
Chapter 2
1D Models for Blood Flow in Arteries

Alexandra Bugalho de Moura

2.1 Introduction

Cardiovascular diseases remain one of the major causes of death in developed
countries, with great social and economic impact. The simulation of the cardiovas-
cular system helps understanding the physiology of blood circulation and enables
non-invasive based clinical predictions. In the past years a large research activity
has been devoted to complex 3D models of blood flow, using patient-specific
cardiovascular geometries obtained through medical imaging, see [1–5] for some
examples. The 3D simulations provide great detail on the blood flow patterns and
allow to quantify a number o clinical indices. However, in many situations, the
detailed information of the 3D model is not crucial, and the analysis of average
quantities, such as flow rate and pressure, suffices to make clinical predictions
and decisions [6, 7]. One of the features of blood circulation that is best captured
by 1D simplified models in large arterial networks is its pulsatility. The elastic
deformations in large arteries, such as the aorta or the carotid, are very important,
helping to regularize blood flow during the cardiac cycle and leading to the pulse
propagation that characterizes the arterial tree. This pulsation feature of blood flow
in arteries has been observed and used in medical practices for hundreds of years.
For example, the superposition of the waves reflected by medical devices, such
as prosthesis or stents, with those produced by the heart can generate anomalous
pressure peaks [8].

Several approaches can be followed to derive 1D models for blood flow in
arteries, and different 1D models can be obtained depending on the level of

A. B. de Moura (�)
REM—Research in Economics and Mathematics; CEMAPRE—Center for Applied Mathematics
and Economics, ISEG—Lisbon School of Economics and Management, Universidade de Lisboa,
Lisbon, Portugal
e-mail: amoura@iseg.ulisboa.pt

© Springer Nature Switzerland AG 2020
E. Lindner et al. (eds.), Mathematical Modelling in Real Life Problems,
Mathematics in Industry 33, https://doi.org/10.1007/978-3-030-50388-8_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50388-8_2&domain=pdf
mailto:amoura@iseg.ulisboa.pt
https://doi.org/10.1007/978-3-030-50388-8_2


18 A. B. de Moura

simplification and on the characteristics of blood circulation kept during the
simplification process. Here, the 1D model is derived by integrating the 3D Navier-
Stokes equations for fluid flow coupled with a model for the vessel compliance,
considering some simplifying assumptions [8, 9]. The resulting mathematical model
consists of an hyperbolic system of partial differential equations (PDE’s). This
means that it has wave-like solutions, with characteristic propagation speed and
wave length. The numerical discretization of the 1D hyperbolic model is briefly
discussed and numerical results are presented by considering an application to the
study of blood circulation in the human brain. The purpose of the application here
introduced is to answer the question “What are the effects of anatomical changes in
the main arteries of the arterial system of the human brain?”. Regarding this subject
and other clinical applications of 1D blood flow models, see for instance [6–8].

Following the samemethodology of integrating over a generic axial section, more
complex 1D models are derived, namely accounting for vessel curvature. This is
achieved by relaxation of some simplifying assumptions. The inclusion of curvature
means more complexity on the model, and the resulting system of PDEs reflects that
extra complexity. In this context we discuss on the balance between simplicity and
accuracy when doing mathematical modeling.

2.2 The 1D Model for Blood Flow in Arteries

The 1D model dates back to Euler [10], that already in 1775 introduced a 1D
model of the human arterial system, yet claiming “the incredible difficulties for
its solution”. Here the 1D model for blood flow in arteries is derived from the
3D model. We start by considering the Navier-Stokes equations for Newtonian
incompressible fluids [11]:

⎧
⎨

⎩

∂u
∂t

+ u · ∇u + 1

ρ
∇P − νΔu = f,

divu = 0,
in Ω (2.1)

where the unknowns are the fluid velocity u = (ux, uy, uz) and pressure P ,
depending on space x = (x, y, z) and time t , with Ω the 3D vascular district of
interest (see Fig. 2.1). Here f is a given function representing the volume forces
exerted on the fluid, as e.g. the gravity, ρ is the constant blood density, and ν is the
constant blood viscosity. We will neglect body forces, f = 0.

The first equation of (2.1) describes the momentum conservation, while the
second is the continuity equation and represents the conservation of mass.

