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Preface

In recent years, numerous reports and studies have demonstrated that Mathemat-
ics is an essential tool to improve industrial innovation, and mixed academic–
industrial consortia and networks, like ECMI (European Consortium for Mathe-
matics in Industry—http://ecmi-indmath.org) and MI-Net (Mathematics in Industry
Network—https://mi-network.org/) are working to foster the recognition of Mathe-
matics as an enabling technology.

In this framework, an increasing need of mathematicians trained to work in
an industrial environment has been observed and has pushed the academic world
to provide novel training formats, able to respond to industrial needs. ECMI
in particular has established an educational programme, offered by the ECMI
Educational Centres, which is aimed to provide such training. Its main ingredients
are mathematical modelling activities, in particular the International Modelling
Weeks and the modelling seminars.

The International Modelling Weeks format is an international workshop where
master students and/or early-career investigators (PhD students and postdocs)
receive hands-on training in problem-solving, teamwork, and in learning to exploit
their different skills to model efficiently non-mathematical problems. During
modelling Weeks are training workshops where students from different countries
spend a week working in small multinational groups on projects which are based on
real-life problems. Each group is led by an instructor who introduces the problem,
usually formulated in non-mathematical terms, on the first day and then helps
to guide the students to a solution during the week. The students present their
results to the other groups on the last day and then write up their work as a report.
This format allows to train students in mathematical modelling and stimulate
their collaboration and communication skills, in a multinational environment. The
instructors “emulate” the figures of real industrial delegates, thus pushing the
students to start working in a non-academic environment.

Modelling seminars are also offered locally by the ECMI Educational Centres.
They have a structure similar to the modelling weeks, but are usually spread over one
semester, and are attended only by the students enrolled in the offering university.
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vi Preface

This book is a collection of real-world problems that have been assigned to
students during the ECMI International Modelling Weeks. The problems are first
described, and then a possible solution is proposed. The aim of this book is thus
to provide a set of examples, in different fields of application, and faced with
different mathematical techniques, to support teachers and instructors to organize
future modelling activities.

Linz, Austria Ewald Lindner
Milano, Italy Alessandra Micheletti
Lisboa, Portugal Cláudia Nunes
February 2020
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Chapter 1
Inverse Problems in Diffuse Optical
Tomography Applications

Paola Causin and Rada-Maria Weishaeupl

1.1 Introduction

Aim of this material is to provide a guideline to the modeling and fast numerical
solution of the inverse problem arising in the context of Diffuse Optical Tomography
(DOT), an innovative imaging technique which finds application in several clinical
settings. DOT applications extend to a wide ensemble of diagnostic/monitoring
purposes, ranging from cancer screening—object of this work, and in particular
for breast cancer screening—to monitoring of brain function in newborns or stroke
patients, to seizure detection in real time (see [11] for a comprehensive review).

Background In the seventeenth century, the French painter Georges de La Tour
(1593–1652) portrayed in his work St. Joseph the carpenter the light of a candle
transmitted through the thin fingers of the child Jesus (see Fig. 1.1). The painter’s
observation represents a common experience, which can be easily reproduced also
with present means: if a flashlight is shone onto one’s hand, it is clearly apparent that
light can travel through tissue and be detected on the other side with respect to the
source. This fact motivates the use of light to image the inside of the body, with the
benefit of a non-invasive and non ionizing technique. Moreover, in a broader sense,
physicians have always tried to diagnose health conditions from the appearance
of a patient. However, the first attempts to use light as a quantitative diagnostic
tool were impractical. The depth of penetration of light at visible frequencies is
too low to allow for investigations in tissues/organs thicker than a few millimeters.
In the context of breast screening, optical characterization was attempted in 1929
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2 P. Causin and R.-M. Weishaeupl

Fig. 1.1 In the painting St. Joseph the carpenter (1640), the French artist Georges de La Tour
represented the effect of candlelight crossing the thin fingers of the child Jesus (source: Wikipedia)

Fig. 1.2 Light crossing a biological tissue undergoes elastic scattering and, in a smaller portion,
absorption. The trajectories of emerging photons are for the greatest part diffusive and not ballistic.
This causes an inherent difficulty in reconstructing the optical coefficients that lead to such photon
paths

by Cutler [6] who performed a “transillumination” analysis, which requires
illumination of the breast on one side and examination of the shadowgraph type
image viewed from an opposite side. This exam depends upon sufficient light
being transmitted through the breast along straight paths. The expected result
was the ability to detect vascularization and tissue patterns that could lead to the
diagnosis of cancer, based on the evidence that translucence and opalescence is
different for malignant and benign tissue. Despite the attempts, at the time the
technique was abandoned since it was found difficult to produce the necessary light
intensity without overheating the tissue. It was only in the 1970s that techniques
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emerged to improve the quality of the results and the patient comfort during the
examination. Optical breast imaging emerged as a novel imaging technique that uses
near-infrared light (NIR, 600–900 nm) to assess optical properties of tissues. NIR
wavelengths represent the so–called optical window, where absorption is minimal
and thus deeper penetration in the tissue is obtained. At the same time, since
the existing absorption is mainly affected by the tissue hemoglobin content and
only secondarily by other components, this information can be used for diagnostic
purposes. Higher absorption for carcinomas than for the surrounding tissue is
indeed to be expected due to increased blood content associated with tumor-related
angiogenesis [17]. However, imaging of tissue structure and function is greatly
blurred by the simultaneous presence of elastic scattering, which can be 100x
larger than absorption and is caused by small differences in refractive index at
the microscopic level, mainly due to fat droplets and structures inside the cell
nucleus [15]. Scattering makes impossible to reconstruct the deterministic path of
a single photon from its emission to the exiting point (see Fig. 1.2). Several years
were required to gain the necessary knowledge and technology to overcome this
difficulty. Significant improvements were obtained with the use of tomographic
methods, crucial for recovery of spatial information about optical properties. The
combination of these technologies gave rise to the DOT approach. In DOT several
challenging topics emerge: in this project we will focus on the mathematical aspects
arising from the reconstruction of the optical coefficients, which represent the core
of the DOT problem. To start with, we report here below the clear explanation of
the DOT principle provided in the review paper by Boas et al. [2].

DOT Principle “The basic idea of DOT imaging is to illuminate the tissue with an
array of light sources and to measure the light leaving the tissue with an array of
detectors. For each source location, one records an image of the light reaching each
detector from that particular source. A model of the propagation of light in tissue is
developed and parametrized in terms of the unknown absorption and scattering as a
function of position in the tissue. Then, using the model together with the ensemble
of images over all the sources, one attempts to “invert” the propagation model
to recover the parameters of interest, or, in other words, to estimate the optical
parameters out of the data, using the model.”

The present work is organized as follows: in Sect. 1.2 we introduce the math-
ematical model to compute light propagation in the medium with prescribed
optical coefficients and we briefly discuss its derivation and properties; in Sect. 1.3
we introduce the inverse problem and its treatment with the Rytov perturbation
approach, detailing its derivation and we discuss the important issue of problem
regularization; in Sect. 1.5 we propose a scheme to implement the DOT algorithm
in a computer code; in Sect. 1.6 we propose two numerical test cases to validate
the algorithm and, eventually, in Sect. 1.7 we draw the conclusions and we propose
some topics for further work.
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1.2 Mathematical Models of Light Propagation in Tissue

As stated above, a model of light propagation is a necessary tool in DOT imaging.
The mathematical reconstruction of the light distribution in the medium, given its
optical properties, amounts to solving the so–called forward model. Here below we
provide details of existing models and, among them, we propose to use the diffusive
approximation, a reasonable balance between physical accuracy and computational
cost in tomographic image reconstruction.

Beer-Lambert Law The most basic model of light propagation is obtained under
the hypothesis that the only acting phenomenon is light absorption. The Beer-
Lambert law is derived from an approximation for the absorption coefficient
in which molecules are described by opaque disks whose cross-sectional area
represents the effective area seen by an incoming photon [16]. Considering a
distribution of molecules in a slab and integrating the photon balance along the
propagation distance r [cm] yields

I = I0e−μar , (1.1)

where I0 is the unperturbed light intensity and μa [cm]−1 is the absorption
coefficient representing the probability of absorption per unit length. The ratio
I/I0 deducible from Eq. (1.1) is called light transmittance and is an exponentially
decreasing function of the distance r . This model is adequate to study light
propagation only when the sample of biological tissue is sufficiently thin (less
than a few millimeters) and a good fraction of photons with ballistic, unscattered,
trajectory reaches the detectors. A conventional image reconstruction algorithm
based on relation (1.1) for x-ray computer tomography can then be applied to DOT.
When dealing with thicker samples “as is often the case” Eq. (1.1) fails in correctly
representing light transmission and one must resort to more complex models.

The most general model for light propagation stems from the Radiative Transfer
Equation (RTE) [1], an integro–differential equation which ensures the conservation
of energy of the light radiance [Wcm−2 sr−1], which is the light power per unit area
traveling in a certain angular direction. Solving the RTE is computationally very
intensive, so that many simplifications have been sought in literature.

Diffusion Equation A physically reasonable and cost–effective approach is to
perform an expansion in spherical harmonics of the radiance in the RTE, the so–
called PN expansion. This leads to the introduction of the quantity called photon
fluence U = U(r, t) [Wcm−2], which represents the integral of the radiance over
the solid angle. Considering the expansion truncated to first order and under the
additional hypotheses of isotropic sources and slow variation of the photon fluence,
the following diffusive equation (DE) is obtained for the photon fluence (see, e.g. [8]
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for a detailed derivation): find U = U(r, t) such that

1

c

∂U(r, t)

∂t
− ∇ · (D(r)∇U(r, t)) + μa(r)U(r, t) = S(r, t), (1.2)

where r ∈ Ω ⊂ R
3 is the position in the domain Ω (the tissue sample), t > 0

[s] is time, S(r, t)[Wcm−3] is the volumetric source strength and c [cm/s] is the
light speed. Observe that light is not physically present in the body as a volumetric
source, but rather it should be represented as a flux a boundary condition in the
region of application. However, the present approach presents many advantages (as
will be clear in the following) and is sufficiently accurate already a few millimeters
far from the source itself (see [1] for a discussion of this topic). Moreover, in (1.2)
we let D(r)[cm] be the diffusion coefficient defined as

D(r) = 1

3(μa(r) + μ′
s (r))

,

where μ′
s (r) = μs(r)(1 − g)[cm]−1 is the reduced scattering coefficient, μs being

the scattering coefficient and g an anisotropy scattering factor. Observe that, from
the microscopic viewpoint, the DE modeling approach supposes that the photons
move throughout the sample along random paths. Each photon travels along straight
segments with a sudden discontinuity when the photon changes direction or is
absorbed. The average length of rectilinear tracts is the mean free path, �tr � 1/μs .

Equation (1.4) is endowed with the following Fresnel air–sample interface law

AU(ξ) + ∇U(ξ) · n = 0, ∀ξ ∈ ∂Ω, (1.3)

where n is the unit normal vector with respect to the boundary ∂Ω of Ω at point ξ .
The accomodation coefficient A takes into account the differences in the refractive
indices of the scattering medium and the surrounding medium and is defined as (see
e.g. [8])

A = 1 + Reff

1 − Reff
, Reff = −1.440n−2 + 0.71n−1 + 0.668 + 0.0636n,

n = nin/nout being the ratio of the index of refraction inside (tissue) and outside
(air).

For the purposes of the following discussion, the stationary case (∂U/∂t = 0) of
the DE is considered. This hypothesis implies that the light distribution within the
object is instantaneous: this is justified when μa � μ′

s , as in the application at hand.
This latter observation also justifies the further assumption D(r) � 1/(3μ′

s(r)),
which in the present context is reduced to D = const since we will consider a
homogeneous scattering coefficient throughout the domain. Then, Eq. (1.4) reduces
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to: find U = U(r) such that

− DΔU(r) + μa(r)U(r) = S(r). (1.4)

For a given μa distribution, problem (1.4) shall be solved in this project in two
different contexts:

(P1) to model fluence in the points of the domain where required in the solution of
the inverse problem (see next section). A fundamental solution method with
Green’s functions will be used in this context. This approach is chosen in order
to dispose of cheap evaluations of the solution without the need of meshing the
patient–specific volumetric geometry and is adequate to provide, despite the
approximation, “almost real time” diagnostic results

(P2) to generate in silico substitutes of experimental data. A finite element method
will be used to discretize (1.4) and fluence will be sampled in chosen locations
on the boundary of the domain, simulating fluence measurements at locations
of the light detectors.

1.3 Inverse Problem for the Reconstruction of the Optical
Coefficients

The inverse problem constitutes the procedure in which optical coefficients are
sought given a set of measurements of the fluence on the body surface. The most
general approach should consist in an iterative method where at each step the
unknown parameters are updated while trying to minimize an error functional
depending on the difference between the measured values and the computed values.
However, in practice, this procedure turns out to be exceedingly expensive for the
application at hand. It is thus convenient to adopt a linearized approach as described
below.

Rytov Approximation (Perturbation Approach)
Due to the nature of the present work, we deem useful to report in detail the

derivation of the perturbation approach we adopt, known as Rytov approximation.
Such derivation is inspired by Ishimaru [12, Vol. II, Ch. 17], with a modification
to include the presence of a volumetric light source. Starting from Eq. (1.4), we
suppose that the absorption coefficient μa may be written as μa = μa,0 + δμa ,
where μa,0 is a background value and δμa a (small) perturbation term. We now let

U(r) = eψ(r), (1.5)

and we write ψ = ψ0 + ψ1, where:
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• the exponent ψ0 corresponds to the homogeneous solution, i.e. it is such that
U0 = eψ0 satisfies the background field equation

− DΔU0 + μa,0U0 = S (1.6)

• the exponent ψ1 represents the logarithmic amplitude fluctuation of the light
intensity with respect to the background. As a matter of fact, since U = U0eψ1 ,
it results ψ1 = log(U/U0).

Inserting in Eq. (1.4) the expression for U and the expansion for μa yields

− DΔeψ + (μa,0 + δμa)e
ψ = S. (1.7)

We now observe that

Δeψ = eψ [∇ψ · ∇ψ + Δψ],

so that Eq. (1.7) becomes

− D[∇ψ · ∇ψ + Δψ] + (μa,0 + δμa) = Se−ψ, (1.8)

and, correspondingly, Eq. (1.6) becomes

− D[∇ψ0 · ∇ψ0 + Δψ0] + μa,0 = Se−ψ0 . (1.9)

We take now the difference of Eqs. (1.8) and (1.9), yielding

− [Δψ1 + 2∇ψ1 · ∇ψ0] = −δμa

D
+ ∇ψ1 · ∇ψ1 + S

D
(e−ψ − e−ψ0). (1.10)

Observing that

Δ(U0ψ1) = ψ1ΔU0 + 2U0∇ψ1 · ∇ψ0 + U0Δψ1 (1.11)

we may rewrite the left hand side of Eq. (1.10) as

− 1

U0
[Δψ1 + 2∇ψ1 · ∇ψ0] = − 1

U0
[Δ(U0ψ1) − ψ1ΔU0] =

− 1

U0
[Δ − μa

D
](U0ψ1) − ψ1

U0

S

D
, (1.12)

where we have also used the fact that U0 solves problem (1.6). We eventually obtain
the following equation for (U0ψ1)

[Δ − μa

D
](U0ψ1) =

(
δμa

D
− ∇ψ1 · ∇ψ1

)
U0, (1.13)
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where we have used the approximation (valid for small ψ1 and recalling that U0 =
eψ0 )

S

D
ψ1 + U0

S

D

(
e−ψ − e−ψ0

) = S

D
ψ1 + S

D
(U0/eψ0)

(
e−ψ1 − 1

) ≈
S

D
ψ1 + S

D
(1 − ψ1 − 1) = 0.

Equation (1.13) is of modified Helmholtz type and its solution can be expressed as
the convolution integral

U0ψ1 =
∫

Ω

G(r − r ′)
(

δμa

D
− ∇ψ1 · ∇ψ1

)
U0 dr ′, (1.14)

where G(r − r ′) is the Green’s function for the operator [Δ − μa

D
] (see Appendix

for details). Neglecting the second order term in ∇ψ1 and dividing by U0, we obtain
the following expression for ψ1,0 ∼ ψ1

ψ1,0(r) = 1

U0(r)

∫
Ω

G(r − r ′) δμa(r
′)

D
U0(r

′) dr ′, (1.15)

where we have made explicit all the dependencies on the integration and position
variables. Gathering Eq. (1.15) and the definition of ψ1, we eventually obtain

1

U0(r)

∫
Ω

G(r − r ′)
δμa(r

′)
D

U0(r
′) dr ′ = log

U(r)

U0(r)
. (1.16)

Important Relation (1.16) is the core of the inverse problem: the left-hand side is
built according to the DE model of light propagation (this corresponds to its use as
detailed in P1), while the right-hand side is measured experimentally recording the
transmitted light in the perturbed and homogeneous field, respectively. The inverse
problem consists in finding the perturbation field δμa = δμa(r) such that Eq. (1.16)
holds (in a mathematical sense that we will specify later on).

1.4 Numerical Approximation of the Inverse Problem

To solve the inverse problem, we start from Eq. (1.16) and we recall that in
the tomographic configuration light is successively generated by different sources
and collected by the detectors (which lay on the boundary of the domain). We
suppose thus to dispose of M experimental measurements, that is, M source–
detector couples with M = Ns × Nd , Ns being the number of light sources and
Nd the number of detectors. We choose successively in (1.16) r as the detector
positions rl

d , l = 1, . . . , Nd and we consider in turn each light source of position
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rk
s , k = 1, . . . , Ns . Then, for source–detector couple, we discretize the integral by

breaking up the domain into N discrete volume elements (called voxels). The size
of each voxel may be variable, depending on the local thickness of the sample,
even if in a first approximation simple equally–sized square (cubic) voxels are an
acceptable choice. Using a midpoint quadrature rule (with voxel centroid rj , voxel
volume ΔVj , j = 1, . . . , N), we then obtain

N∑
j=1

ΔVj

U0(rs , rd )
G(rd − rj )

δμa(rj )

D
U0(rs , rj ) � log

U(rs, rd )

U0(rs , rd )
(1.17)

where we have made explicit all the dependencies. Relation (1.17) is conveniently
written in matrix form by introducing the sensitivity matrix J ∈ R

(M×N)

J = Jij =
[

ΔVj

U0(rk
s , rl

d )
G(rl

d − rj )
1

D
U0(r

k
s , rj )

]
, (1.18)

and the right-hand side y ∈ R
(M×1)

y = yi = log
U(rk

s , rl
d )

U0(rk
s , rl

d )
, (1.19)

where the index i stands for the detector/source pair, i.e. i = 1, . . . ,M → {l, k},
l = 1, . . . , Nd , k = 1, . . . , Ns and the index j for the voxel number, j = 1, . . . , N .
Letting (with a slight abuse of notation) δμa ∈ R

(N×1) be the vector of unknown
variations in absorption coefficient, we then obtain

J δμa = y. (1.20)

System (1.20) can be under or over–determined, depending on the fact that M

is greater or smaller than N . This aspect is strictly related to the specific DOT
configuration one considers. In applications where light is collected via a (limited
number) of optical fibers the first case is obtained, while the use of CCD cameras
to collect emerging light leads to the second case (and possibly to M >> N , even
after image quality check procedures and saturated pixel pruning). Let us focus on
the case M > N : system (1.20) is overdetermined and has to be solved in the least
square sense. Namely, one has to minimize the residual norm (here ‖x‖2

2 = ∑
i |xi|2

denotes the l2-norm of the vector x)

min
δμa

L (δμa) = min
δμa

||y − J δμa ||22, (1.21)

which represents the discrepancy between modeled data and measured data. We can
formally derive the minimizer for the functional L (δμa) by performing the Fréchet
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derivative, and setting it to zero

d

dε
L (δμa + εv)

∣∣∣∣
ε=0

= d

dε
‖y − J (δμa + εv)‖2

2

∣∣∣∣
ε=0

= 0, (1.22)

where v is a vector that prescribes the “direction” in which the derivative is
computed, and (1.22) should be valid for all directions. The minimizer satisfies the
system:

[J T J ]δμa = J T y. (1.23)

Due to the nature of J , the matrix [J T J ] is badly conditioned (close to singular).
The ill-conditioning implies that a standard numerical method for solving linear
systems will produce an unacceptably large error. A regularization procedure must
thus be carried out.

An Ill–Conditioned System To have an idea of the degree of ill-conditioning of the
system, you may want to compute and plot the singular values of J for one of the
simulation tests suggested below. To do this, in Matlab®, you can use the command
svd. Notice that:

• the singular values of J gradually decay to zero (without really being zero)
• the singular values span a range of several orders of magnitude.

Since the condition number of a rectangular matrix can be related to the ratio
between the largest and smallest singular value, it appears that it is very large for
the DOT inverse problem.

In order to regularize problem (1.23) a robust and commonly used approach
is to perform a Tikhonov regulation [10]. Its purpose is to dampen or filter out
the contributions from the smallest singular values of J . The idea of Tikhonov
regularization is to add a penalization term to the problem:

min
δμa

L R(δμa) = min
δμa

(
‖y − J δμa‖2

2 + λ‖δμa‖2
2

)
. (1.24)

Again one can derive the equation for the minimizer of the regularized functional
L R(δμa) and obtain the regularized system:

(J T J + λI)δμR
a = J T y. (1.25)

The regularization parameter λ controls the weight given to minimization of the side
constraint relative to minimization of the residual norm. Its choice is not trivial and
several approaches exist (see [10] for more details).

Choice of λ and numerical solution of the regularized system To start with, we
suggest to simply set λ to a constant. We have found that in several test cases
λ = 10−3 is a reasonable value. However, you may want to play around a bit and see
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the effect of choosing different values. Then, you can solve system (1.25) by a linear
solver of your choice. Notice that more sophisticated regularization approaches
exist, of which we provide some details in Sect. 1.7.

1.5 Details of the Computer Implementation

Many programming languages can be used to implement a computer code for the
solution of the DOT problem and to construct in silico substitutes of the measured
data (these latter are strongly suggested over “real” experimental data to start with!).
We propose here to use Matlab®, in order to take advantage of its several built-
in algorithms and functions in addition to its efficient linear systems solver. The
following steps must be carried out (you may want to refer to Fig. 1.3 for an example
in 2D):

(I) first, you need to implement the solution of the forward problem (as detailed
in point P2 of Sect. 1.2) to generate the in silico data for photon fluence. It is
convenient (but not compulsory!) to use the Matlab® PDE Solver. To do this,
you must perform the following steps:

I.1 define and mesh the domain geometry
I.2 define the position of sources and detectors
I.3 define the background optical coefficients. You can use literature values as

suggested in Sect. 1.6
I.4 when computing the perturbed solution, define the position and shape of

inclusions (see Sect. 1.6 for details); define their optical coefficients
I.5 define sources as Gaussian bells centered around the application point.

The intensity of the source is not relevant since you will perform a
normalization (see Eq. (1.19)). You can play a bit with the variance of
the Gaussian (something of the order of 0.01 usually works fine)

I.6 enforce boundary conditions (see Eq. (1.3) and, more specifically,
Eq. (1.26))

I.7 solve the problem with finite elements. Matrix assembly and system
solution is automatically performed by the Matlab® PDE solver

I.8 collect the values of the solution (fluence) at the detector locations.

You must execute the above procedure twice: once with an homogeneous
background value for the absorption coefficient (corresponding to μa,0), and
once with the presence of inclusions (corresponding to perturbation δμa in
some regions of the domain). Save the respective data on two separate files,
along with the locations of sources and detectors and background optical
coefficients

(II) you now have to implement the solution of the inverse problem by performing
the following steps (in this phase you must pretend you do not know the
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location and absorption strength of the inclusions and you must reconstruct
them!):

II.1 read the files you saved in the previous point
II.2 build the voxelization of the domain (see Fig. 1.3(right) for an example);

compute the voxel centroids and volumes
II.3 build the sensitivity matrix (a delicate point for code efficiency!). To do

this:

i. write a function which, given source position and evaluation point,
returns the value of the corresponding Green’s function for the modi-
fied Helmholtz problem (free-space and dipole versions, respectively,
refer to the Appendix)

ii. build the sensitivity matrix using Eq. (1.18). Pay attention: it is
convenient to compute the value U0 at the numerator with dipole
Green’s function expansion and use instead data generated at point (I)
for the value U0 at the denominator. In addition, use for the Green’s
function appearing at the numerator the free-space version

II.4 build the right-hand side y by normalizing corresponding perturbed data
over background data read from the files

II.5 solve the resulting overdetermined system for the variation of the absorp-
tion coefficient by Tikhonov regularization (see Sect. 1.3). To solve the
regularized system you can simply use the \ command of Matlab®

(III) visualize the results representing the solution value in each voxel and super-
pose to the plot the exact position of the inclusions. This procedure is known
as “mapping” of the results. To perform it, you can use the Matlab® command
patch. Use a colorbar to check the magnitude of the values!

1.6 Examples of Numerical Simulations

To assess your implementation, we suggest to consider a 2D domain represented
by a semicircle of radius 4 cm (see Fig. 1.3(left)). We consider a set of Ns = 19
pointwise light sources uniformly located on the horizontal boundary at a distance

Fig. 1.3 (a) Common geometry and source/detector positioning for the numerical experiments;
(b) discretization of the domain in voxels
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of 1 mm ΓD inside the domain and a set of Nd = 200 detectors radially disposed
1 mm inside the domain along the boundary ΓR.

Generate fluence “observations” in the detectors by using your code implemented
as in point (I) of Sect. 1.2. We advise to use a fine enough mesh, for example we used
a mesh consisting in 37,858 triangles, with an approximation of degree 2 on each
element.

Set the following boundary conditions (slightly different from the general ones
given in Eq. (1.3)):

U = 0 on ∂ΓD,

U + 2AD
∂U

∂n
= 0 on ΓR,

(1.26)

where ∂Ω = ΓD ∪ ΓR, n is the outward normal vector. Notice that the first
condition represents the fact light does not escape from the solid plate. In all the
numerical tests, we adopted the following physically reasonable background values
(see e.g. [14]): μ′

s = 0.1 [cm−1], μa,0 = 0.01 [cm−1]. Moreover, we used N = 588
voxels, which correspond to a spatial resolution of 0.25 cm (see Fig. 1.3b for an
example of voxelization).

Perform the Following Studies

– Test case 1
Consider a single circular inclusion placed at x = 2, y = 2 cm with radius

0.3 cm. Set the absorption coefficient of the inclusion to μa,inc = 2 × μa,0 (see
Fig. 1.4a).

– Test case 2
Place two circular inclusions at x = −2.5, y = 2.5 cm and x = 2, y = 1 cm,

respectively, both with radius 0.3 cm. Set the absorption coefficient of the leftmost
inclusion to μa,inc = 5 × μa,0, while for the rightmost to μa,inc = 2 × μa,0 (see
Fig. 1.5a).

The results we obtained for test case 1 are shown in Fig. 1.4b, while the results for
test case 2 are shown in Fig. 1.5b. Observe that we correctly estimate the differential
absorption coefficient of the inclusion(s) and we localize their positions, but the

Fig. 1.4 Test case 1: (a) setting; (b) reconstructed absorption coefficient
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Fig. 1.5 Test case 2: (a) setting; (b) reconstructed absorption coefficient

affected region is largely over–estimated. This effect is in large part due to the use
of the �2-norm regularization (see the next section for further comments). Moreover,
in the case with two inclusions, the value of the weaker one is not computed with
high precision.

1.7 Conclusions and Ideas for Further Work

This work was aimed at offering a “gentle introduction” to some of the mathematical
and numerical issues related to DOT technology. This is a very promising field,
capable of offering a fast, cost–effective and unharmful screening tool. However,
DOT resolution is a mathematically challenging problem. Here, we have provided
a self-contained material to carry out a complete DOT solution in a simplified
setting. The results obtained with the techniques that we presented allow to obtain
an estimation of the position and strength of the inclusion, but much space is left to
improvements. For example, as you can observe from the rightmost plots in Figs. 1.4
and 1.5 that the position of the estimated variation in the absorption coefficient is
not exactly coincident with the true one, as well as its spatial extension. This latter
results to be somewhat blurred, a typical effect of the Tikhonov regularization. To
obtain better and sharper results, more sophisticated tools are required. We suggest
to consult the different literature contributions in this field, for example see [3–
5, 8, 9, 13]. In addition, we list below a series of points that represent issues that
deserve further attention in a deeper analysis of the problem.

Further Work You may want to investigate the following points (some of them not
trivial at all!):

• do the results change using a finer voxelization? Is there a good compromise? Try
to use, instead of a voxelization as suggested here, a Delaunay triangular mesh.
How do the results change?

• what is the role of the regularization parameter? Can we find an automatic
way to establish a good value for it? To start with, you can explore the
possibilities offered in the regtool suite which is a freely available package
for regularization in Matlab®

• try to add some noise to the data (for example 1–5% of the local value, with an
independent Gaussian distribution at each detector). What is the effect?
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Appendix: Green’s Function Solution of the DE Model

The DE model and its successive manipulations in the Rytov procedure yield
relation that represent instances of the inhomogeneous modified Helmholtz equation
of the form:

[Δ − α2]φ(r) = f (r). (1.27)

We are interested in finding an analytic solution to this partial differential equation.
It is clear that this will be possible only on simple geometries. In particular, we will
refer to the solution on a infinite or semi–infinite domain and we will “pretend” that
it can be used as it is for our finite domain. With this aim, for a linear operator L ,
we introduce the Green’s function G = G(r − r ′), such that

LG(r − r ′) = δ(r − r ′)

where δ is the Dirac delta centered in r ′. It holds the following (see e.g., [7])

Lemma 1.1 Given the partial differential equation L φ(r) = f (r), r ∈ Ω , if
G(r − r ′) is the Green’s function with respect to the linear partial differential
operator L , then a solution to the PDE is given by the convolution between the
source term f and the Green’s function

φ(r) =
∫

Ω

G(r − r ′)f (r ′) dr ′ (1.28)

The Green’s function for our operator at hand L = (Δ − α2) has the following
expression for n = 2 or 3 (see e.g. [7])

G(r − r ′) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

2π
K0(α||r − r ′||) n = 2,

− 1

4π

e−α||r−r ′||

||r − r ′|| n = 3,

(1.29)

where K0 is the modified Bessel function of the second kind of order zero (in
Matlab® you can compute it with the command besselk). Observe that the
Green’s functions in (1.29) refer to an infinite domain and only satisfy the radiation
condition |G| → 0 for |r| → ∞. As a result, the corresponding solution obtained
from the convolution procedure does not satisfy the proper boundary conditions on
the finite domain Ω . In order to partially correct this fact, you can use the so–called
dipole approximation which allows to enforce null solution over a plane, which is a
convenient condition in our case for the part of the breast laying on the solid plate.
To fix ideas, let us think this plane to correspond to z = 0. When a point source is
placed at a small depth � into the sample, an equivalent opposite “sink” is placed at
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−�. The following dipole solution is obtained for a source located in x ′ = (0, 0, �)

GD(x, x ′) = G(x, (0, 0, �) − G(x, (0, 0,−�)).

This expression guarantees that φ = 0 on the plane.
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Chapter 2
1D Models for Blood Flow in Arteries

Alexandra Bugalho de Moura

2.1 Introduction

Cardiovascular diseases remain one of the major causes of death in developed
countries, with great social and economic impact. The simulation of the cardiovas-
cular system helps understanding the physiology of blood circulation and enables
non-invasive based clinical predictions. In the past years a large research activity
has been devoted to complex 3D models of blood flow, using patient-specific
cardiovascular geometries obtained through medical imaging, see [1–5] for some
examples. The 3D simulations provide great detail on the blood flow patterns and
allow to quantify a number o clinical indices. However, in many situations, the
detailed information of the 3D model is not crucial, and the analysis of average
quantities, such as flow rate and pressure, suffices to make clinical predictions
and decisions [6, 7]. One of the features of blood circulation that is best captured
by 1D simplified models in large arterial networks is its pulsatility. The elastic
deformations in large arteries, such as the aorta or the carotid, are very important,
helping to regularize blood flow during the cardiac cycle and leading to the pulse
propagation that characterizes the arterial tree. This pulsation feature of blood flow
in arteries has been observed and used in medical practices for hundreds of years.
For example, the superposition of the waves reflected by medical devices, such
as prosthesis or stents, with those produced by the heart can generate anomalous
pressure peaks [8].

Several approaches can be followed to derive 1D models for blood flow in
arteries, and different 1D models can be obtained depending on the level of
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simplification and on the characteristics of blood circulation kept during the
simplification process. Here, the 1D model is derived by integrating the 3D Navier-
Stokes equations for fluid flow coupled with a model for the vessel compliance,
considering some simplifying assumptions [8, 9]. The resulting mathematical model
consists of an hyperbolic system of partial differential equations (PDE’s). This
means that it has wave-like solutions, with characteristic propagation speed and
wave length. The numerical discretization of the 1D hyperbolic model is briefly
discussed and numerical results are presented by considering an application to the
study of blood circulation in the human brain. The purpose of the application here
introduced is to answer the question “What are the effects of anatomical changes in
the main arteries of the arterial system of the human brain?”. Regarding this subject
and other clinical applications of 1D blood flow models, see for instance [6–8].

