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Abstract. In this paper we propose a novel method for the exploita-
tion of High Density Localization (HDL) maps obtained by Mobile Laser
Scanning in order to increase the performance of state-of-the-art real time
dynamic object detection (RTDOD) methods utilizing Rotating Multi-
Beam (RMB) Lidar measurements. First, we align the onboard measure-
ments to the 3D HDL map with a multimodal point cloud registration
algorithm operating in the Hough space. Next we apply a grid based
probabilistic step to filter out the object regions on the RMB Lidar data
which were falsely predicted as dynamic objects by RTDOD, although
they are part of the static background scene. On the other hand, to find
objects erroneously missed by the RTDOD predictions, we implement
a Markov Random Field based point level change detection approach
between the map and the current onboard measurement frame. Finally,
to analyse the changed but previously unclassified segments of the RMB
Lidar clouds, we apply a geometric blob separation and a Support Vec-
tor Machine based classification to distinguish the different object types.
Comparative tests are provided in high traffic road sections of Budapest,
Hungary, and we show an improvement of 5, 96% in precision, 9, 21% in
recall and 7, 93% in F -score metrics against the state-of-the-art RTDOD
algorithm.

Keywords: Lidar · City map · Registration · Change detection ·
Object detection

1 Introduction

Real time dynamic object detection (RTDOD) in 3D sparse point clouds is a
key challenge in autonomous driving. During the past few years, several geo-
metric [1] and deep learning [1,5,10–12,14,15] based approaches appeared in
the literature, which operate on raw Rotating Multi-Beam (RMB) Lidar frames
and provide output sets of oriented bounding boxes for various object categories
such as vehicles, pedestrians or bicycles. As main advantage, these approaches
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can simultaneously consider local shape and point density features together with
global contextual information for the classification of the different point cloud
segments. However, due to the low vertical density of the RMB Lidar sensor data,
which quickly decreases as a function of the objects’ distance from the sensor,
the typical ring pattern of the point clouds, and various occlusion effects in
dense urban environment, there are a number of limitations of these approaches.
On one hand, false positive hits may be detected in point cloud regions con-
taining static scene objects with similar appearance and context parameters to
the focused dynamic scene objects. On the other hand, the point cloud blobs
of several dynamic objects can be heavily merged or occluded by static street
furniture elements, yielding many false negative detections.

Mobile Laser Scanning (MLS) technologies may be used to obtain High Den-
sity Localization (HDL) maps [6,7,9] of the cities, with providing dense and
accurate point clouds from the static environment with homogeneous scanning
of the surfaces and a nearly linear reduction of points as a function of the dis-
tance. Exploiting low level information from 3D city maps is a quite new research
area, with a few related techniques. The HDNET [13] approach uses a prior road
map with local ground-height data as reference, which helps in eliminating false
object candidates detected out of the road, or above/under the ground level.
However, it does not deal with the confusion of dynamic objects with static
entities from the map, and therefore it cannot adjust the missing object rate. To
fill this gap, we present a new approach which utilizes dense HDL maps in order
to decrease in parallel both the false negative and false positive hits of RTDOD
algorithms.

The key steps of the proposed algorithm are multimodal point cloud regis-
tration between the RMB Lidar measurements and the HDL maps, map based
object validation, multimodal change extraction and object level change analy-
sis. As a basis of comparison, we have chosen the PointPillars [5] state-of-the-
art RTDOD method, which can predict object-candidates from multiple classes,
together with their 3D oriented bounding boxes and class confidence values.