The Navier-Stokes equations (2.1) are coupled with a model for the vessel wall
displacement. Due to their complex structure, it is very difficult to devise appropriate
and accurate models describing the mechanical behaviour of the artery walls. We
will not go into detail on this subject, but we will consider that the walls of the
vessel can move as the result of the fluid pressure. Equations (2.1), together with a
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Fig. 2.1 Generic vascular district Ω

model for the vessel wall, constitute a 3D FSI (fluid-structure interaction) model for
blood flow in vascular districts.

2.2.1 Deriving the 1D Model

To derive the 1D model, we assume some simplifying hypothesis and then we
integrate the 3D FSI model in each cross section S(z) of the vessel [9]. Applying
this procedure, the only spatial coordinate remaining is the axial direction, denoted
z. The simplifying assumptions are as follows:

H1 Axial symmetry. All quantities are independent from the angular coordinate,
implying that each axial section S(z) remains circular during the wall motion.
Hence, the tube radius R is a function of time t and axial direction z, R =
R(t, z).

H2 Radial displacements. Wall displacements occur only in the radial direction.
Defining R0 as the reference radius, the wall displacement is d = der , with er

the outward unit vector in the radial direction and d(t, z) = R(t, z) − R0(t, z).
The reference radius R0, usually the radius of the vessel at rest, may depend
on the axial direction z. Indeed, one characteristic of arteries is its tapering
geometry.

H3 Fixed cylinder axis. The axial axis is fixed in time and the vessel expands and
contracts around it.

H4 Constant pressure on each axial section. Pressure is assumed constant in each
section, depending only on z and t , P = P(t, z). This is reasonable, since the
pressure field of the fluid flow in 3D straight tubes is mainly constant in each
section.

H5 No body forces. External forces are neglected. This is often considered already
at the 3D model level.

H6 Axial velocity dominance. The velocity components orthogonal to the axial
direction are neglected, since they are considered negligible when compared to
the axial velocity: u = uz. In cylindrical coordinates we have u = (ur , uθ , uz)
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and

uz(t, r, θ, z) = uz(t, r, z) = ū(t, z) × s

(
r

R(t, z)

)

(2.2)

where s(·) is the velocity profile, assumed constant in time, t , and space,
z, which is in fact in contrast with the observations and 3D models. In this
simplifying setting, s(·) may be though of as a profile representative of an
average flow configuration. In practice, it will be considered flat or parabolic.

The unknown variables of the 1D model will be averaged quantities. The area is
related with wall displacement and is given by A(t, z) = ∫

S(t,z) ds = πR2(t, z);
the flow rate, Q(t, z) = ∫

S(t,z)
uzds = A(t, z)ū(t, z), and mean velocity, ū(t, z) =

1
A(t,z)

∫

S(t,z)
uzds = Q(t,z)

A(t,z)
, are related with fluid velocity. Due to H4, the mean

pressure is p̄(t, z) = ∫

S(t,z) P (t, z)ds = P(t, z)A(t, z). All these quantities depend
on t and z. In the notation, we will usually omit, unless needed, this dependence.
From H6, H1, and (2.2) we have

ū(t, z) = 1

πR2

∫ 2π

0

∫ R

0
ū(t, z)s

( r

R

)
rdrdθ = ū(t, z)

πR2 2π
∫ R

0
s
( r

R

)
rdr

meaning that R2

2 = ∫ R

0 s
(

r
R

)
rdr , and

∫ 1
0 s(y)ydy = 0.5 by doing the change

of variable r = Ry. We also define the momentum-flux coefficient or Coriolis
coefficient, related with the fluid velocity profile:

α =
∫

S u2zds

Aū2
=

∫

S ū2s2ds

Aū2
=

∫

S s2ds

A

It is easy to see that α � 1. In general α varies with time, t , and space, z. Here it
is considered to be constant as a consequence of H6, since α is related with ur . For
steady flow in circular rigid tubes the Navier-Stokes equations have the very well
known Poiseuille solution, consisting of a parabolic velocity profile. For a Poiseuille
profile we have s(y) = 2(1 − y2) and α = 4/3. For blood flow it has been found
that the velocity profile is rather flat [11], corresponding to s(y) = 1 and α = 1.

From assumptions H4, H5 and H6, the Navier-Stokes equations (2.1) become:

⎧
⎨

⎩

∂uz

∂t
+ div(uzu) + 1

ρ

∂P

∂z
− νΔuz = 0,

divu = 0,
in Ω (2.3)

On the wall of the vessel, Γw, we have the kinematic condition u = ∂d
∂t

= ∂d
∂t
er ,

meaning that the wall moves at the same velocity as the fluid.
We will integrate equations (2.3) on the generic cross section S(z) term by term.