Following the same methodology of integrating over a generic axial section, more
complex 1D models are derived, namely accounting for vessel curvature. This is
achieved by relaxation of some simplifying assumptions. The inclusion of curvature
means more complexity on the model, and the resulting system of PDEs reflects that
extra complexity. In this context we discuss on the balance between simplicity and
accuracy when doing mathematical modeling.

2.2 The 1D Model for Blood Flow in Arteries

The 1D model dates back to Euler [10], that already in 1775 introduced a 1D
model of the human arterial system, yet claiming “the incredible difficulties for
its solution”. Here the 1D model for blood flow in arteries is derived from the
3D model. We start by considering the Navier-Stokes equations for Newtonian
incompressible fluids [11]:

⎧⎨
⎩

∂u
∂t

+ u · ∇u + 1

ρ
∇P − νΔu = f,

div u = 0,

in Ω (2.1)

where the unknowns are the fluid velocity u = (ux, uy, uz) and pressure P ,
depending on space x = (x, y, z) and time t , with Ω the 3D vascular district of
interest (see Fig. 2.1). Here f is a given function representing the volume forces
exerted on the fluid, as e.g. the gravity, ρ is the constant blood density, and ν is the
constant blood viscosity. We will neglect body forces, f = 0.

The first equation of (2.1) describes the momentum conservation, while the
second is the continuity equation and represents the conservation of mass.

The Navier-Stokes equations (2.1) are coupled with a model for the vessel wall
displacement. Due to their complex structure, it is very difficult to devise appropriate
and accurate models describing the mechanical behaviour of the artery walls. We
will not go into detail on this subject, but we will consider that the walls of the
vessel can move as the result of the fluid pressure. Equations (2.1), together with a
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Fig. 2.1 Generic vascular district Ω

model for the vessel wall, constitute a 3D FSI (fluid-structure interaction) model for
blood flow in vascular districts.

2.2.1 Deriving the 1D Model

To derive the 1D model, we assume some simplifying hypothesis and then we
integrate the 3D FSI model in each cross section S(z) of the vessel [9]. Applying
this procedure, the only spatial coordinate remaining is the axial direction, denoted
z. The simplifying assumptions are as follows:

H1 Axial symmetry. All quantities are independent from the angular coordinate,
implying that each axial section S(z) remains circular during the wall motion.
Hence, the tube radius R is a function of time t and axial direction z, R =
R(t, z).

H2 Radial displacements. Wall displacements occur only in the radial direction.
Defining R0 as the reference radius, the wall displacement is d = der , with er

the outward unit vector in the radial direction and d(t, z) = R(t, z) − R0(t, z).
The reference radius R0, usually the radius of the vessel at rest, may depend
on the axial direction z. Indeed, one characteristic of arteries is its tapering
geometry.

H3 Fixed cylinder axis. The axial axis is fixed in time and the vessel expands and
contracts around it.

H4 Constant pressure on each axial section. Pressure is assumed constant in each
section, depending only on z and t , P = P(t, z). This is reasonable, since the
pressure field of the fluid flow in 3D straight tubes is mainly constant in each
section.

H5 No body forces. External forces are neglected. This is often considered already
at the 3D model level.

H6 Axial velocity dominance. The velocity components orthogonal to the axial
direction are neglected, since they are considered negligible when compared to
the axial velocity: u = uz. In cylindrical coordinates we have u = (ur , uθ , uz)
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and

uz(t, r, θ, z) = uz(t, r, z) = ū(t, z) × s

(
r

R(t, z)

)
(2.2)

where s(·) is the velocity profile, assumed constant in time, t , and space,
z, which is in fact in contrast with the observations and 3D models. In this
simplifying setting, s(·) may be though of as a profile representative of an
average flow configuration. In practice, it will be considered flat or parabolic.

The unknown variables of the 1D model will be averaged quantities. The area is
related with wall displacement and is given by A(t, z) = ∫

S(t,z) ds = πR2(t, z);
the flow rate, Q(t, z) = ∫

S(t,z)
uzds = A(t, z)ū(t, z), and mean velocity, ū(t, z) =

1
A(t,z)

∫
S(t,z)

uzds = Q(t,z)
A(t,z)

, are related with fluid velocity. Due to H4, the mean

pressure is p̄(t, z) = ∫
S(t,z) P (t, z)ds = P(t, z)A(t, z). All these quantities depend

on t and z. In the notation, we will usually omit, unless needed, this dependence.
From H6, H1, and (2.2) we have

ū(t, z) = 1

πR2

∫ 2π

0

∫ R

0
ū(t, z)s

( r

R

)
rdrdθ = ū(t, z)

πR2 2π

∫ R

0
s
( r

R

)
rdr

meaning that R2

2 = ∫ R

0 s
(

r
R

)
rdr , and

∫ 1
0 s(y)ydy = 0.5 by doing the change

of variable r = Ry. We also define the momentum-flux coefficient or Coriolis
coefficient, related with the fluid velocity profile:

α =
∫
S u2

zds

Aū2 =
∫
S ū2s2ds

Aū2 =
∫
S s2ds

A

It is easy to see that α � 1. In general α varies with time, t , and space, z. Here it
is considered to be constant as a consequence of H6, since α is related with ur . For
steady flow in circular rigid tubes the Navier-Stokes equations have the very well
known Poiseuille solution, consisting of a parabolic velocity profile. For a Poiseuille
profile we have s(y) = 2(1 − y2) and α = 4/3. For blood flow it has been found
that the velocity profile is rather flat [11], corresponding to s(y) = 1 and α = 1.

From assumptions H4, H5 and H6, the Navier-Stokes equations (2.1) become:

⎧⎨
⎩

∂uz

∂t
+ div(uzu) + 1

ρ

∂P

∂z
− νΔuz = 0,

div u = 0,

in Ω (2.3)

On the wall of the vessel, Γw, we have the kinematic condition u = ∂d
∂t

= ∂d
∂t

er ,
meaning that the wall moves at the same velocity as the fluid.

We will integrate equations (2.3) on the generic cross section S(z) term by term.
Consider the portion V of the vascular tube Ω around point z, comprising the axial
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Fig. 2.2 Portion of the tube between z − dz
2 and z + dz

2

region
(
z − dz

2 , z + dz
2

)
, see Fig. 2.2. We denote the boundary of V by ∂V = S− ∪

S+ ∪ Γ , with Γ the part of the boundary of V intercepting the vessel wall. The 1D
model is derived by integrating equations (2.3) in V and doing the limit as dz → 0,
assuming all quantities are smooth enough.

Using the Reynolds transport theorem [12], taking into account that the border
of V intercepting the vessel wall, Γ , moves with time t , it can be shown that ∂A

∂t
=

2πR ∂d
∂t

. Using this expression, the divergence theorem and the mean-value theorem
for integrals, we have

0 =
∫

V

div(u)dv =
∫

∂V

u · nds = −
∫

S−
uzds +

∫
S+

uzds +
∫

Γ

∂d
∂t

· nds

= Q

(
z + dz

2

)
− Q

(
z − dz

2

)
+ ∂A(z)

∂t
dz + o(dz)

where n denotes the outward unitary normal. Dividing by dz and doing the limit as
dz → 0 we obtain ∂A

∂t
+ ∂Q

∂z
= 0 for the continuity equation.

From Reynolds theorem we have d
dt

∫
V uzdv = ∫

V
∂uz

∂t
dv + ∫

∂V uz
∂d
∂t

· nds. Due
to H2, boundaries S− and S+ do not move longitudinally, and due to H6, uz = 0 on
Γ . Thus

∫
∂V uz

∂d
∂t

· nds = 0 and

∫
V

∂uz

∂t
dv = d

dt

∫
V

uzdv = ∂

∂t
(A(z)ū(z)dz + o(dz)) = ∂Q(z)

∂t
dz + o(dz) (2.4)

Using the divergence theorem and again assumptions H2 and H6, we have:

∫
V

div(uzu)dv =
∫

∂V

uzu · ndv = −
∫

S−
u2

zds +
∫

S+
u2

zds +
∫

Γ

uz

∂d
∂t

· nds
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Remembering that uz = 0 on Γ and that α = ∫
S u2

zds/(Aū2), we obtain

∫
V

div(uzu)dv = α

[
A

(
z + dz

2

)
ū2
(

z + dz

2

)
− A

(
z − dz

2

)
ū2
(

z − dz

2

)]

≈ α
∂(Aū2)

∂z
(2.5)

Considering now hypothesis H4 and again the divergence theorem, we obtain

∫
V

∂P

∂z
dv = −

∫
S−

Pds +
∫

S+
Pds +

∫
Γ

Pnzds ≈ ∂(AP)

∂z
(z) +

∫
Γ

Pnzds

From the mean-value theorem for integrals
∫
Γ

Pnzds = P(z)
∫
Γ

nzds + o(dz).
Also, since V is closed,

∫
∂V

nzds = 0 and
∫
Γ

nzds = − (∫
S+ ds − ∫

S− ds
)
, thus

∫
Γ

Pnzds = −P(z)

(∫
S+

ds −
∫

S−
ds

)
+ o(dz)

= −P(z)

[
A

(
z + dz

2

)
− A

(
z − dz

2

)]
+ o(dz) ≈ −P(z)

∂A

∂z
(z)

Thus, we obtain

∫
V

∂P

∂z
dv ≈ ∂(AP)

∂z
− P

∂A

∂z
= A

∂P

∂z
(2.6)

Finally, we consider the viscous term Δuz. Applying the divergence theorem and

noticing that ∇uz =
(

∂uz

∂r
,

∂uz

∂θ
,

∂uz

∂z

)
, we have:

∫
V

Δuzdv =
∫

∂V

∇uz · nds = −
∫

S−
∂uz

∂z
ds +

∫
S+

∂uz

∂z
ds +

∫
Γ

∇uz · nds

We neglect the term ∂uz

∂z
by assuming that the variation of axial velocity uz along the

axial direction z is small compared to the other terms. From H1 the gradient of uz

becomes ∇uz =
(

∂uz

∂r
, 0, 0

)
, and ∇uz · n becomes ∂uz

∂r
. Recalling expression (2.2),

we have that ∂uz

∂r
= ū(t,z)

R(z)
s′
(

r
R(z)

)
. Noticing that r = R on Γ , we obtain:

∫
V

Δuzds =
∫

Γ

ū

R
s′(1)ds = 2π

∫ z+ dz
2

z− dz
2

ūs′(1)dz = 2πū(z)s′(1)dz + o(dz)

(2.7)
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Finally, putting together expressions (2.4), (2.5), (2.6) and (2.7), diving (2.4) and
(2.7) by dz, and passing to the limit as dz → 0, the momentum equation becomes

∂Q

∂t
+ α

∂

∂z

(
Q2

A

)
+ A

ρ

∂P

∂z
− 2πνs′(1)

Q

A
= 0

The friction parameter is defined as Kr = −2πνs′(1) and depends on the velocity
profile s(·). For a parabolic profile Kr = 8πν, which corresponds to the value
commonly used in practice. In the case of a flat profile, α = 1 and Kr = 0, meaning
that there is no friction.

The 1D model for blood flowing in a cylindrical vessel is given, for all t , by

{
∂Q
∂t

+ α ∂
∂z

(
Q2

A

)
+ A∂P

∂z
= −Kr

Q
A

, z ∈ (a, b)

∂A
∂t

+ ∂Q
∂z

= 0, z ∈ (a, b)
(2.8)

where L = b − a is the vessel length, and the unknowns are the cross section
area A(t, z), the flow rate Q(t, z), and the constant cross sectional pressure P(t, z).
The friction parameter is here a source term on the momentum equation. We have
three unknowns and two equations, meaning an extra equation is required. We close
system (2.8) by providing a relation linking pressure and area. This is reasonable,
since the tube wall moves as a response to the pressure inside the vessel. We consider
the following simple pressure-area algebraic relation:

P = β

√
A − √

A0

A0
(2.9)

where A0 is the cross section area at rest and β =
√

πhE

1−ξ2 , with E and ξ the Young
Modulus and the Poisson ratio of the wall material, and h is the wall thickness.

Parameters A0 and β may vary with z. We define c =
√

A
ρ

∂P
∂A

, which becomes

c =
√

β
2ρA0

A1/4 for expression (2.9) and considering A0 and β constant along z. In
this case, system (2.8) can be diagonalized, meaning it is a strictly hyperbolic system
of PDEs, describing very well wave propagation phenomenon. Indeed, system (2.8)
with (2.9) has two eigenvalues, given by λ1,2 = αū ± √

c2 + ū2α(α − 1). If we
choose α = 1, corresponding to a flat profile, we obtain λ1,2 = ū ± c = ū ±√

β
2ρA0

A1/4. Under physiological conditions, the mechanical properties of blood
and of the arterial wall, reflected on c through β, are such that c >> ū, meaning
that the two eigenvalues have opposite signs. Indeed, characteristic values of c are
of the order of 103m/s [13], while |ū| is of the order of 101 [14]. This means that
system (2.8) describes two waves travelling along the cylindrical vessel, one moving
forward and the other backwards.

Let R = [r1 r2] and L = [l1 l2] be the matrices of the right and left eigenvectors,
respectively, such that LR = I , with I the identity matrix. Then, if there exist
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quantities W1 and W2 such that ∂W1
∂U

= l1 and ∂W2
∂U

= l2, for U = [A,Q]T , which
is the case if α = 1 and Kr = 0 (see for instance [9]), functions W1 and W2
are characteristic variables [15]. This means that, up to the additive source term,
variables Wi , i = 1, 2 are constant along the characteristic lines, that is, along the
lines satisfying the differential equation d

dt
yi(t) = λi(t, yi(t)), i = 1, 2. Given

the pressure-area relation (2.9) and α = 1, W1 and W2 are given by W1,2 = ū ±√
8β
ρA0

(
A1/4 − A

1/4
0

)
.

Finally, to completely define problem (2.8), we must provide initial conditions
A(0, z) = A0,Q(0, z) = Q0 and boundary conditions, which in general can be
written as φ1(A(t),Q(t)) = h1(t), at z = a, and φ2(A(t),Q(t)) = h2(t), at z =
b, where h1 and h2 are given functions. The number of boundary conditions to apply
at each end is the number of incoming characteristics at that point. Thus, here we
must impose exactly one boundary condition at z = a and z = b, respectively [15].
Functions φi , i = 1, 2, produce admissible boundary conditions as long as they do
not depend only on the exiting characteristic.

2.3 Numerical Approximation of the 1D Model

The numerical discretization of the 1D hyperbolic model is carried out using the
finite element Lax-Wendroff method, [15, 16]. Being a second-order explicit scheme
in time, it has excellent dispersion error properties and it is easily implemented.

Being explicit, the stability of the numerical scheme depends on the satisfaction
of a CFL type condition (see [9]) relating the time step Δt with the space step hi :

Δt � (
√

3/3) min0�i�N

[
hi

maxk=1,2 λk(zi)

]
, where zi , i = 0, . . . , N , are the mesh

nodes, and hi = zi+1 − zi is the measure of the i-th spacial element.

2.3.1 Boundary and Compatibility Conditions for the Discrete
Problem

The numerical solution is defined only on the internal nodes. The solution values
at the boundary points are computed from the boundary conditions. Yet, these
data are not enough to close the numerical problem. Indeed, for the problem
at hand we have to impose exactly one boundary condition at each end of the
domain at the continuous level [15, 16]. However, at the discrete level we need to
provide two boundary data at each end, corresponding to the unknowns Qn+1 =
Q(tn) and An+1 = A(tn). That is, at the numerical level we need an extra
boundary condition at each extremity. To obtain the complete boundary data we
need additional equations, which must be compatible with the original problem.
Usually, the compatibility conditions are obtained by projecting the equation along
the characteristic lines exiting the domain [15, 16]. The values of Qn+1 and An+1
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at the boundaries are found by solving the following non linear systems:

⎧⎨
⎩

φ1(A
n+1
h (a),Qn+1

h (a)) = hn+1
1

W2(A
n+1
h (a),Qn+1

h (a)) = Wn+1
2

⎧⎨
⎩

φ2(A
n+1
h (b),Qn+1

h (b)) = hn+1
2

W1(A
n+1
h (b),Qn+1

h (b)) = Wn+1
1

(2.10)

If we consider α = 1 and Kr = 0 (no source term in (2.8)), Wn+1
i is obtained

following the characteristic line from t = tn: Wn+1
i = Wn

i (xk), where xk is the foot
of the characteristic line of Wi at tn, i = 1, 2.

For instance, if the user provides the pressure, at z = a, as P(t, a) = h1(t), from
(2.9) and from the compatibility condition (2.10) at z = a we need to solve the
system

⎡
⎣ 1

An+1(a)
β

√
An+1(a)−√

A0
A0

0

−
√

8β
ρA0

(An+1(a))1/4−A
1/4
0

An+1(a)
1

An+1(a)

⎤
⎦
[

An+1(a)

Qn+1(a)

]
=
[

hn+1
1
Cn

xa

]

where Cn
xa

= Qn(xa)
An(xa)

−
√

8β
ρA0

(
(An(xa))

1/4 − A
1/4
0

)
and xa = a −

Δtλ2(Q
n(a),An(a)) is the foot of the exiting characteristic W2 at z = a. If, at

z = b, a condition on the entering characteristic is imposed W2(t, b) = h2(t), then
the non-linear system to be solved at each time step is

⎡
⎢⎣−

√
8β
ρA0

(An+1(b))1/4−A
1/4
0

An+1(b)
1

An+1(b)√
8β
ρA0

(An+1(b))1/4−A
1/4
0

An+1(b)

1
An+1(b)

⎤
⎥⎦
[

An+1(b)

Qn+1(b)

]
=
[

hn+1
2
Cn

xb

]

where Cn
xb

= Qn(xb)
An(xb)

+
√

8β
ρA0

(
(An(xb))

1/4 − A
1/4
0

)
and xb = b −

Δtλ1(Q
n(b),An(b)) is the foot of the exiting characteristic W1 at z = b.

Very often the incoming characteristic is put equal to zero at the exiting point,
W2(t, z) = 0, corresponding to an absorbing boundary condition, meaning nothing
enters the domain. This fact has been exploit to impose absorbing boundary
conditions on 3D FSI models for blood flow [17].

2.3.2 Modular Simulation of Arterial Networks

So far we have the mathematical 1D model and corresponding numerical method
to simulate blood flow in a single elastic tube. However, the interest is often the
simulation of arterial networks. Hence, we need to couple two or more arteries. The
most usual combination of arteries in the human arterial system are:
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• Coupling single tubes: used to model, for instance, long tubes where physical
characteristics vary.

• Bifurcation of an artery into two arteries: this is the most common, since almost
all arteries enventually bifucarte to carry out blood for the whole body.

• Merging of two arteries into one artery: this situation is more rare, occurring for
instance with the vertebral arteries (left and right), that merge into the basilar
artery before reaching the Circle of Willis at the bottom of the brain.

Having the numerical scheme for one tube, couplings, bifurcations and mergings are
possible by defining coupling conditions. These consist in imposing the continuity
of the fluxes, Q, and of the total pressures, Pt = P + ρ

2 ū2, [7, 9].
Couplings lead to two (in the case of coupling) or three (in the case of bifurcating

or merging) more boundary conditions. Thus, we also need more compatibility
conditions, obtained again by means of the exiting characteristics. For instance, for
the coupling of two tubes, the following coupling conditions are set

⎧⎪⎪⎨
⎪⎪⎩

Q1(b1) = Q2(a2)

Pt,1(b1) = Pt,2(a2)

W1(t
n+1, b1) = W1(t

n, xb1)

W2(t
n+1, a2) = W2(t

n, xa2)

where ai , bi , i = 1, 2, 3 are respectively the initial and final extremities of artery i

and xki , k = a, b, i = 1, 2, 3 are the foot of the outgoing characteristic lines passing
in point (ki, t

n+1). For the bifurcation (b) and merging (m) we have the following
systems

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q1(b1) = Q2(a2) + Q3(a3)

Pt,1(b1) = Pt,2(a2)

Pt,1(b1) = Pt,3(a2)

W1(t
n+1, b1) = W1(t

n, xb1 )

W2(t
n+1, a2) = W2(t

n, xa2 )

W2(t
n+1, a3) = W2(t

n, xa3 )

m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q1(b1) + Q2(b2) = Q3(a3)

Pt,1(b1) = Pt,3(a3)

Pt,2(b2) = Pt,3(a3)

W1(t
n+1, b1) = W1(t

n, xb1)

W1(t
n+1, b2) = W1(t

n, xb2)

W2(t
n+1, a3) = W2(t

n, xa3)

All these systems are non-linear. For each internal coupling point of the 1D arterial
network, a system of this type must be solved, for instance using Newton’s method,
to set the discrete boundary conditions of all tubes in the network.

2.4 Simulating Anatomical Variations of the Circle of Willis

Here we illustrate the application of the 1D hyperbolic model to the study of
anatomical variations of the Circle of Willis (CoW), see [1, 5, 7] for simulations
at different levels of accuracy of the brain circulation. The CoW is a redundancy
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Fig. 2.3 Representation of the main arteries of the Circle of Willis (CoW)

set of arteries guaranteeing that blood reaches the brain by distributing it from the
basilar and internal carotid arteries, see Fig. 2.3. We choose the parameters of each
artery, namely length, radius, wall thickness and Young modulus (related to wall
elasticity) as in [7]. We consider a sinusoidal impulse at the basilar artery (artery 22
in Fig. 2.3) and at the internal carotid arteries (ICAs, arteries 11 and 12 in Fig. 2.3):

Q(t, 0) =
{

2.5 sin
(

πt
0.003

)
, if t � 0.003

0, if t > 0.003

As customary, we consider that the system starts at rest A(0, z) = A0 and Q(0, z) =
0.

Figure 2.4 represents the flow rate through the main arteries of the healthy CoW,
represented in Fig. 2.3, at a particular time t . We can observe that as long as the
CoW is vertically axis-symmetric, the flow rate through symmetric arteries is the
same. Several people have anatomical changes in the CoW [7], including absence
of some arteries. Figure 2.5 shows the flow rate when the right posterior cerebral
artery is missing (right PCA, artery 28 in Fig. 2.3). It can be seen that the flow rate
of symmetric arteries is not the same anymore. Indeed, the flow rate in arteries
32 and 33 differ. In both these cases, there is still blood perfusion to the brain
through arteries 32 and 33, even though one artery is absent. In Fig. 2.6 we can
observe the flow rate in the arteries going to the brain when both the right posterior
communicating artery (PCoA, artery 20 in Fig. 2.3) and the left posterior cerebral
artery (PCA, artery 27 in Fig. 2.3) are absent. We can see that in this case there is
almost no blood perfusion in artery 32, that is, almost no blood perfusion on that
part of the brain. This is thus a very serious anatomical variation of the CoW.
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Fig. 2.4 Flow rate [cm3/s] through the main arteries of the complete CoW at a particular time t

32 23 29
5

0

–5
0 5

–5

0

5

–5

0

5

33 24 30
5

0

–5 –5

0

5

–5

0

5

0 5 10 0 5 10

0 5 0 5 10 0 5 10

Fig. 2.5 Flow rate when the right posterior cerebral artery is missing (right PCA, artery 28 in
Fig. 2.3)
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Fig. 2.6 Flow rate in the arteries when both the right posterior communicating artery (PCoA) and
the left posterior cerebral artery (PCA) are absent (arteries 20 and 27 in Fig. 2.3)

2.5 Increasing the Complexity of the 1D Model: Including
Curvature

The 1D hyperbolic model for blood flow in arteries studied in the previous sections
is a simplified model with desirable mathematical properties, namely it is an
hyperbolic system of PDEs. It may be considered one of the simplest 1D model for
blood pulse. More complex models can be considered by accounting for variations
of the radius or the wall properties along z, which introduce derivatives of the
parameters A0 and β, to be included on the source term. Also, more sophisticated
pressure-area relations can be used, leading to the appearance of higher order
derivatives. These derivatives alter the characteristic of the differential problem,
making the numerical treatment and the identification of proper boundary conditions
more problematic [9]. These effects also imply the inclusion of new parameters for
which it is often difficult to obtain reasonable values.

On the other hand, some simplified assumptions can be relaxed. An example is
to consider curvature. In this case hypothesis H3, of fixed cylinder axis, as well as
H2, of only radial movements, are dropped. Now, the wall movements are not only
radial, depending also on the x and y directions. Denoting η the wall displacement,
then η = (ηx, ηy) + der . In this setting, the fluid velocity depends not only on the
axial direction through uz, but also on the directions ux and uy :

ux = ∂ηx

∂t
+ 1

R

∂d

∂t
x = ∂ηx

∂t
+ 1

R

∂d

∂t
r cos θ, uy = ∂ηy

∂t
+ 1

R

∂d

∂t
y = ∂ηy

∂t
+ 1

R

∂d

∂t
r sin θ
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Considering, for simplicity, a parabolic profile on the axial direction, from (2.2) we

know that uz =
(

1 − r2

R2

)
a(t, z) = ū(t, z)s

(
r
R

)
, with a/2 = Q/A. In this case,

the 3D Navier-Stokes system (2.3) has two extra equations, related to ux and uy :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ux

∂t
+ div(uxu) + 1

ρ
∂P
∂x

− νΔux = 0
∂uy

∂t
+ div(uyu) + 1

ρ
∂P
∂y

− νΔuy = 0
∂uz

∂t
+ div(uzu) + 1

ρ
∂P
∂z

− νΔuz = 0
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0

(2.11)

We integrate each equation in (2.11) over the volume V and then make dz → 0.
Applying this procedure to the two last equations in (2.11) results in the two equa-
tions of system (2.8). Indeed, noticing that

∫
Γ

nr1 cos θηxds = ∫
Γ

nr2 sin θηyds =
0, we have:

∫
Γ

∂η

∂t
· nds =

∫
Γ

nr1 cos θηxds +
∫

Γ

nr2 sin θηyds +
∫

Γ

1

R

∂d

∂t
rer · nds ≈ ∂A

∂t

where n = (nr1 cos θ, nr2 sin θ, nz) is the outward unitary normal. Thus

∫
V

div udv =
∫

∂V

u · nds =
∫

S+
uzds −

∫
S−

uzds +
∫

Γ

∂η

∂t
· nds ≈ ∂A

∂t
+ ∂Q

∂z

Since
∫ z+ dz

2

z− dz
2

∫ 2π

0

∫ R

0
∂d
∂t

r cos θ
R

rdrdθdz = 0, then

∫
V

uxdv =
∫ z+ dz

2

z− dz
2

∫ 2π

0

∫ R

0

∂ηx

∂t
rdrdθdz = ∂ηx

∂t
(z)A(z)dz + o(dz) ≈ ∂ηx

∂t
A

Thus, defining Φx = ∂ηx

∂t
A, then d

dt

∫
V uxdv ≈ ∂Φx

∂t
. Since ∂η

∂t
= 0 on S, we have

∫
∂V

ux
∂η

∂t
· nds =

∫
Γ

ux
∂η

∂t
· nds

Hence, we obtain:

∫
V

∂ux

∂t
dv = d

dt

∫
V

uxds −
∫

∂V

ux
∂η

∂t
· nds ≈ ∂Φx

∂t
−
∫

Γ

ux
∂η

∂t
· nds

Using the divergence theorem and noticing that
∫
S

1
R

∂d
∂t

r cos θ ds = 0 and that

∫
S

uxuzds =
∫

S

(
∂ηx

∂t
+ 1

R

∂d

∂t
r cos θ

)(
1 − r2

R2

)
a(t, z)ds = ∂ηx

∂t
A

Q

A
= Φx

Q

A
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we obtain
∫

V

div(uxu)dv =
∫

S+
uxuzds −

∫
S−

uxuzds +
∫

Γ

ux

∂η

∂t
· nds

≈ ∂

∂z

(
Φx

Q

A

)
+
∫

Γ

ux

η

∂t
· nds

Pressure is still considered to be constant over each cross section, so that ∂P
∂x

= 0

and hence
∫
V

∂P
∂x

= 0. Finally, for the diffusive term on x, we may neglect ∂ux

∂z
,

obtaining

∫
V

Δuxdv =
∫
∂V

∇ux · nds =
∫
S+

∂ux

∂z
ds −

∫
S−

∂ux

∂z
ds +

∫
Γ

∇ux · nds =
∫
Γ

∇ux · nds

Noticing that ∇ux · nz ∝ ∂ux

∂z
= 0 we get

∫
Γ

∇ux · nds =
∫

Γ

∇ux · nrds =
∫

Γ

∂ux

∂r
ds =

∫
Γ

1

R

∂d

∂t
cos θds = 0

Doing the limit as dz → 0, the first equation of (2.11) becomes

∂

∂t
(Φx) + ∂

∂z

(
Φx

Q

A

)
= 0.

A similar equation is obtained by integrating the second equation in (2.11),
defining Φy = ∂ηy

∂t
A. The resulting 1D system of equations is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂A
∂t

+ ∂Q
∂z

= 0
∂Q
∂t

+ 4
3

∂
∂z

(
Q2

A

)
+ A

ρ
∂P
∂z

= −8πν
Q
A

∂Φx

∂t
+ ∂

∂z

(
Φx

Q
A

)
= 0

∂Φy

∂t
+ ∂

∂z

(
Φy

Q
A

)
= 0

(2.12)

Notice that for a parabolic profile α = 4/3. This system of PDEs is no longer
strictly hyperbolic, being more difficult to deal with than system (2.8), both from the
mathematical and numerical points of view. This 1D model can be further extended

to the case where the axial velocity profile depends on x and y: uz =
(

1 − r2

R2

)
(a+

bx + cy). In this case, two extra equations are needed, for the added quantities
b and c, related with the axial velocity profile. These equations are obtained by
integrating over the cross section the third equation of (2.11) multiplied by x and
y, respectively. Using the same approach and arguments as before, the 1D model in
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this case becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A
∂t

+ ∂Q
∂z

= 0
∂Q
∂t

+ 4
3

∂
∂z

(
Q2

A

)
+ 6π ∂

∂z

(
H 2

A2

)
+ 6π ∂

∂z
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Φy

Q
A

)
− 1

2
∂
∂z

(
G
A

∂Q
∂z

)
= 0

(2.13)

where Q = aπR2

2 = aA
2 , as before, and H = bπR2A

12 and G = cπR2A
12 . This system of

PDE’s is significantly more complex than the usual 1D model (2.8). Its mathematical
and numerical analysis becomes extremely cumbersome, since many of the nice
mathematical characteristics of system (2.8) are lost. Being simplified models, the
usefulness o such complex 1D models is questionable. If we need more detail and
the cost is such an increase in model complexity, than possibly the best is to use full
detailed 3D models.

2.6 Conclusions

One dimensional models for blood flow in arteries are simplified and computation-
ally low cost models, obtained by making simplifying assumptions and performing
averaging procedures on the 3D FSI model. The simplest 1D model is described
by an hyperbolic system of PDE’s. Despite having a lower level of accuracy
compared to the full 3D representation, it captures very effectively the pulsation
of blood flow. More complex 1D models can be obtained by relaxation of some
simplifying hypothesis, as for instance accounting for curvature. In these cases the
1D mathematical model becomes significantly more complex, losing some of the
appealing mathematical properties of the simpler straight tube 1D model. Namely, it
is no longer hyperbolic. Being simplified models, the extra complexity introduced in
these cases is hardly justified. Except for very particular cases, in general when high
accuracy on the blood flow solution is required, 3D FSI full mathematical models
tend to be preferable.
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Chapter 3
Uncertainty Quantification of Chemical
Kinetic Reaction Rate Coefficients

É. Valkó and T. Turányi

3.1 Introduction

In chemical kinetics, the reaction rate coefficients (also called rate constants) char-
acterize the speed of a chemical reaction. The temperature dependence of the rate
coefficients can be defined by Arrhenius parameters A, n, and E. Chemical kinetics
databases for many elementary gas-phase reactions provide the recommended
values of the Arrhenius parameters, the temperature range of their validity and
the uncertainty of rate coefficient k defined by uncertainty parameter f . However,
in the kinetics databases the uncertainty parameter f is usually considered to
be temperature independent. The goal of this project is to calculate temperature
dependent uncertainty limits of rate coefficients of elementary reactions in such a
way that these limits are consistent with the temperature dependence of the rate
coefficient. The project consists of three tasks:

1. Visualization of the available kinetics data and calculation of the foriginal
uncertainty parameters of the investigated rate coefficient in selected temperature
points.

2. Calculation of the fextreme uncertainty parameters in selected temperature points.
3. Determination of a continuous, temperature dependent uncertainty function

fprior (T ), which is consistent with the rate coefficient-temperature function.

In accordance with the three tasks above, in Sects. 3.2, 3.3, and 3.4 all background
information and definitions needed to solve the problems are provided. A possible
solution is presented using the example of elementary reaction OH+H2=H2O+H.
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This chapter is based on the publications of Nagy et al. [1–3]. All program codes
used at the preparation of the examples are freely available from Web site [2, 4].

