
Chapter 12
Networks of Antennas: Power
Optimization

Stéphane Labbé

12.1 Introduction of the Problem

In this text, we illustrate the process leading from a physical problem to an effective
simulation. This process will display to three types of models. The first one, the most
simple, will provide the opportunity to familiarise with the model and the existence
of solutions to the problem, a second, more complex, will illustrate the necessity of
numeric computations and at last we will give a complete formulation. The example
we chose is the optimisation of a network of antennas. For the sake of simplification,
the antennas taken into consideration will be assimilated to discrete dipolar systems.
The goal of this study is to give an algorithm for antennas placement and power
regulation. In a first part, we will focus on the modelling of the problem. We will
start by setting the problem and choose the notations, and will, then, focus on the
modelling of an antenna, explaining the link between the electromagnetic equations
and a dipolar antenna. In the second, third and fourth parts, we will treat the three
optimisation problems.

12.2 A Network of Antennas: Modelling

The first work to perform in order to model a situation, is to set the problem in
mathematical terms. The built model will enable the study and optimisation of the
situation parameters. This first milestone of the modelling and simulation process
is very important and must be carefully treated. The key of the modelling process
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is to answer the question: “what do you want to do?”. This question is, not only
about what we are modelling but also about what we want to do with this model.
Is this work will be exploited in order to forecast the behaviour of a system, to
understand and enhance a modelling or to compute specific parameters? In our case,
the objective is clear: how to optimise the topology of an antenna network in order
to provide a given signal strength on a given territory. The accuracy of the physical
hypothesis is not required, then we can simplify the model with the assumption
that antennas are dipoles and the signal is not harmonic in time. These antennas,
in finite number, are set on a collection of points in space. The set of antennas will
induce a resultant power in the whole space, the question we want to tackle here is
how to optimise the number of antennas, their position and power to ensure that,
in a given part of the space, the resultant power would stay between a minimum
and a maximum. The questioning is quite common even if simplified here: how to
optimise a network to certify that the power of the signal is sufficient to ensure its
good functioning and sufficiently small to guarantee the safety of the system for
users?

12.2.1 The Global Problem: Setting of a Mathematical Model

We define Σ as set of elements of R3, the locations of the dipoles. This set indexes
the dipoles; the set of dipoles is M = (μx)x∈Σ , subset of S2 = {u ∈ R

3||u| = 1},
and the set of powersP = (px)x∈Σ , subset ofR. Moreover, we setΩ a subset ofR3,
the location where measures have to be performed and (m,m) ∈ R

2, respectively
the minimum and maximum required power. Given f , from R

3 × S2 ×R
3 into R3,

the function evaluating the power emitted by an antenna of power 1 in a given place
of the space. Hence, for the whole space, except a small ball around the antenna
position, we set:

∀x ∈ R
3\

⋃

y∈Σ

B(y, ε), for every ε ∈ R
+∗ ,

Fε(Σ,M,P)(x) =
∣∣∣∣∣∣

∑

y∈Σ

py f (y,μy, x)

∣∣∣∣∣∣
,

where Fε(Σ,M,P)(x) is the power developed by the network on a given point
x. The problem now is to optimise the power P , the directions of dipoles M and
the locations Σ , of dipolar antennas, in order to ensure on optimal power in Ωε =
Ω\⋃

y∈Σ B(y, ε), it is to say a power such that, locally, m ≤ Fε(Σ,M,P)(x) ≤
m.
To tackle this problem, we define the set of admissible solutions:

Aε =
{
(Σ,M,P) ⊂ R

3 × S2 × R|∀x ∈ Ωε, m ≤ Fε(Σ,M,P)(x) ≤ m
}

.
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Here, the question is: how to find the best triplet (Σ,M,P) and, what does means
best?

First, we would be tempted to redefine, more exactly to restraint, the problem
by freezing one or more parameters. For X subset of (Σ,M,P), we set Aε(X) the
function Aε where the values X have been fixed. Hence, the problem to solve is:
find (Σ,M,P) in Aε such that

∑

x∈P

px is minimal. (12.1)

This condition is motivated, in terms of modelling, by the goal to minimise the
required energy needed to obtain an admissible network.

As we see, the problem is complex and several bottlenecks will be encountered

• Does solutions exist?
• If a solution exists, is this solution unique?
• Can we compute explicitly this solution?