Consider the portion V of the vascular tube Ω around point z, comprising the axial
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Fig. 2.2 Portion of the tube between z − dz
2 and z + dz

2

region
(
z − dz

2 , z + dz
2

)
, see Fig. 2.2. We denote the boundary of V by ∂V = S− ∪

S+ ∪ Γ , with Γ the part of the boundary of V intercepting the vessel wall. The 1D
model is derived by integrating equations (2.3) in V and doing the limit as dz → 0,
assuming all quantities are smooth enough.

Using the Reynolds transport theorem [12], taking into account that the border
of V intercepting the vessel wall, Γ , moves with time t , it can be shown that ∂A

∂t
=

2πR ∂d
∂t
. Using this expression, the divergence theorem and the mean-value theorem

for integrals, we have

0 =
∫

V

div(u)dv =
∫

∂V

u · nds = −
∫

S−
uzds +

∫

S+
uzds +

∫

Γ

∂d
∂t

· nds

= Q

(

z + dz

2

)

− Q

(

z − dz

2

)

+ ∂A(z)

∂t
dz + o(dz)

where n denotes the outward unitary normal. Dividing by dz and doing the limit as
dz → 0 we obtain ∂A

∂t
+ ∂Q

∂z
= 0 for the continuity equation.

From Reynolds theorem we have d
dt

∫

V uzdv = ∫

V
∂uz

∂t
dv + ∫

∂V uz
∂d
∂t

·nds. Due
to H2, boundaries S− and S+ do not move longitudinally, and due to H6, uz = 0 on
Γ . Thus

∫

∂V uz
∂d
∂t

· nds = 0 and

∫

V

∂uz

∂t
dv = d

dt

∫

V

uzdv = ∂

∂t
(A(z)ū(z)dz + o(dz)) = ∂Q(z)

∂t
dz + o(dz) (2.4)

Using the divergence theorem and again assumptions H2 and H6, we have:

∫

V

div(uzu)dv =
∫

∂V

uzu · ndv = −
∫

S−
u2zds +

∫

S+
u2zds +

∫

Γ

uz

∂d
∂t

· nds
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Remembering that uz = 0 on Γ and that α = ∫

S u2zds/(Aū2), we obtain

∫

V

div(uzu)dv = α

[

A

(

z + dz

2

)

ū2
(

z + dz

2

)

− A

(

z − dz

2

)

ū2
(

z − dz

2

)]

≈ α
∂(Aū2)

∂z
(2.5)

Considering now hypothesis H4 and again the divergence theorem, we obtain

∫

V

∂P

∂z
dv = −

∫

S−
Pds +

∫

S+
Pds +

∫

Γ

Pnzds ≈ ∂(AP)

∂z
(z) +

∫

Γ

Pnzds

From the mean-value theorem for integrals
∫

Γ
Pnzds = P(z)

∫

Γ
nzds + o(dz).

Also, since V is closed,
∫

∂V
nzds = 0 and

∫

Γ
nzds = − (∫

S+ ds − ∫

S− ds
)
, thus

∫

Γ

Pnzds = −P(z)

(∫

S+
ds −

∫

S−
ds

)

+ o(dz)

= −P(z)

[

A

(

z + dz

2

)

− A

(

z − dz

2

)]

+ o(dz) ≈ −P(z)
∂A

∂z
(z)

Thus, we obtain

∫

V

∂P

∂z
dv ≈ ∂(AP)

∂z
− P

∂A

∂z
= A

∂P

∂z
(2.6)

Finally, we consider the viscous term Δuz. Applying the divergence theorem and

noticing that ∇uz =
(

∂uz

∂r
,

∂uz

∂θ
,

∂uz

∂z

)
, we have:

∫

V

Δuzdv =
∫

∂V

∇uz · nds = −
∫

S−
∂uz

∂z
ds +

∫

S+
∂uz

∂z
ds +

∫

Γ

∇uz · nds

We neglect the term ∂uz

∂z
by assuming that the variation of axial velocity uz along the

axial direction z is small compared to the other terms. From H1 the gradient of uz

becomes ∇uz =
(

∂uz

∂r
, 0, 0

)
, and ∇uz · n becomes ∂uz

∂r
. Recalling expression (2.2),

we have that ∂uz

∂r
= ū(t,z)

R(z)
s′

(
r

R(z)

)
. Noticing that r = R on Γ , we obtain:

∫

V

Δuzds =
∫

Γ

ū

R
s′(1)ds = 2π

∫ z+ dz
2

z− dz
2

ūs′(1)dz = 2πū(z)s′(1)dz + o(dz)