3.2 Calculation of the Uncertainty Parameters foriginal
in Selected Temperature Points

The temperature dependence of rate coefficient k of a chemical reaction is usually
described by the modified Arrhenius equation

k(T ) = A{T }n exp

(
− E

RT

)
, (3.1)

where R is the universal gas constant, T is temperature in Kelvin and parameters A,
n, E are the so-called Arrhenius parameters. In accordance with the recommenda-
tions [5], curly brackets are used to denote the numerical value of the enclosed
physical quantity at the predefined units, which are in this case cm, K, s, mol.
Introducing transformed parameters κ(T ) := ln{k(T )}, α := ln{A} and ε := E/R,
the linearized form of the modified Arrhenius equation is

κ(T ) = α + n ln{T } − εT −1. (3.2)

To show the temperature dependence of κ , the logarithm of the rate coefficient is
plotted as a function of the reciprocal of temperature. Such a κ(T −1) curve is called
an Arrhenius curve.

Figure 3.1 shows the Arrhenius curves of measured and theoretically determined
rate coefficients for reaction OH+H2=H2O+H. The corresponding Arrhenius param-
eters and their temperature intervals are available in the Supplementary Material of
article [2].

The rate coefficient of an elementary reaction can be determined by various
experimental methods. If several measurements were carried out in different
laboratories (maybe using different methods) at similar temperatures, then the
uncertainty of the rate coefficient can be well assessed at a given temperature or in
a narrow temperature interval. If the uncertainty of a rate coefficient is determined
from literature data at different temperatures, then these uncertainties can be very
different from each other even at nearby temperatures. However, since the measured
rate coefficients are interrelated by a common Arrhenius expression, therefore the
uncertainties determined at different temperatures are also related. Taking into
account the temperature dependence of the rate coefficient, the uncertainty at a given
temperature cannot be high if it is low at nearby temperatures.

The next pages discuss the determination of an Arrhenius-equation-consistent
uncertainty function from the uncertainties of a rate coefficient valid at given tem-
peratures (or in given temperature intervals) and the features of the corresponding
uncertainty domain of the Arrhenius parameters.
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Fig. 3.1 The logarithm of measured and theoretically determined rate coefficients as a function of
the reciprocal of temperature belonging to reaction OH+H2=H2O+H

Definition 3.1 The temperature dependent uncertainty function f (T ) is defined by
Baulch et al. [6]:

f = log10

(
k0(T )/kmin(T )

)
= log10

(
kmax(T )/k0(T )

)
, (3.3)

where k0(T ) is the recommended value of the rate coefficient at temperature T ,
kmin(T ) and kmax(T ) are the extreme, but still not excludable, physically realistic
values at given temperature.

This definition of uncertainty is related to the limits and does not necessarily
have a probabilistic inference. According to Eq. (3.3), the upper and lower extreme
values differ from the recommended value by a multiplication factor, which means
that, on a logarithmic scale, the extreme values are located symmetrically around the
recommended value. The uncertainty bounds for rate coefficient k can be converted
to the uncertainty bounds of κ(T ) := ln{k(T )}.
Definition 3.2 The uncertainty bound of the logarithm of the rate coefficient, κ(T ),

is
[
κ(T ) − f (T )

ln 10 , κ(T ) + f (T )
ln 10

]
.

Our aim is to define a temperature dependent uncertainty function f (T ), and
thus defining a symmetrical bound for the recommended rate coefficient κ0(T ).
This bound will indicate the extreme, but physically realistic rate coefficient values
at every temperature.
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Fig. 3.2 The figure shows the Arrhenius curves of the rate coefficients that had been presented
in Fig. 3.1, now in a narrower temperature interval (dashed lines). The mean value of the rate
coefficient of reaction OH+H2=H2O+H was added (solid red line in the middle). The black circles
and the sections with arrowheads (←→) show the extent of the foriginal (Ti) values at T = 1000,
1100, 1200 and 1300 K

According to Eq. (3.3), the uncertainty of the investigated rate coefficient at a
given temperature point, Ti , can be defined by

foriginal (Ti) = max
(| log10 k0 (Ti) − log10 kj (Ti) |)

j = 1, 2, . . . ,mi; i = 1, 2, . . . , nT
(3.4)

where kj is the j -th experimentally or theoretically determined value of the rate
coefficient at temperature Ti , mi is the number of all available values of the rate
coefficient at temperature Ti and nT is the number of temperature points.

Figure 3.2 shows the calculation of the foriginal (Ti) values for reaction
OH+H2=H2O+H at T = 1000, 1100, 1200 and 1300 K. The investigated
measurements and theoretical calculations for the values of the Arrhenius
parameters and the corresponding temperature intervals are available in the
Supplementary Material of [2].

Chemical kinetic databases contain suggested values of Arrhenius parameters
A, n, E (or transformed Arrhenius parameters α, n, ε) and the temperature
range where these values are relevant. Such information is available from the NIST
Chemical Kinetics Database [7], the evaluations of Warnatz [8], Tsang et al. (see
e.g. [9–11]), Baulch et al. (see e.g.[6, 12, 13]) and the review of Konnov [14].

Task 1 Collect all suggested values for the rate coefficient of reaction
H+O2=O+OH and create a user-friendly program code to visualize them in
an Arrhenius plot. Using Arrhenius parameters A =2.07E+14 cm3mol−1s−1,
n = −0.097, E

R
= 7560 K (the mean rate expression recommended by Baulch

et al. [6]), calculate uncertainty parameter foriginal (Ti) at temperature points
T = 800, 900, . . . , 2700 K based on Eq. (3.4).
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3.3 Calculation of the Uncertainty Values fextreme at Selected
Temperature Points

After the calculation of the (Ti , foriginal (Ti)) point pairs, it is a natural idea fitting
a polynomial to these points and using the fitted curve as a temperature dependent
uncertainty function. However, the uncertainty bound defined by this function may
contain physically not meaningful values of the rate coefficient. For this reason, a
refined approach for the determination of the temperature-uncertainty point pairs is
needed to obtain a physically relevant bound.

The procedure described here determines the uncertainty domain of Arrhenius
parameters (p = (α, n, ε)T) from the uncertainty information for the rate coef-
ficients. In several cases the temperature dependence of the rate coefficient can
be described by two Arrhenius parameters (α, ε) or (α, n). In this case the third
Arrhenius parameter is set to zero.

Assume that a central set of Arrhenius parameters p0 is available and the
symmetric uncertainty of the rate coefficient is estimated at several temperatures
by uncertainty parameters foriginal (Ti) , i = 1, . . . , nT . It is possible to generate
all Arrhenius curves κ(T , p) that lie between the uncertainty limits, fulfilling the
following 2nT inequalities:

−foriginal(Ti) ≤ κ(Ti; p) − κ(Ti; p0)

ln 10
≤ +foriginal(Ti), i = 1, 2, . . . , nT .

(3.5)

These curves are located symmetrically around the mean rate coefficient curve
κ
(
T ; p0

)
, since Arrhenius equation (3.2) is a linear function of parameters α, n,

ε, and equation (3.3) defines symmetric linear constraints. A systematic procedure
is proposed here for determining the extreme Arrhenius curves, which touch either
the lower or the upper uncertainty limit at least at 2 or 3 temperatures for the 2-
and the 3-parameter cases, respectively, and also go within the upper and lower
uncertainty limits at all other temperatures. Formally, these criteria correspond to
Arrhenius functions that fulfil at least 2 or 3 equality relations in Eqs. (3.5) and for
the remaining 2nT − 2 or 2nT − 3 cases, respectively, either the equality or the
inequality is fulfilled. The minimum and maximum values of these curves at a given
temperature define the edges of the band of all possible Arrhenius curves.

In the case of the 3-parameter Arrhenius expression, term n ln T usually has
a smaller contribution to the temperature dependence of the rate coefficient than
−ε/T , since ln{T } changes more slowly than 1/T at combustion temperatures
(800 K–2700 K). The effect of a change in the temperature exponent n on the rate
coefficient at high temperatures can be well compensated by adjusting the pre-
exponential factor α, leading to a very strong anti-correlation between α and n

in most determinations. This implies that values of n, which significantly deviate
(i.e. by ±10) from the central n0, can also fulfil all the inequality requirements
in Eq. (3.5) if the initial uncertainty limits are not too tight. Both theoretical
considerations [15] and the typical range of values of n in kinetic databases [7]
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show that the temperature exponent n of elementary chemical reactions should take
values of small negative or positive numbers. Therefore, we recommend confining
the range of n values to a narrow (i.e. Δn = 2) symmetric interval around the central
value n0 when the band of possible Arrhenius curves is determined through finding
extreme Arrhenius curves.

− Δn ≤ n − n0 ≤ +Δn (3.6)

The extreme Arrhenius curves are those which fulfil at least 2 or 3 equality
relations in Eqs. (3.5) and (3.6) for the two-parameter and the three-parameter cases,
respectively. To determine the extreme Arrhenius curves, uncertainty values need to
be known at least at 2 temperatures, since in the three-parameter case a constraint is
given for parameter n.

Definition 3.3 The minimum and maximum values of the extreme Arrhenius
curves (κmin(T )) and (κmax(T )) define new uncertainty limits at any temperature,
which are symmetrically located around the mean κ

(
T ; p0

)
curve. These new

limits, obtained from a set of uncertainty values f and a user-defined Δn, uniquely
define a new, continuous uncertainty function fextreme (T ):

fextreme (T ) = κ
(
T ; p0

)− κmin (T )

ln 10
≡ κmax (T ) − κ

(
T ; p0

)
ln 10

. (3.7)

By definition, this Arrhenius-equation-consistent uncertainty fextreme (Ti) is always
less than or equal to the original uncertainty foriginal (Ti), at every temperature Ti

(i = 1, .., nT ).

Task 2 Create a program code to calculate fextreme (Ti) uncertainty values
at temperature points T = 800, 900, . . . , 2700 K based on the calculated(
Ti, foriginal (Ti)

)
points for elementary reaction H+O2=O+OH.

3.4 Calculation of Uncertainty Function fprior (T )

The temperature dependent rate coefficient k(T ) (and its natural logarithm κ(T ))
can be considered as a random variable deduced from measurements and calcula-
tions. Therefore, a probabilistic meaning may be attributed to fextreme. According to
this interpretation, if fextreme corresponds to 3 standard deviations (3σ ) [16–21] or
2 standard deviations (2σ ) [22–24] of the rate coefficient on a decimal logarithmic
scale, the uncertainty parameter f can be converted [17] to the standard deviation
of the natural logarithm of the rate coefficient (σκ)) at a given temperature T :

σκ (T ) = ln 10

μ
f (T ) , (3.8)

where parameter μ is 3 or 2, respectively.
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If the rate coefficients are considered as random variables, then Arrhenius
parameters α, n and ε are also random variables, since these can be calculated
from the random values of κ(T ) at three given temperatures using the linearized
Arrhenius equation (Eq. (3.2)). The joint probability density function of the Arrhe-
nius parameters is independent of temperature. This means that all central moments
are also independent of temperature, including their expected values (ᾱ, n̄, ε̄),
variances

(
σ 2

α , σ 2
n , σ 2

ε

)
and correlations (rαn, rαε, rεn).

The following relation was deduced by Nagy [1] between the variance of κ(T )

and the elements of the covariance matrix of the Arrhenius parameters (�p):

σ 2
κ (T ) = �T (�p)� =

= σ 2
α + σ 2

n ln2 T + σ 2
ε T −2 + 2rαnσασn ln T + (3.9)

− 2rαεσασεT
−1 − 2rnεσnσεT

−1 ln T

A method was proposed [1] for the determination of the covariance matrix of
the Arrhenius parameters using Eqs. (3.8) and (3.9) from uncertainty parameter f

of the rate coefficient at various temperatures. To determine the elements of the
covariance matrix for the three-parameter Arrhenius expression, the uncertainty
of the rate coefficient (fextreme (Ti)) has to be known at least at six different
temperatures. In the (α, ε) and (α, n) two-parameter cases, the uncertainty of
the corresponding Arrhenius parameters can be handled in a similar way and the
uncertainty of the rate coefficient has to be known at least at three temperatures
[1]. Having calculated the fextreme (Ti) values at temperature points Ti , the σ 2

κ (Ti)

values are also available. The four or six elements of the covariance matrix have
to be determined by minimising the difference between the values σ 2

κ (Ti) and
σ 2

α + σ 2
n ln2 Ti + σ 2

ε T −2
i + 2rαnσασn ln Ti − 2rαεσασεT

−1
i − 2rnεσnσεT

−1
i ln Ti

for all Ti, (i = 1, . . . , nT ).
Equations (3.8) and (3.9) provide a means for storing the fextreme (T ) function

in the form of the covariance matrix of Arrhenius parameters. The uncertainty
parameter temperature function calculated from the covariance matrix can be used
as a first guess (prior) and conservative estimation of the uncertainty of a rate
coefficient and it can be used as a starting point of a more refined estimation [25] of
the temperature dependent uncertainty of the rate coefficient.

Definition 3.4 The uncertainty function reconstructed from the covariance matrix
is called prior uncertainty and denoted as fprior (T ).

In Eq. (3.8), the parameter μ defines the proportionality between the uncertainty
parameter f and the standard deviation σκ . When the uncertainty fprior is calculated
via σκ from the covariance matrix Σp, the same parameter μ has to be used. This
means that the value of μ is arbitrary in the storage of the f values in the covariance
matrix, and the only important assumption here is that the uncertainty parameter f

is proportional to the standard deviation of κ .



42 É. Valkó, and T. Turányi

Fig. 3.3 The calculated foriginal(Ti) values (black circles), the extreme uncertainty function,
fextreme (T ) (blue dashed line) and the fitted fprior(T ) function (red solid line) for reaction
OH+H2=H2O+H at temperature points T =300 K, 400 K, . . . , 2500 K

Figure 3.3 shows the calculated (Ti , foriginal (Ti)) values and the calculated
fextreme (T ) function for reaction OH+H2=H2O+H. The red solid line in Fig. 3.3
represents thefprior (T ) function, which was fitted to points (Ti, fextreme (Ti)), where
Ti = 300 K, 400 K,. . . , 2500 K.

Task 3 Using the results of Task 2, based on Eqs. (3.8) and (3.9), determine the
values of the covariance matrix and define the fprior (T ) function for reaction
H+O2=O+OH.
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Chapter 4
Nuclear Accidents: How Can
Mathematicians Help to Save Lives?

Simone Göttlich

4.1 Introduction

The description of real-life problems by using mathematical modeling techniques
enables the simulation and optimization of complex systems. In the present case
study, this is the investigation of an evacuation process caused by a nuclear accident.
To build up a real scenario and to work with data freely available, the problem was
restricted to one of Germany’s largest nuclear power plant located in Biblis (south-
west of Germany) that has been closed in 2011 after the Fukushima accident.

The modeling includes a combined model to tackle the evacuation of people from
a designated area and the spread of a radioactive cloud. From a mathematical point
of view, this means to deal with flows on graphs and the approximation of travel
times. Furthermore, knowledge on diffusion-advection equations is needed for the
evolution of nuclear material over time and space. However, the main challenge is
the combination of both approaches into an integrated framework, i.e., to set up an
evacuation plan that is dependent on the current spread of radioactivity.

Within this contribution, a successful modelling approach is introduced which
has been worked out by eight students during the 23-th ECMI Modelling Week 2010
in Milan/Italy. The major subject of all students was related to applied mathematics.
Due to the ECMI Modelling Week philosophy, the students came from different
European universities so that the conversations were exclusively in English.
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Fig. 4.1 Evacuation zones around Biblis (Germany) on the left and zoom into sector 1 on the right

4.1.1 Problem Description

A radiation accident is defined by the International Atomic Energy Agency1 as “an
event that has led to significant consequences to people, the environment or the
facility. Examples include lethal effects to individuals, large radioactivity release to
the environment, or reactor core melt.” The worst-case scenario of a major nuclear
accident is one in which a reactor core is damaged and large amounts of radiation are
released, such as in the Chernobyl Disaster in 1986, or more recently, the Fukushima
nuclear power plant accident in March 2011. So there is definitely a strong need for
a fast and most of all safe evacuation, even nowadays.

For the description of a concrete scenario, we focus on the surrounding area of
the Biblis power plant, see left picture in Fig. 4.1.

The picture is taken from the official emergency protection that is still available.2

As we can see the immediate neighborhood is mainly divided into three zones:
the central zone (radius of 1.5–2 km), the middle zone (radius of 10 km) and the
outer zone (radius of 25 km). The zones are again arranged into 12 sectors to meet
geographical restrictions, see right picture in Fig. 4.1.

A rough estimate on the number of inhabitants in the entire outer zone is given
by 1.4 million people in 2010, see right picture in Fig. 4.2. Most of the people live
in sectors 6–12, i.e. on the right side on the river Rhine, including cities such as
Darmstadt, Mannheim or Ludwigshafen. However, this area can be only evacuated
in the direction north or south since there is a mountain region in the east. The
evacuation on the left side of the river is open to all directions (except east). The

1https://www.iaea.org.
2https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-
biblis.

https://www.iaea.org
https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-biblis
https://www.group.rwe/unser-portfolio-leistungen/betriebsstandorte-finden/kernkraftwerk-biblis
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Fig. 4.2 Road network around Biblis with safety points in red (left) and estimates on the number
of inhabitants per sector (right)

safety points for all sectors are seven cities outside the outer zone marked in red, see
left picture3 in Fig. 4.2.

A further idea of an evacuation plan is also to identify bottlenecks due to the given
road network, see again Fig. 4.2. The critical area could be separated into two parts,
east and west, where several highways are available. The main roads east of the
river are A67, A5, B3, B44 and B47, where the prefix A denotes a German highway
(average speed 130 km/h) and B a federal road (average speed 100 km/h). On the
west of the river we have the roads A61, A63, A6 and B9. In the special case of
Biblis, there are seven cities considered as safety points, namely Frankfurt, Mainz,
Daxweiler, Kaiserslautern, Schweigen-Rechtenbach, Stettfeld and Aschaffenburg.
We note that people should avoid traversing the road B9 since it is close to the
Biblis power plant and might be massive congested.

Another important information is that the wind direction is usually (more than
70%) from west to east meaning that most of the radiation is spread towards the
hilly region called Odenwald. Summarizing, an evacuation can be only carried out
in north, south or west direction. This is an important aspect while rerouting the
people to the safety points.

In the following, we present and comment on the key ideas of the group to solve
the evacuation problem. We introduce mathematical models, solution methods and
numerical simulations that might help to set up a reasonable evacuation plan. Several
assumptions are needed to emphasize on features such as traffic congestion, people’s
behavior in case of panic and weather influences.

3https://www.falk.de.

https://www.falk.de
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4.2 Solution of the Problem Provided by the Group

The proposed solution approach can be mainly divided into three parts: the
mathematical description of the evacuation process, the propagation of nuclear
material and the combination of both.

As we have seen the evacuation model is influenced by predefined properties
such as geographical restrictions, local infrastructure, road capacities and popula-
tion densities. However, other modelling inputs as for instance individual human
behavior or weather conditions are harder to predict.

In order to scale down the problem the following assumptions and simplifications
have been suggested:

• The evacuation is considered by cars on highways or dederal roads, where each
car drives at the maximum speed allowed.

• Accidents may occur and lead to a certain delay factor.
• The radioactive cloud is assumed to be homogeneous and the spread is only

driven by the wind.

For the modelling of the people’s behaviour, a kind of network model was
applied to give each individual certain attributes and to include the spread of
radiation later on. In contrast, the radioactive cloud was modelled using a diffusion-
advection equation in two space dimensions that could be solved by standard
numerical methods. After modelling these two parts separately, a combined model
was introduced to find an evacuation plan which is as safe and smoothly as possible
according to the radiation spread.

4.2.1 Modelling of the Evacuation Process

Biblis is connected to its surrounding towns and safety points by several highways,
see Fig. 4.2. These towns, safety points and highways are modelled as a network or
graph, respectively. As described by Bondy and Murty[2], a graph G is an ordered
pair (V (G),E(G)) consisting of a set of vertices V (G) and a set of edges E(G). If
u, v ∈ V (G), then an edge connecting both vertices is denoted as e = uv ∈ E(G).
A path is a sequence of vertices such that from each of its vertices there is an edge
to the next vertex in the sequence. A path has a start vertex, an end vertex, but no
repeated vertices and edges.

This means from an application point of view:

• V is the set of towns in 25 km radius Biblis area,
• E is the set of type A and B roads considered in the evacuation network,
• p is a set of cars, each transporting 5 people,
• S(p) = v ∈ V is the safety point of p,
• L(p, t) is the location of car p at time t .
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Then, the aim is to find the shortest paths between cars and the nearest safety
point, i.e. min ||L(p, t) − S(p)||. The dynamics between different towns or on a
certain path is driven by the people’s behavior and the resulting consequences. This
is explained in details in the next subsections on the initialization of the evacuation
and the network dynamics.

4.2.2 Initialization of Evacuation Process

In the sense of an initialization of the problem, a delay factor is introduced to model
the time that is needed to leave a town and enter the road network. In the given
model, to each “individual” p (i.e. a car) there is an attributed delay factor that can
be written as

Dp = Dglobal + Dindividual,

where Dglobal is a global delay factor describing the information spread over the
media. From the viewpoint of an individual, it is the difference of time between
the nuclear accident and the first moment when the individual might get the media
information. The global delay factor has been estimated as

Dglobal = 30 min = 360 T imeUnits,

where 1 T imeUnit = 5 s.
The second delay factorDindividual is an individual-based factor and describes

the time needed by each individual before to reach the highway and enter the given
road network. Considering the whole set of individuals for a certain town, the goal
of the Dindividual-modeling is to obtain a distribution describing the amount of cars
arriving per TimeUnit at the local highway. Therefore the two factors size of the
town, i.e. the number of inhabitants and the individual-based panic factor contribute
to this modelling and are now explained in more detail:

1. each car has an attributed panic factor. This factor is sampled from a distribution
of panic factors P(cars):

P(cars) ∼
{

N (0, 0.5) for a calm population,

1 − N (0, 0.5) for a panicked population.

Taking into consideration only the absolute values of the samples, the panic
factors are pind ∈ [0, 1], where

pind =
{

low panic factor, direct movement if pind ≤ 0.5,

high panic factor, indirect movement if pind > 0.5.
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2. All towns have a circular shape and a similar population density that is 500
people per km2. Each town has a sufficient number of highway exits at the border
of the town, so cars can therefore go straightforward along the radius of a town
and reach a highway. The number of cars arriving in the network model per
TimeUnit is the sum of cars reaching all highways per TimeUnit. The 2D-model
can be therefore interpreted as a 1D-model, see Fig. 4.3.

3. People with direct movement (pind ≤ 0.5) move the slower the higher the panic
factor. The movement of people with indirect movement (pind > 0.5) becomes
more random with rising panic factor.

Individuals move in-between the center of the city X0 = 0 and the highways at
the border of the town Xend = r . This r denotes the radius of the town and it can be
calculated using the given inhabitants and population density in the city as

r =
√

inhabitants

500π
.

The considered time grid is given by discrete time steps t0, . . . , tk = t0 +k ·Δt with
Δt = 5 s. At time t0, the individuals are distributed as a N (0, 0.4). Their position
denotes the distance to the city center. The direct movement of an individual can be
then defined as

Xtk = Xtk−1 + ΔX =
{

Xtk−1 + dir · (1 − pind) low panic factor,

Xtk−1 + dir · (1 − pind) high panic factor,

with

dir =
{

2.5 low panic factor,

U [−1, 2.5] high panic factor.

This means that individuals with a low panic factor move directly with a panic-factor
scaled velocity of maximal 30 km/h while individuals with a high panic factor may
obtain negative velocities, i.e. they move towards the center and away from the
highways.

4.2.3 Dynamics on Road Network

There are a few assumptions necessary to describe the movement of cars through
the road network such that every car tries to reach its safety point as fast as possible,
i.e.

• every driver knows its safety point,
• if a car reaches the safety point, it will be considered safe,
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Fig. 4.3 Modeling the individual local delay factor for a single example town. (a) Schematic 2D-
representation of an idealized town: in yellow the assumed continuous distribution of highways at
the border of the town (X = r). Five individuals are placed randomly in a certain distance X to the
city center X0 and their moving direction is denoted. (b) Reduction to a 1D-model: all highways
of the town count in a sum at the border of the town. For better visibility, individuals are labeled.
(c) Different panic factors: percentage of new arrivals at the highway per time unit for the example
town with 100,000 inhabitants. For a calm population, there are move arrivals after few time-steps.
A panic real population needs more time to find the highways due to the loss of orientation
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• every driver has basic knowledge of the roads in the area,
• every driver reconsiders his/her route only at the vertices of the graph,
• every driver has knowledge on the traffic situation in front.

Mathematically, the perceived distance to the safety point can be calculated as

∑
i,j∈P

Dij

v̂ij

,

where P is a path from the current node to the safety point, i and j are vertices on
the graph G, Dij is the distance between vertex i and vertex j along the edge ij and
v̂ij is the estimated velocity on the edge.

A path-finding algorithm is needed to compute the routes between the multiple
vertices. One commonly used algorithm for finding the shortest route through a
graph is the A* search algorithm, as described by Nilsson et al. [6]. A* is a best-first
search algorithm, which uses a heuristic cost function to find the shortest path to
destination.

Furthermore, the traveling speed v̂ij on a given edge from vertex i to j is
determined by:

ρ = Pij

200wijDij

and ρcrit = 0.125(
1 + αAij

) ,

where Pij is the amount of people on the road, wij the amount of lanes, Aij the
amount of accidents happened on this road and α an experimental constant. Then,
vmaxij is the maximum speed on the road and determined by

v̂ij = vmaxij , when ρ < ρcrit ,

v̂ij =
(

1 − ρ2
ij

)
vmaxij , when ρ ≥ ρcrit .

This represents a typical behavior of traveling speed, where on an empty road full
speed is possible until ρ exceeds a threshold value ρcrit and the speed drops down.
Note that also the road capacity is reduced when accidents occur.

4.2.3.1 Modeling Car Accidents

Given the car density on each highway and the speed of the individuals, a simplified
model for the number of accidents implies that the maximum speed of cars is thereby
reduced.

Doing so, the minimal safety distance is given by a certain speed v of all
individuals on a highway as

xmin = v/2.
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However, the actual distance depends on the car density ρ ∈ [0, 1] on each
highway. Remember that the density counts the number of 5 m-long cars on a piece
of 1 km of the highway. A density of 100% means therefore that 200 cars are on the
highway without any distance in-between them. So the space sp (ρ) in-between two
5 m-long cars given a density ρ can be computed as:

carsρ = 200 · ρand sp (cars) = 1000

cars
− 5.

If the actual space is smaller than the minimum safety distance (sp (ρ) < xmin)
then there are accidents occurring.

4.2.4 Modeling of the Radioactive Cloud

From a modelling point of view, a nuclear accident releases many types of different
radioactive materials characterized by different weights, different particle sizes,
different decay constants and different responses to weather conditions. To reduce
complexity, the main assumption is to consider a homogenous cloud only and not
to distinguish different material properties. As already pointed out, meteorological
conditions play a major role for the spread of radiation once it has been released.
The wind field is here the key ingredient to describe the drift or the direction of
spread, respectively.

The unknown variable is then the concentration of the homogenous radioactive
material in a unit volume, i.e. C (t, x) with x ∈ R

2. One possible way is to derive
a differential equation that describes first the diffusion of the radioactive material is
the continuity equation approach. Considering an arbitrary volume V , the equation
reads

⎡
⎢⎢⎣

rate of
change of

radioactive
material in V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rate of
production of

radioactive
material in V

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

rate of
decay of

radioactive
material in V

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

rate of
leakage of
radioactive

material in V

⎤
⎥⎥⎦

and therefore,

∫
V

∂C

∂t
dV =

∫
V

SdV −
∫
V

λCdV −
∫
A

φT · ndA,

where S = S (t, x) the source of radioactive material, λ the radioactive decay
constant and φT = φT (t, x) the total radioactive material flux. Note that φT is
exactly the total radioactive material flux crossing the unit area of the unit volume,
orthogonal to the flow direction.
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Introducing the wind field in a second step, the problem becomes a diffusion-
advection equation. Then, the total radioactive material flux φT also consists of
convective fluxes φC and diffusive fluxes φF . So, considering an isotropic scattering
radioactive material, Fick’s law yields

φF = −D∇C

where φF measures the amount of concentration that flows through a small area
during a small time interval, while D is the constant diffusion coefficient.

Wind is modelled as a vector field describing the motion of the air. The length of
each vector is the flow speed, in particular:

u = u (x, t)

which gives the velocity at a position x at time t .
Supposing that the radioactive material moves as fast as wind, u is the average

velocity of the radioactive material. The convective flux is then

φC = uC.

Remembering that φT = φC + φF , substitution and the use of the divergence
theorem leads to:

∫
V

∂C

∂t
dV =

∫
V

SdV −
∫
V

λCdV +
∫
V

[
D∇2C − ∇ · (uC)

]
dV

Since the volume V is arbitrary, the following partial differential equation (PDE) of
diffusion-advection type can be derived:

∂C

∂t
= D∇2C − ∇ · (uC) − λC + S

with initial condition C (x, 0) = f (x) and boundary conditions C (0, y, t) =
C (1, y, t) = C (x, 0, t) = C (x, 1, t) = 0.

In view of combining the solution of the PDE problem with the road network
model, a finite domain in 2D is needed. This a is reasonable choice due to the given
infrastructure. Note that the main unknown variable is then just the concentration of
the homogenous radioactive material in a unit surface instead of in a unit volume.
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4.2.5 Combined Model

The combined model consists of the road network model and the diffusion-
advection equation. Both approaches can be computed and simulated separately.
In particular, for the network model this means:

• First, the delay for people leaving their current locations and entering the
highways, i.e. the road network, is modelled as an influx to the network vertices.
The rate of influx on each time step is determined by the distribution of people’s
delay times. This can be done in some preprocessing manner.

• Second, the congestion and accident models are closely connected. Both affect
the traveling speeds on each road, which are used as input for the movement of
people and the calculation of the escape route.

• Third, the coupling of the radioactive cloud model to the network model. The
parameters for radioactive cloud model are set so that both of the models operate
on the same time and space domain, i.e. one time step in the radioactive cloud
model equals one time step in the network model and a coordinate point in the
radioactive cloud model corresponds to the same point in the network model.

More precisely, the dosage D received in place vecx on time step t is directly
correlated with the concentration of radioactive material C:

Dose (x, y, t) = ϕC
(
(x, y)T , t

)

The constant ϕ is an empirically determined parameter for radiation effectiveness
and depends on the weather—rainy or clear—and the type of fallout—small dust
particles or large pieces of radioactive material. The total dosage and thus the effect
of radiation, i.e. Er on person i in a short time span, can be calculated as a sum of
doses received (see [5]),

Er (i, t) =
t∑

s=t0

ϕC ((X (i, s) , Y (i, s)) , s) ,

where X(i, t) and Y (i, t) are the coordinates of the person i on time step t .

4.3 Simulation Results

Running now the simulations on the Biblis test case, several important aspects about
the evacuation planning can be identified. An illustration can be seen in Fig. 4.4.

A surprising results is that the total time taken for evacuation does not sig-
nificantly change when using either the calm or panicky population distributions.
The calm people exit the city in a short time frame, causing massive traffic jams
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immediately outside of the city. The exiting of panicked people in comparison is
much slower, but this lessens the effect of congestion significantly, allowing the
evacuation on highways be much more faster.

Other important observation is the fact that closing a safety point due to high
radiation, the people are redirected. In such a situation, a new safety point is chosen
that is closest in the euclidean metric. In some cases this meant that the people had
to go back and forth between multiple safety points. A good way to inform people
about and a good selection criteria for the new safety point would lead to another
optimization problem.

Concerning the given infrastructure, a bottleneck/dangerous road is the federal
road B9, which goes in the north-south direction from Mainz to Mannheim. This
road is the shortest route across the map domain in the north-south direction and
thus selected by a large fraction of the population. It passes very close to the Biblis
nuclear power plant as the shortest distance is approximately 3 km between the
plant and the road. This means that the road might get congested rather fast and
is potentially highly radioactive.

4.4 Conclusion and Comment on Solution

The presented modelling problem requires competencies in different mathematical
fields. On the one hand, ideas on network flows by Ahuja et al. [1] are needed
to describe the traffic flows and, on the other hand, partial differential equations
and their numerical solutions (see e.g. Grossmann et al. [3], Habermann [4]) to
manage the spread of radiation. Therefore, the model approaches were developed
simultaneously by different small groups and finally combined in the entire
simulation.

The complexity of this modeling problem has been reduced in a good way
such that first results were available after 1 week only. With the simulation tool
at hand, more scenarios than shown here have been analyzed. The students did a
great job to carry over various mathematical concepts for the evacuation planning.
So the original challenge to provide numerical simulations for different evacuation
scenarios has been solved successfully.
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Chapter 5
Drug Delivery from Ophthalmic Lenses

José Augusto Ferreira

5.1 Introduction

Glaucoma is one of the most common diseases and is a consequence of disorders in
the anterior segment of the eye. It is the result of anomalies in the aqueous humor
dynamics that lead to increasing intraocular pressure (IOP). This pressure pushes
the lens and consequently, the vitreous humor, inducing a pressure on the retina. It
can lead to damaging of the optical nerve with subsequent vision loss. In extreme
situations, it can even lead to blindness.