12.2.2 Power of an Antenna

In this section, we will focus on the power of a single antenna. The model we chose
for the antenna is the dipolar one. In this approximation, we focus on a stationary
problem but we could imagine a dynamical version based upon the complete
Maxwell equations. For our purpose this level of precision in the model will be
useless. For a complete and clear description of the physic of electromagnetism, see
the book of J.D. Jackson [3]. The complete Maxwell equations are

⎧
⎪⎪⎨

⎪⎪⎩

∂D

∂T
− curl H = 0

∂B

∂T
+ curl E = 0

div D = ε0ρ div B = 0
D = ε0E B = μ0(H + M)

(12.2)

where D and E characterises the electric field, B and H the magnetic field, μ0 and
ε0 physical constants, ρ the distribution of electric charges and M the distribution
of magnetic moments.

In this study, as evoked above, we focus on the stationary part of the system and
more exactly the magnetic part. Then, we will work on equations (12.2) (first line,
first column and third line, second column):

ε0
∂E

∂t
− curl H = 0, B = μ0(H + M).



158 S. Labbé

Now, let perform a formal dimension study of the equation. In order to do so, we
set, for (e, h, μ, t, x), positive real, dimension factors:

E = ee,H = hh,M = μm, T = t t, X = xx.

Then, the equation in their dimensionless version becomes

ε0e

t

∂e

∂t
− h

x
curlx h = 0, bb = μ0(hh + μm),

moreover we have

b

t

∂b

∂t
+ e

x
curlx e = 0.

The process we engage in order to obtain dimensionless equation implies, from the
previous equations

μ = h,μ0h = b,
ε0e

t
= h

x
,
b

t
= e

x
.

This leads to

h = et

μ0x
= ε0xe

t

then

x2

t
2 ε0μ0

∂e

∂t
− curlx h = 0, b = h + m.

We notice (see for example [3]) that ε0μ0 = 1

c2
, where c is the speed of light, and

we have

(
x

ct

)2 ∂e

∂t
− curlx h = 0, b = h + m, divx(h + m) = 0. (12.3)

Under the hypothesis that η = x
ct

is small compared to 1, we obtain formally the
following approximated system

rotxh = 0, divxh = −divxm. (12.4)

To understand this equation and determine its solution, we use several theoretical
elements developed, for example, in [2, 4]. As we will not focus on this problem in
this article, we next summarize the ideas, with no theoretical details, used in order
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to solve this problem. First, from the equation rotxh = 0, we deduce that, up to a
constant, there exists ϕ, a function form R

3 into R, such that ∇xϕ = h. This step
leads to a Laplace equation:

�xϕ = −divxm,

whose solution exists and is unique when m is a sum of Diracs like in our case; but,
better than the uniqueness of the solution, we have a representation formula for this
solution, using the Green kernel on R3:

∀x ∈ R
3\{0}, G(x) = 1

4π |x| ,

solution of the equation �xG = δ0 [4]. Thanks to this formula, we can give the
expression of the solution of equation (12.4)

h = −∇xdivx (G ∗ m) ,

where ∗ designates the two entries operator of convolution (see for example [4]).
In our case, we can explicit this solution, in particular, using the properties of the
convolution, we focus on ∇xdivxG(x − y)

∇xdivxG(x − y) =
⎛
⎜⎝

∂2x1G(x − y) ∂x1∂x2G(x − y) ∂x1∂x3G(x − y)

∂x1∂x2G(x − y) ∂2x2G(x − y) ∂x1∂x2G(x − y)

∂x1∂x3G(x − y) ∂x2∂x3G(x − y) ∂2x3G(x − y)

⎞
⎟⎠ ,

for (i, j) in {1, 2, 3}2, if i 	= j

∂xi ∂xj G(x − y) = −1

4π

(
3
(xi − yi)(xj − yj )

|x − y|5
)

,

if i = j

∂2xi
G(x − y) = −1

4π

(
3
(xi − yi)

2

|x − y|5 − 1

|x − y|3
)

,

then

∇xdivxG(x − y) = 1

|x − y|3
(

−Id + 3
(x − y)t (x − y)

|x − y|2
)

,
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Hence, using the fact that δ0 is a neutral element for the convolution, we obtain, for
a magnetic moment mδ0

∀x ∈ R
3\B(0, ε), h(m)(x) = 1

4π |x|3
(

m − 3
xtx

|x|2m

)
.

In our case, we are interested on vertical antennas, then m = (0, 0, 1)t and on
the measure at ground level, it is to say for x = (x1, x2, 0). Finally, with these
hypothesis we obtain

∀x ∈ R
3\B(0, ε), h(m)(x) = 1

4π |x|3

⎛

⎝
0
0
1

⎞

⎠ .