(2.7)
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Finally, putting together expressions (2.4), (2.5), (2.6) and (2.7), diving (2.4) and
(2.7) by dz, and passing to the limit as dz → 0, the momentum equation becomes

∂Q

∂t
+ α

∂

∂z

(
Q2

A

)

+ A

ρ

∂P

∂z
− 2πνs′(1)Q

A
= 0

The friction parameter is defined as Kr = −2πνs′(1) and depends on the velocity
profile s(·). For a parabolic profile Kr = 8πν, which corresponds to the value
commonly used in practice. In the case of a flat profile, α = 1 and Kr = 0, meaning
that there is no friction.

The 1D model for blood flowing in a cylindrical vessel is given, for all t , by

{
∂Q
∂t

+ α ∂
∂z

(
Q2

A

)
+ A∂P

∂z
= −Kr

Q
A

, z ∈ (a, b)

∂A
∂t

+ ∂Q
∂z

= 0, z ∈ (a, b)
(2.8)

where L = b − a is the vessel length, and the unknowns are the cross section
area A(t, z), the flow rate Q(t, z), and the constant cross sectional pressure P(t, z).
The friction parameter is here a source term on the momentum equation. We have
three unknowns and two equations, meaning an extra equation is required. We close
system (2.8) by providing a relation linking pressure and area. This is reasonable,
since the tube wall moves as a response to the pressure inside the vessel. We consider
the following simple pressure-area algebraic relation:

P = β

√
A − √

A0

A0
(2.9)

where A0 is the cross section area at rest and β =
√

πhE

1−ξ2
, with E and ξ the Young

Modulus and the Poisson ratio of the wall material, and h is the wall thickness.

Parameters A0 and β may vary with z. We define c =
√

A
ρ

∂P
∂A

, which becomes

c =
√

β
2ρA0

A1/4 for expression (2.9) and considering A0 and β constant along z. In
this case, system (2.8) can be diagonalized, meaning it is a strictly hyperbolic system
of PDEs, describing very well wave propagation phenomenon. Indeed, system (2.8)
with (2.9) has two eigenvalues, given by λ1,2 = αū ± √

c2 + ū2α(α − 1). If we
choose α = 1, corresponding to a flat profile, we obtain λ1,2 = ū ± c = ū ±√

β
2ρA0

A1/4. Under physiological conditions, the mechanical properties of blood
and of the arterial wall, reflected on c through β, are such that c >> ū, meaning
that the two eigenvalues have opposite signs. Indeed, characteristic values of c are
of the order of 103m/s [13], while |ū| is of the order of 101 [14]. This means that
system (2.8) describes two waves travelling along the cylindrical vessel, one moving
forward and the other backwards.

Let R = [r1 r2] and L = [l1 l2] be the matrices of the right and left eigenvectors,
respectively, such that LR = I , with I the identity matrix. Then, if there exist
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quantities W1 and W2 such that ∂W1
∂U

= l1 and ∂W2
∂U

= l2, for U = [A,Q]T , which
is the case if α = 1 and Kr = 0 (see for instance [9]), functions W1 and W2
are characteristic variables [15]. This means that, up to the additive source term,
variables Wi , i = 1, 2 are constant along the characteristic lines, that is, along the
lines satisfying the differential equation d

dt
yi(t) = λi(t, yi(t)), i = 1, 2. Given

the pressure-area relation (2.9) and α = 1, W1 and W2 are given by W1,2 = ū ±√
8β
ρA0

(
A1/4 − A

1/4
0

)
.

Finally, to completely define problem (2.8), we must provide initial conditions
A(0, z) = A0,Q(0, z) = Q0 and boundary conditions, which in general can be
written as φ1(A(t),Q(t)) = h1(t), at z = a, and φ2(A(t),Q(t)) = h2(t), at z =
b, where h1 and h2 are given functions. The number of boundary conditions to apply
at each end is the number of incoming characteristics at that point. Thus, here we
must impose exactly one boundary condition at z = a and z = b, respectively [15].
Functions φi , i = 1, 2, produce admissible boundary conditions as long as they do
not depend only on the exiting characteristic.

2.3 Numerical Approximation of the 1D Model

The numerical discretization of the 1D hyperbolic model is carried out using the
finite element Lax-Wendroffmethod, [15, 16]. Being a second-order explicit scheme
in time, it has excellent dispersion error properties and it is easily implemented.

