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Abstract. We present a massively parallel solver using the direction
splitting technique and stabilized time-integration schemes for the solu-
tion of the three-dimensional non-stationary Navier-Stokes-Boussinesq
equations. The model can be used for modeling atmospheric phenom-
ena. The time integration scheme utilized enables for efficient direction
splitting algorithm with finite difference solver. We show how to incor-
porate the terrain geometry into the simulation and how to perform
the domain decomposition. The computational cost is linear O(N) over
each sub-domain, and near to O(N/c) in parallel over 1024 processors,
where N is the number of unknowns and c is the number of cores. This
is even if we run the parallel simulator over complex terrain geometry.
We analyze the parallel scalability experimentally up to 1024 processors
over a PROMETHEUS Linux cluster with multi-core processors. The
weak scalability of the code shows that increasing the number of sub-
domains and processors from 4 to 1024, where each processor processes
the subdomain of 49×49×99 internal points (50×50×100 box), results
in the increase of the total computational time from 120 s to 178 s for
a single time step. Thus, we can perform a single time step with over
1,128,000,000 unknowns within 3 min. The number of unknowns results
from the fact that we have three components of the velocity vector field,
one component of the pressure, and one component of the temperature
scalar field over 256,000,000 mesh points. The computation of the one
time step takes 3 min on a Linux cluster. The direction splitting solver is
not an iterative solver; it solves the system accurately since it is equiva-
lent to Gaussian elimination. Our code is interfaced with the mesh gener-
ator reading the NASA database and providing the Earth terrain map.
The goal of the project is to provide a reliable tool for parallel, fully
three-dimensional computations of the atmospheric phenomena.
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1 Introduction

Air pollution is receiving a lot of interest nowadays. It is visible, especially in the
Kraków area in Poland (compare Fig. 1), as this is one of the most polluted cities
in Europe [1]. People living there are more and more aware of the problem, which
causes the raising of various movements that are trying to improve air quality.
Air pollution grows because of multiple factors, including traffic, climate, heating
in the winter, the city’s architecture, etc. The ability to model atmospheric
phenomena such as thermal inversion over the complicated terrain is crucial for
reliable simulations of air pollution. Thermal inversion occurs when a layer of
warm air stays over a layer of cool air, and the warm air holds down the cool air
and it prevents pollutants from rising and scattering.

Fig. 1. Pollution with fog and thermal inversion over the same area near Kraków
between October 2019 and January 2020 (photos by Maciej Paszyński)

We present a massively parallel solver using the direction splitting technique
and stabilized time-integration schemes for the solution of the three-dimensional
non-stationary Navier-Stokes-Boussinesq equations.

The Navier-Stokes-Boussinesq system is widely applied for modeling the
atmospheric phenomena [2], oceanic flows [3] as well as the geodynamics sim-
ulations [4]. The model can be used for modeling atmospheric phenomena, in
particular, these resulting in a thermal inversion. It can be used as well for
modeling several other important atmospheric phenomena [5,6]. It may even be
possible to run the climate simulation of the entire Earth atmosphere using the
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approach presented here. The time integration scheme utilized results in a Kro-
necker product structure of the matrices, and it enables for efficient direction
splitting algorithm with finite difference solver [7], since the matrix is a Kro-
necker product of three three-diagonal matrices, resulting from discretizations
along x, y, and z axes. The direction splitting solver is not an iterative solver;
it is equivalent to the Gaussian elimination algorithm.

We show how to extend the alternating directions solver into non-regular
geometries, including the terrain data, still preserving the linear computational
cost of the solver. We follow the idea originally used in [8] for sequential com-
putations of particle flow. In this paper, we focus on parallel computations, and
we describe how to compute the Schur complements in parallel with linear cost,
and how to aggregate them further and still have a tri-diagonal matrix that can
be factorized with a linear computational cost using the Thomas algorithm. We
also show how to modify the algorithm to work over the complicated non-regular
terrain structure and still preserve the linear computational cost.

