
Chapter 4
Nuclear Accidents: How Can
Mathematicians Help to Save Lives?

Simone Göttlich

4.1 Introduction

The description of real-life problems by using mathematical modeling techniques
enables the simulation and optimization of complex systems. In the present case
study, this is the investigation of an evacuation process caused by a nuclear accident.
To build up a real scenario and to work with data freely available, the problem was
restricted to one of Germany’s largest nuclear power plant located in Biblis (south-
west of Germany) that has been closed in 2011 after the Fukushima accident.

The modeling includes a combined model to tackle the evacuation of people from
a designated area and the spread of a radioactive cloud. From a mathematical point
of view, this means to deal with flows on graphs and the approximation of travel
times. Furthermore, knowledge on diffusion-advection equations is needed for the
evolution of nuclear material over time and space. However, the main challenge is
the combination of both approaches into an integrated framework, i.e., to set up an
evacuation plan that is dependent on the current spread of radioactivity.

Within this contribution, a successful modelling approach is introduced which
has been worked out by eight students during the 23-th ECMI Modelling Week 2010
in Milan/Italy. The major subject of all students was related to applied mathematics.
Due to the ECMI Modelling Week philosophy, the students came from different
European universities so that the conversations were exclusively in English.
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Fig. 4.1 Evacuation zones around Biblis (Germany) on the left and zoom into sector 1 on the right

4.1.1 Problem Description

A radiation accident is defined by the International Atomic Energy Agency1 as “an
event that has led to significant consequences to people, the environment or the
facility. Examples include lethal effects to individuals, large radioactivity release to
the environment, or reactor core melt.” The worst-case scenario of a major nuclear
accident is one in which a reactor core is damaged and large amounts of radiation are
released, such as in the Chernobyl Disaster in 1986, or more recently, the Fukushima
nuclear power plant accident in March 2011. So there is definitely a strong need for
a fast and most of all safe evacuation, even nowadays.

For the description of a concrete scenario, we focus on the surrounding area of
the Biblis power plant, see left picture in Fig. 4.1.

The picture is taken from the official emergency protection that is still available.2

As we can see the immediate neighborhood is mainly divided into three zones:
the central zone (radius of 1.5–2 km), the middle zone (radius of 10 km) and the
outer zone (radius of 25 km). The zones are again arranged into 12 sectors to meet
geographical restrictions, see right picture in Fig. 4.1.

A rough estimate on the number of inhabitants in the entire outer zone is given
by 1.4 million people in 2010, see right picture in Fig. 4.2. Most of the people live
in sectors 6–12, i.e. on the right side on the river Rhine, including cities such as
Darmstadt, Mannheim or Ludwigshafen. However, this area can be only evacuated
in the direction north or south since there is a mountain region in the east. The
evacuation on the left side of the river is open to all directions (except east). The

1https://www.iaea.org.
2https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-
biblis.

https://www.iaea.org
https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-biblis
https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-biblis
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Fig. 4.2 Road network around Biblis with safety points in red (left) and estimates on the number
of inhabitants per sector (right)

safety points for all sectors are seven cities outside the outer zone marked in red, see
left picture3 in Fig. 4.2.

A further idea of an evacuation plan is also to identify bottlenecks due to the given
road network, see again Fig. 4.2. The critical area could be separated into two parts,
east and west, where several highways are available. The main roads east of the
river are A67, A5, B3, B44 and B47, where the prefix A denotes a German highway
(average speed 130 km/h) and B a federal road (average speed 100 km/h). On the
west of the river we have the roads A61, A63, A6 and B9. In the special case of
Biblis, there are seven cities considered as safety points, namely Frankfurt, Mainz,
Daxweiler, Kaiserslautern, Schweigen-Rechtenbach, Stettfeld and Aschaffenburg.
We note that people should avoid traversing the road B9 since it is close to the
Biblis power plant and might be massive congested.