Being explicit, the stability of the numerical scheme depends on the satisfaction
of a CFL type condition (see [9]) relating the time step Δt with the space step hi :

Δt � (
√
3/3)min0�i�N

[
hi

maxk=1,2 λk(zi)

]
, where zi , i = 0, . . . , N , are the mesh

nodes, and hi = zi+1 − zi is the measure of the i-th spacial element.

2.3.1 Boundary and Compatibility Conditions for the Discrete
Problem

The numerical solution is defined only on the internal nodes. The solution values
at the boundary points are computed from the boundary conditions. Yet, these
data are not enough to close the numerical problem. Indeed, for the problem
at hand we have to impose exactly one boundary condition at each end of the
domain at the continuous level [15, 16]. However, at the discrete level we need to
provide two boundary data at each end, corresponding to the unknowns Qn+1 =
Q(tn) and An+1 = A(tn). That is, at the numerical level we need an extra
boundary condition at each extremity. To obtain the complete boundary data we
need additional equations, which must be compatible with the original problem.
Usually, the compatibility conditions are obtained by projecting the equation along
the characteristic lines exiting the domain [15, 16]. The values of Qn+1 and An+1
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at the boundaries are found by solving the following non linear systems:

⎧
⎨

⎩

φ1(A
n+1
h (a),Qn+1

h (a)) = hn+1
1

W2(A
n+1
h (a),Qn+1

h (a)) = Wn+1
2

⎧
⎨

⎩

φ2(A
n+1
h (b),Qn+1

h (b)) = hn+1
2

W1(A
n+1
h (b),Qn+1

h (b)) = Wn+1
1

(2.10)

If we consider α = 1 and Kr = 0 (no source term in (2.8)), Wn+1
i is obtained

following the characteristic line from t = tn: Wn+1
i = Wn

i (xk), where xk is the foot
of the characteristic line of Wi at tn, i = 1, 2.

For instance, if the user provides the pressure, at z = a, as P(t, a) = h1(t), from
(2.9) and from the compatibility condition (2.10) at z = a we need to solve the
system

⎡

⎣
1

An+1(a)
β

√
An+1(a)−√

A0
A0

0

−
√

8β
ρA0

(An+1(a))1/4−A
1/4
0

An+1(a)
1

An+1(a)

⎤

⎦

[
An+1(a)

Qn+1(a)

]

=
[

hn+1
1
Cn

xa

]

where Cn
xa

= Qn(xa)
An(xa)

−
√

8β
ρA0

(
(An(xa))

1/4 − A
1/4
0

)
and xa = a −

Δtλ2(Q
n(a),An(a)) is the foot of the exiting characteristic W2 at z = a. If, at

z = b, a condition on the entering characteristic is imposed W2(t, b) = h2(t), then
the non-linear system to be solved at each time step is

⎡

⎢
⎣

−
√

8β
ρA0

(An+1(b))1/4−A
1/4
0

An+1(b)
1

An+1(b)√
8β
ρA0

(An+1(b))1/4−A
1/4
0

An+1(b)

1
An+1(b)

⎤

⎥
⎦

[
An+1(b)

Qn+1(b)

]

=
[

hn+1
2
Cn

xb

]

where Cn
xb

= Qn(xb)
An(xb)

+
√

8β
ρA0

(
(An(xb))

1/4 − A
1/4
0

)
and xb = b −

Δtλ1(Q
n(b),An(b)) is the foot of the exiting characteristic W1 at z = b.

Very often the incoming characteristic is put equal to zero at the exiting point,
W2(t, z) = 0, corresponding to an absorbing boundary condition, meaning nothing
enters the domain. This fact has been exploit to impose absorbing boundary
conditions on 3D FSI models for blood flow [17].

2.3.2 Modular Simulation of Arterial Networks

So far we have the mathematical 1D model and corresponding numerical method
to simulate blood flow in a single elastic tube. However, the interest is often the
simulation of arterial networks. Hence, we need to couple two or more arteries. The
most usual combination of arteries in the human arterial system are:
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• Coupling single tubes: used to model, for instance, long tubes where physical
characteristics vary.

• Bifurcation of an artery into two arteries: this is the most common, since almost
all arteries enventually bifucarte to carry out blood for the whole body.

• Merging of two arteries into one artery: this situation is more rare, occurring for
instance with the vertebral arteries (left and right), that merge into the basilar
artery before reaching the Circle of Willis at the bottom of the brain.