In what follows, we can only consider the third component of the magnetic field,
hd,3, which corresponds to the local power. This result can be directly generalised
to the networks of antennas defined at the beginning of the modelling description
and give f ∀x ∈ R

3\
⋃

y∈Σ

B(y, ε), for every ε ∈ R
+∗

Fε(Σ,M,P)(x) =
∣∣∣∣∣∣

∑

y∈Σ

py

my

4π |x − y|3

∣∣∣∣∣∣
.

In particular, using the previous results we set

∀m ∈ N, α ∈ R,Wm
α =

{
v ∈ D ′(R3),∀λ ∈ N

3, 0 ≤ λ ≤ m, (1 + r2)
α−m+|λ|

2 Dλv ∈ L2(R3)
}

,

whereD ′(R3) is the space of distributions (see [1]),Dλ denotes the partial derivative
application. The topological dual space of Wm

α is W−m−α .

Theorem 12.1 There exists ϕ in W 1
0 , unique up to a constant, such that ∇xφ is

solution of the equation rotxh = 0.

Then, we can use this theorem to analyse the equation rotxh = 0: there exists a
unique ϕ in W 1

0 , up to a constant, such that ∇xϕ = h, which implies

divx∇xϕ = �xϕ = −divxm.

If m was in L2(R3;R3), we use the following theorems

Theorem 12.2 The operator �x is an isomorphism from W 1
1 into W−1

1 ⊥ R where
W−1

1 ⊥ R = {f ∈ W−1
1 , (f, 1) = 0}.
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Lemma 12.1 Given f in L2(R3), compactly supported, then div f is an element of
W−1

1 ⊥ R.

x2

t
2

= 1

ε0μ0
= c2, where c is the speed of light.

12.3 Two Fixed Antennas and Yet, Problems. . .

Let us begin with the case of two antennas. The power transmitted by this system,
considering two antennas at distance λ with M = {e3, e3}1 and P = {p,p}, is the
following, for ε, p and h in R

+∗ with h > ε

Fε({(0, 0, h), (λ, 0, h)},M,P )(x) = p
1

4π |x − y1|3 + p
1

4π |x − y2|3 .

Here, to simplify our problem, we focus on what happens at ground level: given
R in R

+∗ , R > λ, Ω = {x ∈ R|x · e3 = 0, |x − λ
2 | ≤ R}, then, by construction

in this particular case, Ωε = Ω . Now, we re-write the power developed, setting
x = u · e1 + v · e2:

Fε({(0, 0, 2ε), (λ, 0, 2ε)},M,P )(x) = G(u, v)

= p
4π

(
1√

u2+v2+h2
3 + 1√

(u−λ)2+v2+h2
3

)
,

hence, we compute the gradient2 of G(u, v): ∀(u, v) ∈ R
2,

∇G(u, v) = 3p
4π

(
u√

u2+v2+h2
5 + u−λ√

(u−λ)2+v2+h2
5

)
· d1+

3p
4π

(
v√

u2+v2+h2
5 + v√

(u−λ)2+v2+h2
5

)
· d2.

Then, the critical points of G on R
2 cancel this gradient and are:

(0, 0), (λ, 0), ( λ
2 , 0), the first and last are global maxima on R

2 and the second
is a local minimum. This property is obtained thanks to the fact that G is an element
of C∞(R2;R). Now, we take into account the place of interest of the solution in Ω ,
then, let find the global minimum of G on Ω . We can easily prove that, if another

1We set (e1, e2, e3) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
2(d1, d2) = {(1, 0), (0, 1)}.
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minimum than the one exhibited in ( λ
2 , 0) exists, it must take place on the boundary

of Ω . Then, let explore this boundary:

∀(u, v, 0) ∈ ∂Ω, ∃α ∈ [0, π] | u = R cos(α) + λ

2
, v = R sin(α), then

G(u, v) = G(α) = p

4π

⎛
⎜⎝

1
√

(R cos(α) + λ
2 )2 + R2 sin(α)2 + h2

3+

1
√

(R cos(α) − λ
2 )2 + R2 sin(α)2 + h2

3

⎞

⎟⎠ ,

by a direct computation of the critical points of G(α), we obtain that the global
minimum is attained for α = π

2 and 3π
2 . Now, the question is: can we ensure

the admissibility of the solution? Here, admissibility means that on the domain of
interest, the power developed by the antennas network is, on each point, comprised
between m and m:

m ≤ G(
π

2
) ≤ Fε({(0, 0, 2ε), (λ, 0, 2ε)},M,P )(0, 0, 0) ≤ m.