Thus, if well parallelized, the parallel factorization cost is near to O(N/c) in
every time step, where N is the number of unknowns and c is the number of cores.
We analyze the parallel scalability of the code up to 1024 multi-core processors
over a PROMETHEUS Linux cluster [9] from the CYFRONET supercomputing
center. Each subdomain is processed with 50 × 50 × 100 finite difference mesh.
Our code is interfaced with the mesh generator [10] reading the NASA database
[11] and providing the Earth terrain map. The goal of the project is to provide a
reliable tool for parallel fully three-dimensional computations of the atmospheric
phenomena resulting in the thermal inversion and the pollution propagation.

In this paper, we focus on the description and scalability of the parallel solver
algorithm, leaving the model formulation and large massive parallel simulations
of different atmospheric phenomena for future work. This is a challenging task
itself, requiring to acquire reliable data for the initial state, forcing, and boundary
conditions.

2 Navier-Stokes Boussinesq Equations

The equations in the strong form are

∂u
∂t

+ (u · ∇)u + ∇p + PrΔu = gPrRaT + f in Ω × (0, Tf ] (1)

∇ · u = 0 in Ω × (0, Tf ] (2)
u = 0 in ∂Ω × (0, Tf ] (3)

∂T

∂t
+ (u · ∇)T + ΔT = 0 in Ω × (0, Tf ] (4)

T = 0 in ∂Ω × (0, Tf ] (5)

where u is the velocity vector field, p is the pressure, Pr = 0.7 is the Prandt
number, g = (0, 0,−1) is the gravity force, Ra = 1000.0 is the Rayleigh number,
T is the temperature scalar field.
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We discretize using finite difference method in space and the time integration
scheme resulting in a Kronecker product structure of the matrices.

We use the second-order in time unconditionally stable time integration
scheme for the temperature equation and for the Navier-Stokes equation,
with the predictor-corrector scheme for pressure. For example we can use the
Douglass-Gunn scheme [13], performing an uniform partition of the time inter-
val Ī = [0, T ] as

0 = t0 < t1 < . . . < tN−1 < tN = T,

and denoting τ := tn+1 − tn, ∀n = 0, . . . , N − 1. In the Douglas-Gunn scheme,
we integrate the solution from time step tn to tn+1 in three substeps as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 +
τ

2
L1)un+1/3 = τfn+1/2 + (1 − τ

2
L1 − τL2 − τL3)un,

(1 +
τ

2
L2)un+2/3 = un+1/3 +

τ

2
L2u

n,

(1 +
τ

2
L3)un+1 = un+2/3 +

τ

2
L3u

n.

(6)

For the Navier-Stokes equations, L1 = ∂xx, L2 = ∂yy, and L3 = ∂zz, and the
forcing term represents gPrRaTn+1/2 plus the convective flow and the pressure
terms

(
un+1/2 · ∇un+1/2

)
+ ∇p̃n+1/2 treated explicitly as well. The pressure is

computed with the predictor/corrector scheme. Namely, the predictor step

p̃n+
1
2 = pn− 1

2 + φn− 1
2 , (7)

with p− 1
2 = p0 and φ− 1

2 = 0 computes the pressure to be used in the velocity
computations, the penalty steps

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ − ∂xxψ = −1
τ

∇ · un+1,

ξ − ∂yyξ = ψ,

φn+1/2 − ∂zzφ
n+1/2 = ξ,

(8)

and the corrector step updates the pressure field based on the velocity results
and the penalty step

pn+
1
2 = pn− 1

2 + φn+ 1
2 − χ∇ ·

(
1
2
(un+1 + un)

)

. (9)

These steps are carefully designed to stabilize the equations as well as to ensure
the Kronecker product structure of matrix, resulting in the linear computational
cost solver. The mathematical proofs of the stability of the formulations, moti-
vating such the predictor/corrector (penalty) steps, can be found in [7,12] and
the references there.