The mathematical modelling of drug delivery from a device and its transport
until the target tissue requires the knowledge of the physiology of the eye, mainly
(1) the anterior segment (2) the dynamics of the aqueous humor, responsible for
such anomalous pressure. The increase in IOP is due to an increase of the resistance
to the fluid outflow, an increase of the aqueous humor production or even both.
It is necessary to identify the physiologic processes involved in aqueous humor
production and in its drainage.

Therapeutical contact lenses is one of the drug delivery devices used to treat high
IOP. Different drugs have been considered depending on the pathology that leads to
IOP increasing:

1. beta blockers and carbonic anhydrase inhibitors reduce eye pressure by decreas-
ing the production of intraocular fluid;

2. prostaglandin analogs induce a reduction of IOP, diminishing the resistance to
aqueous humor outflow;

3. alpha agonists induce a decrease in the production of fluid and also increase the
aqueous humor drainage.
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This article aims to contribute to the mathematical modelling of drug delivery
from therapeutical contact lenses to treat glaucoma. We start by presenting the
anterior segment of the eye and the dynamics of aqueous humor. The set of
anomalous situations that lead to increasing intraocular pressure is then described.
An overview on some therapeutic strategies that can be used to treat open-angle
glaucoma is presented. The main part of this work concerns a mathematical model
that describes the drug release from therapeutic lenses and its evolution in the cornea
and anterior chamber. To simplify, the model is built under some assumptions on
the phenomena involved as well as on the geometry of the anterior chamber. We
conclude remarking that this work was published in the ECMI Annual Report 2016
[9].

5.2 Anterior Segment of the Eye and Aqueous Humor
Dynamics

Glaucoma is a group of diseases that lead to the damage of the optical nerve and it is
usually associated with an increase of the IOP. This increase is due to pathological
modifications of the physiology of the anterior segment of the eye, see Fig. 5.1. This
part of the eye is composed by the cornea (the outer boundary), the anterior chamber,
the iris, the lens and the ciliary body that define the anterior boundary of the anterior
chamber. The cornea is composed by several layers:

1. the epithelium (the outer layer);
2. the stroma;
3. the endothelium (the inner layer). It is coated by a tear film known as precorneal

film, see Fig. 5.1.

Fig. 5.1 Anatomy of the eye
(http://www.theeyecenter.
com/educational/005.htm)

http://www.theeyecenter.com/educational/005.htm
http://www.theeyecenter.com/educational/005.htm
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The anterior segment of the eye is filled with the aqueous humor. This clear
watery fluid is produced by the ciliary epithelium of the ciliary processes located
in the ciliary body. It flows from the posterior chamber to the anterior chamber
by the narrow space between the posterior iris and the anterior lens and enters in
the anterior chamber by the pupil. The aqueous humor leaves the anterior chamber
mainly through the trabecular meshwork. It reaches the episcleral venous system
via Schlemm’s canal. It is also drained from the anterior chamber by the uveoscleral
route. The aqueous humor has a multi-purpose nature, see [3]:

1. provides nutrients to the avascular tissues of the anterior segment;
2. removes metabolic excretory products;
3. stabilizes the ocular structure;
4. contributes to the homeostasis of these tissues.

Two main factors contribute to aqueous humor flow:

1. the pressure difference between the trabecular meshwork, that induces a resis-
tance to the outflow (porous structure), and the end of Schlemm’s canal, which
is similar to the blood pressure (8–10 mmHg);

2. the temperature difference near the cornea and lens.

Two convective flows are then induced that are driven by a pressure gradient and
a temperature gradient. The balance between the aqueous humor production and
its drainage maintains the IOP stable. The drainage through the uveoscleral route
appears to be pressure independent, see [10].

5.3 Glaucoma

The closed-angle glaucoma can be induced by different causes that influence an iris
dilation and its adheration to the lens.

The aqueous humor is produced in the ciliary body involving complex phenom-
ena that include ultrafiltration, diffusion and active transport (active secretion). The
ultrafiltration occurs in the capillaries of the ciliary processes and it is a passive
movement of water and water soluble substances across cell membranes, diffusion
of solute takes place in the tissue between the capillaries and the posterior chamber
in response to concentration gradient. Active transport occurs in nonpigmented
epithelial cells and it is the main responsible for the aqueous humor formation, see
[10, 15]. An abnormal production of the aqueous humor can lead to increased IOP.

In the human eye, 75% of the resistance to the fluid outflow is due to the
trabecular meshwork and 25% occurs beyond the Schlemm’s canal. Trabecular
meshwork’s resistance to the drainage of aqueous humor is due to the hydration
of the trabecular meshwork structure that can cause obstruction of its structure.
Such obstruction is also associated with the formation of deposits within this
tissue. Recently, the region of the trabecular meshwork that is responsible by
the IOP regulation was identified: the juxtacanalicular tissue, which is adjacent
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to Schlemm’s canal. To keep the aqueous humor flow channels open in the
juxtacanalicular tissue, the extracellular matrix of this tissue presents a continuous
remodelling. An interference in this remodelling process compromises the aqueous
humor drainage and increases the IOP, see [14].

The hypothesis that the biomechanical properties of Schlemm’s canal contribute
to the aqueous humor outflow was studied, for instance, in [2, 16]. It was observed
that the pore formation is a mechanosensitive process: an increase of the biomechan-
ical strain induces an increase of the porous density. Changing this biomechanical
behaviour, it was observed that the porous formation decreases, leading to increased
IOP.

5.4 Therapeutics Strategies to Open-Angle Glaucoma

To decrease the IOP it is necessary to attack the anterior segment of the eye fortress
and introduce drugs in the anterior chamber. This fortress is defended by the tear
fluid barrier, the tear film that coats the corneal epithelium, the permanent blink, the
cornea (lower impermeable structure) and the blood-aqueous barrier. Eye drops are
the most used ocular route to administer drugs. However the drug bioavailability
in the anterior chamber is very low. The tear film turnover is one of the main
contributors to this fact. The drug residence time in the corneal epithelium is equal to
5–6 min before being completely washed way. The permanent continuous blinking
removes the mixture of drug solution with tear fluid from the corneal epithelium to
the nasolacrimal ducts.

The low permeability of the corneal layers also contributes to the reduced amount
of drug that reaches the anterior chamber. Less than 5% of the drug present in
the eye drops reaches the ocular tissue. The use of the systemic rout to delivery
drug into the anterior segment of the eye is also very inefficient. In fact, the blood-
aqueous barrier restricts the entry of drugs from the blood stream into the posterior
segment and consequently, to the anterior chamber. The poor eye drug absorption
requires repeated applications during long periods to achieve drug concentrations in
the anterior chamber within the therapeutic window.

Different drugs have been used to decrease the IOP and they depend on the
specific pathology. For instance, if the increased IOP is due to an anomalous
production of aqueous humor, β-blockers, α-agonists and carbonic anhydrase
inhibitors lead to decreasing of aqueous humor inflow. Other approaches use
prostaglandin analogs to enhance the uveoscleral outflow or muscarinic agonists
to enhance the trabecular outflow, see [17].

Several approaches have been followed to avoid the limitations of classical topi-
cal administration, like, for instance, the use of viscosity enhancers, mucoadhesive
and lens which aim at increasing the drug corneal residence time. Other strategies,
like the use of penetration enhancers, prodrugs and colloidal systems aim to increase
the corneal permeability, see [19]. The purpose of such strategies is to delivery drug



5 Drug Delivery from Ophthalmic Lenses 63

into the anterior chamber at a sustained and controlled rate complying the drug
concentration in the target tissue to therapeutic window .

Since the nineties, several types of therapeutical contact lenses have been
proposed by researchers to increase the drug residence time in the cornea. Without
being exhaustive we mention

1. soaked contact lenses, see [1];
2. compound contact lenses with a hollow cavity, see [18];
3. entrapment of proteins, cells and drugs by polymerization of hydrogel

monomers, see [20];
4. biodegradable contact lenses, see [4].

We remark that the corneal drug residence time for soaked lenses increases (it
is around 30 min) by increasing the drug bioavailability. However, such increase
is not significantly high because there are no barriers to the delivery and the
loading is limited by the drug solubility. Compound lenses with hollow cavities
as drug reservoirs present lower permeability to oxygen and carbone dioxide. In the
polymerization process the drug can loose its therapeutic characteristics, see [21].

To delay the drug delivery process such that the corneal drug residence time
and loading increases, several authors propose to encapsulate the drug in polymeric
particles that are dispersed in the lens, see [5, 11–13]. In this case, the drug can
also be dispersed in the polymeric structure leading to increasing drug loading.
Such drug can be in three states in the polymer: free, bounded or encapsulated.
The dispersed drug, when in contact with the tear fluid, is immediately released
followed by the delivery of the bounded drug. The release on the encapsulated drug
is delayed by the particles structure and the corneal drug residence time increases
significantly. One of the main advantages of such devices is the possibility to build
lenses that deliver the drug with a pre-defined profile.

5.5 Mathematical Modelling of Drug Delivery from
Therapeutic Lenses

Building a mathematical model that describes the drug delivery process from a
specific device and its transport to the target tissue is a complex work that requires
different tasks. Let us consider the case of a therapeutic lens used to treat open-angle
glaucoma, that is to deliver a specific drug in the anterior chamber to decrease IOP.
Different tasks can be identified in the mathematical modelling of this drug delivery
process.

The drug release and transport involves a set of complex phenomena presented
before:

1. the drug release from the polymeric structure;
2. its clearance by the tear turnover;
3. the drug transport through the different layers of the cornea;
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4. the drug transport and its drainage by the aqueous humor;
5. the dynamics of the fluid, which includes the aqueous humor production in the

ciliary body, its transport in the posterior chamber and in the anterior chamber, its
drainage through the trabecular meshwork and uveoscleral route, and its transport
in the Schlemm’s canal.

It should be remarked that a mathematical model describing all phenomena taking
place will be very complex and its numerical simulation will be a very difficult task.
Therefore it is necessary to identify the main phenomena involved and the spatial
domains were they occur.

The drug delivery from a lens and its transport in the anterior chamber is naturally
a three dimensional problem. However, to simplify the geometry of the domain we
reduce the domain to a two dimensional one using the symmetry of the anterior
segment of the eye and lens. We remark that in [6] the mathematical model is
defined in bounded intervals for the lens and cornea and the anterior chamber was
considered as a sac with passive role in the process. The mathematical models
introduced in [7, 8] were defined in a two dimensional domain and the influence
of the aqueous humour motion was taken into account. It is assumed that the fluid
enters the anterior chamber through the space between the iris and the lens that we
denote by Γac,i , see Fig. 5.2, and it is drained through the trabecular meshwork.
The tear turnover and the uveoscleral drainage were neglected, the aqueous humor
production is not explicitly considered as well as its transport through the trabecular
mesh until the Schlemm’s canal. The last transport is described by a condition on the
flux that leaves the anterior chamber through Γac,tm. The aqueous humor production
is described by a boundary source term specified at the fluid entrance Γac,i. These
assumptions allow us to consider the domain plotted in Fig. 5.2.

We point out that the properties of the polymer used to construct the lens and
particles entrapping the drug should be provided. We assume that the drug is
dispersed in the polymeric lens presenting three different states, free, bounded and
entrapped, while the cornea is composed by a single layer.

Let Ω�,Ωc and Ωac denote the lens, the cornea and the anterior chamber,
respectively. By cf , cb and ce we denote the free, bound and entrapped drug

Fig. 5.2 Spatial domain
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concentrations (g/m3). In what follows we specify the phenomena and their
mathematical laws in each domain:

1. Ω�—In the lens three different phenomena occur: the links between the poly-
meric chains and the drug molecules break and the bounded drug is converted
in free drug that diffuses. Let λb,f , λe,f be the transference coefficients (1/s)
between bounded and free drug and entrapped and free drug, respectively, and
Df,� denote the free drug diffusion tensor (m2/s). Then the behaviour of the free
and bound drugs is described by the diffusion equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cf

∂t
= ∇ · (Df,�∇cf ) + λb,f (cb − cf )

+ λe,f (ce − cf ),

∂cb

∂t
= −λb,f (cb − cf ),

∂ce

∂t
= −λe,f (ce − cf ),

(5.1)

in Ω� × (0, T ], where T > 0 denotes a fixed time.
2. Ωc—Only the free drug is released from the lens and enters in the cornea where

it diffuses. If Df,c represents the free drug diffusion tensor in the cornea then

∂cf

∂t
= ∇.(Df,c∇cf ) − λccf (5.2)

in Ωc × (0, T ]. Equation (5.2) is established assuming that the clearance of the
drug occurs here being λc the clearance rate (1/s).

3. Ωac—In the anterior chamber the free drug diffuses and its transported by the
aqueous humor to the trabecular meshwork. The evolution of cf is described by
the following convection-diffusion-reaction equation

∂cf

∂t
+ ∇(vcf ) = ∇.(Df,ac∇cf ) − λaccf (5.3)

in Ωac × (0, T ]. In Eq. (5.3), Df,ac and λac (1/s) represent the drug diffusion
tensor and the drug clearance rate in the aqueous humor. As the aqueous humor
is mainly composed by water, and its dynamics is mainly driven by the IOP, the
velocity field v can be described by the incompressible Navier–Stokes equations

⎧⎪⎨
⎪⎩

ρ
∂v
∂t

+ ρ(v · ∇)v − νΔv + ∇p = 0,

∇ · v = 0,

(5.4)
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in Ωac × (0, T ]. In system (5.4), p represents the intraocular pressure, ρ the
density of the aqueous humor and ν its kinematic viscosity.

The velocity field v is time and space dependent if the drug molecules have
a therapeutic effect in the trabecular meshwork. Otherwise the velocity does not
change in time and then the system of equations (5.4) should be replaced by
steady Navier–Stokes equations.

The boundary conditions are specified now. We start by defining the boundary
conditions for drug concentration:

1. Let Γ�,e be the exterior boundary of Ω�, see Fig. 5.2. We assume that this surface
is isolated, meaning that the drug mass flux is zero. Then

Df,�∇cf · η = 0 on Γ�,e × (0, T ], (5.5)

where η denotes the outward unit normal to Ω� on Γ�,e.

2. By Γc,e we represent the exterior boundary of Ωc, see Fig. 5.2. As no drug mass
flux occur on Γc,e we have

Df,c∇cf · η = 0 on Γc,e × (0, T ], (5.6)

where η denotes the outward unit normal to Ωc on Γc,e.

3. On the fluid outflow boundary Γ ac, tm (see Fig. 5.2) we assume that the drug
mass flux depends on a function Ac(cf ) that reflects the drug effect in the
increasing of the porosity of the trabecular mesh. This function should increase
as cf increases reaching a maximum threshold. Therefore we assume that

J · η = Ac(cf )cf on Γac,tm × (0, T ], (5.7)

where J = −Df,ac∇cf + vcf , and η denotes the outward unit normal to Ωc on
Γac,tm.

4. In the boundary Γac,� ∪ Γac,i (see Fig. 5.2) we take

J · η = 0 on (Γac,e ∪ Γac,i) × (0, T ], (5.8)

where η denotes the outward unit normal to this portion of the boundary.

The boundary conditions for the Navier–Stokes equations are specified in what
follows:

1. In the inflow boundary Γac,i we assume that the normal component of the
velocity is known

v · η = vin on Γac,i × (0, T ]. (5.9)
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2. There are several approaches to define the boundary condition when the pressure
is known. One of them is to consider

(ν∇v − pI )η = −p0η on Γac,tm × (0, T ], (5.10)

where p0 denotes the pressure in Schlemm’s canal which is taken equal to the
blood pressure and I is the identity matrix.

3. On ∂Ωac\(Γac,i ∪ Γac,tm) the normal component of the velocity is null

v · η = 0 (5.11)

on (Γc,ac ∪ Γac,e) × (0, T ].
For interface boundaries we assume the next conditions for the free drug

concentration.

1. Interface between the lens and cornea:
{

Df,�∇cf,� · η = Df,c∇cf,c · η

−Df,�∇cf,� · η = A�,c(cf,� − cf,c)
(5.12)

on Γ�,c × (0, T ], where η denotes the outward unit normal to Ω� on Γ�,c.
Here cf,� and cf,c represent the drug concentrations in the lens and cornea,
respectively, and A�,c (m/s) denotes the partition coefficient on Γ�,c.

2. Interface between the cornea and anterior chamber:
{

Df,c∇cf,c · η = Df,ac∇cf,ac · η
−Df,c∇cf,c · η = Ac,ac(cf,c − cf,ac)

(5.13)

on Γc,ac × (0, T ], where here cf,ac denotes the drug concentration in the anterior
chamber, η the outward unit normal to Ωc on Γ�,c and Ac,ac (m/s) represents the
partition coefficient on Γc,ac.

Finally, the initial conditions should be imposed to complete the system of partial
differential equations (5.1)–(5.4) complemented with the boundary conditions
(5.5)–(5.11) and interface conditions (5.12) and (5.13). We impose the following

cf (0) =
{

cf,0 in Ω�

0 in Ωc ∪ Ωac

cb(0) = cb,0 in Ω�,

ce(0) = ce,0 in Ω�,
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Fig. 5.3 Drug distribution in anterior chamber after 20 min for a lens

Fig. 5.4 Drug distribution in anterior chamber after 20 min for an eye drop

and

v(0) = v0 in Ωac,

where cf,0, cb,0, ce,0 and v0 are known functions.
In Figs. 5.3 and 5.4 we present two typical plots for the drug distribution included

before in [8]. Figure 5.3 illustrates the drug distribution in the anterior chamber
when a lens is used where the drug is dispersed in the polymeric structure and
entrapped in particles. The results obtained for the drop case are plotted in Fig. 5.4.
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From the plots we can infer that the amount of drug that reaches the anterior
chamber with lens is higher than for drops due to the initial loading. Moreover the
drug release from a therapeutic lens is a slower process due to the polymeric barrier
for the dispersed and entrapped drugs.

5.6 Conclusions

This work aims to contribute to the mathematical modelling of the drug delivery
from a drug delivery device—the therapeutic lens—used to decrease IOP in a
glaucoma scenario. The model is established under several simplifying assumptions
in what concerns the geometry of the spatial domain and the phenomena involved.

Some new models can now be deduced with increasing complexity adding new
phenomena and changing the geometry of the spatial domain to include new tissues
or organs. For instance the tear turnover can be included requiring the inclusion
of a tear film layer in the spatial domain. New equations should be added to
the existing set of partial differential equations that describe the drug dynamics
in this fluid. Different corneal layers—epithelium, stroma and endothelium—can
also be added to the model where the drug presents different diffusion properties.
Consequently, the diffusion equation in the cornea should be replaced by three
diffusion equations with the correspondent compatibility conditions on the contact
surfaces between layers. If the trabecular meshwork is considered (Ωtm) with or
without juxtacanalicular tissue, the drug transport is defined by an equation similar
to (5.3) where the convective velocity v is given by Darcy equation (coupled with
an incompressibility constraint)

⎧⎪⎨
⎪⎩

v = − K
μφ

∇p

∇ · v = 0

(5.14)

in Ωtm × (0, T ]. In (5.14) K denotes the permeability tensor and the porosity
coefficient is represented by φ. It should be stressed that in this case the coupling
between the Navier–Stokes equations (5.4) and (5.14) is a challenging topic namely
due to the conditions required on the boundary of the trabecular meshwork that is
contact with the anterior chamber.

There is a compromise between the complexity of the mathematical model and
its utility to predict the IOP evolution in different scenarios. In fact, the number of
parameters needed increases with the complexity and some of them are not known.
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Chapter 6
The Zombie Invasion

Jarosław Gruszka

6.1 Introduction

A possibility of making a dead person become alive again has been fascinating
people for thousands of years. Zombies—also called the undead—can be considered
a perfect example of that fascination. People have been imagining those creatures in
a vast number of ways—almost every book or every film that zombies appeared
in, approached the topic differently. There exists however some specific set of
characteristics that zombies share in most pieces of works that mention their
existence. They are usually described as very anomalous beings, extremely hostile
to the humankind and willing to entirely destroy it or turn all ‘ordinary’ people into
zombies. Hence, the zombie invasion could hypothetically be considered a threat
for the entire human civilisation. Regardless of what the majority of people might
think of it, there are still thousands who strongly believe that the ultimate end of the
human civilisation will be a widespread rise of hordes of zombies.

Nevertheless, most of us would admit that the zombie apocalypse is not the
most plausible scenario of the how our civilisation ends, especially considering
that the today’s world is facing multiple more tangible issues. However, from some
perspectives, an event like this can be considered worth looking at with a scientific
eye and one can name at least few reasons. First and foremost—modelling an event
like the zombie invasion differs significantly from the ‘classical’ modelling process,
i.e. creating a model of an existing and real-life phenomenon. In case of creating
a mathematical description of anything we know from the world around us, the
modeller needs to be very concious of the tools and concepts they employ. This
is obviously driven by the fact that any scientific theory aiming to describe a real-
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life phenomenon must necessarily be compared to the experimental data. And it is
absolutely clear as well that scientific results are evaluated based on the agreement
between scientist’s theoretical model and the observations. Although this should be
very natural for everyone—it is clear that we all want our theories to describe the
surrounding world accurately—from some other perspective this urge for obtaining
valuable and sterling results can be seen as a factor limiting creativeness. It is
difficult to argue that the pervasive need for scientific usability makes us try to
follow the paths which look most promising from the perspective of measurable
results, which can be immediately applied. Arguably, it is also worth to look at the
scientific progress form a kind of reversed perspective. Modelling a more abstract,
less realistic ideas or processes (like, in this case, the zombie invasion for example)
enables us to analyse the issue more freely, without unnecessary borders and limits,
lets us to think outside of the box and somewhat play with the problem. Results
obtained this way are not usually ready to be directly used right after developing
them but they may change scientist’s perspective and their point of view, they may
feature new research methods and may become an inspiration for totally new studies
which might turn out to unexpectedly pop out in some future research.

This was the actual reason for our research project of modelling the zombie
invasion—not only does it sound more intriguing and more approachable in
reception (although we admit that this can serve as an asset too), but it also
creates an opportunity to do science differently, in a way oriented on methods
rather than the results. So—as our main target we picked creating a model of an
extremely fast-spreading epidemic totally from scratch, with minimal number of
pre-settled assumptions, but general enough to possibly be ‘calibrated’ to some
known contagious disease in the future. The only requirement, in some ways
defining the direction of the development of the model was that the spreading
scheme should be based on the population density maps and should embrace a
premiss (taken purely from the common sense) that more densely populated areas
should be more vulnerable to faster epidemic spreading. Agreeing only for those
high-level assumptions marked a point where the actual project development could
have been started.

6.2 Data Preparation

As mentioned in the Introduction, one of the very few assumptions that the project
had was that the base for the entire model should be density population maps. It
turns out that high-quality maps of this kind can easily be found on-line. One of
the numerous web pages that can be used for this purpose was World Population
Density [6]. There one can find the density population maps for the entire world,
presented in a very clear manner. An interface of the webpage has been shown in
Fig. 6.1.

Just like in case of most maps of this kind, the density population was represented
by a colour scale. In order to use information that such maps convey, it is obviously
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Fig. 6.1 Interface of the world population density webpage [6]

Fig. 6.2 Legend for the data population maps available under http://luminocity3d.org [6]

needed to quantify it, i.e. move it from a format of a picture to some specific numeric
data type. The picture itself can be viewed as a structure composed of pixels—tiny,
square pieces of the image. Each pixel can be uniquely identified by its position in
a picture (i, j) ∈ (1, n) × (1,m), where n is height of the image and m is its width,
expressed in the number of pixels. Having that said, any method that can be used
to move the entire picture from any on-line location into our computer’s workspace
should start by scanning the image, pixel by pixel. This can be done effectively in
many different programming languages and author’s language of choice was Python
3 [7] with the usage of an image processing library called Pillow [2] and other side
modules [4, 5]. The entire purpose of scanning all pixels of the image is actually to
save the data of a colour value of each of them. The most common way to keep the
information about the colour in a numeric way is by analysing what is called the
RGB value of it. From the mathematical point of view, RGB is simply a vector of
three numbers (r, g, b), r, g, b ∈ [0, 255] each of them representing the saturation
of the red, blue and green colour component respectively. Only having the value of
the RGB for every pixel of the image one can actually start analysing it.

After getting the values of the colours of the map, the next step was to translate
the RGB values of the colours into the actual values of the population density. For
this purpose, the map legend should obviously be used. It has been presented in the
Fig. 6.2.

http://luminocity3d.org
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The map’s legend explicitly mentions 16 colours and precisely describes what
range of population density (expressed in residents per square kilometre) each of
them represents. However, one can expect that the map also features some smooth
colour transitions between the colours that the legend mentions. Therefore the map
needs to be sharpened—adjusted in a way so that it only contained the colours that
the legend has. To this end, for each pixel, its colour needs to be substituted by one
of the 16 map legend colours—by the one which is closest to the original one. The
measure of closeness of colours can simply be defined as a sum of square differences
between the RGB values of those two colours. Hence, the new, sharpened colour of
a given pixel can be described as

(r̂(i,j), ĝ(i,j), b̂(i,j)) = (rm, gm, bm),

m = arg min
k∈{1,2,...,16}

((r(i,j) − rk)
2 + (g(i,j) − gk)

2 + (b(i,j) − bk)
2)

where (r̂(i,j), ĝ(i,j), b̂(i,j)) is the sharpened version of the original colour (r(i,j),

g(i,j), b(i,j)) of a given pixel and (rk, gk, bk), k ∈ {1, 2, . . . , 16} is the RGB value
of each of the 16 colours of the map.

Such a sharpened map can almost immediately be transformed into a matrix of
the size n×m, in which each entry corresponds to the number of citizens per square
kilometre associated with the area represented by a pixel in that same position in the
scanned map. The problem was that the legend only showed a range of the number
of inhabitants related to a given colour, not the precise number. Since dealing with
data intervals is much more difficult than with single numbers, for each interval
(bound to each colour of the legend) we took a mean value of the interval’s range.
For example, a vivid red colour on the map represented density population between
22,000 and 28,000 people per square kilometre, so we assumed that each pixel of
that colour on our sharpened map indicates a piece of land with the average density
of 25,000 people per km2. For the legend’s last entry which was described as ’80k+’,
we assumed the density of 90,000 per km2. To simplify the data in the matrix even
further, we decided to divide each value by the population of the most populous pixel
read from the map, hence obtaining only relative values between 0 and 1 (obviously,
this is with no loss of generality, as we can always multiply all entries by the divisor
and have the original values back). Now we needed a way to visually represent the
entries of the matrix that we prepared. Since the density is only a starting point for
the model (ultimately we want to visualise spreading zombies), it seemed reasonable
to save the vivid colours for later and stick to grey scale for now. We decided to
assign white colour to the pixels representing zero population (like oceans) and
black to the pixels with highest population density on a given map (usually—centres
of the biggest cities). This can easily be done using the following equation

(r̄(i,j), ḡ(i,j), b̄(i,j)) = (1 − ρ(i,j)) · (255, 255, 255), (6.1)
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where (r̄(i,j), ḡ(i,j), b̄(i,j)) represents the grey scale colour value of the pixel in
position (i, j) and ρ(i,j) is the entry in position (i, j) of the matrix containing data
of population density normalised to only have values between 0 and 1 (obtained as
described above).

This entire data processing flow has been presented in Fig. 6.3 and its ultimate
visual effect—in Fig. 6.4.

Fig. 6.3 Scheme illustrating the data pre-processing for the project

Fig. 6.4 Illustration of the visual effects of the data pre-processing
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6.3 Model Description

Once we had the data prepared, the actual modelling part could have been started.
Our starting point was the normalised density population matrix ρ. We now wanted
to treat the elements of this matrix as indicators of how many people live in a
given area and further—we wanted to split those people into two groups—healthy
ones (denoted by H ) and the zombies (which we will mark as Z). As we were
interested in the evolution of those quantities in both space and time, they should
both be space- and time-dependent, so that H

(i,j)
t and Z

(i,j)
t should be understood as

indicators of the number of individuals occupying area represented by map position
(i, j) at time t , which belong to healthy population or to the zombies, respectively.
We now wanted to describe the mechanism of how the sizes of these two groups
change in time, i.e. how people turn into zombies. We created 3 models of that
process which vary in assumptions that were made and we shall now describe them
in the order of ascending complexity.

6.3.1 Simple Deterministic Model

In the simplest version of the model, some initial population of zombies appears
at a given point on the map, at time t = 0, it starts spreading to the neighbouring
places with strength proportional to the number of zombies in the outbreak. To put it
into a precise mathematical formulation, we came up with the following equations,
encoding the time evolution of the zombie invasion

H
(i,j)
t = H

(i,j)

t−1 − H
(i,j)

t−1 · c
(i,j)
t , (6.2)

Z
(i,j)
t = Z

(i,j)
t−1 + H

(i,j)
t−1 · c(i,j)

t , (6.3)

where by c
(i,j)
t we denote what we call the contamination, i.e. the fraction of

healthy people from a given area (i, j), which were turned into zombies at time t .
More advanced readers may note the similarity of this description to the one of the
classical SI model [3], however, since we were dealing not only with time-related
but also with spacial aspects of the invasion spreading, we continued to develop our
model ourselves, instead of trying to adjust the classical one to make use of it.

Taking a closer look at the structure of the equations themselves, we can note that
they are recursive in parameter t , which means that the current state of both H

(i,j)
t

and Z
(i,j)
t depends directly on H

(i,j)

t−1 and Z
(i,j)

t−1 . This means that for the description
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to be complete, we need to set up the initial conditions. Let us set them up in the
following way

H
(i,j)

0 =
{

ρ(i,j) for (i, j) �= (u, v),

(1 − γ )ρ(i,j) for (i, j) = (u, v)
(6.4)

Z
(i,j)

0 =
{

0 for (i, j) �= (u, v),

γρ(i,j) for (i, j) = (u, v)
. (6.5)

where (u, v), 1 � u � n, 1 � v � m is a place where the outbreak occurs
and γ ∈ (0, 1] is the ratio of people who become zombies in that place at time
t = 0. Now—coming back to the topic of the contamination. As mentioned at
the beginning of this section, for each piece of area (represented by a single pixel)
it should be dependent on the number of zombies that this particular area was in
contact with at a given moment of time. Hence, we proposed the following way of
calculating contamination

c
(i,j)
t = max

{
1, α

∑
(p,q)∈N (i,j) Z

(p,q)

t−1

|N (i, j)|

}
. (6.6)

In formula (6.6) N (i, j) represents the neighbourhood of (i, j), i.e. the set
of positions which we consider to affect (i, j) in terms of the possibility of the
zombie attack. For example, the classical neighbourhood (often referred to as
von Neumann neighbourhood) is the set of positions adjacent from top, bottom,
left and right to the position in question. In such a set-up, we have for example
N (2, 2) = {(1, 2), (3, 2), (2, 1), (2, 3), (2, 2)}. Pixel’s self-inclusion in its neigh-
bourhood scheme ensures that if a given point already has some zombies, there
will be more of them in the next time step, even if this spot does not yet have
any contaminated neighbours. Since we are dealing with the data normalised to
fit between 0 and 1, at any point of time the cumulative value of the zombies’
component within a given neighbourhood constructed of k positions cannot exceed

k. Hence, the value of the fraction
∑

(p,q)∈N (i,j) Z
(p,q)

t−1
|N (i,j)| is between 0 and 1 so the

value of this fraction itself could serve as a decent definition of contamination.
However, to give ourselves a bit more modelling freedom we decided to introduce
one more parameter, α, to artificially rise or decrease the contamination value. We
called it infectiousness and explain it as a measure of invasion’s strength in terms of
spreading. Setting α to be a big number makes the invasion develop faster. It must
be noted that multiplying by α, especially if its value is much bigger than 1, might
make the contamination ratio rise above the value of 1, which is unacceptable (as
the value of H

(i,j)
t could drop below zero, as per Eq. (6.2)). Therefore, we added a

safety feature in the form of a max function.
We ran the simple model described above for a map of the New York City

and surrounding areas, we chose Central Park as the zombie’s outbreak. We took
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.5 Snapshots of the process of the zombie invasion, as per the rules of the model described
in Sect. 6.3.1. (a) Zombie spread at t = 0. (b) Zombie spread at t = 3. (c) Zombie spread at t = 6.
(d) Zombie spread at t = 10. (e) Zombie spread at t = 15. (f) Zombie spread at t = 25. (g) Zombie
spread at t = 35. (h) Zombie spread at t = 42. (i) Zombie spread at t = 50

a snapshot of every stage of the time evolution as well as we plotted how the
populations of healthy people and zombies were changing over time. These results
were presented in Figs. 6.5 and 6.6 respectively.

