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Abstract. People often help others who are in trouble, especially in
emergency evacuation situations. For instance, during the 2005 London
bombings, it was reported that evacuees helped injured persons to escape
the place of danger. In terms of game theory, it can be understood that
such helping behavior provides a collective good while it is a costly behav-
ior because the volunteers spend extra time to assist the injured persons
in case of emergency evacuations. In order to study the collective effects
of helping behavior in emergency evacuations, we have performed numer-
ical simulations of helping behavior among evacuees in a room evacuation
scenario. Our simulation model is based on the volunteer’s dilemma game
reflecting volunteering cost. The game theoretic model is coupled with
a social force model to understand the relationship between the spatial
and social dynamics of evacuation scenarios. By systematically changing
the cost parameter of helping behavior, we observed different patterns of
collective helping behaviors and these collective patterns are summarized
with a phase diagram.

Keywords: Emergency evacuation · Helping behavior · Game theory ·
Volunteer’s Dilemma game · Social force model

1 Introduction

Pedestrian emergency evacuation is a movement of people from a place of dan-
ger to a safer place in case of life-threatening incidents such as fire and terrorist
attacks. Numerical simulation has been a popular approach to perform pedes-
trian emergency evacuation studies, for instance, predicting total evacuation
time in a class room [1] and preparing an optimal evacuation plan for a large
scale pedestrian facility [2].
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Based on numerical simulations, it has been identified that evacuees are often
in conflict with others when more than two evacuees try to move to the same
position [3]. Game theory has been used to model strategic interactions among
evacuees in such a conflict. Under game theoretic assumptions, each evacuee
has his own strategies and selects a strategy in a way to maximize his own
payoff. Various emergency evacuation simulations have been performed based on
different game theory models including evolutionary game [4], snowdrift game [5],
and spatial game [6,7].

Although those game theory models successfully modeled evacuees’ egress,
especially from a room, other aspects of evacuees’ behavior such as helping
behavior have not been sufficiently studied. In the context of emergency evac-
uations, it has been reported that evacuees help injured evacuees to evacuate
from the place of danger, for instance the WHO concert disaster occurred on
December 3, 1979 in Cincinnati, Ohio, United States [8] and 2005 London bomb-
ings in United Kingdom [9].

A few studies have investigated helping behavior in emergency evacuation
by means of pedestrian simulation. Von Sivers et al. [10,11] applied social iden-
tity and self-categorization theories to pedestrian simulation in order to simu-
late helping behavior observed in 2005 London bombings. In their studies, they
assumed that all the evacuees share the same social identify which makes them be
willing to help others rather than be selfish. Lin and Wong [12] applied the volun-
teer’s dilemma game [13,14] to model the behavior of volunteers who removed
obstacles from the exit. Their work can be considered as a helping behavior
modeling study in that some evacuees were voluntarily removing the obstacles
so they helped others in the same room to evacuate faster.

One can observe that such a helping behavior provides a collective good
in case of emergency evacuations. This is especially true when there are not
enough rescuers, more injured persons can be rescued with the help of other
evacuees than by only the rescuers. In order to study the collective effects of
helping behavior in emergency evacuations, we have developed an agent-based
model simulating such helping behaviors among evacuees. Based on the agent
based model, we represent individual behaviors with a set of behavioral rules
and then systematically study collective dynamics of interacting individuals. In
our agent based model, we assumed that helping an injured person can be a
costly behavior because the volunteer spends extra time and take a risk to assist
the injured person in the evacuation. If individuals feel that helping behavior
is a costly behavior for them, they might not turn into volunteers. Thus we
implemented the volunteer’s dilemma game model [13,14] to reflect the cost
of helping behavior. Pedestrian movement is simulated based on social force
model [15].