Another important information is that the wind direction is usually (more than
70%) from west to east meaning that most of the radiation is spread towards the
hilly region called Odenwald. Summarizing, an evacuation can be only carried out
in north, south or west direction. This is an important aspect while rerouting the
people to the safety points.

In the following, we present and comment on the key ideas of the group to solve
the evacuation problem. We introduce mathematical models, solution methods and
numerical simulations that might help to set up a reasonable evacuation plan. Several
assumptions are needed to emphasize on features such as traffic congestion, people’s
behavior in case of panic and weather influences.

3https://www.falk.de.

https://www.falk.de
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4.2 Solution of the Problem Provided by the Group

The proposed solution approach can be mainly divided into three parts: the
mathematical description of the evacuation process, the propagation of nuclear
material and the combination of both.

As we have seen the evacuation model is influenced by predefined properties
such as geographical restrictions, local infrastructure, road capacities and popula-
tion densities. However, other modelling inputs as for instance individual human
behavior or weather conditions are harder to predict.

In order to scale down the problem the following assumptions and simplifications
have been suggested:

• The evacuation is considered by cars on highways or dederal roads, where each
car drives at the maximum speed allowed.

• Accidents may occur and lead to a certain delay factor.
• The radioactive cloud is assumed to be homogeneous and the spread is only

driven by the wind.

For the modelling of the people’s behaviour, a kind of network model was
applied to give each individual certain attributes and to include the spread of
radiation later on. In contrast, the radioactive cloud was modelled using a diffusion-
advection equation in two space dimensions that could be solved by standard
numerical methods. After modelling these two parts separately, a combined model
was introduced to find an evacuation plan which is as safe and smoothly as possible
according to the radiation spread.

4.2.1 Modelling of the Evacuation Process

Biblis is connected to its surrounding towns and safety points by several highways,
see Fig. 4.2. These towns, safety points and highways are modelled as a network or
graph, respectively. As described by Bondy and Murty[2], a graph G is an ordered
pair (V (G),E(G)) consisting of a set of vertices V (G) and a set of edges E(G). If
u, v ∈ V (G), then an edge connecting both vertices is denoted as e = uv ∈ E(G).
A path is a sequence of vertices such that from each of its vertices there is an edge
to the next vertex in the sequence. A path has a start vertex, an end vertex, but no
repeated vertices and edges.

This means from an application point of view:

• V is the set of towns in 25 km radius Biblis area,
• E is the set of type A and B roads considered in the evacuation network,
• p is a set of cars, each transporting 5 people,
• S(p) = v ∈ V is the safety point of p,
• L(p, t) is the location of car p at time t .
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Then, the aim is to find the shortest paths between cars and the nearest safety
point, i.e. min ||L(p, t) − S(p)||. The dynamics between different towns or on a
certain path is driven by the people’s behavior and the resulting consequences. This
is explained in details in the next subsections on the initialization of the evacuation
and the network dynamics.

4.2.2 Initialization of Evacuation Process

In the sense of an initialization of the problem, a delay factor is introduced to model
the time that is needed to leave a town and enter the road network. In the given
model, to each “individual” p (i.e. a car) there is an attributed delay factor that can
be written as

Dp = Dglobal + Dindividual,

where Dglobal is a global delay factor describing the information spread over the
media. From the viewpoint of an individual, it is the difference of time between
the nuclear accident and the first moment when the individual might get the media
information. The global delay factor has been estimated as

Dglobal = 30 min = 360 T imeUnits,

where 1 T imeUnit = 5 s.
The second delay factorDindividual is an individual-based factor and describes

the time needed by each individual before to reach the highway and enter the given
road network. Considering the whole set of individuals for a certain town, the goal
of the Dindividual-modeling is to obtain a distribution describing the amount of cars
arriving per TimeUnit at the local highway. Therefore the two factors size of the
town, i.e. the number of inhabitants and the individual-based panic factor contribute
to this modelling and are now explained in more detail:

1. each car has an attributed panic factor. This factor is sampled from a distribution
of panic factors P(cars):

P(cars) ∼
{

N (0, 0.5) for a calm population,

1 − N (0, 0.5) for a panicked population.