6.3.2 Probabilistic Model (Without Recovery)

Up until now, the model was fully deterministic—every time a program was run for
a given population density map as an input, the invasion flow was totally identical.
However, we felt that a sudden and unexpected event—such as a zombie invasion—
should probably be modelled in a way incorporating at least some random factors.
Therefore, we created another model, which can be described in our evolution
equations as follows

H
(i,j)
t = H

(i,j)

t−1 − H
(i,j)

t−1 · c
(i,j)
t · B(i,j)

t (f ), (6.7)

Z
(i,j)
t = Z

(i,j)

t−1 + H
(i,j)

t−1 · c
(i,j)
t · B(i,j)

t (f ). (6.8)
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Fig. 6.6 Populations of healthy people and zombies as functions of time, within the model
described in Sect. 6.3.1

We now included B(i,j)
t (f ) which is a random variable from a Bernoulli

distribution with parameter f, f ∈ [0, 1]:

B(i,j)
t (f ) =

{
0 with probability f,

1 with probability (1 − f )
(6.9)

and (6.10)

B(i,j)
t (f ) is independent of B(p,q)

s (f ) for any i �= p, j �= q, t �= s. (6.11)

We called the f parameter resistance. Let us note that for f = 0, the new model
reduces to Model 1, described by Eqs. (6.2) and (6.3)—in such model, whenever
a given point on the map has a neighbour attacked by the zombies, it certainly
becomes infected too. Note however that for f = 1 the system reduces again, this
time to the form of

H
(i,j)
t = H

(i,j)

t−1 , (6.12)

Z
(i,j)
t = Z

(i,j)
t−1 . (6.13)

We therefore see no changes at all—we can say, healthy people are 100%
effective in resisting zombies’ spread. We can therefore think of f as of a slider
which lets us decide on what is the actual probability that a given point on the map,
in certain moment of the simulation, turns out to defend itself from the zombie
attack. Thanks to this we successfully introduced an intuitive randomization to the
flow of the model execution.



80 J. Gruszka

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.7 Snapshots of the process of the zombie invasion, as per the rules of the model described
in Sect. 6.3.2. (a) Zombie spread at t = 0. (b) Zombie spread at t = 5. (c) Zombie spread at
t = 15. (d) Zombie spread at t = 25. (e) Zombie spread at t = 35. (f) Zombie spread at t = 45.
(g) Zombie spread at t = 65. (h) Zombie spread at t = 85. (i) Zombie spread at t = 100

As done previously, also this time we checked performance of our model on the
actual density population map. We used the map of southern coast of China, which
is known to be very densely populated. The invasion started in the centre of Hong
Kong and it quickly spread to the surrounding big cities—Shenzen, Dongguan,
Guangzhou and Foshan.1 The invasion slowed down when it came to the rural areas
of the Guangdong province. The pace of invasion increased again when it reached
another densely populated areas, near the city of Shantou and after overrunning
this neighbourhood—the invasion went a bit slower again. Snapshots of the entire
process and the plot of the populations can be seen in Figs. 6.7 and 6.8 respectively.

1We considered zombies not to be bound by the geopolitical difficulties of travelling between Hong
Kong and continental China overland, which the ‘ordinary’ people are subject to.
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Fig. 6.8 Populations of healthy people and zombies as functions of time, within the model
described in Sect. 6.3.2

6.3.3 Probabilistic Model (with Recovery)

For our last and final model we decided to allow for the possibility of the zombies
to be recovered from their illness. The recovery process was based on the idea of
research centres—big medical facilities which turn out to be able to develop a cure
for what makes people zombies, but only after some time from the beginning of
the invasion passes. This obviously requires us to add the third class of people that
we consider in our model —- the recovered ones. The evolution equations took the
following form

H
(i,j)
t = H

(i,j)
t−1 − H

(i,j)
t−1 · c

(i,j)
t · B(i,j)

t (f ), (6.14)

Z
(i,j)
t =

(
Z

(i,j)

t−1 + H
(i,j)

t−1 · c
(i,j)
t · B(i,j)

t (f )
)

·
(

1 − B(i,j)
t (s) · r

(i,j)
t

)
, (6.15)

R
(i,j)
t = R

(i,j)
t−1 +

(
Z

(i,j)
t−1 + H

(i,j)
t−1 · c

(i,j)
t · B(i,j)

t (f )
)

· B(i,j)
t (s) · r

(i,j)
t . (6.16)

Since we assume that some time must pass until first recovered people appear,
we may safely assume that

R
(i,j)

0 = 0 for all available (i, j).

As we can see—two new parameters appeared in Eqs. (6.15) and (6.16), com-
pared to the Eqs. (6.7) and (6.8), describing the previous model. Those parameters
are B(i,j)

t (s) and r
(i,j)
t . B(i,j)

t (s) is again, a random variable from Bernoulli
distribution with success parameter s ∈ [0, 1] which we called the development
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factor. It plays a similar role to the role of B(i,j)
t (f ) in the previous model—

introduces randomness. We thought that the more developed a given country is,
the more likely it will be that each and every cell will start curing itself if it only had
a chance to do so (this will likely be a case for a big value of the development factor
s) but if the level of the development of the society is low—there might be problems
with transferring cure from one neighbourhood to the other (such situation would
be modelled by a small value of s).

The actual possibility of a given cell to be cured is however described by r(i,j)
t —

the recovery factor, i.e. the fraction of zombies who become recovered (note the
similarity to the contamination parameter, first introduced in Eqs. (6.2) and (6.3)).
Its precise definition is

r
(i,j)
t =

{
1 if (i, j) ∈ D and t � td ,

β · I(i,j)
t otherwise

. (6.17)

Here, D is a set of coordinates of, what we call, the research centres. These are
the places on the map where we want the cure for being a zombie to be developed.
As mentioned in the first paragraph of this section, we assume that the research
centres need time to figure out the cure. This time is denoted by td . We can therefore
see that points which we specify as the research centres will be cured precisely at
time td . What about all the other points, outside of the ones defined to be research
centres? Of them, the recovery indicator I(i,j)

t takes care. It is defined as follows

I(i,j)
t = max

⎧⎨
⎩1,

∑
(p,q)∈N (i,j)

R
(p,q)
t−1

⎫⎬
⎭ (6.18)

The idea of the indicator is quite simple—for the cell (i, j) at the moment t ,
the value of the indicator is 1 if there are any cells in the neighbourhood which
contain any recovered people. This information is then used to establish the fraction
of people that will be cured from being zombies—to do that we multiply I(i,j)

t by
an additional parameter β ∈ (0, 1], which we call the purification constant. This
constant helps us to control the speed in which zombies will be converted into
recovered humans once they have access to cure through their neighbours.

As this was our final and most complex model, we naturally wanted to visualise
it as well. Since we arrived at having three classes of individuals, we decided that
one colour map is insufficient for this purpose, so we used two instead and we
placed them side by side. One of the maps represents the number of zombies and
the other—the number of recovered humans. For the final visualisation we chose
the map of France. We placed the research centres in three major French cities—
Paris, Toulouse and Bordeaux. The zombie outbreak was placed in a relatively
minor town in the south-east of the country—Grenoble. As usually, we generated the
full animation of the invasion spreading and the plot which presents the cumulative
amounts in time—see Figs. 6.9 and 6.10 respectively. The snapshots in Fig. 6.9 are
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Fig. 6.10 Populations of healthy people and zombies as functions of time, within the model
described in Sect. 6.3.3

particularly informative—we can clearly see from them that around t = 50 first
recovered people appear around the three research centres and they start spreading
quickly so that after t = 100 zombies are almost completely eradicated form the
system. The plot in Fig. 6.10 shows us however that there are still some healthy
people there, which means they have never become infected—and they will never
be, as the entire epidemic has been defeated.

6.4 Conclusions

The project described above aimed to develop a model of a disorder rapidly
spreading over some area for which the density population maps are available. As
part of our work on the project we created as many as three such models which
vary in the level of complexity. While creating the models we were not focusing
on any concrete information about the actual epidemic that we were modelling,
we also tried not to put any binding assumptions. Instead, we were turning nearly
every variable that we used into a customisable parameter of the model. Thanks to
that we were able to obtain the models which are very general and also possible to
be calibrated to various kinds of real diseases, as long as they are able to spread
relatively quickly. The next steps that can be taken to develop the project is to try to
estimate the values of all the parameters so that the models themselves can be used
for forecasting an modelling the spread of real-life contagious diseases.

The number of complex disease spreading models that are already available
and well-studied is obviously huge. One of the biggest advantages of each of our
models is their actual simplicity. Although the evolution equations that we used to
describe the dynamics of populations of healthy and infected people might look a bit
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overwhelming, they mostly consist of simple arithmetic operations and feature some
random factors—both of these mathematical ideas can be easily understood by most
people. Models based on complicated differential equations or stochastic processes
might have a lot of advantages that our models do not have but they also might
be more difficult to explain to a person which does not have a solid mathematical
background. In our models however, changes can be made easily and the effects of
those changes are usually quite easy to predict, they can also be verified quickly by
the simulation that we have performed ourselves as well. Simple tools are usually
more difficult to be broken, yet, if used appropriately, they may give us valuable
insights into the problems that we are studying.
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Chapter 7
Optimal Heating of an Indoor Swimming
Pool

Monika Wolfmayr

7.1 Introduction

Modeling the heating of an object is an important task in many applicational
problems. Moreover, a matter of particular interest is to find the optimal heating of
an object such that it has a desired temperature distribution after some given time.
In order to formulate such optimal control problems and to solve them, a cost func-
tional subject to a time-dependent partial differential equation (PDE) is derived. One
of the profound works paving the way for PDE-constrained optimization’s relevance
in research and application during the last couple of decades is Lion’s work [9] from
1971. Some recent published monographs discussing PDE-constrained optimization
as well as various efficient computational methods for solving them are, e.g., [1, 6],
and [11], where the latter one is used as basis for the discussion on solving the
optimal heating problem of this work.

The goal of this work is to derive a simple mathematical model for finding the
optimal heating of the air in a glass dome represented by a half sphere, where a
swimming pool is located in the bottom of the dome and the heat sources (or heaters)
are situated on a part of the boundary of the glass dome. The process from the model
to the final numerical simulations usually involves several steps. The main steps in
this work are the setting up of the mathematical model for the physical problem,
obtaining some analytical results of the problem, presenting a proper discretization
for the continuous problem and finally computing the numerical solution of the
problem. The parabolic optimal control problem is discretized by the finite element
method in space, and in time, we use the implicit Euler method for performing
the time stepping. The used solution algorithm for the discretized problem is the
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projected gradient method, which is for instance applied in [5] as well as in more
detail discussed in [4, 6, 8, 10].

We want to emphasize that the model and the presented optimization methods for
the heating process of this work are only one example for a possible modeling and
solution. In fact, the stated model problem has potential for many modeling tasks for
students and researchers. For instance, different material parameters for the dome
as well as for air and water could be studied more carefully. The optimal modeling
of the heat sources could be stated as a shape optimization problem or instead of
optimizing the temperature of the air in the glass dome, one could optimize the
water temperature. This would correspond to a final desired temperature distribution
corresponding to the boundary of the glass dome, where the swimming pool is
located, for the optimal control problem. Another task for the students could be
to compute many simulations with, e.g., Matlab’s pdeModeler to derive a better
understanding of the problem in the pre-phase of studying the problem of this work.
However, we only want to mention here a few other possibilities for modeling,
studying and solving an optimal heating problem amongst many other tasks, and
we are not focusing on them in the work presented here.

This article is organized as follows: First, the model of the heating process
is formulated in Sect. 7.2. Next, Sect. 7.3 introduces the optimal control problem,
which describes the optimal heating of the glass dome such that the desired
temperature distribution is attained after a given time. In Sect. 7.4, proper function
spaces are presented in order to discuss existence and uniqueness of the optimal
control problem. We derive the reduced optimization problem in Sect. 7.5 before
discussing its discretization and the numerical method for solving it, the projected
gradient method, in more detail in Sect. 7.6. Numerical results are presented as well
as conclusions are drawn in final Sect. 7.7.

7.2 Modeling

This section presents the modeling process. The physical problem is described in
terms of mathematical language, which includes formulating an initial version of
the problem, but then simplifying it in order to derive a version of the problem
which is easier to solve. However, at the same time, the problem has to be kept
accurate enough in order to compute an approximate solution being close enough
to the original solution. That is exactly one of the major goals of mathematical
modeling. In the following, we introduce the domain describing the glass dome,
where an indoor swimming pool is located in the bottom of the dome, and the
position of the heaters. The concrete equations describing the process of heating and
the cost functional subject to them modeling the optimization task are discussed in
next Sect. 7.3.

We have an indoor swimming pool which is located under a glass dome. For
simplicity, it is assumed that we have an isolated system in the glass dome, so no
heat can leak from the domain. The swimming pool covers the floor of the glass
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Fig. 7.1 The domain Ω

reduced from 3d to 2d due to
symmetry properties
describing the glass dome and
its heaters placed at the
ground of the glass dome next
to the floor, hence subdividing
the boundary Γ = ∂Ω into
four parts Γ1, Γ2, Γ3 and Γ4

dome and we assume that the heaters are placed next to the floor up on the glass
all around the dome. The target of the minimization functional is to reach a desired
temperature distribution at the end of a given time interval (0, T ), where T > 0
denotes the final time, with the least possible cost.

Due to the symmetry properties of the geometry as well as the uniform
distribution of the water temperature, we reduce the three dimensional (3d) problem
to a two dimensional (2d) one. The dimension reduction makes the numerical
computations more simple. In the following, the 2d domain is denoted by Ω and
its boundary by Γ = ∂Ω . We assume that Ω ⊂ R

2 is a bounded Lipschitz domain.
We subdivide its boundary Γ into four parts: the glass part Γ1, the floor which is the
swimming pool Γ2 and the heaters Γ3 and Γ4. The domain Ω and its boundaries are
illustrated in Fig. 7.1.

7.3 Optimal Control Problem

In this section, the optimal control problem is formulated, where an optimal control
function u has to be obtained corresponding to the heating of the heat sources on
the boundary ΓR := Γ3 ∪ Γ4 such that the state y reaches a desired temperature
distribution yd after a given time T . This problem can be formulated in terms of a
PDE-constrained optimization problem, which means minimizing a cost functional
subject to a PDE and with u being the control function.

Let QT := Ω × (0, T ) denote the space-time cylinder with the lateral surface
Σ := Γ × (0, T ), where T > 0 denotes the final time. The optimal control problem
is given as follows:

min
(y,u)

J (y, u) = 1

2

∫
Ω

(y(x, T ) − yd(x))2 dx + λ

2

∫ T

0

∫
ΓR

u(x, t)2 ds dt (7.1)

such that

yt − �y = 0 in QT := Ω × (0, T ), (7.2)

∂y

∂n
= 0 on Σ1 := Γ1 × (0, T ), (7.3)
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y = g on Σ2 := Γ2 × (0, T ), (7.4)

∂y

∂n
+ αy = βu on ΣR := ΓR × (0, T ), (7.5)

y(0) = y0 in Ω, (7.6)

where g is the given constant water temperature, λ ≥ 0 is the cost coefficient or
control parameter, and α and β are constants describing the heat transfer, which are
modeling parameters and have to be chosen carefully. The control u denotes the
radiator heating, which has to be chosen within a certain temperature range. Hence,
we choose the control functions from the following set of admissible controls:

u ∈ Uad = {v ∈ L2(ΣR) : ua(x, t) ≤ u(x, t) ≤ ub(x, t) a.e. on ΣR}, (7.7)

which means that u has to fulfill so called box constraints. Equations (7.3)–
(7.5) are called Neumann, Dirichlet and Robin boundary conditions, respectively.
Equation (7.3) characterizes a no-flux condition in normal direction. Equation (7.4)
describes a constant temperature distribution. Regarding Eq. (7.5), α = β would be
a reasonable choice from the physical point of view because this would mean that
the temperature increase at this part of the boundary is proportional to the difference
between the temperature there and outside. However, a decoupling of the parameters
makes sense too, see [11], and does not change anything for the actual discussion
and computations, since α = β could be chosen at any point.

The goal is to find the optimal set of state and control (y, u) such that the cost is
minimal.

7.4 Existence and Uniqueness

In this section, we discuss some basic results on the existence and uniqueness of
the parabolic initial-boundary value problem (7.2)–(7.6), whereas we exclude the
details. They can be found in [11]. We first introduce proper function spaces leading
to a setting, where existence and uniqueness of the solution can be proved.

Definition 7.1 The normed space W
1,0
2 (QT ) is defined as follows

W
1,0
2 (QT ) = {y ∈ L2(QT ) : Diy ∈ L2(QT ) ∀i = 1, . . . , d} (7.8)

with the norm

‖y‖
W

1,0
2 (QT )

=
(∫ T

0

∫
Ω

(|y(x, t)|2 + |∇y(x, t)|2) dx dt

)1/2

, (7.9)
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where Diy denotes the spatial derivative of y in i-direction and d is the spatial
dimension.

For the model problem of this work, the dimension is d = 2. In the following, let
{V, ‖ · ‖V } be a real Banach space. More precisely, we will consider V = H 1(Ω)

in this work.

Definition 7.2 The space Lp(0, T ; V ), 1 ≤ p < ∞, denotes the linear space of all
equivalence classes of measurable vector valued functions y : [0, T ] → V such that

∫ T

0
‖y(t)‖p

V dt < ∞. (7.10)

The space Lp(0, T ; V ) is a Banach space with respect to the norm

‖y‖Lp(0,T ;V ) :=
(∫ T

0
‖y(t)‖p

V dt

)1/p

. (7.11)

Definition 7.3 The space W(0, T ) = {y ∈ L2(0, T ; V ) : y ′ ∈ L2(0, T ; V ∗)} is
equipped with the norm

‖y‖W(0,T ) =
(∫ T

0
(|y(t)|2V + |y ′(t)|2V ∗) dt

)1/2

. (7.12)

It is a Hilbert space with the scalar product

(u,w)W(0,T ) =
∫ T

0
(u(t), w(t))V dt +

∫ T

0
(u′(t), w′(t))V ∗ dt. (7.13)

The relation V ⊂ H = H ∗ ⊂ V ∗ is called a Gelfand or evolution triple and
describes a chain of dense and continuous embeddings.

The problem (7.2)–(7.6) has a unique weak solution y ∈ W
1,0
2 (QT ) for a given

u ∈ Uad. Moreover, the solution depends continuously on the data, which means
that there exists a constant c > 0 being independent of u, g and y0 such that

max
t∈[0,T ] ‖y(·, t)‖L2(Ω) + ‖y‖

W
1,0
2 (QT )

≤ c(‖u‖L2(ΣR) + ‖g‖L2(Σ2)
+ ‖y0‖L2(Ω))

(7.14)

for all u ∈ L2(ΣR), g ∈ L2(Σ2) and y0 ∈ L2(Ω). Hence, problem (7.2)–(7.6)
is well-posed in W

1,0
2 (QT ). Furthermore, since y ∈ W

1,0
2 (QT ) and it is a weak

solution of problem (7.2)–(7.6), y also belongs to W(0, T ). The following estimate
holds:

‖y‖W(0,T ) ≤ c̃(‖u‖L2(ΣR) + ‖g‖L2(Σ2)
+ ‖y0‖L2(Ω)) (7.15)
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for some constant c̃ > 0 being independent of u, g and y0. Hence, problem (7.2)–
(7.6) is also well-posed in the space W(0, T ).

Note that the Neumann boundary conditions on Γ1 are included in both estimates
(7.14) and (7.15) related to the well-posedness of the problem (as discussed in [11]).
However, the Neumann boundary conditions (7.3) are equal to zero.

Under the assumptions that Ω ⊂ R
2 is a bounded Lipschitz domain with

boundary Γ , λ ≥ 0 is a fixed constant, yd ∈ L2(QT ), α, β ∈ L∞(ΣR), and
ua, ub ∈ L2(ΣR) with ua ≤ ub a.e. on ΣR , together with the existence and
uniqueness result on the parabolic initial-boundary value problem (7.2)–(7.6) in
W(0, T ), the optimal control problem (7.1)–(7.7) has at least one optimal control
ū ∈ Uad. In case of λ > 0 the optimal control ū is uniquely determined.

7.5 Reduced Optimization Problem

In order to solve the optimal control problem (7.1)–(7.7), we derive the so called
reduced optimization problem first.

Since the problem is well-posed as discussed in the previous section, we can
formally eliminate the state equation (7.2)–(7.6) and the minimization problem
reads as follows

min
u

J̄ (u) = 1

2

∫
Ω

(yu(x, T ) − yd(x))2 dx + λ

2

∫ T

0

∫
ΓR

u(x, t)2 ds dt (7.16)

such that (7.7) is satisfied. The problem (7.16) is called reduced optimization
problem. Formally, the function yu denotes that the state function is depending
on u. However, for simplicity we can set again yu = y. In order to solve the
problem (7.16), we apply the projected gradient method. The gradient of J̄ has to
be calculated by deriving the adjoint problem which is given by

−pt − �p = 0 in QT , (7.17)

∂p

∂n
= 0 on Σ1, (7.18)

p = 0 on Σ2, (7.19)

∂p

∂n
+ αp = 0 on ΣR, (7.20)

p(T ) = y(T ) − yd in Ω. (7.21)

The gradient of J̄ is given by

∇J̄ (u(x, t)) = βχΓRp(x, T − t) + λu(x, t) (7.22)
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with χΓR denoting the characteristic function on ΓR . The projected gradient method
can be now applied for computing the solution of the PDE-constrained optimization
problem (7.1)–(7.7). We denote by

P[ua,ub](u) = max{ua, min{ub, u}} (7.23)

the projection onto the set of admissible controls Uad.
Now putting everything together, the optimality system for (7.1)–(7.7) and a

given λ > 0 reads as follows

yt − �y = 0 − pt − �p = 0 in QT ,

∂y

∂n
= 0

∂p

∂n
= 0 on Σ1,

y = g p = 0 on Σ2,

∂y

∂n
+ αy = βu

∂p

∂n
+ αp = 0 on ΣR,

y(0) = y0 p(T ) = y(T ) − yd in Ω,

u =P[ua,ub](−
1

λ
βp).

(7.24)

In case that λ = 0, the projection formula changes to

u(x, t) = ua(x, t), if β(x, t)p(x, t) > 0,

u(x, t) = ub(x, t), if β(x, t)p(x, t) < 0.
(7.25)

Remark 7.1 In case that there are no control constraints imposed, the projection
formula simplifies to u = −λ−1βp.

7.6 Discretization and Numerical Method

In order to numerically solve the optimal control problem (7.1)–(7.7), which is
equivalent to solving (7.24), we discretize the heat equation in space by the finite
element method and in time. We use the implicit Euler method for performing the
time stepping.

We approximate the functions y, u and p by finite element functions yh, uh and
ph from the conforming finite element space Vh = span{ϕ1, . . . , ϕn} with the basis
functions {ϕi(x) : i = 1, 2, . . . , nh}, where h denotes the discretization parameter
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with n = nh = dim Vh = O(h−2). We use standard, continuous, piecewise
linear finite elements and a regular triangulation Th to construct the finite element
space Vh. For more information, we refer the reader to [3] as well as to the newer
publications [2, 7]. Discretizing problem (7.24) by computing its weak formulations
and then inserting the finite element approximations for discretizing in space leads
to the following discrete formulation:

Mhyh,t
+ Khyh

+ αM
ΓR

h y
h

= βM
ΓR

h uh, y
h
(0) = y0, (7.26)

−Mhph,t
+ Khph

+ αM
ΓR

h p
h

= 0, p
h
(T ) = y

h
(T ) − yd, (7.27)

together with the projection formula

uh = P[ua,ub](−
1

λ
βp

h
) (7.28)

for λ > 0. The problem (7.26)–(7.28) has to be solved with respect to the nodal
parameter vectors

y
h

= (yh,i)i=1,...,n, uh = (uh,i )i=1,...,n, p
h

= (ph,i )i=1,...,n ∈ R
n

of the finite element approximations yh(x) = ∑n
i=1 yh,iϕi(x), uh(x) =∑n

i=1 uh,iϕi(x) and ph(x) = ∑n
i=1 ph,iϕi(x). The values for y

h
are set to g

in the nodal values on the boundary Γ2 and the problems are solved only for the
degrees of freedom. The matrices Mh, M

ΓR

h and Kh denote the mass matrix, the
mass matrix corresponding only to the Robin boundary ΓR and the stiffness matrix,
respectively. The entries of the mass and stiffness matrices are defined by the
integrals

M
ij
h =

∫
Ω

ϕiϕj dx, K
ij
h =

∫
Ω

∇ϕi · ∇ϕj dx.

For the time stepping we use the implicit Euler method. After implementing the
finite element discretization and the Euler scheme, we apply the following steps of
the projected gradient method:

1. For k = 0, choose an initial guess u0
h satisfying the box constraints ua ≤ u0

h ≤
ub.

2. Solve the discrete forward problem (7.26) corresponding to (7.2)–(7.6) in order
to compute yk

h.
3. Solve the discrete backward problem (7.27) corresponding to (7.17)–(7.21) in

order to obtain pk
h.

4. Evaluate the descent direction of the discrete gradient

dk = −∇J̄ (uk
h) = −(βχΓRpk

h + λuk
h). (7.29)
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5. Set uk+1
h = P[ua,ub](uk

h + γ kdk) and go to step 2 unless stopping criteria are
fulfilled.

Remark 7.2 For a first implementation, the step length γ = γ k can be chosen
constant for all k. However, a better performance is achieved by applying a line
search strategy as for instance the Armijo or Wolfe conditions to obtain the best
possible γ k in every iteration step k. We refer the reader to the methods discussed
for instance in [5]. However, these strategies are not subject to the present work.

7.7 Numerical Results and Conclusions

In this section, we present numerical results for solving the type of model optimiza-
tion problem discussed in this article and draw some conclusions in the end. The
numerical experiments were computed in Matlab. The meshes were precomputed
with Matlab’s pdeModeler. The finite element approximation and time stepping
as well as the projected gradient algorithm were implemented according to the
discussions in the previous two sections.

In Fig. 7.2, the nodes corresponding to the interior nodes (‘g.’), the Neumann
boundary Γ1 (‘kd’), the Dirichlet boundary Γ2 (‘bs’) and the Robin boundary ΓR

(‘r*’) are illustrated.
In the numerical experiments, we choose the following given data: the water

temperature g = 20, the parameters α = β = 102, the final time T = 1, the box
constraints ua = 20 and ub = 60, the desired final temperature yd = 30 and the
initial value y0 = 0 satisfying the boundary conditions. For the step lengths γ k

of the projected gradient algorithm, we choose the golden ratio γ k = γ = 1.618
constant for all iteration steps k. The stopping criteria include that the norm of the
errors ek+1 := ‖uk+1

h − uk
h‖/‖uk

h‖ < ε1 or |ek+1 − ek| < ε2 with ε1 = 10−1 and
ε2 = 10−2 have to be fulfilled as well as setting a maximum number of iteration
steps kmax = 20 with k < kmax.

In the first numerical experiment, we choose a fixed value for the cost coef-
ficient λ = 10−2 and compute the solution for different mesh sizes n ∈
{76, 275, 1045, 4073, 16081}. Table 7.1 presents the number of iterations needed
until the stopping criteria were satisfied, for different mesh sizes and time steps.
The number of time steps was chosen corresponding to the mesh size in order to
guarantee that the CFL (Courant-Friedrichs-Lewy) condition is fulfilled.

In the set of Figs. 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8, the approximate solutions yh

defined in Matlab as y are presented for the final time t = T = 1 computed on the
different meshes including one figure, Fig. 7.6, presenting the adjoint state p for the
mesh with 1045 nodes. We present only one figure for the adjoint state, since for
other mesh sizes the plots looked similar.

In the second set of numerical experiments, we compute solutions for different
cost coefficients λ on two different grids: one with mesh size n = 275 and 250 time
steps, and another one with mesh size n = 1045 and 1000 time steps. The numerical
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Fig. 7.2 The nodes marked corresponding to different boundaries and the interior of the domain
Ω on a mesh with 4073 nodes

Table 7.1 Number of
iterations needed to satisfy
the stopping criteria for
different mesh sizes and
numbers of time steps for a
fixed cost coefficient
λ = 10−2

Mesh size Time steps Iteration steps

76 125 7

275 250 5

1045 1000 19

4073 4000 19

16,081 16,000 4

results including the number of iteration steps needed are presented in Table 7.2. It
can be observed that the numbers of iteration steps for the first case (275/250) are
all very similar for different values of λ, even for the lower ones. In the second
case (1045/1000), the numbers of iteration steps are getting higher the lower the
values of λ. However, the results are satisfactory for these cases too. As example
the approximate solution y for the final time t = T = 1 computed for λ = 10−4

is presented in Fig. 7.9. The approximate solution for λ = 10−2 has already been
presented in Fig. 7.5.

The results of Tables 7.1 and 7.2 were included as example how one can
perform different tables for different parameter values or combinations. Students or
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Fig. 7.3 The approximate solution y for final time t = T = 1 on a mesh with 76 nodes

Fig. 7.4 The approximate solution y for final time t = T = 1 on a mesh with 275 nodes
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Fig. 7.5 The approximate solution y for final time t = T = 1 on a mesh with 1045 nodes

Fig. 7.6 The approximate adjoint state p for time t = 0 on a mesh with 1045 nodes
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Fig. 7.7 The approximate solution y for final time t = T = 1 on a mesh with 4073 nodes

Fig. 7.8 The approximate solution y for final time t = T = 1 on a mesh with 16,081 nodes
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Table 7.2 Number of iterations needed to satisfy the stopping criteria for different cost coeffi-
cients λ ∈ {10−4, 10−2, 1, 102, 104} on grids with mesh sizes n = 275 and n = 1045 with 250 and
1000 time steps, respectively

λ Iteration steps (275/250) Iteration steps (1045/1000)

10−4 5 19

10−2 5 19

1 7 19

102 4 4

104 4 4

Fig. 7.9 The approximate solution y for final time t = T = 1 on a mesh with 1045 nodes for the
value λ = 10−4

researchers could compute exactly these different kinds of numerical experiments
in order to study the practical performance of the optimization problem.

After presenting the numerical results, we have to mention again that the step
length γ = γ k of the projected gradient method has been chosen constant for
all k in all computations. However, better results should be achieved by applying
a suitable line search strategy, see Remark 7.2. With this we want to conclude
that the optimal control problem discussed in this work is one model formulation
for solving the optimization of heating a domain such as the air of a swimming
pool area surrounded by a glass dome. Modeling and solving the optimal heating
of a swimming pool area has potential for many different formulations related to
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mathematical modeling, discussing different solution methods and performing many
numerical tests including “playing around” with different values for the parameters,
constants and given functions, and finally choosing proper ones for the model
problem. All of these tasks can be performed by students depending also on their
previous knowledge, interests and ideas.
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Chapter 8
Some Basic Epidemic Models

Danijela Rajter-Ćirić

8.1 Introduction

Spreading of infectious diseases has always been a threat to human health and
people have been trying to fight against it (which is especially important nowadays
when contagious diseases are spreading faster and further than ever). So far great
achievements have been made. In order to prevent the spread of a particular disease,
one should first try to understand and explain the mechanism how it spreads in the
population. However, no experiments are possible due to ethical (and many other)
reasons. Therefore, mathematical models present a very useful tool. Although they
are only theoretical and usually simplify the real situation, they still describe the
behaviour of population members well enough so that they can be successfully used
for describing the dynamics of a disease, predicting epidemics, measuring the effects
of some prevention measures, etc.

At the beginning of the twentieth century Dr. Ross, later awarded the Nobel Prize
for Medicine for his significant contribution to research, used a differential equation
model to describe malaria transmission between humans and mosquitoes. Later,
William Kermack and Anderson McKendrick formulated a model to study the Black
Death outbreak in London and the plague outbreak in Mumbai. They published
their results in 1927 in the paper “A Contribution to the Mathematical Theory in
Epidemic”. They have used one of the simplest forms of, so-called, SIR model
which has been studied, improved and generalized afterwards by many authors.

Today there are many different mathematical epidemic models and mathematical
approach to the epidemic modelling is widespread. In this paper we introduce
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the readers to some of these models. All mathematical models can roughly be
divided into two groups: deterministic and stochastic models. In the paper, we first
describe a few deterministic models for spreading of a contagious diseases in a large
population, which are based on the, so-called, mass action law (population members
make contacts to other members independently of each other and each individual has
an equal chance of contacting any other individual). Further on, we present a few
ideas of how a stochastic approach can be used in epidemic modelling. A stochastic
approach is reasonable and it is justified by the fact that a population does not behave
in a precisely determined way as it is assumed in deterministic models.

It is important to emphasize that in this paper models are presented on a very
basic level, without complicated mathematical proves and getting deeper into the
theory. The paper should simply serve to introduce readers into a beautiful field
of applied mathematics called epidemic modelling and to present how nicely
mathematics can be applied to such a serious research area. There are no original
results in the paper. The models presented here have been considered in many
student books and papers.

8.2 Some Deterministic Models

Deterministic models assume that the population behaves exactly as assumed in
the model and there are no randomness in the behavior of the population. The
population is large and divided in groups by the epidemic state of individuals. The
number of groups depends on the disease and hence on the model, as the reader
will see. Here we present only some of many models. In all of presented models
ordinary differential equation approach has been proposed. Although in most cases,
corresponding systems of ordinary differential equations describing the model are
not solvable (if not analytically, these ordinary differential equation systems can be
solved numerically), they still play a significant role in the mathematical analysis of
the disease spread and in the prediction of epidemics. For more about deterministic
epidemic models we refer the reader, for instance, to [2, 3].

