
Chapter 11
Optimising a Cascade of Hydro-Electric
Power Stations

Marta Pascoal

11.1 Introduction

Hydro electricity is electricity produced from hydropower and is responsible for a
good share of the world’s total generated electricity. Most of this power comes from
water stored in dams, usually coming from natural resources like rivers, rain or
snow melts, which when released flows through a turbine activating a generator that
produces electricity. The energy then produced depends on the volume of water that
is released and the difference in height between the water starting and ending points.
At times of less rain, or simply at high peak demands. there may be a shortage
of water to turbine in the reservoirs, while electric power is still needed. To cope
with such situations some power plants are capable of pumping water to higher
reservoirs, which can be done when there is not enough water to be released when
needed [2, 4–6].

A cascade system of hydro-electric power stations is a set of stations connected as
in a network where water flows between some of them. Two examples are shown in
Fig. 11.1. The triangles and circles in the plots represent the hydro station reservoirs
and turbines, respectively. The straight lines between the power stations show the
connection between them, whereas the blue arrows attached to each circle define in
which direction(s) each turbine is able to pump water.

The purpose of this work is to model the operation of a branched cascade system
like that depicted in Fig. 11.1b along 1 day, aiming at planning when each power
station should release water downstream or pump it upstream. In this case, the
turbines installed on hydro stations 3 and 4 have the ability of pumping water in
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Fig. 11.1 Cascades with hydro-electric power stations. (a) Two hydro-electric power plants. (b)
Four hydro-electric power plants

both directions, that is, both from hydro stations 3 or 4 downstream to hydro station
2, as well as from hydro station 2 upstream to hydro stations 3 or 4. Such daily plan
is decided based on a forecast for the energy market prices and with the goal of
maximising the daily profit. The problem is modelled as a nonlinear optimisation
problem, which can be solved using a mathematical programming environment like
AMPL [3] or Matlab.

11.2 Problem Formulation

The problem of optimising the branched cascade of hydro electric power plants
in Fig. 11.1b aims at planning the daily water flow in the cascade, with the goal of
maximising the profit related with the electric power generation. This value depends
on several features of the system, like the power that is consumed when the water is
pumped upstream, the power that is generated by the hydro stations when water is
released downstream, and, last but not least, on the energy market price oscillations.
The main characteristics of that system are described in the following. To simplify
we begin by considering the system with only two hydro stations, depicted in
Fig. 11.1a.

11.2.1 Two Power Plants Cascade Model

We assume the water flow plan for the power plants is defined hourly for 1 day
and first consider the simple cascade in Fig. 11.1a. Two sets of indices are used
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Fig. 11.2 Cascade with two
hydro-electric power plants
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in the following, I = {1, 2}, which represents the set of power plants, and T =
{1, 2, . . . , 24}, associated with the hours of the day.

Water Level, Water Head and Water Volume
In order to characterise the system it is important to define the water level in each
reservoir i with respect to the sea level, ξ , at instant t , denoted by Zit , for i ∈
I , t ∈ T , and depicted in Fig. 11.2. The difference between the water levels of
two reservoirs is related with the power that is produced by releasing water from
one reservoir to the next. These amounts are called the water head of reservoir i at
moment t , and are denoted by hit and defined as

h1t = Z1t − Z2t , t ∈ T

h2t = Z2t − ξ, t ∈ T
(11.1)

Additionally, the water levels vary according to the water volume in the reservoir,
denoted by Vit , for any i ∈ I and t ∈ T . Assuming that these quantities are
known and that the reservoir has approximately the shape of a cone as in Fig. 11.3,
Zit − Zi,t−1 can be estimated as the volume of a solid of revolution depending on a
constant r related with the width of the reservoir,

Vit − Vi,t−1 =
∫ Zit

Zi,t−1

π r2y2 dy = π r2

3

(
Z3

it − Z3
i,t−1

)
,
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and, therefore,

Zit = 3

√
Z3

i,t−1 + 3

πr2 (Vit − Vi,t−1).