Having the numerical scheme for one tube, couplings, bifurcations and mergings are
possible by defining coupling conditions. These consist in imposing the continuity
of the fluxes, Q, and of the total pressures, Pt = P + ρ

2 ū2, [7, 9].
Couplings lead to two (in the case of coupling) or three (in the case of bifurcating

or merging) more boundary conditions. Thus, we also need more compatibility
conditions, obtained again by means of the exiting characteristics. For instance, for
the coupling of two tubes, the following coupling conditions are set

⎧
⎪⎪⎨

⎪⎪⎩

Q1(b1) = Q2(a2)

Pt,1(b1) = Pt,2(a2)

W1(t
n+1, b1) = W1(t

n, xb1)

W2(t
n+1, a2) = W2(t

n, xa2)

where ai , bi , i = 1, 2, 3 are respectively the initial and final extremities of artery i

and xki , k = a, b, i = 1, 2, 3 are the foot of the outgoing characteristic lines passing
in point (ki, t

n+1). For the bifurcation (b) and merging (m) we have the following
systems

b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q1(b1) = Q2(a2) + Q3(a3)

Pt,1(b1) = Pt,2(a2)

Pt,1(b1) = Pt,3(a2)

W1(t
n+1, b1) = W1(t

n, xb1 )

W2(t
n+1, a2) = W2(t

n, xa2 )

W2(t
n+1, a3) = W2(t

n, xa3 )

m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q1(b1) + Q2(b2) = Q3(a3)

Pt,1(b1) = Pt,3(a3)

Pt,2(b2) = Pt,3(a3)

W1(t
n+1, b1) = W1(t

n, xb1)

W1(t
n+1, b2) = W1(t

n, xb2)

W2(t
n+1, a3) = W2(t

n, xa3)

All these systems are non-linear. For each internal coupling point of the 1D arterial
network, a system of this type must be solved, for instance using Newton’s method,
to set the discrete boundary conditions of all tubes in the network.

2.4 Simulating Anatomical Variations of the Circle of Willis

Here we illustrate the application of the 1D hyperbolic model to the study of
anatomical variations of the Circle of Willis (CoW), see [1, 5, 7] for simulations
at different levels of accuracy of the brain circulation. The CoW is a redundancy
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Fig. 2.3 Representation of the main arteries of the Circle of Willis (CoW)

set of arteries guaranteeing that blood reaches the brain by distributing it from the
basilar and internal carotid arteries, see Fig. 2.3. We choose the parameters of each
artery, namely length, radius, wall thickness and Young modulus (related to wall
elasticity) as in [7]. We consider a sinusoidal impulse at the basilar artery (artery 22
in Fig. 2.3) and at the internal carotid arteries (ICAs, arteries 11 and 12 in Fig. 2.3):

Q(t, 0) =
{
2.5 sin

(
πt

0.003

)
, if t � 0.003

0, if t > 0.003

As customary, we consider that the system starts at rest A(0, z) = A0 and Q(0, z) =
0.

Figure 2.4 represents the flow rate through the main arteries of the healthy CoW,
represented in Fig. 2.3, at a particular time t . We can observe that as long as the
CoW is vertically axis-symmetric, the flow rate through symmetric arteries is the
same. Several people have anatomical changes in the CoW [7], including absence
of some arteries. Figure 2.5 shows the flow rate when the right posterior cerebral
artery is missing (right PCA, artery 28 in Fig. 2.3). It can be seen that the flow rate
of symmetric arteries is not the same anymore. Indeed, the flow rate in arteries
32 and 33 differ. In both these cases, there is still blood perfusion to the brain
through arteries 32 and 33, even though one artery is absent. In Fig. 2.6 we can
observe the flow rate in the arteries going to the brain when both the right posterior
communicating artery (PCoA, artery 20 in Fig. 2.3) and the left posterior cerebral
artery (PCA, artery 27 in Fig. 2.3) are absent. We can see that in this case there is
almost no blood perfusion in artery 32, that is, almost no blood perfusion on that
part of the brain. This is thus a very serious anatomical variation of the CoW.
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Fig. 2.4 Flow rate [cm3/s] through the main arteries of the complete CoW at a particular time t
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Fig. 2.5 Flow rate when the right posterior cerebral artery is missing (right PCA, artery 28 in
Fig. 2.3)
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Fig. 2.6 Flow rate in the arteries when both the right posterior communicating artery (PCoA) and
the left posterior cerebral artery (PCA) are absent (arteries 20 and 27 in Fig. 2.3)

2.5 Increasing the Complexity of the 1D Model: Including
Curvature

The 1D hyperbolic model for blood flow in arteries studied in the previous sections
is a simplified model with desirable mathematical properties, namely it is an
hyperbolic system of PDEs. It may be considered one of the simplest 1D model for
blood pulse. More complex models can be considered by accounting for variations
of the radius or the wall properties along z, which introduce derivatives of the
parameters A0 and β, to be included on the source term. Also, more sophisticated
pressure-area relations can be used, leading to the appearance of higher order
derivatives. These derivatives alter the characteristic of the differential problem,
making the numerical treatment and the identification of proper boundary conditions
more problematic [9]. These effects also imply the inclusion of new parameters for
which it is often difficult to obtain reasonable values.