8.2.1 SIR Model

An SIR model is a very simple epidemic model that one can use to calculate the
number of individuals infected with an epidemic (a contagious) disease in a large
population over time. One of the simplest SIR models is the Kermack-McKendrick
model.

We consider the population of size N , where N is a constant, and assume
that the population consists of three types of individuals based on the state of the
individual concerning the disease. In this model we assume that there are only three
possible states: a subject is sensitive, infected or immune to a virus. Therefore, the
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population is divided into three different groups. The first group consists of those
individuals who have not developed immunity against the virus. That is the group of
susceptibles (population members that are not infected but could become infected).
The second group consists of infectives (subjects who are infected with the virus
which means that they have the disease and can transmit it to the members of the
group of susceptibles). Finally, members of the third group are individuals who have
recovered from the disease and gained lasting immunity or who have died from the
disease. In both cases, those individuals are said to be removed. (Some authors call
the third group Recovered instead of Removed since they consider the individuals
who have died from the disease being the same, from the epidemic point of view,
as those who have recovered, since both recovered and dead are, in some sense,
immune to the virus).

So, basically, there is a very simple “rule” in SIR model: After becoming
infected a susceptible subject immediately enters the infected group. Afterwards
(after recovering or dying from the disease) the subject enters the group of removed.

The numbers of group members for these three groups are denoted by the letters
S, I and R, respectively, which is the reason why this is called SIR model. All these
numbers are actually functions of time t:

S(t) − denotes the number of susceptibles at time t

I (t) − denotes the number of infectives at time t

R(t) − denotes the number of removed at time t .

In the simplest SIR model that we first consider, a short time scale has been
assumed so that births and deaths (other than deaths from this disease) can be
neglected. One can consider the case when births and deaths are taken into account
which yields to a slightly more complicated model as we will see later.

The usual assumptions for SIR model are:

1. Individuals infect each other directly rather than through disease vectors.
2. Contacts between individuals are random.
3. Immediately after a contact with the infected person, susceptible person shows

symptoms and can infect someone else.
4. An arbitrary population member makes βN contacts (within the population) in a

unit of time, where β denotes disease transmission rate.
5. The number of population members that move from the group of infectives to

the group of removed in the unit of time is αI (t), where α denotes, so-called,
recovery rate.

Now we want to answer the question: How S(t), I (t) and R(t) vary with time?
As an answer, the SIR model proposes a system of ordinary differential equations

representing the transition from one group to another. More precisely, the numbers
of susceptibles, infectives and removed change according to the system:

S′(t) = −βS(t)I (t) (8.1)
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I ′(t) = βS(t)I (t) − αI (t) (8.2)

R′(t) = αI (t). (8.3)

Assuming that every population member belongs to one of the three groups one
has that, at every time t ,

S(t) + I (t) + R(t) = N.

Therefore Eq. (8.3) can be omitted.
Note that, based on one of the model assumptions, every infected individual

makes βN different contacts i.e., contacts with βN members of population, but

the chance to make the contact with a susceptible person is
S

N
. Thus

βN
S

N
I = βSI

is the number of individuals who move from the susceptible group to the group
of infected in unit of time. Therefore, S(t) decreases, while I (t) increases for that
number. This explains the differential equations in the model above.

The dynamics of the infectious group depends on the ratio R0 = β

α
. The number

R0 = βN

α

is the, so-called, basic reproduction number and it represents the expected number
of new infections from a single infection in a population where all subjects are
susceptible. (For more about this number we refer the reader, for instance, to [4].)

The basic reproduction number is very important since it is a good epidemic
indicator. If R0 > 1, many susceptible individuals will be infected, i.e., the epidemic
will start. If R0 = 1 the disease becomes endemic. If one wants to prevent the
epidemic, it is necessary to keep R0 less than 1. For instance, the vaccination is a
possible way for keeping the basic reproduction number lower than 1. Assume that
p is the proportion of population members who have been successfully vaccinated
before the appearance of the first infected individual. For preventing the epidemic
the following condition has to be satisfied:

R0 = β

α
(1 − p)N < 1,

i.e.,

p > 1 − 1

R0
= 1 − α

βN
.
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In the model above the function F = βI models the transition rate from the
group of susceptible individuals to the group of infectious individuals. Therefore, it
is called the force of infection. For many contagious diseases it is more realistic
to consider a force of infection that does not depend on the absolute number

of infectious subjects, but on their fraction F = β
I

N
. Some authors have even

proposed nonlinear forces of infection to model more realistically the processes of
contagious diseases.

Let us just briefly mention the more general case when birth and death rates
influence the model. Suppose that λ denotes the birth rate and that μ denotes the
death rate in the population. We still assume that the size of the population is
constant. In that case, the SIR model is described by the following system:

S′(t) = λ − μS(t) − βI (t)S(t) (8.4)

I ′(t) = βI (t)S(t) − αI (t) − μI (t) (8.5)

R′(t) = αI (t) − μR(t). (8.6)

Also, one can go a step further and study the (more realistic) SIR model that
includes the vital dynamics (birth and death rates) in the population of size which is
not a constant anymore, but varies with time. Here we will not consider that case.

8.2.2 SEIR Model

Now we present a modification of the SIR model that is very realistic for many
infectious diseases. Instead of the assumption that after every contact with an
infected subject a susceptible subject gets immediately infected and can infect
others, here we assume that there is an incubation period during which the
individuals have been infected but are not yet infectious themselves. That period
is significant for many contagious diseases. Therefore, in this model another group
of population members is formed - the group of exposed members (individuals who
are in the incubation period), which means that now the population is divided in
four groups: susceptible, exposed, infected and removed. Newly infected members
do not immediately move from the susceptible group to the infected group, but first
they go into the exposed group. Same as in SIR model, after being in the group of
infected, subjects move to the group of removed.

Denote by E(t) the number of exposed individuals at time t .
Assuming that the average of the incubation period is κ−1 and that births and

deaths (other than deaths due to the disease) have no influence to the model,
the SEIR model is represented by the following system of ordinary differential
equations:

S′(t) = −βS(t)I (t) (8.7)
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E′(t) = βS(t)I (t) − κE(t) (8.8)

I ′(t) = κE(t) − αI (t). (8.9)

The same as in the SIR model that we considered above, it is enough to consider
only three out of four differential equations, since S(t) + E(t) + I (t) + R(t) = N

is a constant.
If infectivity of an exposed person can be reduced by some factor δ then one

obtains more general SEIR model represented by the system:

S′(t) = −βS(t)I (t) − δβS(t)E(t) (8.10)

E′(t) = βS(t)I (t) + δβS(t)E(t) − κE(t) (8.11)

I ′(t) = κE(t) − αI (t). (8.12)

Note that Eq. (8.10) describes the following: The number of susceptible subjects
decreases by contacts with an infected subject or with an exposed subject but not
every contact with an exposed person leads to infection transmission (the number of
contacts that lead to infection is reduced by factor δ).

The basic reproduction number is now given by:

R0 = βN

α
+ δβN

κ
.

It shows how many subjects can be infected by one exposed subject entering the
group S and it can be explained in the following way: An exposed person makes
βN

κ
different contacts in the group during the incubation period of the length

1

κ
,

but not every contact leads to infection, as we mentioned above. Therefore there are
δβN

κ
newly infected subjects. After the incubation period, the exposed person from

above becomes infected and can make
βN

α
contacts but now every contact leads to

the infection transmission.
In the end, let us briefly remark that, similarly as in SIR model, one can consider

SEIR model assuming the presence of birth and death rates. It is very common
to consider the case with birth and death rates that are equal. If μ denotes the
birth/death rate, one has the model:

S′(t) = μN − μS − β
I

N
S

E′(t) = β
I

N
S − (μ + κ)E

I ′(t) = κE − (α + μ)I

R′(t) = αI − μR.



8 Some Basic Epidemic Models 109

Here we wrote all four equations although we could have omitted the last one since
S(t) + E(t) + I (t) + R(t) = N is a constant due to the assumption that birth and
death rates are equal. However, in general N is a variable, not a constant.

8.2.3 SLIAR Model

This model includes a, so-called, latent period during which the person is infected,
but there are still no symptoms of the disease and the person cannot transmit the
virus to other members of the population. This is the case with influenza, and some
authors call this model an influenza model.

For this model first it is necessary to form a population group of individuals
that are in the latent period. When an individual gets out from the latent period,
symptoms of the disease may or may not develop. If symptoms develop, then the
individual moves into the infected group, and if that does not happen, then the person
is in the, so-called, asymptomatic period when he or she does not have the symptoms
of the disease but can transmit the infection to the others with a reduced factor ε.
So, the model requires one more group to be formed—the group that consists of
population members who are in the asymptomatic period.

Denote by L(t) the number of population members who are in the latent period
and by A(t) the number of population members who are in the asymptotic period.

We also assume that the proportion of p out of the total number of those who are
in the latent period goes into the infected group, which implies that the proportion
of 1-p goes into the group of those who are in the asymptomatic period.

The model is called SLIAR model by the first letters of the names of five groups:
Susceptible, Latent, Infected, Asymptotic and Removed.

The system of ordinary differential equation that describes the SLIAR model is:

S′(t) = −βS(t) [I (t) + εA(t)]

L′(t) = βS(t) [I (t) + εA(t)] − κL(t)

I ′(t) = pκL(t) − αI (t)

A′(t) = (1 − p)κL(t) − ηA(t).

From the first equation one sees that the number of susceptibles decreases after the
contact with an infected subject or with a subject which is in asymptotic period
(but not every contact with a subject in an asymptotic period yields to the infection,
that is why one has ε multiplying A in the equation). As in previous cases, the
equation that shows how R(t) varies has been omitted due to the fact that number
S(t) + L(t) + I (t) + A(t) + R(t) = N is a constant.
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The basic reproduction number in the SLIAR model is:

R0 = p
βN

α
+ (1 − p)

εβN

η

and it shows how many susceptible population members get infected by one subject
who is in the latent period.

8.2.4 SIS Model

This model describes the disease that is endemic. It is a model of a disease in which
the infected do not acquire immunity after recovery. This means that there are only
two groups here: the group of the vulnerable and the group of the infected ones.
After recovery the infected subjects return back to the sensitive group. Such a model
can be applied in modeling the spread of diseases caused by a bacterium, because
then immunity is not acquired against a new infection caused by the same bacterium.
A model that does not include birth and death rates will be considered first. We again
assume that the population size is constant. Then the system of differential equations
corresponding to this model is as follows

S′(t) = −βS(t)I (t) + αI (t)

I ′(t) = βS(t)I (t) − αI (t).

Since N = S(t) + I (t), for every t , the previous system reduces to the equation

I ′(t) = β [N − I (t)] I (t) − αI (t)

The equation above can be written in the form:

I ′ = βI (M − I) ,

where M = N − α

β
. The last equation can easily be solved:

I (t) = M

exp{−M(βt + c)} + 1
, for M > I

I (t) = −M

exp{−M(βt + c)} − 1
, for M < I
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However, in any case one can see that the following holds:

• If M > 0 then limt→∞ I (t) = M .
• If M ≤ 0 then limt→∞ I (t) = 0.

The basic reproduction number in this model is the same as in SIR model: R0 =
βN

α
. Therefore M = N

(
1 − 1

R0

)
and one concludes the following:

• If R0 > 1 then limt→∞ I (t) = M i.e., the disease remains in the population
• If R0 ≤ 1 then limt→∞ I (t) = 0 i.e., the disease vanishes.

Finally, let us just mention that one can consider the SIS model with birth and
death rates both being equal to μ and obtain a generalization of the previous model:

I ′(t) = β [N − I (t)] I (t) − (μ + α)I (t). (8.13)

8.3 Some Stochastic Models

The assumption that a population behaves exactly as assumed in the model is
not very realistic. There are always some randomness that affect the population
behavior. Therefore, a stochastic approach to the epidemic modelling problems
is reasonable. There are different stochastic approaches depending on many fac-
tors and hence there are many different stochastic models. One of the simplest
approaches is the one that uses discrete-time Markov chain models. Thus here we
present a model of that type first. Some other stochastic models involve stochastic
differential equations. Here we just briefly mention one of such models. Finally,
there are many stochastic processes that can be used in epidemic modelling and
here we present how a Poisson process can be used.

8.3.1 SIS Model in the Form of Discrete-Time Markov Chain

In this section we describe the SIS model with birth and death effects in a form
of discrete-time Markov chain (see [1] for details). We assume that birth and death
rates are equal and denoted by μ. The population size is constant and denoted by N .
Therefore, as we concluded in the SIS deterministic case, it is enough to consider
only one variable and this will (again) be the number of infected subjects, I (t).

So, we consider a stochastic process {I (t), t ∈ T }, where T =
{0,Δt, 2Δt, . . . }, as a discrete-time Markov chain. From the epidemic point of view
it is reasonable to assume that the number of infectives at a time moment depends
only on the number of infectives in the previous moment, so it is reasonable to
assume that I (t) satisfies the Markov property.
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As we saw in the deterministic case (see (8.13)) the following holds:

I ′(t) = β [N − I (t)] I (t) − (μ + α) I (t).

Since I (t) is number of infected subjects at time t it is obvious that the set of
possible states in this case is S = {0, 1, . . . , N}. The probability that process I is in
the state i ∈ S at time t , is denoted by p(t), i.e. p(t) = P {I (t) = i}. The, so-called,
probability vector is given by

p(t) = [p0(t), . . . , pN (t)]T ,

and p0(t) + p1(t) + · · · + pN(t) = 1.
The next step is to determine the transition probabilities from one state to another

for a short period of time Δt:

pij (t + Δt) = P {I (t + Δt) = j |I (t) = i} .

Based on the deterministic case, we assume that the Markov chain I (t) is homoge-
neous i.e., that transition probabilities do not depend on time. Thus, we can write
pij (Δt) instead of pij (t + Δt).

In order to make the model as simple as possible, we also assume that Δt is small
enough so that during that time period the number of infected subjects can change
for one at most, i.e., there are three possible state changes:

i → i + 1, i → i − 1 or i → i.

Now the transition probabilities are given by:

pij (Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β i (N − i) Δt, j = i + 1

(μ + α) i Δt, j = i − 1

1 − [βi(N − i) + (μ + α)i] Δt, j = i

0, otherwise

(8.14)

If we set bi := βi(N − i) and di := (μ + α)i we obtain:

pij (Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

biΔt, j = i + 1

diΔt, j = i − 1

1 − [bi + di] Δt, j = i

0, otherwise

(8.15)
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Note that Δt has to be small enough to provide that pij ∈ [0, 1]. Therefore, the
following must hold:

max
i∈{1,...,N}{(bi + di)Δt} ≤ 1.

Using the transition probabilities from (8.15) one can determine the probability
that there are i infected subjects at time t + Δt:

p(t+Δt) = pi−1(t)bi−1Δt+pi+1(t)di+1Δt+pi(t) (1 − [bi + di] Δt) , i = 1, . . . , N.

Finally, although we will not prove it here, let us mention that for expected
number of infected subjects the following holds:

E (I (t + Δt)) = E(I (t)) + [βN − (μ + α)] E(I (t))Δt − βE(I 2(t))Δt.

Using the fact that E(I 2(t)) ≥ E2(I (t)) and letting Δt → 0 one obtains that

dE(I (t))

dt
≤ β [N − E(I (t))] E(I (t)) − (μ + α)E(I (t)). (8.16)

8.3.2 A Note on Stochastic Differential Equation for SIS Model

Here we introduce and just briefly describe the stochastic differential equation for
SIS model. For details we refer the reader to [5].

As already mentioned, for the SIS model Eq. (8.13) holds. This equation can be
written as

dI (t) = β (N − I (t)) I (t)dt − (μ + α) I (t)dt. (8.17)

Consider the first summand in the sum above: β (N − I (t)) I (t)dt = βS(t)I (t)dt .
It represents the number of the newly infected individuals in the time interval od
the length dt . If we make a reasonable assumption that β is actually the random
variable and that instead of βdt in (8.17) one can write βdt + σdW(t), where
W(t) is standard Brownian motion (Wiener process), then we obtain a stochastic
differential equation:

dI (t) = I (t) ([β(N − I (t)) − (μ + α)] dt + σ (N − I (t)) dW(t)) . (8.18)

One can prove the following: If RS
0 = R0− σ 2N2

2(μ + α)
= βN

μ + α
− σ 2N2

2(μ + α)
< 1

and σ 2 ≤ β
N

then, for every initial data I (0) ∈ (0, N), the solution I (t) to stochastic
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differential equation (8.18) exponentially tends to zero, almost surely. In another
words, the disease vanishes with probability 1.

8.3.3 A Poisson Process Model for Tracking the Number
of HIV Infections

We present a very simple Poisson process model for tracking the number of HIV
infections, as done in [6].

One of many difficulties with HIV infection is the fact that the incubation period
is relatively long. So, there may be many individuals who are infected with the
virus but still not showing the symptoms. The following model is a very simple
approximation model that helps obtaining a rough estimate of the number of such
individuals.

In this model we assume that

• HIV infections appear in accordance with a Poisson process with unknown rate
λ,

• the time from the moment when an individual becomes infected until symptoms
of the disease appear is a random variable that has a known distribution G,

• the incubation periods of different infected individuals are independent.

Let N1(t) denotes the number of individuals who have shown symptoms of the
disease by time t and N2(t) denotes the number of individuals who are HIV positive
but still don’t show any symptoms of the disease by time t .

Since a subject who gets infected at time s will have symptoms by time t with
probability G(t −s) and will not with probability 1−G(t −s) = Ḡ(t −s), it follows
that N1(t) and N2(t) are independent Poisson random variables with means

E(N1(t)) = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y) dy,

E(N2(t)) = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy.

Since λ is unknown, we must estimate it. Suppose that we have reliable records and
that we know how many individuals are ill by time t . Denote that number by n1.
Then we can estimate that

n1 ≈ E(N1(t)) = λ

∫ t

0
Ḡ(y) dy.
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So, we can estimate λ by λ̃ given by

λ̃ = n1∫ t

0 G(y) dy
.

Using this estimation of λ, we can estimate the number of infected individuals with
no symptoms at all at time t by

Ñ2(t) = λ̃

∫ t

0
Ḡ(y) dy = n1

∫ t

0 Ḡ(y) dy∫ t

0 G(y) dy
.

If, for example, G is exponential with mean μ, then Ḡ(y) = e
− y

μ , and

Ñ2(t) = n1μ(1 − e
− t

μ )

t − μ(1 − e
− t

μ )
.

In [6] Ross gives the following concrete example based on the previous assumptions
and calculations: If we suppose that t = 16 years, μ = 10 years, and n1 = 220,000,
then the estimation of the number of infected but symptomless individuals at time
16 is

Ñ2(16) = 220 · 10(1 − e−1.6)

16 − 10(1 − e−1.6)
= 218.96.

So, if the incubation period is exponential with mean 10 years and if the total number
of individuals who have AIDS symptoms during the first 16 years of the epidemic
is 220,000, then we can expect that approximately 219,000 individuals are HIV
positive but with no symptoms at time 16.

So, the model above can be used for getting a rough estimation of number of HIV
infections. However, the assumption that the infection rate λ is a constant is not very
realistic. It would be much better to use an infection rate that changes over time.
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Chapter 9
Mathematical Model for the Game
Management Plan

Milana Pavić-Čolić

9.1 Introduction

We consider an enclosed hunting area, where the wild animals are grown, such as
red deer, wild boar, mouflon. In those areas, humans can have a great influence on
breeding. Usually, there is a management team that supervises animal raising, and
thus an enclosed hunting area can be understood as a farm.

The overall goals of the management are to protect, sustain, and manage hunted
wildlife, provide hunting opportunity, protect and enhance wildlife habitat, and
minimize adverse impacts to residents, other wildlife, and the environment [1].

In this work we are particularly interested in the management activities of
game population control. Usually this activity is focused on producing high quality
trophies: the management controls a number of individuals over some period (or
population dynamics) in order to raise the ones with trophy potential. The trophy
is usually part a of the animal that the hunter keeps as a souvenir to represent the
success of the hunt. It can be horn of a red deer or mouflon, teeth of a wild boar.

Trophy production is usually achieved by following two simple rules: (1)
governing population of any initial structure towards the prescribed optimal one
and (2) keeping high the number of trophy candidates. The population dynamics
that obeys these rules is guided by the so-called Game Management Plan. It is a
10 years time frame document that in particular contains a plan of harvest for each
hunting season, which is a main mechanism of population dynamics control.

In our study we focus on red deer population and the hunting area “Vorovo”
in Serbia, whose management kindly provided the necessary data. In this case,
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trophy candidates are male deers 8–10 years old. All the predictions that are made
in the Game Management Plan for this hunting area are based on experience and
do not rely on any mathematical model, so far. Our aim is to put the problem on
mathematical ground and to build a model that will improve the current management
strategy keeping its simplicity. This is the first important result in direction of the
game population control in enclosed hunting area such as “Vorovo”.

From the mathematical point of view, a very general framework can be derived,
that can be applied to any enclosed hunting area that breeds any type of animals.
Therefore, the answer that mathematics can provide would be useful all over the
world.

This project was originally presented under the title “Red deer import” at the
ECMI Modelling Week 2016, that took place in Sofia, Bulgaria. We studied the
mathematical model for the Game Management Plan, and this paper partially
contains the observations and results we obtained at the time. Besides that, we tried
to understand the inbreeding problem, that is known to be the main problem in
enclosed hunting areas. After some time living in those areas, the animals start to
mate within family members, which provokes malformations and diseases in the
new generations, and has irreparable consequences on trophy production. In order to
avoid inbreeding, a hunting area imports new animals. The import process requires
good strategy. First, the right time should be determined, and then the question of a
number and an optimal structure of imported population regarding both sex and age
arise. These problems are still open.

The plan of this chapter is as follows. In Sect. 9.2 we will introduce “Vorovo”
hunting area and present the current management strategy, as well as some of its
shortcomings. Section 9.3 is devoted to the new model for the Game Management
Plan which aims to improve the current model, keeping its simplicity. We illustrate
our model on the example of “Vorovo” hunting area in Sect. 9.4.

9.2 “Vorovo” Hunting Area

In this work, we are concerned with hunting areas of red deer population. In
particular, we study the hunting area “Vorovo”, that is supervised by the Fruška Gora
National Park in Serbia. This project aims at improving its strategy for production
of the red deer trophies.

9.2.1 The Current Management Strategy

Let us explain the current management strategy for this specific enclosed hunting
area. First, an optimal structure of red deer population is determined. This structure
is fixed for the hunting area over the years. It is determined on the basis of
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Table 9.1 The optimal structure of red deer population in “Vorovo” hunting area

Age of individuals

0 1 2 3 4 5 6 7 8 9 10

Number of individuals Male 15 10 8 8 8 8 7 6 5 0 0

Female 15 10 8 8 8 8 7 6 5 0 0

environmental conditions, that include food and water availability, vegetation,
climate, peace requirements, pedological composition of the soil (Table 9.1).

The first goal of the management is to reach this optimal structure for any
initial population state. Achievement of this goal is driven by a 10 years time-frame
document, the so called Game Management Plan.

The Game Management Plan contains for each hunting year (hunting year is
from March 1 year until the March next year), within the interval of 10 years, the
following data:

1. optimal structure of population,
2. number of individuals on March 31,
3. number of individuals on April 1 (this date can be understood as “dears

birthday”),
4. expected number of newborns,
5. number of individuals before hunting,
6. expected loss,
7. expected harvest,
8. number of individuals after hunting,
9. comparison of the number of individuals after hunting with the optimal structure.

We should mention that all the numbers that appear in the Game Management
Plan are actually predictions. The only real data, besides the optimal structure, is
a number of individuals on March 31 the first hunting year. In order to be sure
to follow the Game Management Plan, hunting area needs to organize additional
activities each hunting year. Two main such activities are game counting on March
(at the beginning of hunting season) and making an Annual Plan. Annual Plan is
a document whose aim is to plan the harvest so that the number of individuals at
the end of the hunting season matches with the corresponding one from the Game
Management Plan. Therefore, the Annual Plan is a sort of a comparison between
real data and the predicted one in the Game Management Plan.

All predictions presented in the Game Management Plan are based on experience
and do not rely on any mathematical model so far. In particular, harvest is planned
in such a way that it ensures two tasks at the same time: (1) reach the prescribed
optimal number of individuals at some moment, and (2) produce hunting trophies.
Candidates for hunting trophies are 8–10 years old male deers. It is remarkable
that the Game Management Plan preserves equilibrium state. More precisely, once
the optimal structure is reached, the population dynamics do not change anymore
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(for example, the population structure before hunting is the same for each of the
following years). Such equilibrium state is represented in Table 9.2.

As we have already mentioned, besides this 10 years time frame document,
hunting area organizes a lot of activities during the hunting year.

At the beginning, these activities are related to the observation of the real
situation. First, in March (when the vegetation is still low) game counting is
organized, when the real data is collected. Then the management makes a first
version of the Annual Plan in April, which mostly aims at planning the harvest so
that at the end of the hunting year the number of species coincides with the number
from the Game Management Plan. In April, calving of females starts. Until the mid
June, game warden monitors the hunting area, and in particular pays attention on
losses. In mid June, with counted losses, hunting area makes a final version of the
Annual Plan with a definite harvest prediction.

Then, the hunting is organized. First, in June and July hunting area organizes
hunting for selective culling of newborns. Then, the main event is trophy hunting in
September.

For the Modelling Week, “Vorovo” provided necessary data, more precisely the
two Game Management Plans, for the intervals 2009–2019 and 2015–2025, as well
as Annual Plans for hunting years 2010/2011, 2011/2012, 2012/2013, 2013/2014
and 2014/2015.

9.2.1.1 Some Shortcomings of the Current Management Strategy

When analyzing the data obtained from the park “Vorovo”, it can be noticed few
shortcomings of the current management strategy. First, it is supposed to become
stable in a short time, or in other words, the equilibrium state is supposed to be
reached shortly after the period starts. According to the real data we get from Annual
Plans, this seems unrealistic, since even the Annual Plan as a sort of control of the
Game Management Plan is not successful in reaching desired structure at the end of
hunting year.

Besides that, the population dynamics of newborns was not accurately modelled.
According to the current model, the number of newborns was predicted as 70% of
the number of females 2 years old and older. From the data we obtained, it was clear
that the number of newborns was actually much higher.

Our main contribution is at improving this current management strategy. In the
rest of the paper we explain our new proposed model and compare it with the current
one. We intent to make a more accurate model for prediction of number of newborns,
and to build a new model for the Game Management Plan that is less ambitious in
how fast the equilibrium should be reached (and therefore seems more realistic) and
that offers a good chance for trophy hunting.
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9.3 A New Proposed Model for the Management Strategy

The first problem that attracted our attention was how to improve the current
management strategy, or to obtain a new model for Game Management Plan, such
that it keeps the fundamental goals:

1. it predicts well the number of newborns,
2. it reaches the optimal structure within 10 years,
3. it keeps high the number of males older than 8 years, which are candidates for

hunting trophies.

In the following two sections we describe our proposed model.

9.3.1 A New Model for the Number of Newborns

According to the current strategy, the number of newborns in one hunting year is
planned as 70% of the number of females 2 years old and older on the date March
31 that hunting year. If one wants to check this model, it is needed to deal with the
real data. This information is not available for the newborns. What is known is the
number of “0” years old deers the following hunting season. In the meantime, we
had harvest and some loss. Assuming that the harvest is realized with 100%, then
one strategy for estimating the real number of newborns in one hunting year is the
following: count number of “0” years old deers the next year and add the expected
number of hunted and lost newborns the current year.

If we try to compare the current model with the real data obtained in such a
way, we obtain a lot of disagreements, that are illustrated in Table 9.3, the third and
the first row, respectively. We can see that, for example, in 2011/2012 the expected
number of newborns is 66 according to the current model. But on March 31 the
following 2012/2013 it was found 81 individuals, and 29 individuals was planned to
be hunted in 2011/2012 . Therefore, if 29 individuals was hunted, then actually the

Table 9.3 Modelling the number of newborns: estimated number of newborns according to
different models over hunting seasons

Hunting season

2010/2011 2011/2012 2012/2013 2013/2014 2014/2015

Real data with 100%
realized harvest

102 110 90 68 81

Real data with 70%
realized harvest

91 101 82 60 71

Current model 78 66 73 68 66

New model 86 76 90 82 70
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number of newborns in 2011/2012 was 110. Thus, there is a mistake of 44 newborns.
The same error appears in all other years for which we have data.

Having discovered an inaccuracy of the current model, let us try to fix it. Still,
we want to keep two main properties of the current model: (1) we want to have the
number of newborns modeled as a certain percentage of certain population on the
current year i.e. on March 31, and (2) once the equilibrium is reached, we need to
stay in that state.

The big error in expected and real (under the assumption of 100% realization of
harvest) number of newborns led us to assume that the harvest is realized with 70%
of success. These new estimated real data are shown in the second row of Table 9.3.

In order to keep the main ideas of the current model, we looked into relation of
number of newborns (real, with weighted harvest by 0.7) with respect to many cases:
number of females of 2 years old and older, the sum of females older than 2 years
and males older than 6 years and the whole population. We obtained that the relation
of the number of newborns with respect to the whole population on date March 31,
had the least standard deviation with respect to the average that we approximate
with 21/150. Moreover, as we will see, this number preserves the equilibrium state.

With this conclusion, we build our model. Let Σj denote the sum of the whole
population on March 31 of the hunting year j/j + 1, j = 0, . . . , 9. Then our new
proposed model predicts the number of newborns, males and females, in the hunting
year j/j + 1, denoted with Nj/j+1, as follows

Nj/j+1 = 2
21

150
Σj . (9.1)

The results are shown in the last row of Table 9.3.
In Fig. 9.1 we plot the real data (assuming harvest is realized with 70% of

success) and predictions according to the current model and our new proposed
model.

Note that in the equilibrium state for some hunting season j/j + 1 the whole
population sum on March 31 is Σj = 150, and therefore the number of newborns is
then

N
eq

j/j+1 = 42, (9.2)

which coincides with expected growth in equilibrium state shown in Table 9.2.

9.3.2 A New Model for the Game Management Plan

The current schema for the Game Management Plans do not follow any mathemati-
cal model, so far. It is based solely on experience. Given the real data on March 31
the first year of the Game Management Plan, the number of newborns is predicted,
as well as losses and harvest within the whole population. So we obtain the state of
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Fig. 9.1 Number of newborns, the real data versus the current and our new proposed model

population after the hunting current hunting year, which is precisely the population
state on the date March 31 the next year. Then again newborns, losses and harvest
are predicted and we obtain the population structure after the hunting the following
hunting year. This procedure is repeated for the whole period of 10 years. We
observed that (1) the Annual Plans as a sort of control of the Game Management
Plan show that the real state differs significantly from the predicted one, and (2)
the equilibrium state is reached very fast, in 2–3 years, which seems unrealistic
(according to the Annual Plans, the equilibrium state was actually never reached!).

We propose a new model for the Game Management Plan that drives population
dynamics for the next 10 years. Our model is more relaxed regarding expected
harvest, in the sense that it predicts less hunting activities (and therefore seems more
realistic than the current one). Consequently, the population structure according to
our model does not go to the equilibrium state very fast, but it achieves the original
goal of the Gama Management Plan, that is, it reaches equilibrium state within 10
years.

Our model is based on what we call survival probabilities. Let denote with
pi;j/j+1 the survival probability of a male deer population of age i before hunting
on the hunting year j/j + 1, where i ranges from 0 to 10. Moreover, let Mi;j/j+1
be the number of male deers of age i before hunting on April 1 the hunting year
j/j + 1. With the survival probability we calculate the number of deers of age i + 1
before hunting on the following hunting year j + 1/j + 2, as follows

Mi+1;j+1/j+2 = pi;j/j+1Mi;j/j+1. (9.3)

For the female deers consideration is similar. We do not make difference in survival
probabilities between males and females, but only in their numbers. We denote with
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Fi;j/j+1 the number of female deers of age i before hunting on the hunting year
j/j + 1. Their number the following year is modelled with

Fi+1;j+1/j+2 = pi;j/j+1Fi;j/j+1. (9.4)

The initial state is the number of individuals 1 year old and older on April 1 the
first hunting season 0/1, represented by the matrix

[
M1;0/1 M2;0/1 M3;0/1 M4;0/1 M5;0/1 M6;0/1 M7;0/1 M8;0/1 M9;0/1 M10;0/1

F1;0/1 F2;0/1 F3;0/1 F4;0/1 F5;0/1 F6;0/1 F7;0/1 F8;0/1 F9;0/1 F10;0/1

]
.

(9.5)

We resume the idea of our population dynamics model: take the initial state
matrix (for the season 0/1), calculate the number of newborns according to the
model we presented in Sect. 9.3.1, model the survival probabilities pi;0/1, i =
0, . . . , 10, and then get the population (of 1 year old deers and older) prediction
for April 1 the next season 1/2. We repeat the procedure: calculate the number of
newborns (for the season 1/2), from the modelling of survival probabilities pi;1/2,
i = 0, . . . , 10, obtain the population (of 1 year old deers and older) prediction for
April 1 the following season 2/3. The aim is to repeat this procedure iteratively for
10 years. Therefore, the main aspect of our model is to get the survival probabilities.