In practice, and to simplify the calculations, the water levels are usually updated as

Zit = Z0
i + αi(Vit − V 0

i )βi , i ∈ I, t ∈ T (11.2)

with αi, βi given parameters, dependent on the shape and the characteristics of the
reservoir, and Z0

i the nominal water level in the reservoir, i ∈ I . Finally, the values
V 0

i are given constants representing the nominal water volumes that correspond to
Z0

i , for any i ∈ I [7].
Limits are imposed to the minimum and the maximum amount of water that can

be stored in each reservoir, either by using constraints over the volume of water, or
over the level of water, in each of them. The constraints

Zmin
i ≤ Zit ≤ Zmax

i , i ∈ I, t ∈ T , (11.3)

model the latter situation, for Zmin
i , Zmax

i given constants, i ∈ I .

The Water Flow Rate
The volume of water in a reservoir i ∈ I is usually affected by inflows from natural
resources, like rain, which are assumed to be estimated as Iit , water from incoming
discharges on upstream reservoirs, qjt , as well as water releases from the reservoir i

itself to other downstream reservoirs, qit , i, j ∈ I , t ∈ T , as illustrated in Fig. 11.2.
Thus,

V1t = V1,t−1 + I1t − q1t , t ∈ T

V2t = V2,t−1 + I2t + q1t − q2t , t ∈ T
(11.4)

are the flow conservation constraints needed to model the amount of water stored at
any moment at reservoirs 1 and 2, respectively.

It is assumed that the flow rate qit is positive when the water is being pumped
downstream, and negative if the water is being pumped upstream, i ∈ I , t ∈ T .
Constraints that limit the flow rate at each reservoir are also necessary. In case of
reservoirs that only pump water downstream (turbine) the bounds are

0 ≤ qit ≤ q0
i

√
hit

h0
i

, i ∈ I, t ∈ T (11.5)

and for the remaining reservoirs

ζi

(
hit − h0

i

)
− q0

i ≤ qit ≤ q0
i

√
hit

h0
i

, i ∈ I, t ∈ T (11.6)
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Here, q0
i represents the nominal amount of turbined water in the reservoir i in the

first case or the amount of nominal pumped water in the reservoir i in the second,
ζi is the pumping coefficient of the reservoir i, and h0

i is the nominal head of the
reservoir i, i ∈ I [7].

Power and Revenue
The goal of the problem is to find a distribution of the times for each hydro plant
to pump water downstream (called turbining) or to pump water upstream (called
pumping up) along the day, in order to maximise the profit resulting from the
produced power. The hourly prices of energy are denoted by Pt and are assumed
to be known, for t ∈ T . These values need to be combined with the electrical power
that is produced and consumed by the power plants, which differs when water is only
pumped downstream or when it can both be pumped downstream, thus producing
power, and upstream, consuming it.

The power produced by the turbine of a hydroelectric station depends on the
water flow, the height of the plant, the gravity acceleration, 9.8, and the equipment
characteristics. A simple formula to model this quantity is

9.8qitμihit ,

where μi is a parameter specific to turbine i ∈ I that represents its efficiency in
electricity production mode. In a more accurate model this value is also affected by
an internal consumption factor φi , which limits the net plant power output, as well
as makes the power output grow slower as the water flow grows. The new model
defines the power produced when turbining as

9.8qit (hit − Δhit )μi(1 − φi),

where

Δhit = Δh0
i

(
qit

q0
i

)2

represents friction losses when turbining or pumping, and Δh0
i and q0

i are nominal
values, i ∈ I .

At a given moment, each power plant either turbines water producing revenue,
pumps it upstream with a certain cost in the short term, or the system is idle and
there is zero flow. The formulae for the value of the power output and the price for
pumping are combined as follows:

rit =
{

9.8qit (hit − ΔhT
it )μ

T
i (1 − φi) if qit ≥ 0

9.8qit (hit + ΔhP
it )

1
μP

i (1−φi )
if qit < 0 , i ∈ I, t ∈ T (11.7)
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where

Δhit = Δh0
i

(
qit

q0
i

)2

represents friction losses when turbining (T ) or pumping (P ); both values expressed
as a head loss. The nominal values Δh0

i and q0
i are constants specific to each

turbine; the parameters μT
i and 1/μP

i represent efficiencies of turbines in electricity
production mode and pumping mode, respectively. The objective function is then
given by