For the temperature equation, L1 = ∂xx, L2 = ∂yy, and L3 = ∂zz, and the
forcing term represents the advection term treated explicitly

(
un+1/2 · ∇Tn+1/2

)
.

For mathematical details on the problem formulation and its mathematical
properties, we refer to [12].
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Each equation in our scheme contains only derivatives in one direction, so
they are of the following form

(1 + α∂xx) un+1/3 = RHSx

(1 + α∂yy) un+2/3 = RHSy (10)
(1 + α∂zz) un+1 = RHSz

or the update of the pressure scalar field. Thus, when employing the finite dif-
ference method, we either endup with the Kronecker product matrices with sub-
matrices being three-diagonal, or the point-wise updates of the pressure field

u
n+1/3
ijk + α

u
n+1/3
(i−1)jk − 2u

n+1/3
ijk + u

n+1/3
(i+1)jk

dt
= RHSx

u
n+2/3
ijk + α

u
n+2/3
i(j−1)k − 2u

n+2/3
ijk + u

n+1/3
i(j+1)k

dt
= RHSy (11)

un+1
ijk + α

un+1
ij(k−1) − 2un+1

ijk + un+1
ij(k+1)

dt
= RHSz,

where α = τ/2 or α = 1, depending on the equation, which is equivalent to

αu
n+1/3
(i−1)jk + (dt − 2α)un+1/3

ijk + αu
n+1/3
(i+1)jk = dt ∗ RHSx

αu
n+2/3
i(j−1)k + (dt − 2α)un+2/3

ijk + αu
n+1/3
i(j+1)k = dt ∗ RHSy (12)

αun+1
ij(k−1) + (dt − 2α)un+1

ijk + αun+1
ij(k+1) = dt ∗ RHSz,

These systems have a Kronecker product structure M = Ax ⊗By ⊗Cz where
the sub-matrices are aligned along the three axis of the system of coordinates,
one of these sub-matrices is three-diagonal, and the other two sub-matrices are
scalled identity matrices. From the parallel matrix computations point of view,
discussed in our paper, it is important that in every time step, we have to
factorize in parallel the system of linear equations having the Kronecker product
structure.

3 Factorization of the System of Equations Possessing
the Kronecker Product Structure

The direction splitting algorithm for the Kronecker product matrices implements
three steps, which result is equivalent to the Gaussian elimination algorithm [14],
since

(M)−1 = (Ax ⊗ By ⊗ Cz)−1 = (Ax)−1 ⊗ (By)−1 ⊗ (Cz)−1 (13)

Each of the three systems is three-diagonal,
⎡

⎢
⎢
⎢
⎣

Ax
11 Ax

12 · · · 0
Ax

21 Ax
22 · · · 0

...
...

. . .
...

0 0 · · · Ax
kk

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

z111 z121 · · · z1lm
z211 z221 · · · z2lm

...
...

. . .
...

zk11 zk21 · · · zklm

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

y111 y121 · · · y1lm
y211 y221 · · · y2lm

...
...

. . .
...

yk11 yk21 · · · yklm

⎤

⎥
⎥
⎥
⎦

(14)
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and we can solve it in a linear O(N) computational cost. First, we solve along x
direction, second, we solve along y direction, and third, we solve along z direction.

4 Introduction of the Terrain

To obtain a reliable three-dimensional simulator of the atmospheric phenomena,
we interconnect several components. We interface our code with mesh generator
that provides an excellent approximation to the topography of the area [10],
based on the NASA database [11]. The resulting mesh generated for the Krakow
area is presented in Fig. 2.