In what follows, we are going to model the population survival probabilities.
We make a difference between the survival probabilities for newborns (i = 0)
and all the other deers (i = 1, . . . , 10). Let us model first the survival probability
for the population of deers older than 1 year in Sect. 9.3.2.1. Then in Sect. 9.3.2.2
we present our model of survival probabilities for newborns. Finally, we are going
to apply our model on a concrete example in Sect. 9.4. For this, we will use the
population state from the Annual Plan 2015/2016 as an initial state

[
23 15 18 7 8 7 9 5 5 7
24 17 14 15 8 10 6 12 9 0

]
. (9.6)

This is precisely the first data in the Game Management Plan 2015–2025 that we got
from “Vorovo”, which allow us to compare our new proposed model and the current
one.

9.3.2.1 The Survival Probabilities for 1 Year Old Deers and Older

When modelling the survival probabilities for the deers 1 year old and older, we take
the simplest model. First, we assume all survival probabilities are constant over the
years,

pi;j/j+1 = pi, ∀j = 1, . . . , 9,
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Table 9.4 Determining the survival probabilities

Age of individuals

Population dynamics Sex 0 1 2 3 4 5 6 7 8 9 10

Number before hunting 1
year

Male 21 15 10 8 8 8 8 7 6 5

Female 21 15 10 8 8 8 8 7 6 5

Number before hunting the
following year

Male 15 10 8 8 8 8 7 6 5 0

Female 15 10 8 8 8 8 7 6 5 0

Table 9.5 Equilibrium survival probabilities

p
eq

0 p1 p2 p3 = p4 = p5 p6 p7 p8 p9 = p10
15
21

10
15

8
10 1 7

8
6
7

5
6 0

where i = 1, . . . , 10, and therefore our probabilities now depend only on deer age.
In order to determine these probabilities, we recall that any model needs to preserve
the equilibrium state once it is reached. Thus, we are motivated to look into the
equilibrium state from Table 9.2 and extract information of the population state
before hunting in two successive hunting years (Table 9.4).

We can see that the deer of age one (male or female) will “survive” and have
2 years the following hunting season with the probability p1 = 10

15 . Similarly, 2
years old deer will have 3 years the following hunting season with the probability
p2 = 8

10 . In the same fashion we obtain all the other probabilities, represented in
Table 9.5. We call them equilibrium survival probabilities since they are determined
while referring to the equilibrium state.

For deers 1 year old and older for the survival probabilities we take the
equilibrium ones. Only for newborns we make a different model in the following
section.

9.3.2.2 The Survival Probability for the Newborns

In this section we model the probabilities p0;j/j+1, for j = 0, . . . , 9.
For the first hunting season 0/1, we start with the given initial state (9.5). We

calculate the sum of the whole population that year, denoted with Σ0,

Σ0 =
10∑
i=1

(
Mi;0/1 + Fi;0/1

)
.

Then we predict the number of newborns according to the model (9.1),

M0;0/1 = F0;0/1 = 1

2
N0/1 = 21

150
Σ0. (9.7)
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These newborns (that count M0;0/1 or F0;0/1) will survive and will become 1 year
old deers (males or females, respectively) the following hunting season 1/2 with the
probability

p0;0/1 = 15

M0;0/1
= 15

F0;0/1
. (9.8)

Now the survival probabilities for the season 0/1 are known: for p0;0/1 we take
(9.8) and all the others pi , i = 1, . . . , 10 are equilibrium ones from Table 9.5. They
allow to predict the population state on April 1 the following season 1/2, i.e. we can
calculate Mi;1/2 and Fi;1/2, i = 1, . . . , 10 from (9.3) and (9.4), respectively.

For all the following hunting seasons j/j + 1, j = 1, . . . , 9, the consideration
is similar. Namely, from the previous step we first count the whole population on
April 1 the hunting season j/j + 1,

Σj =
10∑
i=1

(
Mi;j/j+1 + Fi;j/j+1

)
.

Then, following the model (9.1), we estimate the number of newborns that year

M0;j/j+1 = F0;j/j+1 = 1

2
Nj/j+1 = 21

150
Σj .

Finally, we model the survival probabilities of the newborns as

p0;j/j+1 = 15

M0;j/j+1
= 15

F0;j/j+1
.

This probability in conjunction with pi , i = 1, . . . , 10, from Table 9.5 gives
Mi;j+1/j+2 and Fi;j+1/j+2, according to (9.3) and (9.4).

Note that the equilibrium survival probability for the newborns is

p
eq

0 = 15

21
, (9.9)

using (9.2) and (9.7), which coincides with the equilibrium p0 from Table 9.5.
Taking the initial state (9.6), the newborns survival probabilities are plotted in

Fig. 9.2, for the period 2015–2025.
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9.4 The Game Management Plan 2015–2025 According
to the New Proposed Model

We present our new proposed model for the management strategy on an example.
For the initial state we take the real data for the hunting season 2015/2016 from
(9.6). Using survival probabilities for 1 year old deers and older from Table 9.5 and
formulas (9.3) and (9.4), we get population state for 2 years old and older deer the
following hunting season 2016/2017:

M2;2016/2017 = 10
15 ∗ 23 = 15, M3;2016/2017 = 8

10 ∗ 15 = 12, . . . , M10;2016/2017 = 0 ∗ 5 = 0,

F2;2016/2017 = 10
15 ∗ 24 = 16, F3;2016/2017 = 8

10 ∗ 17 = 14, . . . , F10;2016/2017 = 0 ∗ 9 = 0.

We calculate the sum of the whole population

Σ0 =
10∑
i=1

Mi;2015/2016 + Fi;2015/2016 = 219.

Then we predict the number of newborns according to (9.1)

N2015/2016 = 2
21

150
Σ0 = 62.

Therefore, from (9.7) we get the prediction of the number of newborns

M0;2015/2016 = F0;2015/2016 = 1

2
N2015/2016 = 31.

Finally, the survival probability for the newborns is calculated from (9.8),

p0;2015/2016 = 15

31
.
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Using (9.3) and (9.4) we obtain the deer population 1 year old for the following
season 2016/2017:

M1;2016/2017 = 31 ∗ 15

31
= 15, F1;2016/2017 = 31 ∗ 15

31
= 15.

This completes the data for the hunting season 2016/2017. Proceeding iteratively
we build the Game Management Plan.

In Table 9.6 we present our results. For simplicity, we show only data for the
number of the individuals before hunting for each year. The usual table (as the one
for equilibrium, Table 9.2) used by “Vorovo” hunting area can be easily deduced.

From Table 9.6 it can be seen that we control the population mainly by
controlling the lower diagonal part. We reach the equilibrium state by significantly
reducing the population of newborns. This strategy has a great benefit—it gives
the possibility of a good deer selection. When the optimal number of 1 year old
deer is reached the second year (in this case 2016/2017) and successively for all
the following years, it starts to propagate the equilibrium property, due to the equi-
librium survival probabilities. From the other side, the upper diagonal part does not
influence population dynamics (as the lower part does), so we leave high equilibrium
probabilities. Leaving deers growing up in the upper diagonal part has a strong
advantage—the number of candidates for the hunting trophies is high over the years.

In Fig. 9.3 we represent our model for the Game Management Plan for the period
2015–2025, by plotting the number of male deers and comparing it with their
optimal number.

Table 9.6 State of the population before hunting for the period 2015–2025. The
initial state (9.6) and equilibrium state represented in Table 9.1 are framed

Number of individuals
before hunting Sex Age of individuals Sum0 1 2 3 4 5 6 7 8 9 10

2015/16 M 31 23 15 18 7 8 7 9 5 5 7
0 = 219F 31 24 17 14 15 8 10 6 12 9 0

2016/17 M 28 15 15 12 18 7 8 6 8 4 0
1 = 199F 28 15 16 14 14 15 8 9 5 10 0

2017/18 M 27 15 10 12 12 18 7 7 5 7 0
2 = 193F 27 15 10 13 14 14 15 7 8 4 0

2018/19 M 27 15 10 8 12 12 18 6 6 4 0
3 = 191F 27 15 10 8 13 14 14 13 6 7 0

2019/20 M 26 15 10 8 8 12 12 16 5 5 0
4 = 187F 26 15 10 8 8 13 14 12 11 5 0

2020/21 M 26 15 10 8 8 8 12 11 14 4 0
5 = 183F 26 15 10 8 8 8 13 12 10 9 0

2021/22 M 25 15 10 8 8 8 8 11 9 12 0
6 = 175F 25 15 10 8 8 8 8 11 10 8 0

2022/23 M 23 15 10 8 8 8 8 7 9 8 0
7 = 162F 23 15 10 8 8 8 8 7 9 8 0

2023/24 M 22 15 10 8 8 8 8 7 6 8 0
8 = 156F 22 15 10 8 8 8 8 7 6 8 0

2024/25 M 21 15 10 8 8 8 8 7 6 5 0
9 = 150F 21 15 10 8 8 8 8 7 6 5 0
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Fig. 9.3 The number of male deers by their age according to the new proposed Game Management
Plan ( ) versus the current one ( ) and their optimal number ( ), over the hunting
seasons 2015–2025. Nb stands for newborns
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Chapter 10
Efficient Parameter-Dependent
Simulation of Infections in a Population
Model

Filippo Terragni

10.1 Introduction

Infectious diseases have been one of the major causes of mortality throughout his-
tory, which is still motivating researchers of different fields. Mathematical models
can provide important insights into the evolution of epidemiological processes, the
spread and course of infections, and the transmission dynamics in a host population
[3]. Indeed, the obtained results are often promising with relation to comparing,
planning, implementing and optimizing various programs of detection, prevention,
therapy and control.

The propagation of infections in a host population depends on many factors,
including the structure of the latter, the interactions among the organisms and the
type of internal dynamics that is taken into account. In this article, a simple SIR
model is considered, in which organisms are classified into susceptible, infectious
and recovered. A time-dependent, seasonal transmission rate drives the epidemic
and spatial heterogeneity is introduced by a diffusion process of organisms in
the three groups. In addition, proliferation and death are modeled. There is a
huge amount of works in the literature related to this framework. They can be
either analytical or numerical-experimental studies and generally deal with different
models depending on the assumptions or the aspect they are focused on (see [5, 7]
and references therein). The considered deterministic model is not intended to be
new but is regarded as a simple paradigm to which different numerical resolution
approaches can be applied. Indeed, epidemiological models typically depend on
a (quite large) set of parameters whose values influence the local spread of the
infection. Thus, a numerical method (discretizing the model) that aims at simulating
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the dynamics of the biological system for various key scenarios, especially for large
time, tends to involve heavy computational resources. In this paper, an alternative
approach is discussed, which consists in developing a reduced order model of the
problem to improve the efficiency of a parameter-dependent study.

Reduced order models have been extensively used in various scientific fields and
applications (see [2, 13, 16] and references therein), since they are able to reduce
the complexity of a given problem while preserving a satisfactory accuracy, which
makes them suitable to be applied for real-time simulations involving a huge number
of degrees of freedom. In other words, these methods take advantage of the existing
physical (or biological) laws to identify correlations among the system states and
express the latter in terms of few essential features (modes), thus reducing the
degrees of freedom of the problem and the computational resources of associated
simulations. In the second part of the present work, a model reduction technique
based on high-order singular value decomposition [6] is used to derive a low
dimensional description of the epidemiological model on the basis of previously
generated data for few values of the parameters. Then, a combination of this
approach with some interpolation method will allow to approximate solutions for
other, new values of the parameters in an efficient way, hence providing an effective
mathematical tool for a fast simulation and analysis of the infection effects in the
host population.

Thus, modeling has here a twofold goal. First, a mathematical description of
the biological setting must be found. Secondly, a reduced order model for the
identified equations is implemented to simplify the problem and its analysis. This
work illustrates, by means of a simple paradigm, how some reduction techniques
can be successfully used to perform a real-time control of a system response, which
is a common task in science and engineering.

The remaining of the paper is organized as follows. The epidemiological model
is deduced and described in Sect. 10.2, while the effects of some key parameters on
the population dynamics are discussed in Sect. 10.3 via direct numerical simulation.
Section 10.4 is devoted to the introduction of the high-order singular value decom-
position and the obtained numerical results are shown in Sect. 10.5. Concluding
remarks appear in Sect. 10.6.

10.2 The Epidemiological Model

A basic SIR model [1, 9] is constructed to describe the dynamics of a host
population that is divided into three groups, namely the susceptible organisms
(which can contract the disease), the infectious organisms (which are infected
and can transmit the disease) and the recovered organisms (which healed). The
population is sufficiently large and the disease is highly infective as to justify a
continuous approximation. Thus, the three classes are represented by nonnegative
densities S(x, t), I (x, t) and R(x, t), respectively, which depend on the spatial
location x and the time instant t . Indeed, the horizontal dimension of the population
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habitat is assumed to be much larger than the other two, as to justify a one-
dimensional model in space. Furthermore, all demographic changes balance so that
the total population density

N = S(x, t) + I (x, t) + R(x, t) (10.1)

is constant, namely N ∈ R
+.

Basic Dynamics A SIR model is a ‘two-step’ process of first contracting the
infection and then recovering from it. The first step is based on the assumption
that organisms from the susceptible group get the disease from organisms of the
infectious group at a transmission rate given by β(t)SI , where β(t) is a time-
dependent continuous function. The latter incorporates temporal external factors
affecting the infection rate, namely the seasonality of some diseases (the dynamics
of seasonally driven epidemics have been largely studied; see, e.g., [8, 20]). The
second step assumes that organisms from the infectious group move to the recovered
group at a rate proportional to a constant γ > 0. Thus, 1/γ is the average infectious
period conditional on survival. Recovered organisms get permanent immunity
against the infection, which is reasonable, e.g., for many childhood diseases whose
spread can be studied via SIR models.

Proliferation and Death Only susceptible organisms are born into the host
population, which occurs at rate μBN , where μB is a positive constant. On the other
hand, the death process in the three groups is driven by rate coefficients μS > 0,
μI > 0 and μR > 0, respectively. Thus, e.g., 1/μS is the life expectancy of
susceptible organisms. In order to maintain the total population density N constant,
births are assumed to balance deaths by supposing that μ ≡ μB = μS = μI = μR .

Mobility Organisms of the three groups move in the habitat according to the same
diffusion process with coefficient ν > 0 (this is a standard way to include spatial
effects, see [15]). For simplicity, mobility of infectious organisms is supposed not
to be affected by the disease.

Finally, demographic changes of a different type exhibit a longer characteristic
timescale than the epidemic duration, the effect of any other structure in the host
population (due to age, sex, variability of infectivity, . . . ) is neglected and no
incubation or latency period is taken into account. Summarizing, all assumptions
above provide a parameter-dependent model describing transmission, recovery,
growth, decay and diffusion of the organisms in the three groups. Formulation of
the corresponding equations is attained by the law of mass action and Fick’s second
law, which yields a reaction-diffusion system of three coupled PDEs given by

∂S

∂t
= ν

∂2S

∂x2
− β(t)SI + μN − μS , (10.2)

∂I

∂t
= ν

∂2I

∂x2 + β(t)SI − γ I − μI , (10.3)
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∂R

∂t
= ν

∂2R

∂x2 + γ I − μR , (10.4)

for 0 < x < L and t > 0. Here, it is assumed that the population habitat is closed
and bounded (L ∈ R

+) and the system is isolated (no immigration or emigration),
hence there is no flux of organisms across the boundaries of the domain, which is
expressed by homogeneous Neumann boundary conditions for the three densities.
The system (10.2)–(10.4) can be written in nondimensional form by scaling S =
NS∗, I = NI∗, R = NR∗, x = Lx∗ and t = τ t∗, being τ a characteristic timescale
of the problem. Thus, after setting

ν∗ = ν τ

L2 , β∗(t) = β(t)τ N , μ∗ = μτ , γ ∗ = γ τ , (10.5)

and dropping asterisks, the dimensionless epidemiological model reads

∂S

∂t
= ν

∂2S

∂x2 − β(t)SI + μ(1 − S) , (10.6)

∂I

∂t
= ν

∂2I

∂x2
+ β(t)SI − (γ + μ) I , (10.7)

∂R

∂t
= ν

∂2R

∂x2 + γ I − μR , (10.8)

for 0 < x < 1 and t > 0, together with the boundary conditions

∂S

∂x
(0, t) = ∂S

∂x
(1, t) = 0 ,

∂I

∂x
(0, t) = ∂I

∂x
(1, t) = 0 ,

∂R

∂x
(0, t) = ∂R

∂x
(1, t) = 0 ,

(10.9)

for t > 0. Note that Eq. (10.8) may be omitted and the recovered group density
could be calculated from the scaled counterpart of the conservation law in Eq. (10.1),
namely R(x, t) = 1 − S(x, t) − I (x, t).

10.3 Effects of Key Parameters

In order to solve the epidemiological system constructed in Sect. 10.2, spatial
derivatives are discretized by using second-order centered finite differences, while
time discretization is performed by means of a second-order scheme based on
the combination of Crank-Nicolson (for linear terms) and Adams-Bashforth (for
nonlinear terms) methods [4]. The final discretized system will be referred to as the
numerical solver. Note that, in all simulations below, values Δx = 0.001 and Δt =
0.0005 are selected for the spatial and time steps, respectively, in order to guarantee
convergence and stability of the implemented scheme. Now, numerical experiments
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Fig. 10.1 Initial spatial distribution for the susceptible (left) and infectious (right) densities
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Fig. 10.2 Time evolution of S(x, t) (blue) and I (x, t) (red) for t = 0.1 (upper plots) and t = 1
(lower plots), when considering a diffusion coefficient equal to ν = 10−4 (left), ν = 10−3 (middle)
and ν = 10−2 (right)

are conducted to examine the effects of several parameters on the population
dynamics. The nonnegative initial densities for the susceptible and infectious groups
are shown in Fig. 10.1, being I (x, 0) significantly smaller than S(x, 0). On the other
hand, a sinusoidal transmission function β(t) = 270 (1 + δ sin(2πt)) is considered,
thus modeling the impact of periodic external factors on the time course of the
infection (see, e.g., [20] and references therein). In other words, organisms are
more likely to be infected during certain periods, which is reflected by enhanced
interactions. Finally, some default values for the model parameters are set, namely
ν = 0.001, μ = 0.04, γ = 24 and δ = 0.1.

The first study illustrates how diffusion influences the evolution of the spatial
distributions of S and I on the short timescale. Figure 10.2 highlights that small
values of the diffusion coefficient ν produce nonhomogeneous densities, with sharp
spatial regions of infection outbreaks (left plot). Indeed, if susceptible and infectious
groups remain in local areas, the mechanism of spreading the disease may be
less effective. As ν increases (middle and right plots), especially at late stages,
diffusion tends to smooth out large spatial variations and densities become more
homogeneous. In other words, the organisms mixing leads to global effects on the
entire habitat.
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The strength δ of the transmission function periodicity is another key parameter
of the model that considerably affects the population dynamics. Even if its influence
is clearly visible on a short timescale, more interesting effects appear if one performs
a large-time numerical study, since then both densities S and I exhibit various
transitions over a small range for δ. Figure 10.3 shows the asymptotic dynamics of
S(x = 0.5, t) (upper plots) and I (x = 0.5, t) (lower plots) for three different values
of δ, namely δ = 0.05, 0.10 and 0.25, respectively. In the three cases, trajectories
are clearly periodic of different periods. Note that a further increase of δ would lead
to fairly complex temporal behaviors. In other words, the time course of the disease
may largely change depending on the oscillation intensity of the external factors
affecting the transmission rate. It is worth mentioning that the time span considered
for this analysis has been calibrated as to capture the system attractors for all sets of
parameter values taken into account in this work.

Similar simulations are run for different values of the parameters μ and γ .
In Fig. 10.4, their effect (and that of δ) on S(x = 0.5, t = 95.5) and I (x =
0.5, t = 95.5) is shown. Observe that the fixed values for x and t are just an
example to illustrate the outcomes after a long period of infection at a representative
location within the habitat. Selected ranges evidence certain ‘critical’ values for each
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parameter associated with a strong variability of both densities; some of them will
be used to test the methodology described in the next section.

The results detailed so far show that an exhaustive analysis of the various effects
due to the model parameters represents a nontrivial task. Moreover, the large CPU
time required to simulate a comprehensive set of scenarios can make a numerical
study somewhat hard. Indeed, integration of the proposed epidemiological model
for each set of parameter values until the attractor (namely, for 0 < t < 100)
takes about 8 CPU minutes (all simulations are run on a desktop PC, with an Intel
i5—3.1 GHz microprocessor and 4 GB RAM). Thus, an alternative technique (other
than direct numerical simulation) can be useful in order to reduce the effort of the
mentioned task.

10.4 HOSVD Combined with Interpolation

An alternative approach is described in this section, suitable for an efficient
analysis of the population dynamics involving many, different values of the key
parameters discussed above. Specifically, the high-order singular value decom-
position (HOSVD), which is one possible extension to tensors of singular value
decomposition [6, 19], is taken into account. Indeed, HOSVD is able to identify the
most coherent features in a multidimensional dataset (i.e., a tensor) by looking for
correlations among data in each direction, while eliminating redundancies. Thus,
it models the relevant information in terms of few modes. Such low dimensional
description can be applied to tensors containing values of the densities S and I

for few values of some independent variables, chosen among time and the key
parameters of the model. The final goal will be providing an accurate approximation
for S and I corresponding to new values (i.e., not used to generate the initial
datasets) of the independent variables, by using only the information stored in
the original tensors. A proper combination of HOSVD with some interpolation
technique will help to accomplish this objective. Some applications of HOSVD to
different fields can be found, e.g., in [10–12, 14, 17].

For the sake of clarity, illustration of the model reduction technique is done for
third-order tensors, being a generalization to higher dimension completely similar.
For a third-order tensor T = (Tijk) ∈ R

I×J×K , the HOSVD is a decomposition of
the form

Tijk =
r1∑

i1=1

r2∑
i2=1

r3∑
i3=1

σi1i2i3 uii1 vji2 wki3 , (10.10)

where the involved terms are defined as follows. Given the (symmetric, positive
definite) ‘correlation’ matrices with elements

B
(1)
lm =

∑
j, k

Tljk Tmjk , B
(2)
lm =

∑
i, k

Tilk Timk , B
(3)
lm =

∑
i, j

Tij l Tijm ,

(10.11)
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then r1, r2 and r3 in Eq. (10.10) are the ranks of B(1), B(2) and B(3), respectively,
while u· i1 , v· i2 and w· i3 are their respective orthonormal eigenvectors (high-order
modes) associated with the positive eigenvalues. The square roots of the latter sorted
in descending order, namely λ

(1)
i1

, λ
(2)
i2

and λ
(3)
i3

, respectively, are called high-order
singular values. Note that the high-order modes along the three tensor directions are
the proper orthogonal decomposition modes of the associated fibers (i.e., the sets of
vectors obtained by fixing two of the indexes of the tensor; see [14]). The elements
of the core tensor are defined by

σijk =
I∑

i1=1

J∑
i2=1

K∑
i3=1

Ti1i2i3 ui1i vi2j wi3k . (10.12)

Now, a low dimensional approximation of the original tensor T can be obtained by
retaining in the three directions only the first s1 ≤ r1, s2 ≤ r2 and s3 ≤ r3 modes,
which are associated with the largest singular values and thus account for the most
relevant ‘information’ in the data, namely

Tijk ≈ T̃ijk =
s1∑

i1=1

s2∑
i2=1

s3∑
i3=1

σi1i2i3 uii1 vji2 wki3 . (10.13)

The root mean square (RMS) truncation error of this approximation can be (a priori)
bounded as

‖T − T̃‖RMS ≤

√√√√√ 1

IJK

⎛
⎝ r1∑

i1=s1+1

(
λ

(1)
i1

)2 +
r2∑

i2=s2+1

(
λ

(2)
i2

)2 +
r3∑

i3=s3+1

(
λ

(3)
i3

)2

⎞
⎠ ,

(10.14)

where ‖ T ‖2
RMS = ∑

i,j,k T 2
ijk/(IJK) . The error estimate in Eq. (10.14) is used to

decide the number of modes to be retained by fixing a desired threshold. In practice,
the way s1, s2 and s3 are selected in truncated HOSVD in order to minimize the error
bound defined in Eq. (10.14) can be adapted to the application at hand (see, e.g.,
[14]). Indeed, if the elements of the tensor show redundancies along all directions,
then the high-order singular values decay fast and a good description of T can be
achieved in terms of few modes.

Note that a third-order tensor may be handled by standard singular value
decomposition by isolating one of the indexes but, in this way, only redundancies
along that direction are taken into account. On the other hand, when applied to
a multidimensional database, HOSVD considers information as a whole (namely,
globally), extracting the most linearly independent ‘features’ along all directions.
Thus, HOSVD is much more efficient in providing an accurate and compressed
approximation of tensors. This is quantified by the factor IJK/(s1s2s3 + s1I +
s2J + s3K), which yields the ratio between the dimension of the original third-
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order tensor T and the number of data stored in its approximation T̃ as given in
Eq. (10.13).

In the context of this work, a tensor will contain values of either density S or I

for few values of some independent variables, as mentioned above. Now, HOSVD
works as a ‘separation of variables’ method: it provides a description by a set of
modes for each direction separately (with a global effect). Hence, approximating
the desired density at a new value of either time or a model parameter can be done
by interpolating the high-order modes retained in the corresponding direction and
using the interpolated values in Eq. (10.13), as shown in Sect. 10.5 (see [11, 14]
for more advanced applications). In other words, integration of the epidemiological
model by direct numerical simulation can be replaced by a few one-dimensional
interpolations.

10.5 Numerical Results

The methodology outlined in Sect. 10.4 is first applied to study the influence
of the diffusion coefficient ν at short time on the densities of susceptible and
infectious groups. Two tensors are constructed, namely Sijk = S(xi , tj , νk) and
Iijk = I (xi , tj , νk), by storing the values of S and I , respectively, at all mesh points
used to discretize the problem as in Sect. 10.3 (i = 1, . . . , 1001), for all possible
combinations of few time instants in the interval 1 < t < 2 (j = 1, . . . , 6) and few
values of ν in the range 10−4 ≤ ν ≤ 10−2 (k = 1, . . . , 9). Here, an almost uniform
distribution of tj and νk is taken into account. It is worth observing that a slightly
different choice of these values would still provide good results, while optimizing
their selection (according to the variability of the densities) would certainly improve
the outcome of the technique. All data are computed by the numerical solver
introduced in Sect. 10.3, with initial conditions as in Fig. 10.1 and default values
for non-involved parameters.

Now, HOSVD is applied to both tensors, which are finally approximated as in
Eq. (10.13) by means of s1, s2 and s3 modes in the three directions (their values will
be given below). Thus, high-order modes u· i1 form a basis of a linear subspace for
the spatial distributions of S or I , while the other two sets of modes account for the
effects of t and ν. Relying on such information, the spatial structure of S or I can be
approximated at new (i.e., not used to generate the original tensors) values of time
and parameter ν, say 1 < t∗ < 2 and 10−4 ≤ ν∗ ≤ 10−2, by applying the formula

T(xi , t∗, ν∗) =
s1∑

i1=1

s2∑
i2=1

s3∑
i3=1

σi1i2i3 uii1 v∗
i2

w∗
i3

. (10.15)

Here T stands for either S or I , v∗
i2

is the interpolated value at t∗ of the i2-th mode
for time and w∗

i3
is the interpolated value at ν∗ of the i3-th mode for parameter ν. In

all simulations below, interpolation will be performed by cubic splines [18].
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Fig. 10.5 Approximation via HOSVD plus interpolation of S (upper plots) and I (lower plots) at
t∗ = 1.3, and ν∗ = 0.0002 (left), ν∗ = 0.0009 (middle) and ν∗ = 0.009 (right). Approximated
solutions with different sets of modes (circles and crosses; see text for details) are compared to
those provided by direct numerical simulation (solid lines)

An example of the obtained results is shown in Fig. 10.5, where the spatial
distribution of the susceptible and infectious densities (upper and lower plots,
respectively) is approximated at the new time instant t∗ = 1.3 and the new values of
the diffusion coefficient ν∗ = 0.0002, 0.0009 and 0.009 (from left to right plots). In
all cases, except for that corresponding to lower-right plot, only s1 = 10, s2 = 5 and
s3 = 5 modes in the three directions are retained, providing approximations (blue
circles) versus the reference solutions computed via direct numerical simulation
(solid lines) within relative RMS errors of 10−3 for S and 4 · 10−2 for I in the
worst case. Note that maximum errors are fairly small also. In addition, further
reducing the number of modes for t and ν to s2 = s3 = 2 still yields an acceptable
description of the dynamics in most test cases (red crosses). In the lower-right plot,
slightly larger sets of modes must be used to get good results (namely, s1 = 15,
s2 = 6 and s3 = 9; see blue circles). Figure 10.6 illustrates a completely similar
scenario for t∗ = 1.7 and the same values of ν∗ as in Fig. 10.5 (the numbers of
involved modes are the same and errors behave as above). It is remarkable that most
of the solutions used to construct the original tensors have a fairly different spatial
structure in comparison with the approximated distributions for S and I in Figs. 10.5
and 10.6. In the presented results, s1, s2 and s3 have been selected as to guarantee
a reasonable level of accuracy. However, as the relevance of high-order modes for
the reconstruction is associated with the magnitude of the corresponding singular
values, which can have a different behavior in each direction, the values of s1, s2
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Fig. 10.6 Approximation via HOSVD plus interpolation of S (upper plots) and I (lower plots) at
t∗ = 1.7, and ν∗ = 0.0002 (left), ν∗ = 0.0009 (middle) and ν∗ = 0.009 (right). Approximated
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and s3 could be optimized by means of the error estimate in Eq. (10.14). Finally, it
is worth mentioning that the analysis discussed so far could be carried out for other
model parameters also.

The next part of this section is intended to show the performance of HOSVD plus
interpolation for the analysis of the population dynamics in the parameter space
(δ, μ, γ ) at large time, namely when an asymptotic state has been reached. For
simplicity, so as to deal with third-order tensors, values S(x = 0.5, t = 95.5) and
I (x = 0.5, t = 95.5) will be taken into account, with the goal of studying the
effect of the epidemic at a representative point within the habitat at a late stage of
the infection (different values of x and t � 1 would give similar results). Thus,
two tensors Sijk = S(δi, μj , γk) and Iijk = I (δi , μj , γk) are constructed by storing
the values of S(x = 0.5, t = 95.5) and I (x = 0.5, t = 95.5), respectively, for
all possible combinations of few values of the involved parameters in the ranges
0.05 ≤ δ ≤ 0.25 (i = 1, . . . , 7), 0.02 ≤ μ ≤ 0.1 (j = 1, . . . , 5) and 23 ≤ γ ≤ 28
(k = 1, . . . , 7). Taking advantage of the conclusions in Sect. 10.3, δi , μj and γk are
concentrated where a strong effect on the variability of S and I is expected. Note
that other approaches would be possible, for instance considering fifth-order tensors
like Sijklm = S(xi, tj , δk, μl, γm) and looking for correlations in space, time and the
three parameters. Indeed, for higher dimensions, the efficiency of HOSVD may be
even better. All data are computed by the numerical solver introduced in Sect. 10.3,
with initial conditions as in Fig. 10.1 and ν = 0.001.
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Fig. 10.7 Logarithm of the high-order singular values associated with tensors Sijk = S(δi , μj , γk)

(blue) and Iijk = I (δi , μj , γk) (red) along the three directions (from left to right)

Table 10.1 Relative errors in the approximation of S(x = 0.5, t = 95.5) and I (x = 0.5, t =
95.5) at some representative points in the parameter space (δ, μ, γ ) by means of HOSVD plus
interpolation

δ∗ μ∗ γ ∗ Relative error for S Relative error for I

0.07 0.050 25.5 0.0007 0.0090

0.12 0.070 23.2 0.0114 0.0394

0.09 0.085 27.8 0.0006 0.0052

0.16 0.090 24.5 0.0010 0.0450

0.23 0.030 26.1 0.0623 0.0513

Tensors Sijk and Iijk are decomposed as in Eq. (10.13) by retaining s1 modes
u· i1 for the strength of the transmission function periodicity, s2 modes v· i2 for
the birth-death coefficient and s3 modes w· i3 for the recovery coefficient. The
reconstruction step is then applied at new values of the involved parameters, say
0.05 ≤ δ∗ ≤ 0.25, 0.02 ≤ μ∗ ≤ 0.1 and 23 ≤ γ ∗ ≤ 28, by means of a proper
counterpart of Eq. (10.15). Figure 10.7 depicts the high-order singular values λ

(1)
i1

,

λ
(2)
i2

and λ
(3)
i3

associated with both tensors, showing a qualitative similar behavior
between susceptible and infectious densities. On the other hand, Table 10.1 stores
the relative errors (versus the reference solutions computed via direct numerical
simulation) in approximating S(x = 0.5, t = 95.5) and I (x = 0.5, t = 95.5)

at some representative, new points in the parameter space (δ, μ, γ ). For most test
cases, they maintain around 10−3 and 4 · 10−2 for S and I , respectively, in spite of
the small number of parameter values used to generate the tensors (which convey
a limited information on the system) and, consequently, the few available high-
order modes. Regarding the number of the latter, s2 = 5 and s3 = 6 have been
fixed for S in all simulations, while s2 = 4 and s3 = 7 for I . On the contrary,
different values of s1 have been chosen depending on the case in order to guarantee
a good approximation. Indeed, the population dynamics show a high sensibility
to parameter δ, especially for δ > 0.1, as already discussed in Sect. 10.3. As a
consequence, existing transitions are not fully captured by the few values considered
in the original tensors, which also implies that some of the available modes in the
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first direction are poorly interpolated. This is reflected in a worse approximation in
test cases for δ > 0.1 (see Table 10.1). On the other hand, note that a better sampling
of the parameter space would lead to richer subspaces in the three directions and
a more accurate description of the solutions. However, in order to perform this
task, some additional knowledge about critical bifurcations of the system (requiring
essential data to be taken into account) would be necessary. In this case, a clearer
dependence of the errors on the number of retained modes would also be evident,
which could help to construct a more efficient approximation strategy. All these
issues are regarded as an extension of the discussed ideas and therefore beyond the
scope of this article.