On the other hand, some simplified assumptions can be relaxed. An example is
to consider curvature. In this case hypothesis H3, of fixed cylinder axis, as well as
H2, of only radial movements, are dropped. Now, the wall movements are not only
radial, depending also on the x and y directions. Denoting η the wall displacement,
then η = (ηx, ηy) + der . In this setting, the fluid velocity depends not only on the
axial direction through uz, but also on the directions ux and uy :

ux = ∂ηx

∂t
+ 1

R

∂d

∂t
x = ∂ηx

∂t
+ 1

R

∂d

∂t
r cos θ, uy = ∂ηy

∂t
+ 1

R

∂d

∂t
y = ∂ηy

∂t
+ 1

R

∂d

∂t
r sin θ
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Considering, for simplicity, a parabolic profile on the axial direction, from (2.2) we

know that uz =
(
1 − r2

R2

)
a(t, z) = ū(t, z)s

(
r
R

)
, with a/2 = Q/A. In this case,

the 3D Navier-Stokes system (2.3) has two extra equations, related to ux and uy :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ux

∂t
+ div(uxu) + 1

ρ
∂P
∂x

− νΔux = 0
∂uy

∂t
+ div(uyu) + 1

ρ
∂P
∂y

− νΔuy = 0
∂uz

∂t
+ div(uzu) + 1

ρ
∂P
∂z

− νΔuz = 0
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0

(2.11)

We integrate each equation in (2.11) over the volume V and then make dz → 0.
Applying this procedure to the two last equations in (2.11) results in the two equa-
tions of system (2.8). Indeed, noticing that

∫

Γ
nr1 cos θηxds = ∫

Γ
nr2 sin θηyds =

0, we have:

∫

Γ

∂η

∂t
· nds =

∫

Γ

nr1 cos θηxds +
∫

Γ

nr2 sin θηyds +
∫

Γ

1

R

∂d

∂t
rer · nds ≈ ∂A

∂t

where n = (nr1 cos θ, nr2 sin θ, nz) is the outward unitary normal. Thus

∫

V

divudv =
∫

∂V

u · nds =
∫

S+
uzds −

∫

S−
uzds +

∫

Γ

∂η

∂t
· nds ≈ ∂A

∂t
+ ∂Q

∂z

Since
∫ z+ dz

2

z− dz
2

∫ 2π
0

∫ R

0
∂d
∂t

r cos θ
R

rdrdθdz = 0, then

∫

V

uxdv =
∫ z+ dz

2

z− dz
2

∫ 2π

0

∫ R

0

∂ηx

∂t
rdrdθdz = ∂ηx

∂t
(z)A(z)dz + o(dz) ≈ ∂ηx

∂t
A

Thus, defining Φx = ∂ηx

∂t
A, then d

dt

∫

V uxdv ≈ ∂Φx

∂t
. Since ∂η

∂t
= 0 on S, we have

∫

∂V

ux
∂η

∂t
· nds =

∫

Γ

ux
∂η

∂t
· nds

Hence, we obtain:

∫

V

∂ux

∂t
dv = d

dt

∫

V

uxds −
∫

∂V

ux
∂η

∂t
· nds ≈ ∂Φx

∂t
−

∫

Γ

ux
∂η

∂t
· nds

Using the divergence theorem and noticing that
∫

S
1
R

∂d
∂t

r cos θ ds = 0 and that

∫

S

uxuzds =
∫

S

(
∂ηx

∂t
+ 1

R

∂d

∂t
r cos θ

) (

1 − r2

R2

)

a(t, z)ds = ∂ηx

∂t
A

Q

A
= Φx

Q

A
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we obtain
∫

V

div(uxu)dv =
∫

S+
uxuzds −

∫

S−
uxuzds +

∫

Γ

ux

∂η

∂t
· nds

≈ ∂

∂z

(

Φx

Q

A

)