The remainder of this paper is organized as follows. The simulation model
and its setup are explained in Sect. 2. We then present its numerical simulation
results with a phase diagram in Sect. 3. Finally, we discuss the findings of this
study in Sect. 4.
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2 Method

2.1 Volunteer’s Dilemma Game

We employ the volunteer’s dilemma game model to study helping behavior of
passersby in a room evacuation [13,14]. A passerby is an evacuee who is not
injured and can play the volunteer’s dilemma game model. According to the
volunteer’s dilemma game, two types of players are considered. Passerby i can be
either a volunteer (C) who helps an injured person to evacuate or a bystander (D)
who does not help the injured person. Once a passerby decides to be a volunteer,
he approaches to and then rescues the injured person. We can express the payoff
of player i in terms of collective good U and volunteering cost K < U , see Table 1.
The payoff of a bystander (D) is U if there is at least one volunteer, 0 otherwise.
It can be understood that, bystanders are benefited by the volunteer. However,
if nobody volunteers, the collective good U cannot be produced because all the
players are bystanders. The collective good U can be produced by volunteers
when they rescue injured persons. For simplicity, we assume that the value of
U is constant if there is at least one volunteer. The payoff of a volunteer (C)
is always U − K, indicating that his payoff is constant regardless other players’
choice.

Table 1. Payoff of a volunteer (C) and a bystander (D) for the different number of
other players choosing C (based on Refs. [13,14]). Here, U is the collective good, K < U
is the volunteering cost, and N ≥ 2 is the number of players.

Player i’s choice The number of other players choosing C

0 1 2 ... N − 1

Volunteer (C) U − K U − K U − K U − K U − K

Bystander (D) 0 U U U U

Actor i’s expected payoff Ei is given as:

Ei = qi

⎛
⎝1 −

N∏
j �=i

qj

⎞
⎠ U + (1 − qi)(U − K). (1)

Here, qi is the probability that player i chooses D and 1 − qi for choosing C.
The number of players is indicated by N . The probability that all players j �= i
choose D is denoted by

∏
qi and 1 − ∏

qi indicates the probability that at least
one actor j �= i chooses C. The first term on the right hand side reflects the
payoff of player i when he selects D but benefited when there is at least one
volunteer. The second term on the right hand side indicates the payoff of player
i if he selects C.

We assume that player i adopts the mixed-strategy which is the best strategy
for him. In a mixed-strategy equilibrium, every action played with positive prob-
ability must be a best response to other players’ mixed strategies. This implies



516 J. Kwak et al.

that player i is indifferent between choosing C and D, so a small change in the
payoff Ei with respect to qi (i.e., the probability of choosing D) becomes zero:

dEi

dqi
= −U

N∏
j �=i

qj + K = 0. (2)

After assuming qi = qj , we can obtain probability that player i chooses D

qi =
[
K

U

] 1
N−1

= β
1

N−1 , (3)

where β = K/U is cost ratio, which can be interpreted as the risk of volunteering.
Accordingly, the probability that player i chooses C is given as

pi = 1 − qi = 1 − β
1

N−1 . (4)

The probability that at least one player selects C is denoted by p∗, i.e.,

p∗ = 1 − qNi = 1 − β
N

N−1 . (5)

Equations 4 and 5 show good agreement with the bystander effect, see Fig. 1.
Figure 1(a) shows a decreasing trend of pi as the number of players N increases,
inferring that players are less likely to volunteer seemingly because they believe
other players will volunteer. Note that the social pressure from other players is
not considered here, so the existence of volunteers does not affect on players’
behavior. Figure 1(b) presents the trend of p∗ which reflects the chance that an
injured person is rescued. As the number of players N increases, the value of p∗

approaches to a certain value, 1 − β.