Taking into consideration only the absolute values of the samples, the panic
factors are pind ∈ [0, 1], where

pind =
{

low panic factor, direct movement if pind ≤ 0.5,

high panic factor, indirect movement if pind > 0.5.
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2. All towns have a circular shape and a similar population density that is 500
people per km2. Each town has a sufficient number of highway exits at the border
of the town, so cars can therefore go straightforward along the radius of a town
and reach a highway. The number of cars arriving in the network model per
TimeUnit is the sum of cars reaching all highways per TimeUnit. The 2D-model
can be therefore interpreted as a 1D-model, see Fig. 4.3.

3. People with direct movement (pind ≤ 0.5) move the slower the higher the panic
factor. The movement of people with indirect movement (pind > 0.5) becomes
more random with rising panic factor.

Individuals move in-between the center of the city X0 = 0 and the highways at
the border of the town Xend = r . This r denotes the radius of the town and it can be
calculated using the given inhabitants and population density in the city as

r =
√

inhabitants

500π
.

The considered time grid is given by discrete time steps t0, . . . , tk = t0 +k ·Δt with
Δt = 5 s. At time t0, the individuals are distributed as a N (0, 0.4). Their position
denotes the distance to the city center. The direct movement of an individual can be
then defined as

Xtk = Xtk−1 + ΔX =
{

Xtk−1 + dir · (1 − pind) low panic factor,

Xtk−1 + dir · (1 − pind) high panic factor,

with

dir =
{

2.5 low panic factor,

U [−1, 2.5] high panic factor.

This means that individuals with a low panic factor move directly with a panic-factor
scaled velocity of maximal 30 km/h while individuals with a high panic factor may
obtain negative velocities, i.e. they move towards the center and away from the
highways.

4.2.3 Dynamics on Road Network

There are a few assumptions necessary to describe the movement of cars through
the road network such that every car tries to reach its safety point as fast as possible,
i.e.

• every driver knows its safety point,
• if a car reaches the safety point, it will be considered safe,
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Fig. 4.3 Modeling the individual local delay factor for a single example town. (a) Schematic 2D-
representation of an idealized town: in yellow the assumed continuous distribution of highways at
the border of the town (X = r). Five individuals are placed randomly in a certain distance X to the
city center X0 and their moving direction is denoted. (b) Reduction to a 1D-model: all highways
of the town count in a sum at the border of the town. For better visibility, individuals are labeled.
(c) Different panic factors: percentage of new arrivals at the highway per time unit for the example
town with 100,000 inhabitants. For a calm population, there are move arrivals after few time-steps.
A panic real population needs more time to find the highways due to the loss of orientation
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• every driver has basic knowledge of the roads in the area,
• every driver reconsiders his/her route only at the vertices of the graph,
• every driver has knowledge on the traffic situation in front.

Mathematically, the perceived distance to the safety point can be calculated as

∑
i,j∈P

Dij

v̂ij

,

where P is a path from the current node to the safety point, i and j are vertices on
the graph G, Dij is the distance between vertex i and vertex j along the edge ij and
v̂ij is the estimated velocity on the edge.

A path-finding algorithm is needed to compute the routes between the multiple
vertices. One commonly used algorithm for finding the shortest route through a
graph is the A* search algorithm, as described by Nilsson et al. [6]. A* is a best-first
search algorithm, which uses a heuristic cost function to find the shortest path to
destination.