In our system of linear equations, we have several tri-diagonal systems with
multiple right-hand-sides, factorized along x, y and z directions. Each unknown
in the system represents one point of the computational mesh. In the first system,
the rows are ordered according to the coordinates of points, sorted along x axis.
In the second system, the rows are ordered according to the y coordinates of
points, and in the third system, according to z coordinates. When simulating the
atmospheric phenomena like the thermal inversion over the prescribed terrain
with alternating directions solver and finite difference method, we check if a
given point is located in the computational domain. The unknowns representing
points that are located inside the terrain (outside the atmospheric domain) are
removed from the system of equations. This is done by identifying the indexes of
the points along x, y, and z axes, in the three systems of coordinates. Then, we
modify the systems of equations, so the corresponding three rows in the three
systems of equations are reset to 0, the diagonal is set to 1, and the corresponding
rows and columns of the three right-hand-sides are set 0.

For example, if we want to remove point (r, s, t) from the system, we perform
the following modification in the first system.

The rows in the first system they follow the numbering of points along x
axis. The number of columns corresponds to the number of lines along x axis
perpendicular to OY Z plane. Each column of the right-hand side correspond to
yz coordinates of a point over OY Z plane. We select the column corresponding to
the “st” point. We factorize the system with this column separately, by replacing
the row in the matrix by the identity on the diagonal and zero on the right-hand
side. The other columns in the first system are factorized in a standard way.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ax
11 Ax

12 · · · 0
Ax

21 Ax
22 · · · 0

...
...

. . .
...

0 0 Ax
rr = 1.0 0

...
...

. . .
...

0 0 · · · Ax
kk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1st
z2st
...

zrst
...

zkst

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1st
y2st

...
yrst = 0.0

...
ykst

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)
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Fig. 2. The computational mesh generated based on the NASA database, representing
the topography of the Krakow area.

Fig. 3. Illustration on the parallel solver algorithm.

Analogous situation applies for the second system, this time with right-hand
side columns representing lines perpendicular to OXZ plane. We factorize the
“rt” column in the second system separately, by setting the row in the matrix
as the identity on the diagonal, and using 0.0 on the right-hand side. The other
columns in the second system are factorized in the standard way.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

By
11 By

12 · · · 0
By

21 By
22 · · · 0

...
...

. . .
...

...
... By

ss = 0
...

...
...

. . .
...

0 0 · · · By
ll

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yr1t
yr2t

...
yrst

...
yrlt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

zr1t
zr2t

...
zrst = 0.0

...
zrlt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

Similarly, in the third system we factorize the “rs” column separately. The
other columns in the third system are factorized in a standard way.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cz
1,1 Cz

1,2 · · · 0
Cz

2,1 Cz
2,2 · · · 0

...
...

. . .
...

...
... Cz

tt = 1.0
...

...
...

. . .
...

0 0 · · · Cz
m,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xrs1

xrs2

...
xrst

...
xrsm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

brs1
brs2

...
brst = 0.0

...
brsm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)

Using this trick for all the points in the terrain, we can factorize the Kronecker
product system in a linear computational cost over the complex terrain geometry.

5 Parallel Factorization with Domain Decomposition
Preserving the Linear Computational Cost

The computational domain is decomposed into several cube-shape sub-domains.
We generate systems of linear equations over each sub-domain separately, and
we enumerate the variables in a way that interface unknowns are located at the
end of the matrices. We compute the Schur complement of the interior variables
with respect to the interface variables. We do it in parallel over each of the
subdomains. The important observation is that the Schur complement matrices
will also be three-diagonal matrices. This is because the subdomain matrix is
three-diagonal, and the Schur complement computation can be implemented as
forward eliminations, performed in the three sub-systems, each of them stopped
after processing the interior nodes in the particular systems. Later, we aggre-
gate the Schur complements into one global matrix. We do it by global gather
operation. This matrix is also tri-diagonal and can be factorized in a linear cost.
Later, we scatter the solution, and we use the partial solutions from the global
matrix to backward substitute each of the systems in parallel. These operations
are illustrated in Fig. 3.