+
∫

Γ

ux

η

∂t
· nds

Pressure is still considered to be constant over each cross section, so that ∂P
∂x

= 0

and hence
∫

V
∂P
∂x

= 0. Finally, for the diffusive term on x, we may neglect ∂ux

∂z
,

obtaining

∫

V
Δuxdv =

∫

∂V
∇ux ·nds =

∫

S+
∂ux

∂z
ds −

∫

S−
∂ux

∂z
ds +

∫

Γ
∇ux ·nds =

∫

Γ
∇ux ·nds

Noticing that ∇ux · nz ∝ ∂ux

∂z
= 0 we get

∫

Γ

∇ux · nds =
∫

Γ

∇ux · nrds =
∫

Γ

∂ux

∂r
ds =

∫

Γ

1

R

∂d

∂t
cos θds = 0

Doing the limit as dz → 0, the first equation of (2.11) becomes

∂

∂t
(Φx) + ∂

∂z

(

Φx
Q

A

)

= 0.

A similar equation is obtained by integrating the second equation in (2.11),
defining Φy = ∂ηy

∂t
A. The resulting 1D system of equations is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂A
∂t

+ ∂Q
∂z

= 0
∂Q
∂t

+ 4
3

∂
∂z

(
Q2

A

)
+ A

ρ
∂P
∂z

= −8πν
Q
A

∂Φx

∂t
+ ∂

∂z

(
Φx

Q
A

)
= 0

∂Φy

∂t
+ ∂

∂z

(
Φy

Q
A

)
= 0

(2.12)

Notice that for a parabolic profile α = 4/3. This system of PDEs is no longer
strictly hyperbolic, being more difficult to deal with than system (2.8), both from the
mathematical and numerical points of view. This 1D model can be further extended

to the case where the axial velocity profile depends on x and y: uz =
(
1 − r2

R2

)
(a+

bx + cy). In this case, two extra equations are needed, for the added quantities
b and c, related with the axial velocity profile. These equations are obtained by
integrating over the cross section the third equation of (2.11) multiplied by x and
y, respectively. Using the same approach and arguments as before, the 1D model in
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this case becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A
∂t

+ ∂Q
∂z

= 0
∂Q
∂t

+ 4
3

∂
∂z

(
Q2

A

)
+ 6π ∂

∂z

(
H 2

A2

)
+ 6π ∂

∂z

(
G2

A2

)
+ A∂P

∂z
= −8πν

Q
A

∂H
∂t

+ 2 ∂
∂z

(
QH
A

)
+ 1

2
H
A

∂Q
∂z

+ Q
A

Φx = −24πν H
A

∂G
∂t

+ 2 ∂
∂z

(
QG
A

)
+ 1

2
G
A

∂Q
∂z

+ Q
A

Φy = −24πν G
A

∂Φx

∂t
+ ∂

∂z

(
Φx

Q
A

)
− 1

2
∂
∂z

(
H
A

∂Q
∂z

)
= 0

∂Φy

∂t
+ ∂

∂z

(
Φy

Q
A

)
− 1

2
∂
∂z

(
G
A

∂Q
∂z

)
= 0

(2.13)

whereQ = aπR2

2 = aA
2 , as before, andH = bπR2A

12 andG = cπR2A
12 . This system of

PDE’s is significantly more complex than the usual 1Dmodel (2.8). Its mathematical
and numerical analysis becomes extremely cumbersome, since many of the nice
mathematical characteristics of system (2.8) are lost. Being simplified models, the
usefulness o such complex 1D models is questionable. If we need more detail and
the cost is such an increase in model complexity, than possibly the best is to use full
detailed 3D models.

2.6 Conclusions

One dimensional models for blood flow in arteries are simplified and computation-
ally low cost models, obtained by making simplifying assumptions and performing
averaging procedures on the 3D FSI model. The simplest 1D model is described
by an hyperbolic system of PDE’s. Despite having a lower level of accuracy
compared to the full 3D representation, it captures very effectively the pulsation
of blood flow. More complex 1D models can be obtained by relaxation of some
simplifying hypothesis, as for instance accounting for curvature. In these cases the
1D mathematical model becomes significantly more complex, losing some of the
appealing mathematical properties of the simpler straight tube 1Dmodel. Namely, it
is no longer hyperbolic. Being simplified models, the extra complexity introduced in
these cases is hardly justified. Except for very particular cases, in general when high
accuracy on the blood flow solution is required, 3D FSI full mathematical models
tend to be preferable.
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