Furthermore, the traveling speed v̂ij on a given edge from vertex i to j is
determined by:

ρ = Pij

200wijDij

and ρcrit = 0.125(
1 + αAij

) ,

where Pij is the amount of people on the road, wij the amount of lanes, Aij the
amount of accidents happened on this road and α an experimental constant. Then,
vmaxij is the maximum speed on the road and determined by

v̂ij = vmaxij , when ρ < ρcrit ,

v̂ij =
(

1 − ρ2
ij

)
vmaxij , when ρ ≥ ρcrit .

This represents a typical behavior of traveling speed, where on an empty road full
speed is possible until ρ exceeds a threshold value ρcrit and the speed drops down.
Note that also the road capacity is reduced when accidents occur.

4.2.3.1 Modeling Car Accidents

Given the car density on each highway and the speed of the individuals, a simplified
model for the number of accidents implies that the maximum speed of cars is thereby
reduced.

Doing so, the minimal safety distance is given by a certain speed v of all
individuals on a highway as

xmin = v/2.
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However, the actual distance depends on the car density ρ ∈ [0, 1] on each
highway. Remember that the density counts the number of 5 m-long cars on a piece
of 1 km of the highway. A density of 100% means therefore that 200 cars are on the
highway without any distance in-between them. So the space sp (ρ) in-between two
5 m-long cars given a density ρ can be computed as:

carsρ = 200 · ρand sp (cars) = 1000

cars
− 5.

If the actual space is smaller than the minimum safety distance (sp (ρ) < xmin)
then there are accidents occurring.

4.2.4 Modeling of the Radioactive Cloud

From a modelling point of view, a nuclear accident releases many types of different
radioactive materials characterized by different weights, different particle sizes,
different decay constants and different responses to weather conditions. To reduce
complexity, the main assumption is to consider a homogenous cloud only and not
to distinguish different material properties. As already pointed out, meteorological
conditions play a major role for the spread of radiation once it has been released.
The wind field is here the key ingredient to describe the drift or the direction of
spread, respectively.

The unknown variable is then the concentration of the homogenous radioactive
material in a unit volume, i.e. C (t, x) with x ∈ R

2. One possible way is to derive
a differential equation that describes first the diffusion of the radioactive material is
the continuity equation approach. Considering an arbitrary volume V , the equation
reads

⎡
⎢⎢⎣

rate of
change of

radioactive
material in V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rate of
production of

radioactive
material in V

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

rate of
decay of

radioactive
material in V

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

rate of
leakage of
radioactive

material in V

⎤
⎥⎥⎦

and therefore, ∫
V

∂C

∂t
dV =

∫
V

SdV −
∫
V

λCdV −
∫
A

φT · ndA,

where S = S (t, x) the source of radioactive material, λ the radioactive decay
constant and φT = φT (t, x) the total radioactive material flux. Note that φT is
exactly the total radioactive material flux crossing the unit area of the unit volume,
orthogonal to the flow direction.
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Introducing the wind field in a second step, the problem becomes a diffusion-
advection equation. Then, the total radioactive material flux φT also consists of
convective fluxes φC and diffusive fluxes φF . So, considering an isotropic scattering
radioactive material, Fick’s law yields

φF = −D∇C

where φF measures the amount of concentration that flows through a small area
during a small time interval, while D is the constant diffusion coefficient.

Wind is modelled as a vector field describing the motion of the air. The length of
each vector is the flow speed, in particular:

u = u (x, t)

which gives the velocity at a position x at time t .
Supposing that the radioactive material moves as fast as wind, u is the average

velocity of the radioactive material. The convective flux is then

φC = uC.

Remembering that φT = φC + φF , substitution and the use of the divergence
theorem leads to:∫

V

∂C

∂t
dV =

∫
V

SdV −
∫
V

λCdV +
∫
V

[
D∇2C − ∇ · (uC)

]
dV

Since the volume V is arbitrary, the following partial differential equation (PDE) of
diffusion-advection type can be derived:

∂C

∂t
= D∇2C − ∇ · (uC) − λC + S

with initial condition C (x, 0) = f (x) and boundary conditions C (0, y, t) =
C (1, y, t) = C (x, 0, t) = C (x, 1, t) = 0.