We perform this operation three times, for three submatrices of the Kronecker
product matrix, defined along three axes of the coordinate system. We provide
algebraic details below.
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Thus, assuming we have r−1 rows to factorize in the first system (r−1 rows in
the interior, and k − r + 1 rows on the interface), we run the forward elimination
over the first matrix, along the x direction, and we stop it before processing the
r-th row (denoted by red color). This partial forward elimination stopped at the
r-th row ensures that below that row we have the Schur complement of the first
r − 1 rows related with the interior points in the domain with respect to the
next k − r + 1 rows related with the interface points (the Schur complement is
denoted by blue color). This Schur complement matrix is indeed tri-diagonal:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax
11 Ax

12 0 · · · · · · · · · · · · · · ·
Ax

21 Ax
22 Ax

23 0 · · · · · · · · · · · ·
..
.

..

.
. . .

. . .
. . .

..

.
..
.

· · · 0 Ax
(r−1)(r−2)

Ax
(r−1)(r−1)

Ax
(r−1)r

0 · · · · · ·
· · · · · · 0 Ax

r(r−1)
Ax

rr Ax
r(r+1)

0 · · ·
..
.

..

.
. . .

..

.
. . .

. . .
. . .

..

.
· · · · · · · · · · · · 0 Ax

(k−1)(k−2)
Ax

(k−1)(k−1)
Ax

(k−1)k

· · · · · · · · · · · · · · · 0 Ax
k(k−1)

Ax
kk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Partial forward eliminations−−−−−−−−−−−−−−−−−−−→⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ãx
11 Ãx

12 0 · · · · · · · · · · · · · · ·
0 Ãx

22 Ãx
23 0 · · · · · · · · · · · ·

.

..
.
..

. . .
. . .

. . .
.
..

.

..

· · · 0 0 Ãx
(r−1)(r−1)

Ãx
(r−1)r

0 · · · · · ·
· · · · · · 0 0 Ãx

rr Ãx
r(r+1)

0 · · ·
· · · · · · 0 0 Ãx

r(r+1)
Ãx

(r+1)(r+1)
Ãx

(r+1)(r+2)
· · ·

.

.

.
.
.
.

. . .
.
.
.

. . .
. . .

. . .
.
.
.

· · · · · · · · · · · · · · · 0 Ãx
k(k−1)

Ãx
kk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z111 z121 · · · z1lm
z211 z221 · · · z2lm

...
...

. . .
...

z(r−1)11 z(r−1)21 · · · z(r−1)lm

zr11 zr21 · · · zrlm
...

...
. . .

...
zk11 zk21 · · · zklm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ỹ111 ỹ121 · · · ỹ1lm
ỹ211 ỹ221 · · · ỹ2lm

...
...

. . .
...

ỹ(r−1)11 ỹ(r−1)21 · · · ỹ(r−1)lm

ỹr11 ỹr21 · · · ỹrlm
...

...
. . .

...
ỹk11 ỹk21 · · · ỹklm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)

We perform this operation on every sub-domain, and then we gather on
processor one the tri-diagonal Schur complements, we aggregate them into one
matrix along x direction. The matrix is still a tri-diagonal matrix, and we solve
the matrix using linear O(N) computational cost Gaussian elimination proce-
dure with the Thomas algorithm.
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Next, we scatter and substitute the partial solutions to sub-system over sub-
domains. We do it by replacing the last r−k+1 rows by the identity matrix and
placing the solutions into the right-hand side blocks. Namely, on the right-hand
side we replace rows from r +1 (denoted by blue color) by the solution obtained
in the global phase, to obtain:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ãx
11 Ãx

12 0 · · · · · · · · · · · · · · ·
0 Ãx

22 Ãx23 0 · · · · · · · · · · · ·
...

...
. . . . . . . . .

...
...

· · · 0 0 Ãx
(r−1)(r−1) Ãx

(r−1)r 0 · · · · · ·
0 · · · · · · 0 1 0 · · · 0
...