∑
t∈T

Pt

∑
i∈I

rit , (11.8)

and the full formulation of the optimisation problem associated with the cascade
depicted in Fig. 11.1a is

maximise
∑
t∈T

Pt

∑
i∈I

rit

subject to h1t = Z1t − Z2t , t ∈ T

h2t = Z2t − ξ, t ∈ T

Zit = Z0
i + αi(Vit − V 0

i )βi , i ∈ I, t ∈ T

V1t = V1,t−1 + I1t − q1t , t ∈ T

V2t = V2,t−1 + I2t + q1t − q2t , t ∈ T

Zmin
i ≤ Zit ≤ Zmax

i , i ∈ I, t ∈ T

0 ≤ q2t ≤ q0
2

√
h2t

h0
2
, t ∈ T

ζ1
(
h1t − h0

1

) − q0
1 ≤ q1t ≤ q0

1

√
h1t

h0
1
, t ∈ T

(11.9)

11.2.2 Four Power Plants Cascade Model

The case of the four power plants cascade depicted in Fig. 11.1b can be seen as an
extension of the previous one. In the following I = {1, 2, 3, 4} stands for the set of
four hydro stations.

According to the presented scheme, in this case two turbines are able to work
both in upstream and in downstream pumping modes, namely those located at the
hydro electric plants 3 and 4. Thus, the previous flow conservation constraints are
replaced by the conditions

V2t = V2,t−1 + I2t + q1t + q3t + q4t − q2t , t ∈ T

Vit = Vi,t−1 + Iit − qit , i ∈ I − {2}, t ∈ T
(11.10)
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The formulation of the new optimisation model is as follows

maximise
∑
t∈T

Pt

∑
i∈I

rit

subject to hit = Zit − Z2t , i ∈ I − {2}, t ∈ T

h2t = Z2t − ξ, t ∈ T

Zit = Z0
i + αi(Vit − V 0

i )βi i ∈ I, t ∈ T

Vit = Vi,t−1 + Iit − qit , t ∈ T

V2t = V2,t−1 + I2t + q1t + q3t + q4t − q2t , t ∈ T

Zmin
i ≤ Zit ≤ Zmax

i i ∈ I, t ∈ T

0 ≤ qit ≤ q0
i

√
hit

h0
i

i = 1, 2, t ∈ T

ζi

(
hit − h0

i

) − q0
i ≤ qit ≤ q0

i

√
hit

h0
i

i = 3, 4, t ∈ T

(11.11)

It is noted that the variables qit are decision variables whereas Vit , Zit and hit

depend somehow on the flow rates qit , i ∈ I , t ∈ T . Like the formulation presented
in the previous subsection, the problem that we want to solve (11.11), is a nonlinear
optimisation problem. In fact, both the objective function in (11.8) and the sets of
constraints (11.2), (11.5) and (11.6) are nonlinear.

11.3 Numerical Results

In [1] results of the implementation of the non-linear program (11.11) using the
modelling language AMPL [3] are reported. Two cases were considered:

1. one where all the reservoirs started virtually empty, and
2. the other where all but the reservoir number 2 were empty and this one was

almost full.

The input data of the model was provided by the company REN - Redes Energéticas,
S.A.

The solution obtained for the first case had a small profit. Additionally, the
increase/decrease in the flow rates followed the fluctuation in the energy prices, and
pumping upstream appears in the optimal solution at times when the price is low,
alternated by occasional pumping downstream when the price decreases. Usually
the highest of the hydro plants is chosen as the sink of water pumped upstream.

The profit of the system was bigger in the second case and the optimal solution
consisted mainly in pumping water downstream at maximum flow rate, as expected
if no shortage of water occurs.
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11.4 Concluding Remarks

The daily planning of a branched cascade of hydro power plants arranged as in
Fig. 11.1b was modelled as a non-linear program. As concluding remarks it should
be noted that it would be interesting in practice to extend the planning horizon to
more than 1 day, and possibly include weekly patterns or seasonal characteristics.
However, this will increase significantly the size of the problem. Also, this problem
is associated with several natural phenomenon that are typically uncertain and,
therefore, it would be most useful, and challenging, to handle it from a stochastic
point of view.
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