2.2 Social Force Model

According to the social force model [15], the position and velocity of each pedes-
trian i at time t, denoted by xi(t) and vi(t), evolve according to the following
equations:

dxi(t)
dt

= vi(t) (6)

and
dvi(t)

dt
= f i,d +

∑
j �=i

f ij +
∑
B

f iB . (7)

In Eq. (7), the driving force term f i,d = (vdei − vi)/τ describes the tendency
of pedestrian i moving toward his destination. Here, vd is the desired speed and
ei is a unit vector indicating the desired walking direction of pedestrian i. The
relaxation time τ controls how quickly the pedestrian adapts one’s velocity to
the desired velocity. The repulsive force terms f ij and f iB reflect his tendency
to keep certain distance from other pedestrian j and the boundary B, e.g., wall
and obstacles. A more detailed description of the social force model can be found
in previous studies [15–18].
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Fig. 1. Bystander effect on helping behavior: (a) pi, the probability that player i vol-
unteers to rescue an injured person and (b) p∗, the probability that an injured person
is rescued.

2.3 Numerical Simulation Setup

Our agent-based model consists of helping behavior model and movement model.
The helping behavior model computes the probability that a passerby would help
an injured person based on the volunteer’s dilemma game. The movement model
calculates the sequence of pedestrian positions for each simulation time step. Our
agent-based model was implemented from scratch in C++.

Each pedestrian is modeled by a circle with radius ri = 0.2 m. N0 = 100
pedestrians are placed in a 10 m×10 m room indicated by a yellow shade area in
Fig. 2. Pedestrians are leaving the room through an exit corridor which is 5 m
long and 2 m wide. The place of safety is set on the right, outside of the exit
corridor. There are Ni injured persons who need a help in escaping the room
and N = N0 − Ni passersby who are ambulant. Some passersby might turn into
volunteers who are going to approach to and then rescue the injured persons.
The number of volunteers is determined based on the volunteer’s dilemma game
presented in Sect. 2.1.

The volunteer’s dilemma game is updated for each second. We assumed that
the volunteer’s dilemma game is a macroscopic behavior like goal selection and
path navigation patterns [19]. In line with Heliövaara et al. [6], each passerby
can play the volunteer’s dilemma game a few times during the whole simulation
period. With the update frequency of one time per second, most of passersby
play the volunteer’s dilemma game up to ten times before they leave the room. A
passerby can decide whether he will volunteer to rescue an injured person within
a range of 3 m. Once the volunteer decides to rescue the injured person, then
he shifts his desired direction walking vector ei toward the position of injured
person. Once the volunteer reaches the injured person, he will flee to the place
of safety with the injured person after a preparation time of 5 s.
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Fig. 2. Schematic depiction of the numerical simulation setup. 100 pedestrians are
placed in a 10 m×10 m room indicated by a yellow shade area. Pedestrians are leaving
the room through an exit corridor which is 5 m long and 2 m wide. The place of safety
is set on the right, outside of the exit corridor. (Color figure online)

The pedestrian movement is updated with the social force model in Eq. (7).
The passersby move with the initial desired speed vd = vd,0 = 1.2 m/s and
with relaxation time τ = 0.5 s, and their speed cannot exceed vmax = 2.0 m/s.
Until now, the speed of volunteers rescuing the injured persons is often assumed
by the modelers, like the work of Von Sivers et al. [10,11]. We applied speed
reduction factor α = 0.5 to the volunteers rescuing the injured persons, so they
move with a reduced desired speed vd = αvd,0 = 0.6 m/s. Following previous
studies [20–22], we discretized the numerical integration of Eq. (7) using the
first-order Euler method:

vi(t + Δt) = vi(t) + ai(t)Δt, (8)
xi(t + Δt) = xi(t) + vi(t + Δt)Δt. (9)

Here, ai(t) is the acceleration of pedestrian i at time t which can be obtained
from Eq. (7). The velocity and position of pedestrian i is denoted by vi(t) and
xi(t), respectively. The time step Δt is set as 0.05 s.