In view of combining the solution of the PDE problem with the road network
model, a finite domain in 2D is needed. This a is reasonable choice due to the given
infrastructure. Note that the main unknown variable is then just the concentration of
the homogenous radioactive material in a unit surface instead of in a unit volume.
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4.2.5 Combined Model

The combined model consists of the road network model and the diffusion-
advection equation. Both approaches can be computed and simulated separately.
In particular, for the network model this means:

• First, the delay for people leaving their current locations and entering the
highways, i.e. the road network, is modelled as an influx to the network vertices.
The rate of influx on each time step is determined by the distribution of people’s
delay times. This can be done in some preprocessing manner.

• Second, the congestion and accident models are closely connected. Both affect
the traveling speeds on each road, which are used as input for the movement of
people and the calculation of the escape route.

• Third, the coupling of the radioactive cloud model to the network model. The
parameters for radioactive cloud model are set so that both of the models operate
on the same time and space domain, i.e. one time step in the radioactive cloud
model equals one time step in the network model and a coordinate point in the
radioactive cloud model corresponds to the same point in the network model.

More precisely, the dosage D received in place vecx on time step t is directly
correlated with the concentration of radioactive material C:

Dose (x, y, t) = ϕC
(
(x, y)T , t

)
The constant ϕ is an empirically determined parameter for radiation effectiveness
and depends on the weather—rainy or clear—and the type of fallout—small dust
particles or large pieces of radioactive material. The total dosage and thus the effect
of radiation, i.e. Er on person i in a short time span, can be calculated as a sum of
doses received (see [5]),

Er (i, t) =
t∑

s=t0

ϕC ((X (i, s) , Y (i, s)) , s) ,

where X(i, t) and Y (i, t) are the coordinates of the person i on time step t .

4.3 Simulation Results

Running now the simulations on the Biblis test case, several important aspects about
the evacuation planning can be identified. An illustration can be seen in Fig. 4.4.

A surprising results is that the total time taken for evacuation does not sig-
nificantly change when using either the calm or panicky population distributions.
The calm people exit the city in a short time frame, causing massive traffic jams
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immediately outside of the city. The exiting of panicked people in comparison is
much slower, but this lessens the effect of congestion significantly, allowing the
evacuation on highways be much more faster.

Other important observation is the fact that closing a safety point due to high
radiation, the people are redirected. In such a situation, a new safety point is chosen
that is closest in the euclidean metric. In some cases this meant that the people had
to go back and forth between multiple safety points. A good way to inform people
about and a good selection criteria for the new safety point would lead to another
optimization problem.

Concerning the given infrastructure, a bottleneck/dangerous road is the federal
road B9, which goes in the north-south direction from Mainz to Mannheim. This
road is the shortest route across the map domain in the north-south direction and
thus selected by a large fraction of the population. It passes very close to the Biblis
nuclear power plant as the shortest distance is approximately 3 km between the
plant and the road. This means that the road might get congested rather fast and
is potentially highly radioactive.

4.4 Conclusion and Comment on Solution

The presented modelling problem requires competencies in different mathematical
fields. On the one hand, ideas on network flows by Ahuja et al. [1] are needed
to describe the traffic flows and, on the other hand, partial differential equations
and their numerical solutions (see e.g. Grossmann et al. [3], Habermann [4]) to
manage the spread of radiation. Therefore, the model approaches were developed
simultaneously by different small groups and finally combined in the entire
simulation.

The complexity of this modeling problem has been reduced in a good way
such that first results were available after 1 week only. With the simulation tool
at hand, more scenarios than shown here have been analyzed. The students did a
great job to carry over various mathematical concepts for the evacuation planning.
So the original challenge to provide numerical simulations for different evacuation
scenarios has been solved successfully.
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