12.4 More Antennas and No Analytic Solving

Now, let add more antennas in the network. Typically, we have to choose parameters
to move in order to ensure the suitability of the configuration. We could have no
constrains on the number of antennas, their positions, orientations and power, but it
will be too complex. In order to manage this problem, we will treat two versions, in
these versions, we keep the same orientation for all the antennas, it is to say (0, 0, 1).
This means in our case:

• Problem 1: Fixed number of antennas, fixed powers, the positions vary among a
finite predetermined set of positions.

• Problem 2: Fixed ground positions of the antennas, but the power and the height
of the antennas vary.

• Problem 3: Fixed power and heights of the antennas, the number of antennas is
fixed and the positions vary freely.

Here, it will not be possible to treat analytically these cases in general case,
we must use a powerful tool: the numerical optimisation (see for example [1]).
In these three cases, the existence of at least a solution is almost every time
guaranteed (classical proof), but not the uniqueness of this solution. In the first case,
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a systematic exploration of the set of solution may be long but possible. Here is a
glimpse for each of these three problems.

12.4.1 Problem 1

Imagine that n is the number of antennas and p the number of possible position,

then the number of possibilities is given by N(n, p) = An
p = p!

(p − n)! . If
p increases but n does not change, we see that a not so bad approximation of
N(n, p) would be Ñ(n, p) = pn. Then, when p becomes huge, if we want
to compute Fε(Σ,M,P)(x), we must perform p computations of the function
composedmainly by a sum of n real numbers. In this context, if n+ is the elementary
computation time, the total computation time becomes: npn+1n+. For example, if
p = 100 and n = 10, on a computer whose performance is 3 GHz (109 Hz) and if
we accept approximatively 100 cycles for n+, we have a total computation time of:

T = 10.10011.10−9.100 s = 1016 s,

it means almost 317 millions of years! Even on the most powerful computer, 1017

flops, the computation time would be almost 11 days. This is not acceptable and in
order to minimise the computation time, we could develop new efficient algorithms.

It is necessary to be careful as, for this problem, even if you find an algorithm
sufficiently fast to performs computations, you do not know if the problem admits
a solution; in fact, the constraints may not be fulfilled, in particular the maximum
constraint if the power is too high but also the minimum constraint if the power is
too low and the assigned position not sufficiently close.

12.4.2 Problem 2

Strangely, this problem is in fact simpler than the previous one. The positions are
fixed but power and height of the antennas vary. The existence of a solution, like
in the previous problem, is not guaranteed if the network of position is ill-prepared.
Here, we can, starting from a well chosen configuration, apply a gradient method
adapted to the constraint. Two problems appear: gradient method adapted to the
constraint and good starting configuration. Here, the first step is to find a starting
position. But, even if we find this kind of position, we are not sure to be able to
attain the optimal solution. The projected gradient method will guarantee that the
power decreases, respecting the constraints, but this decreases ensures that we arrive
in a local minimum which is not necessarily the global minimum. The question is
then: if we arrive in a local minimum, do we stop or do we try to find a better one
in order to attain the global one. One algorithm is the so called simulated annealing,
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this method is inspired from the technics of heating and cooling when injecting heat
in a system.

The main principle of this algorithm is then the following: a gradient descent
algorithm (projected in our case), perturbed regularly in order to push out of possible
non optimal minima bowl.

12.4.3 Problem 3

This case is much more difficult than the previous ones, but quite similar to
Problem 2. We could see it as a simple adjunction of a third dimension (vertical
position of the antenna and height). Here, we can imagine to apply the previously
described algorithm.

12.5 A Complex Situation

In fact, modelling of the antennas covering is much more complex and would
require the resolution of Maxwell equations in “town” represented by volume
with given electric permittivity and magnetic permeability. The models used
effectively are combining, in order to accelerate the computation, a ray tracing part,
using the classical geometrical light propagation and, when necessary, a complete
electromagnetic resolution in order to catch the diffraction phenomena.

12.6 Conclusion

This text is not extensive but gives the tracks in order to treat a simplified version
of an important optimisation problem. Nevertheless, in scientific literature, there
exists several occurrences treating the wave propagation in complex areas. In
particular, the perfect simulation of problem is almost impossible. The propagation
of electromagnetic wave using the Maxwell model is highly dependant of the
exact geometry and composition obstacles, mobile or fixed, the humidity ratio and
many other parameters not manageable exhaustively. In this context, the modelling
process describe gives an example of simplification in order to build a manageable
problem in finite time. This process is essential and must be carefully documented
in order to identify the simplification and prevent errors of interpretations of the
results obtained by simulation.
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