0 on a mesh with 1045 nodes
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Fig. 7.7 The approximate solution y for final time t = T = 1 on a mesh with 4073 nodes

Fig. 7.8 The approximate solution y for final time t = T = 1 on a mesh with 16,081 nodes
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Table 7.2 Number of iterations needed to satisfy the stopping criteria for different cost coeffi-
cients λ ∈ {10−4, 10−2, 1, 102, 104} on grids with mesh sizes n = 275 and n = 1045 with 250 and
1000 time steps, respectively

λ Iteration steps (275/250) Iteration steps (1045/1000)

10−4 5 19

10−2 5 19

1 7 19

102 4 4

104 4 4

Fig. 7.9 The approximate solution y for final time t = T = 1 on a mesh with 1045 nodes for the
value λ = 10−4

researchers could compute exactly these different kinds of numerical experiments
in order to study the practical performance of the optimization problem.

After presenting the numerical results, we have to mention again that the step
length γ = γ k of the projected gradient method has been chosen constant for
all k in all computations. However, better results should be achieved by applying
a suitable line search strategy, see Remark 7.2. With this we want to conclude
that the optimal control problem discussed in this work is one model formulation
for solving the optimization of heating a domain such as the air of a swimming
pool area surrounded by a glass dome. Modeling and solving the optimal heating
of a swimming pool area has potential for many different formulations related to
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mathematicalmodeling, discussing different solutionmethods and performingmany
numerical tests including “playing around” with different values for the parameters,
constants and given functions, and finally choosing proper ones for the model
problem. All of these tasks can be performed by students depending also on their
previous knowledge, interests and ideas.
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