...
. . .

...
. . . . . . . . .

...
0 · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z111 z121 · · · z1lm
z211 z221 · · · z2lm

...
...

. . .
...

z(r−1)11 z(r−1)21 · · · z(r−1)lm

zr11 zr21 · · · zrlm
...

...
. . .

...
z(k−1)11 z(k−1)21 · · · z(k−1)lm

zk11 zk21 · · · zklm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ỹ111 ỹ121 · · · ỹ1lm
ỹ211 ỹ221 · · · ỹ2lm

...
...

. . .
...

ỹ(r−1)11 ỹ(r−1)21 · · · ỹ(r−1)lm

ẑr11 ẑr21 · · · ẑrlm
...

...
. . .

...
ẑ(k−1)11 ẑ(k−1)21 · · · ẑ(k−1)lm

ẑk11 ẑk21 · · · ẑklm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

and running backward substitutions over each subdomain in parallel.
Next, we plug the solutions to the right-hand side of the second system along

y axis, and we continue with the partial factorization. Now, we have s − 1 rows
in the interior and l − s + 1 rows on the interface.

We compute the Schur complements in the same way as for the fist sub-
system, thus we skip the algebraic details here. We perform this operation on
every sub-domain, then we collect on processor one and aggregate the Schur
complements into the global matrix along y directions. The global matrix is
three-diagonal, and we solve it with Thomas algorithm. Next, we scatter and
substitute the partial solutions to sub-system on each subdomain, and we solve
by backward substitutions.

Finally, we plug the solution to the right-hand side of the third system along
z axis, and we continue with the partial factorization. Now, we have t−1 rows in
the interior and m − t + 1 rows on the interface. The partial eliminations follow
the same lines as for the two other directions, thus, we skip the algebraic details.
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We repeat the computations for this third direction, computing the Schur
complements on every sub-domain, collecting them into one global system, which
is still three-diagonal, and we can solve it using the linear computational cost
Thomas algorithm.

Next, we substitute the partial solution to sub-systems. We replace the last
t−m+1 rows by the identity matrix, and place the solutions into the right-hand
side, and run the backward substitutions over each subdomain in parallel.

6 Parallel Scalability

The solver is implemented in fortran95 with OpenMP (see Algorithm 1) and
MPI libraries used for parallelization. It does not use any other libraries, and it
is a highly optimized code. We report in Fig. 4 and Table 1 the weak scalabil-
ity for three different subdomain sizes, 50 × 50 × 100, 25 × 100 × 100, and
50 × 50 × 50. The weak scalability for the subdomains of 49 × 49 × 99 internal
points, shows that increasing the number of processors from 4 to 1024, simulta-
neously increasing the number of subdomains from 4 to 1024, and the problem
size from 50 × 50 × 400 to 800 × 800 × 400, results in the increase of the
total computational time from 120 s to 178 s for a single time step. Thus, we can
perform a single time step with over 1,128,000,000 unknowns (three components

Algorithm 1. OpenMP loop parallelization
!!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(start)

SHARED(inverse,nrhs,nint) SHARED(s mult,d)

DO i = 1,nrhs

start = (i-1)*(nint+2)+2; s mult(i,1) = d(start)*inverse

END DO
!!$OMP END PARALLEL DO

Algorithm 2. Loop unrolling to optimize cache usage
loop end =nrhs/10; i=1; inverse =1.0/(mat%b(n)-cp(n-1)*mat%a(n));

dmult =mat%a(n)

DO j = 1,loop end

IF(i<nrhs-10)THEN
finish = i*(nint+2)-1

dp(n,i) = (d(finish) - dp(n-1,i) * dmult)*inverse

dp(n,i+1) = (d(finish+(nint+2)) - dp(n-1,i+1) * dmult)*inverse

...

dp(n,i+9) = (d(finish+(nint+2)*9) - dp(n-1,i+9) * dmult)*inverse

i=i+10

END IF
END DO
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of the velocity vector field, and one component of the pressure and the temper-
ature scalar fields over 256,000,000 mesh points) within 3 min on a cluster. For
the numerical verification of the code, we refer to [15].