3 Results and Discussion

Fig. 3 shows snapshots of our agent-based model simulations. Open black circles
indicate injured persons and full dark circles show volunteers helping the injured
persons. Gray circles represent the passersby. If the helping cost is low, all the
injured persons are likely to be rescued, as shown in Fig. 3(a). However, if the
helping cost is high (i.e., high β), then some injured persons might not be rescued,
see the red dotted circle in Fig. 3(b). By systematically changing the value of Ni

and β, we observed different patterns of collective helping behaviors summarized
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(a)

(b)

Fig. 3. Snapshots of helping behavior in a room evacuation scenario: (a) all the injured
persons are rescued in case of Ni = 15 and β = 0.1, and (b) some injured persons
are not rescued (in the red dotted circle) in case of Ni = 15 and β = 0.2. Open black
circles indicate injured persons and full dark circles show volunteers helping the injured
persons. Gray circles represent the passersby. (Color figure online)
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Fig. 4. Schematic phase diagram of collective helping behavior in the room evacuation
scenario.
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Fig. 6. Total evacuation time in case of β = 0.1 against the number of injured persons
Ni: (a) average Tavg and (b) standard deviation Tsd.

in the schematic phase diagram (see Fig. 4). For each parameter combination (Ni,
β), we performed 30 independent simulation runs.

We also looked into the impact of cost ratio β and the number of injured
persons Ni on the total evacuation time T . The total evacuation time T is
defined as the length of period from the start of evacuation to the moment when
the last evacuee leaves the exit corridor. We measured the average and standard
deviation of the total evacuation time, i.e., Tavg and Tsd, based on the values of
total evacuation time T obtained over 30 independent simulation runs for each
parameter combination (Ni, β). Figure 5 indicates that change in the value of β
does not make a noticeable different to the average total evacuation time Tavg.
This is seemingly because β only affects the probability that a passerby turns
into a volunteer. As indicated in Fig. 6(a), the average total evacuation time
Tavg increases as the number of injured persons Ni grows. Having more injured
persons indicates that there are more volunteers who move in the reduced desired
speed, so the total evacuation time increases due to the volunteers rescuing the
injured persons. In addition, the standard deviation of total evacuation time Tsd

increases as the number of injured persons Ni grows, in that the difference in
evacuation time among evacuees gets larger.

4 Conclusion

We have numerically investigated helping behavior among evacuees in a room
evacuation scenario. Our simulation model is based on the volunteer’s dilemma
game reflecting volunteering cost and social force model simulating pedestrian
movement. We characterized collective helping behavior patterns by systemati-
cally controlling the values of cost ratio β and the number of injured pedestrians
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Ni. For low cost ratio values, one can expect that all the injured pedestrians
are rescued by volunteers. For high cost ratio values, on the other hand, it was
observed that not all the injured persons can be rescued. When the number of
injured persons is large, a low value of cost ratio yields a result that all the
injured pedestrians are rescued. A schematic phase diagram summarizing the
collective helping behavior patterns is presented.

A very simple room evacuation scenario has been used in order to study the
fundamental role of helping behavior in the evacuation especially the number
of evacuated pedestrians. In this study, the severity of injuries are assumed to
be the same for all the injured persons, so each injured person can be rescued
by a volunteer. According to patient triage scale in Singapore [23,24], patients
can be categorized based on the severity of injuries and the desired number of
volunteers are different for various types of injuries. Future work can reflect the
impact of patient injury levels in collective helping behavior by assuming differ-
ent number of required volunteers for each patient. This study can be extended
from the perspective of game theory. As stated in Diekmann’s study [14], it can
be interesting to introduce different values of collective good U and volunteering
cost K to each passerby. By doing that, we can reflect personal difference in
willingness to volunteer in emergency evacuations. In addition, one can imagine
that the value of U can be changed depending on the number of injured persons
and volunteers. For instance, the values of U are different when there are one
injured person, one volunteer and two injured persons, three volunteers. Evolu-
tionary game [4] can be also introduced in order to reflect behavioral changes of
passersby influenced by the existence of volunteers, which might be observable
in emergency evacuations.
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