The computational efficiency of the proposed model reduction technique is fairly
high. Indeed, 100 large-time direct numerical simulations of the model would
require more than 13 CPU hours, while HOSVD plus interpolation (once tensors
are available) would need only very few CPU seconds for the approximation of all
desired solutions.

10.6 Final Remarks

A SIR epidemiological model including diffusion of organisms, seasonal trans-
mission, birth and death for the description of the dynamics of an infected
population has been discussed. Numerical simulations of the associated reaction-
diffusion system have been performed to study various scenarios for different
ranges of parameter values. Although the implemented numerical solver may
provide interesting insights into the dynamical behavior of the population groups, a
systematic multiparameter analysis embracing a large number of test cases can be
time consuming.

Thus, the model has been exploited as a simple paradigm to show that less
standard numerical approaches to the problem are possible. Specifically, a reduction
technique relying on HOSVD combined with interpolation has been applied to
decrease the number of degrees of freedom of the discretized epidemiological
system and consequently reduce the required computational effort. The proposed
procedure led to quite good results, in terms of both accuracy and efficiency,
allowing to satisfactorily approximate the population behavior under the effect of
generic values of some key parameters. The approach turned out to be much faster
than direct numerical simulation, especially for the analysis of large-time dynamics.

This work could be obviously improved and extended. For instance, a more
careful selection of the parameter values generating the initial tensors would
enhance the ‘quality’ (i.e., the conveyed information) of the modes, decrease their
number, and reduce the involved truncation and interpolation errors. On the other
hand, an extension to wider ranges of parameters or datasets with more than three
dimensions would allow to perform a more complete parameter-dependent study of
the epidemic with high efficiency, thus hopefully supporting in some way the design
and assessment of vaccination strategies.
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Chapter 11
Optimising a Cascade of Hydro-Electric
Power Stations

Marta Pascoal

11.1 Introduction

Hydro electricity is electricity produced from hydropower and is responsible for a
good share of the world’s total generated electricity. Most of this power comes from
water stored in dams, usually coming from natural resources like rivers, rain or
snow melts, which when released flows through a turbine activating a generator that
produces electricity. The energy then produced depends on the volume of water that
is released and the difference in height between the water starting and ending points.
At times of less rain, or simply at high peak demands. there may be a shortage
of water to turbine in the reservoirs, while electric power is still needed. To cope
with such situations some power plants are capable of pumping water to higher
reservoirs, which can be done when there is not enough water to be released when
needed [2, 4–6].

A cascade system of hydro-electric power stations is a set of stations connected as
in a network where water flows between some of them. Two examples are shown in
Fig. 11.1. The triangles and circles in the plots represent the hydro station reservoirs
and turbines, respectively. The straight lines between the power stations show the
connection between them, whereas the blue arrows attached to each circle define in
which direction(s) each turbine is able to pump water.

The purpose of this work is to model the operation of a branched cascade system
like that depicted in Fig. 11.1b along 1 day, aiming at planning when each power
station should release water downstream or pump it upstream. In this case, the
turbines installed on hydro stations 3 and 4 have the ability of pumping water in
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1
↑↓

2

(a)

4
↑↓

1
↓

3
↑↓

2

(b)

Fig. 11.1 Cascades with hydro-electric power stations. (a) Two hydro-electric power plants. (b)
Four hydro-electric power plants

both directions, that is, both from hydro stations 3 or 4 downstream to hydro station
2, as well as from hydro station 2 upstream to hydro stations 3 or 4. Such daily plan
is decided based on a forecast for the energy market prices and with the goal of
maximising the daily profit. The problem is modelled as a nonlinear optimisation
problem, which can be solved using a mathematical programming environment like
AMPL [3] or Matlab.

11.2 Problem Formulation

The problem of optimising the branched cascade of hydro electric power plants
in Fig. 11.1b aims at planning the daily water flow in the cascade, with the goal of
maximising the profit related with the electric power generation. This value depends
on several features of the system, like the power that is consumed when the water is
pumped upstream, the power that is generated by the hydro stations when water is
released downstream, and, last but not least, on the energy market price oscillations.
The main characteristics of that system are described in the following. To simplify
we begin by considering the system with only two hydro stations, depicted in
Fig. 11.1a.

11.2.1 Two Power Plants Cascade Model

We assume the water flow plan for the power plants is defined hourly for 1 day
and first consider the simple cascade in Fig. 11.1a. Two sets of indices are used



11 Optimising a Cascade of Hydro-Electric Power Stations 149

Fig. 11.2 Cascade with two
hydro-electric power plants

1
↑↓

2

� q1t

I1t

Z1t

h1t
I2t

Z2t

sea level

Fig. 11.3 Water reservoir

Zit

Zi,t−1

in the following, I = {1, 2}, which represents the set of power plants, and T =
{1, 2, . . . , 24}, associated with the hours of the day.

Water Level, Water Head and Water Volume
In order to characterise the system it is important to define the water level in each
reservoir i with respect to the sea level, ξ , at instant t , denoted by Zit , for i ∈
I , t ∈ T , and depicted in Fig. 11.2. The difference between the water levels of
two reservoirs is related with the power that is produced by releasing water from
one reservoir to the next. These amounts are called the water head of reservoir i at
moment t , and are denoted by hit and defined as

h1t = Z1t − Z2t , t ∈ T

h2t = Z2t − ξ, t ∈ T
(11.1)

Additionally, the water levels vary according to the water volume in the reservoir,
denoted by Vit , for any i ∈ I and t ∈ T . Assuming that these quantities are
known and that the reservoir has approximately the shape of a cone as in Fig. 11.3,
Zit − Zi,t−1 can be estimated as the volume of a solid of revolution depending on a
constant r related with the width of the reservoir,

Vit − Vi,t−1 =
∫ Zit

Zi,t−1

π r2y2 dy = π r2

3

(
Z3

it − Z3
i,t−1

)
,
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and, therefore,

Zit = 3

√
Z3

i,t−1 + 3

πr2 (Vit − Vi,t−1).

In practice, and to simplify the calculations, the water levels are usually updated as

Zit = Z0
i + αi(Vit − V 0

i )βi , i ∈ I, t ∈ T (11.2)

with αi, βi given parameters, dependent on the shape and the characteristics of the
reservoir, and Z0

i the nominal water level in the reservoir, i ∈ I . Finally, the values
V 0

i are given constants representing the nominal water volumes that correspond to
Z0

i , for any i ∈ I [7].
Limits are imposed to the minimum and the maximum amount of water that can

be stored in each reservoir, either by using constraints over the volume of water, or
over the level of water, in each of them. The constraints

Zmin
i ≤ Zit ≤ Zmax

i , i ∈ I, t ∈ T , (11.3)

model the latter situation, for Zmin
i , Zmax

i given constants, i ∈ I .

The Water Flow Rate
The volume of water in a reservoir i ∈ I is usually affected by inflows from natural
resources, like rain, which are assumed to be estimated as Iit , water from incoming
discharges on upstream reservoirs, qjt , as well as water releases from the reservoir i

itself to other downstream reservoirs, qit , i, j ∈ I , t ∈ T , as illustrated in Fig. 11.2.
Thus,

V1t = V1,t−1 + I1t − q1t , t ∈ T

V2t = V2,t−1 + I2t + q1t − q2t , t ∈ T
(11.4)

are the flow conservation constraints needed to model the amount of water stored at
any moment at reservoirs 1 and 2, respectively.

It is assumed that the flow rate qit is positive when the water is being pumped
downstream, and negative if the water is being pumped upstream, i ∈ I , t ∈ T .
Constraints that limit the flow rate at each reservoir are also necessary. In case of
reservoirs that only pump water downstream (turbine) the bounds are

0 ≤ qit ≤ q0
i

√
hit

h0
i

, i ∈ I, t ∈ T (11.5)

and for the remaining reservoirs

ζi

(
hit − h0

i

)
− q0

i ≤ qit ≤ q0
i

√
hit

h0
i

, i ∈ I, t ∈ T (11.6)
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Here, q0
i represents the nominal amount of turbined water in the reservoir i in the

first case or the amount of nominal pumped water in the reservoir i in the second,
ζi is the pumping coefficient of the reservoir i, and h0

i is the nominal head of the
reservoir i, i ∈ I [7].

Power and Revenue
The goal of the problem is to find a distribution of the times for each hydro plant
to pump water downstream (called turbining) or to pump water upstream (called
pumping up) along the day, in order to maximise the profit resulting from the
produced power. The hourly prices of energy are denoted by Pt and are assumed
to be known, for t ∈ T . These values need to be combined with the electrical power
that is produced and consumed by the power plants, which differs when water is only
pumped downstream or when it can both be pumped downstream, thus producing
power, and upstream, consuming it.

The power produced by the turbine of a hydroelectric station depends on the
water flow, the height of the plant, the gravity acceleration, 9.8, and the equipment
characteristics. A simple formula to model this quantity is

9.8qitμihit ,

where μi is a parameter specific to turbine i ∈ I that represents its efficiency in
electricity production mode. In a more accurate model this value is also affected by
an internal consumption factor φi , which limits the net plant power output, as well
as makes the power output grow slower as the water flow grows. The new model
defines the power produced when turbining as

9.8qit (hit − Δhit )μi(1 − φi),

where

Δhit = Δh0
i

(
qit

q0
i

)2

represents friction losses when turbining or pumping, and Δh0
i and q0

i are nominal
values, i ∈ I .

At a given moment, each power plant either turbines water producing revenue,
pumps it upstream with a certain cost in the short term, or the system is idle and
there is zero flow. The formulae for the value of the power output and the price for
pumping are combined as follows:

rit =
{

9.8qit (hit − ΔhT
it )μ

T
i (1 − φi) if qit ≥ 0

9.8qit (hit + ΔhP
it )

1
μP

i (1−φi )
if qit < 0 , i ∈ I, t ∈ T (11.7)
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where

Δhit = Δh0
i

(
qit

q0
i

)2

represents friction losses when turbining (T ) or pumping (P ); both values expressed
as a head loss. The nominal values Δh0

i and q0
i are constants specific to each

turbine; the parameters μT
i and 1/μP

i represent efficiencies of turbines in electricity
production mode and pumping mode, respectively. The objective function is then
given by

∑
t∈T

Pt

∑
i∈I

rit , (11.8)

and the full formulation of the optimisation problem associated with the cascade
depicted in Fig. 11.1a is

maximise
∑
t∈T

Pt

∑
i∈I

rit

subject to h1t = Z1t − Z2t , t ∈ T

h2t = Z2t − ξ, t ∈ T

Zit = Z0
i + αi(Vit − V 0

i )βi , i ∈ I, t ∈ T

V1t = V1,t−1 + I1t − q1t , t ∈ T

V2t = V2,t−1 + I2t + q1t − q2t , t ∈ T

Zmin
i ≤ Zit ≤ Zmax

i , i ∈ I, t ∈ T

0 ≤ q2t ≤ q0
2

√
h2t

h0
2
, t ∈ T

ζ1
(
h1t − h0

1

)− q0
1 ≤ q1t ≤ q0

1

√
h1t

h0
1
, t ∈ T

(11.9)

11.2.2 Four Power Plants Cascade Model

The case of the four power plants cascade depicted in Fig. 11.1b can be seen as an
extension of the previous one. In the following I = {1, 2, 3, 4} stands for the set of
four hydro stations.

According to the presented scheme, in this case two turbines are able to work
both in upstream and in downstream pumping modes, namely those located at the
hydro electric plants 3 and 4. Thus, the previous flow conservation constraints are
replaced by the conditions

V2t = V2,t−1 + I2t + q1t + q3t + q4t − q2t , t ∈ T

Vit = Vi,t−1 + Iit − qit , i ∈ I − {2}, t ∈ T
(11.10)
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The formulation of the new optimisation model is as follows

maximise
∑
t∈T

Pt

∑
i∈I

rit

subject to hit = Zit − Z2t , i ∈ I − {2}, t ∈ T

h2t = Z2t − ξ, t ∈ T

Zit = Z0
i + αi(Vit − V 0

i )βi i ∈ I, t ∈ T

Vit = Vi,t−1 + Iit − qit , t ∈ T

V2t = V2,t−1 + I2t + q1t + q3t + q4t − q2t , t ∈ T

Zmin
i ≤ Zit ≤ Zmax

i i ∈ I, t ∈ T

0 ≤ qit ≤ q0
i

√
hit

h0
i

i = 1, 2, t ∈ T

ζi

(
hit − h0

i

)− q0
i ≤ qit ≤ q0

i

√
hit

h0
i

i = 3, 4, t ∈ T

(11.11)

It is noted that the variables qit are decision variables whereas Vit , Zit and hit

depend somehow on the flow rates qit , i ∈ I , t ∈ T . Like the formulation presented
in the previous subsection, the problem that we want to solve (11.11), is a nonlinear
optimisation problem. In fact, both the objective function in (11.8) and the sets of
constraints (11.2), (11.5) and (11.6) are nonlinear.

11.3 Numerical Results

In [1] results of the implementation of the non-linear program (11.11) using the
modelling language AMPL [3] are reported. Two cases were considered:

1. one where all the reservoirs started virtually empty, and
2. the other where all but the reservoir number 2 were empty and this one was

almost full.

The input data of the model was provided by the company REN - Redes Energéticas,
S.A.

The solution obtained for the first case had a small profit. Additionally, the
increase/decrease in the flow rates followed the fluctuation in the energy prices, and
pumping upstream appears in the optimal solution at times when the price is low,
alternated by occasional pumping downstream when the price decreases. Usually
the highest of the hydro plants is chosen as the sink of water pumped upstream.

The profit of the system was bigger in the second case and the optimal solution
consisted mainly in pumping water downstream at maximum flow rate, as expected
if no shortage of water occurs.
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11.4 Concluding Remarks

The daily planning of a branched cascade of hydro power plants arranged as in
Fig. 11.1b was modelled as a non-linear program. As concluding remarks it should
be noted that it would be interesting in practice to extend the planning horizon to
more than 1 day, and possibly include weekly patterns or seasonal characteristics.
However, this will increase significantly the size of the problem. Also, this problem
is associated with several natural phenomenon that are typically uncertain and,
therefore, it would be most useful, and challenging, to handle it from a stochastic
point of view.
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Chapter 12
Networks of Antennas: Power
Optimization

Stéphane Labbé

12.1 Introduction of the Problem

In this text, we illustrate the process leading from a physical problem to an effective
simulation. This process will display to three types of models. The first one, the most
simple, will provide the opportunity to familiarise with the model and the existence
of solutions to the problem, a second, more complex, will illustrate the necessity of
numeric computations and at last we will give a complete formulation. The example
we chose is the optimisation of a network of antennas. For the sake of simplification,
the antennas taken into consideration will be assimilated to discrete dipolar systems.
The goal of this study is to give an algorithm for antennas placement and power
regulation. In a first part, we will focus on the modelling of the problem. We will
start by setting the problem and choose the notations, and will, then, focus on the
modelling of an antenna, explaining the link between the electromagnetic equations
and a dipolar antenna. In the second, third and fourth parts, we will treat the three
optimisation problems.

12.2 A Network of Antennas: Modelling

The first work to perform in order to model a situation, is to set the problem in
mathematical terms. The built model will enable the study and optimisation of the
situation parameters. This first milestone of the modelling and simulation process
is very important and must be carefully treated. The key of the modelling process
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is to answer the question: “what do you want to do?”. This question is, not only
about what we are modelling but also about what we want to do with this model.
Is this work will be exploited in order to forecast the behaviour of a system, to
understand and enhance a modelling or to compute specific parameters? In our case,
the objective is clear: how to optimise the topology of an antenna network in order
to provide a given signal strength on a given territory. The accuracy of the physical
hypothesis is not required, then we can simplify the model with the assumption
that antennas are dipoles and the signal is not harmonic in time. These antennas,
in finite number, are set on a collection of points in space. The set of antennas will
induce a resultant power in the whole space, the question we want to tackle here is
how to optimise the number of antennas, their position and power to ensure that,
in a given part of the space, the resultant power would stay between a minimum
and a maximum. The questioning is quite common even if simplified here: how to
optimise a network to certify that the power of the signal is sufficient to ensure its
good functioning and sufficiently small to guarantee the safety of the system for
users?

12.2.1 The Global Problem: Setting of a Mathematical Model

We define Σ as set of elements of R3, the locations of the dipoles. This set indexes
the dipoles; the set of dipoles is M = (μx)x∈Σ , subset of S2 = {u ∈ R

3||u| = 1},
and the set of powers P = (px)x∈Σ , subset of R. Moreover, we set Ω a subset of R3,
the location where measures have to be performed and (m,m) ∈ R

2, respectively
the minimum and maximum required power. Given f , from R

3 × S2 ×R
3 into R

3,
the function evaluating the power emitted by an antenna of power 1 in a given place
of the space. Hence, for the whole space, except a small ball around the antenna
position, we set:

∀x ∈ R
3\

⋃
y∈Σ

B(y, ε), for every ε ∈ R
+∗ ,

Fε(Σ,M,P)(x) =
∣∣∣∣∣∣
∑
y∈Σ

py f (y,μy, x)

∣∣∣∣∣∣ ,

where Fε(Σ,M,P)(x) is the power developed by the network on a given point
x. The problem now is to optimise the power P , the directions of dipoles M and
the locations Σ , of dipolar antennas, in order to ensure on optimal power in Ωε =
Ω\⋃y∈Σ B(y, ε), it is to say a power such that, locally, m ≤ Fε(Σ,M,P)(x) ≤
m.
To tackle this problem, we define the set of admissible solutions:

Aε =
{
(Σ,M,P) ⊂ R

3 × S2 × R|∀x ∈ Ωε, m ≤ Fε(Σ,M,P)(x) ≤ m
}

.



12 Networks of Antennas: Power Optimization 157

Here, the question is: how to find the best triplet (Σ,M,P) and, what does means
best?

First, we would be tempted to redefine, more exactly to restraint, the problem
by freezing one or more parameters. For X subset of (Σ,M,P), we set Aε(X) the
function Aε where the values X have been fixed. Hence, the problem to solve is:
find (Σ,M,P) in Aε such that

∑
x∈P

px is minimal. (12.1)

This condition is motivated, in terms of modelling, by the goal to minimise the
required energy needed to obtain an admissible network.

As we see, the problem is complex and several bottlenecks will be encountered

• Does solutions exist?
• If a solution exists, is this solution unique?
• Can we compute explicitly this solution?

12.2.2 Power of an Antenna

In this section, we will focus on the power of a single antenna. The model we chose
for the antenna is the dipolar one. In this approximation, we focus on a stationary
problem but we could imagine a dynamical version based upon the complete
Maxwell equations. For our purpose this level of precision in the model will be
useless. For a complete and clear description of the physic of electromagnetism, see
the book of J.D. Jackson [3]. The complete Maxwell equations are

⎧⎪⎪⎨
⎪⎪⎩

∂D

∂T
− curl H = 0

∂B

∂T
+ curl E = 0

div D = ε0ρ div B = 0
D = ε0E B = μ0(H + M)

(12.2)

where D and E characterises the electric field, B and H the magnetic field, μ0 and
ε0 physical constants, ρ the distribution of electric charges and M the distribution
of magnetic moments.

In this study, as evoked above, we focus on the stationary part of the system and
more exactly the magnetic part. Then, we will work on equations (12.2) (first line,
first column and third line, second column):

ε0
∂E

∂t
− curl H = 0, B = μ0(H + M).
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Now, let perform a formal dimension study of the equation. In order to do so, we
set, for (e, h, μ, t, x), positive real, dimension factors:

E = ee,H = hh,M = μm, T = t t, X = xx.

Then, the equation in their dimensionless version becomes

ε0e

t

∂e

∂t
− h

x
curlx h = 0, bb = μ0(hh + μm),

moreover we have

b

t

∂b

∂t
+ e

x
curlx e = 0.

The process we engage in order to obtain dimensionless equation implies, from the
previous equations

μ = h,μ0h = b,
ε0e

t
= h

x
,
b

t
= e

x
.

This leads to

h = et

μ0x
= ε0xe

t

then

x2

t
2 ε0μ0

∂e

∂t
− curlx h = 0, b = h + m.

We notice (see for example [3]) that ε0μ0 = 1

c2
, where c is the speed of light, and

we have

(
x

ct

)2 ∂e

∂t
− curlx h = 0, b = h + m, divx(h + m) = 0. (12.3)

Under the hypothesis that η = x
ct

is small compared to 1, we obtain formally the
following approximated system

rotxh = 0, divxh = −divxm. (12.4)

To understand this equation and determine its solution, we use several theoretical
elements developed, for example, in [2, 4]. As we will not focus on this problem in
this article, we next summarize the ideas, with no theoretical details, used in order
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to solve this problem. First, from the equation rotxh = 0, we deduce that, up to a
constant, there exists ϕ, a function form R

3 into R, such that ∇xϕ = h. This step
leads to a Laplace equation:

�xϕ = −divxm,

whose solution exists and is unique when m is a sum of Diracs like in our case; but,
better than the uniqueness of the solution, we have a representation formula for this
solution, using the Green kernel on R

3:

∀x ∈ R
3\{0}, G(x) = 1

4π |x| ,

solution of the equation �xG = δ0 [4]. Thanks to this formula, we can give the
expression of the solution of equation (12.4)

h = −∇xdivx (G ∗ m) ,

where ∗ designates the two entries operator of convolution (see for example [4]).
In our case, we can explicit this solution, in particular, using the properties of the
convolution, we focus on ∇xdivxG(x − y)

∇xdivxG(x − y) =
⎛
⎜⎝

∂2
x1

G(x − y) ∂x1∂x2G(x − y) ∂x1∂x3G(x − y)

∂x1∂x2G(x − y) ∂2
x2

G(x − y) ∂x1∂x2G(x − y)

∂x1∂x3G(x − y) ∂x2∂x3G(x − y) ∂2
x3

G(x − y)

⎞
⎟⎠ ,

for (i, j) in {1, 2, 3}2, if i �= j

∂xi ∂xj G(x − y) = −1

4π

(
3
(xi − yi)(xj − yj )

|x − y|5
)

,

if i = j

∂2
xi

G(x − y) = −1

4π

(
3
(xi − yi)

2

|x − y|5 − 1

|x − y|3
)

,

then

∇xdivxG(x − y) = 1

|x − y|3
(

−Id + 3
(x − y)t (x − y)

|x − y|2
)

,
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Hence, using the fact that δ0 is a neutral element for the convolution, we obtain, for
a magnetic moment mδ0

∀x ∈ R
3\B(0, ε), h(m)(x) = 1

4π |x|3
(

m − 3
xtx

|x|2 m

)
.

In our case, we are interested on vertical antennas, then m = (0, 0, 1)t and on
the measure at ground level, it is to say for x = (x1, x2, 0). Finally, with these
hypothesis we obtain

∀x ∈ R
3\B(0, ε), h(m)(x) = 1

4π |x|3

⎛
⎝0

0
1

⎞
⎠ .

In what follows, we can only consider the third component of the magnetic field,
hd,3, which corresponds to the local power. This result can be directly generalised
to the networks of antennas defined at the beginning of the modelling description
and give f ∀x ∈ R

3\
⋃
y∈Σ

B(y, ε), for every ε ∈ R
+∗

Fε(Σ,M,P)(x) =
∣∣∣∣∣∣
∑
y∈Σ

py

my

4π |x − y|3

∣∣∣∣∣∣ .

In particular, using the previous results we set

∀m ∈ N, α ∈ R,Wm
α =

{
v ∈ D ′(R3),∀λ ∈ N

3, 0 ≤ λ ≤ m, (1 + r2)
α−m+|λ|

2 Dλv ∈ L2(R3)
}

,

whereD ′(R3) is the space of distributions (see [1]), Dλ denotes the partial derivative
application. The topological dual space of Wm

α is W−m−α .

Theorem 12.1 There exists ϕ in W 1
0 , unique up to a constant, such that ∇xφ is

solution of the equation rotxh = 0.

Then, we can use this theorem to analyse the equation rotxh = 0: there exists a
unique ϕ in W 1

0 , up to a constant, such that ∇xϕ = h, which implies

divx∇xϕ = �xϕ = −divxm.

If m was in L2(R3;R3), we use the following theorems

Theorem 12.2 The operator �x is an isomorphism from W 1
1 into W−1

1 ⊥ R where
W−1

1 ⊥ R = {f ∈ W−1
1 , (f, 1) = 0}.
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Lemma 12.1 Given f in L2(R3), compactly supported, then div f is an element of
W−1

1 ⊥ R.

x2

t
2

= 1

ε0μ0
= c2, where c is the speed of light.

12.3 Two Fixed Antennas and Yet, Problems. . .

Let us begin with the case of two antennas. The power transmitted by this system,
considering two antennas at distance λ with M = {e3, e3}1 and P = {p,p}, is the
following, for ε, p and h in R

+∗ with h > ε

Fε({(0, 0, h), (λ, 0, h)},M,P )(x) = p
1

4π |x − y1|3 + p
1

4π |x − y2|3 .

Here, to simplify our problem, we focus on what happens at ground level: given
R in R

+∗ , R > λ, Ω = {x ∈ R|x · e3 = 0, |x − λ
2 | ≤ R}, then, by construction

in this particular case, Ωε = Ω . Now, we re-write the power developed, setting
x = u · e1 + v · e2:

Fε({(0, 0, 2ε), (λ, 0, 2ε)},M,P )(x) = G(u, v)

= p
4π

(
1√

u2+v2+h2
3 + 1√

(u−λ)2+v2+h2
3

)
,

hence, we compute the gradient2 of G(u, v): ∀(u, v) ∈ R
2,

∇G(u, v) = 3p
4π

(
u√

u2+v2+h2
5 + u−λ√

(u−λ)2+v2+h2
5

)
· d1+

3p
4π

(
v√

u2+v2+h2
5 + v√

(u−λ)2+v2+h2
5

)
· d2.

Then, the critical points of G on R
2 cancel this gradient and are:

(0, 0), (λ, 0), ( λ
2 , 0), the first and last are global maxima on R

2 and the second
is a local minimum. This property is obtained thanks to the fact that G is an element
of C∞(R2;R). Now, we take into account the place of interest of the solution in Ω ,
then, let find the global minimum of G on Ω . We can easily prove that, if another

1We set (e1, e2, e3) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
2(d1, d2) = {(1, 0), (0, 1)}.
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minimum than the one exhibited in ( λ
2 , 0) exists, it must take place on the boundary

of Ω . Then, let explore this boundary:

∀(u, v, 0) ∈ ∂Ω, ∃α ∈ [0, π] | u = R cos(α) + λ

2
, v = R sin(α), then

G(u, v) = G(α) = p

4π

⎛
⎜⎝ 1√

(R cos(α) + λ
2 )2 + R2 sin(α)2 + h2

3 +

1√
(R cos(α) − λ

2 )2 + R2 sin(α)2 + h2
3

⎞
⎟⎠ ,

by a direct computation of the critical points of G(α), we obtain that the global
minimum is attained for α = π

2 and 3π
2 . Now, the question is: can we ensure

the admissibility of the solution? Here, admissibility means that on the domain of
interest, the power developed by the antennas network is, on each point, comprised
between m and m:

m ≤ G(
π

2
) ≤ Fε({(0, 0, 2ε), (λ, 0, 2ε)},M,P )(0, 0, 0) ≤ m.

12.4 More Antennas and No Analytic Solving

Now, let add more antennas in the network. Typically, we have to choose parameters
to move in order to ensure the suitability of the configuration. We could have no
constrains on the number of antennas, their positions, orientations and power, but it
will be too complex. In order to manage this problem, we will treat two versions, in
these versions, we keep the same orientation for all the antennas, it is to say (0, 0, 1).
This means in our case:

• Problem 1: Fixed number of antennas, fixed powers, the positions vary among a
finite predetermined set of positions.

• Problem 2: Fixed ground positions of the antennas, but the power and the height
of the antennas vary.

• Problem 3: Fixed power and heights of the antennas, the number of antennas is
fixed and the positions vary freely.

Here, it will not be possible to treat analytically these cases in general case,
we must use a powerful tool: the numerical optimisation (see for example [1]).
In these three cases, the existence of at least a solution is almost every time
guaranteed (classical proof), but not the uniqueness of this solution. In the first case,
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a systematic exploration of the set of solution may be long but possible. Here is a
glimpse for each of these three problems.

12.4.1 Problem 1

Imagine that n is the number of antennas and p the number of possible position,

then the number of possibilities is given by N(n, p) = An
p = p!

(p − n)! . If

p increases but n does not change, we see that a not so bad approximation of
N(n, p) would be Ñ(n, p) = pn. Then, when p becomes huge, if we want
to compute Fε(Σ,M,P)(x), we must perform p computations of the function
composed mainly by a sum of n real numbers. In this context, if n+ is the elementary
computation time, the total computation time becomes: npn+1n+. For example, if
p = 100 and n = 10, on a computer whose performance is 3 GHz (109 Hz) and if
we accept approximatively 100 cycles for n+, we have a total computation time of:

T = 10.10011.10−9.100 s = 1016 s,

it means almost 317 millions of years! Even on the most powerful computer, 1017

flops, the computation time would be almost 11 days. This is not acceptable and in
order to minimise the computation time, we could develop new efficient algorithms.

It is necessary to be careful as, for this problem, even if you find an algorithm
sufficiently fast to performs computations, you do not know if the problem admits
a solution; in fact, the constraints may not be fulfilled, in particular the maximum
constraint if the power is too high but also the minimum constraint if the power is
too low and the assigned position not sufficiently close.

12.4.2 Problem 2

Strangely, this problem is in fact simpler than the previous one. The positions are
fixed but power and height of the antennas vary. The existence of a solution, like
in the previous problem, is not guaranteed if the network of position is ill-prepared.
Here, we can, starting from a well chosen configuration, apply a gradient method
adapted to the constraint. Two problems appear: gradient method adapted to the
constraint and good starting configuration. Here, the first step is to find a starting
position. But, even if we find this kind of position, we are not sure to be able to
attain the optimal solution. The projected gradient method will guarantee that the
power decreases, respecting the constraints, but this decreases ensures that we arrive
in a local minimum which is not necessarily the global minimum. The question is
then: if we arrive in a local minimum, do we stop or do we try to find a better one
in order to attain the global one. One algorithm is the so called simulated annealing,
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this method is inspired from the technics of heating and cooling when injecting heat
in a system.

The main principle of this algorithm is then the following: a gradient descent
algorithm (projected in our case), perturbed regularly in order to push out of possible
non optimal minima bowl.

12.4.3 Problem 3

This case is much more difficult than the previous ones, but quite similar to
Problem 2. We could see it as a simple adjunction of a third dimension (vertical
position of the antenna and height). Here, we can imagine to apply the previously
described algorithm.

12.5 A Complex Situation

In fact, modelling of the antennas covering is much more complex and would
require the resolution of Maxwell equations in “town” represented by volume
with given electric permittivity and magnetic permeability. The models used
effectively are combining, in order to accelerate the computation, a ray tracing part,
using the classical geometrical light propagation and, when necessary, a complete
electromagnetic resolution in order to catch the diffraction phenomena.

12.6 Conclusion

This text is not extensive but gives the tracks in order to treat a simplified version
of an important optimisation problem. Nevertheless, in scientific literature, there
exists several occurrences treating the wave propagation in complex areas. In
particular, the perfect simulation of problem is almost impossible. The propagation
of electromagnetic wave using the Maxwell model is highly dependant of the
exact geometry and composition obstacles, mobile or fixed, the humidity ratio and
many other parameters not manageable exhaustively. In this context, the modelling
process describe gives an example of simplification in order to build a manageable
problem in finite time. This process is essential and must be carefully documented
in order to identify the simplification and prevent errors of interpretations of the
results obtained by simulation.

Acknowledgments I thank Christophe Picard for his carefully reading this article and his
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