We report in Figure 5 and Table 2 the strong scalability for six different
simulations, each one with box size 50 × 50 × 50, with 8, 16, 32, 64, 128 and 256
subdomains. Since the number of nodes is multiplied by the number of unknowns
(three components of the velocity vector field, one component of the pressure
scalar field and one component of the temperature scalar field), we obtained
between 8 × 50 × 50 × 5 = 5 millions, to 256 × 50 × 50 × 5 = 160 millions of
unknowns. We can read the superlinear speedup for these plots, which is related
to the optimization of cache usage on smaller subdomains, with optimizing the
memory transfers to the computational kernel and loop unrolling technique, as
illustrated in Algorithm 2.

In Fig. 6, we show some snapshots from the preliminary simulations. In here,
we focused on the description and scalability of the parallel solver algorithm,

Table 1. Weak scalability up to 1024 processors (subdomains). Each grid box contains
one subdomain with 49 × 49 × 99, 24 × 99 × 99, or 49 × 49 × 49 internal points,
respectively, one subdomain per processor.

Subdomains = Processors Grid 50 × 50 × 50 Time [s] 25 × 100 × 100 Time [s] 50 × 50 × 100 Time [s]

1 (1, 1, 1) 19 58 –

2 (1, 1, 2) 23 63 –

4 (1, 1, 4) 23 66 120

8 (2, 1, 4) 63 85 157

16 (2, 2, 4) 36 97 152

32 (4, 2, 4) 42 100 150

64 (4, 4, 4) 49 115 157

128 (8, 4, 4) 63 129 160

256 (8, 8, 4) 72 144 166

512 (16, 8, 4) – – 170

1024 (16, 16, 4) – – 178

Fig. 4. Weak scalability for subdomains with 49×49×99, 24×99×99, and 49×49×49
internal points, one subdomain per processor, up to 1024 processors (subdomains). We
increase the problem size with the number of processors. For the ideal parallel code,
the execution time remains constant.
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Table 2. Strong scallability up to 256 processors.

Processors ndofs * 1,000,000 4 8 16 32 64 128 256

5 120 63 – – – – –

10 – 157 36 – – – –

20 – – 152 42 – – –

40 – – – 150 49 – –

80 – – – – 157 63 –

160 – – – – – 160 72

Fig. 5. Strong scallability for meshes with different sizes, for different numbers of pro-
cessors. For larger meshes, it is only possible to run them on maximum number of
processors.

leaving the model formulation and large massive parallel simulations of different
atmospheric phenomena for the future work. This will be a challenging task itself,
requiring to acquire reliable data for the initial state, forcing, and boundary
conditions.
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Fig. 6. Snapshots from the simulation
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7 Conclusions

We described a parallel algorithm for the factorization of Kronecker product
matrices. These matrices result from the finite-difference discretizations of the
Navier-Stokes Boussinesq equations. The algorithm allows for simulating over
the non-regular terrain topography. We showed that the Schur complements are
tri-diagonal, and they can be computed, aggregated, and factorized in a linear
computational cost. We analyzed the weak scalability over the PROMETHEUS
Linux cluster from the CYFRONET supercomputing center. We assigned a sub-
domain with 50 × 50 × 100 finite difference mesh to each processor, and we
increased the number of processors from 4 to 1024. The total execution time for
a single time step increased from 120 s to 178 s for a single time step. Thus, we
could perform computations for a single time step with around 1,128,000,000
unknowns within 3 min on a Linux cluster. This corresponds to 5 scalar fields
over 256,000,000 mesh points. In future work, we plan to formulate the model
parameters, initial state, forcing, and boundary conditions to perform massive
parallel simulations of different atmospheric phenomena.
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