2 Proposed Algorithm

The workflow of the proposed approach is shown in Fig. 1. Initially, we apply
a state-of-the-art RTDOD algorithm on the raw RMB Lidar frames - in the
paper the PointPillars [5] techniques is used for this purpose - which provides
us multiple vehicle and pedestrian candidates. To refine the output of RTDOD,
first we need to accurately register the input RMB Lidar point cloud to the MLS
based High Density Localization (HDL) map, which is achieved by a multimodal
point cloud registration algorithm. After the alignment, we apply a probability
map based validation step against the HDL map to remove false positive RTDOD
predictions. Finally, for eliminating the false negatives, we subtract the HDL
map and the already detected RTDOD objects from the actual Lidar frame,
then we extract object candidate blobs in the remaining dynamic regions, and
we attempt to identify the previously undetected dynamic objects by a Support
Vector Machine (SVM) based blob-classifier.
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Fig. 1. Workflow of the proposed approach

2.1 Multimodal Point Cloud Registration

Let us assume that using internal navigation sensors, the current position of the
vehicle is roughly known with a maximal error of 10 meters in the map’s coordi-
nate system. For accurately registering the recorded RMB Lidar frames (PRMB)
to the available HDL map (PMap), we search for a rigid transform between the
two point clouds in the following form:

Tdx,dy,dz,α =

⎡
⎢⎢⎣

cos α sin α 0 dx
− sin α cos α 0 dy

0 0 1 dz
0 0 0 1

⎤
⎥⎥⎦

where dx, dy, dz are the offset parameters and α is the rotation angle around the
vertical axis.

To estimate the optimal transform, we apply a robust blob level voting tech-
nique in the Hough space based [8]. First, we remove the road points by a locally
adaptive ground filter, and extract object-like connected blobs – called abstract
objects – by region-growing in both the actual measurements and the HDL map’s
point cloud (see Fig. 2). Let us denote the two obtained blob sets by ORMB and
OMap, respectively. Since we can assume that the HDL map is free of dynamic
objects [7], we exclude from the ORMB set the blobs which overlap with the
initial object candidate regions provided by the RTDOD. Thereafter, based on
[8] we extract 8 keypoints in each abstract object candidate of ORMB ∪ OMap.
For finding the optimal parameter quartet (dx, dy, dz, α) we iterate through all
possible keypoint pairs in ORMB×OMap, and aggregate their votes in the Hough
space.

2.2 False Positive Removal by Map Based Validation

False objects of the RTDOD algorithms often overlap with static obstacles of the
background scene, thus they can be identified through analyzing their location
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(a) Initial GPS-based alignment. (b) Result of registration.

Fig. 2. Registration of an onboard measurement to the HDL map

in the registered HDL map. We have proposed a 2D probabilistic approach to
manage this problem (see Fig. 3). First, taking a top view analysis, we project
both the RMB Lidar and the registered HDL map point clouds to a discrete grid
on the ground plane, with a resolution of 10 cm. Thereafter, we assign to each
(i, j) cell two competing potentials describing the foreground (Pfg(i, j)) and back-
ground likelihoods (Pbg(i, j)). Foreground values are determined by the RTDOD
output: for each cell covered by an object candidate, we take Pfg(i, j) ∈ [0, 1] as
the prediction score (i.e. confidence value) of the RTDOD network regarding the
given object. The remaining cells receive Pfg(i, j) = 0. On the other hand, the
background likelihoods are calculated from the projected MLS point cloud. If
cell (i, j) is occluded by a static obstacle in the HDL map, we set Pbg(i, j) = 1,
while for cells near to the boundaries of static objects we use a distance-based
Gaussian attenuation in the Pbg until 1 meter in any directions (with variance
parameter σ = 10). For the remaining cells, we set Pbg(i, j) = 0.

Using the constructed likelihood maps, we remove all RTDOD object can-
didates, which cover any cell (i, j), where Pbg(i, j) ≥ Pfg(i, j). Note that the
adopted Gaussian soft boundary also ensures robustness of the approach against
small registration errors.

2.3 Search for Missing Objects via Change Detection

Decreasing the number of missing dynamic objects of RTDOD is highly chal-
lenging, since we cannot exploit here the HDL map’s object-information in a
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Fig. 3. False positive removal

(a) Range image representation of the RMB Lidar measurement.

(b) Range image obtained from the HDL Map with ray tracing

(c) Markov Random Field based change mask between (a) and (b)

Fig. 4. Change detection in the range image domain
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Fig. 5. Changes backprojected to the RMB Lidar frame

straightforward way, and especially for deep neural network (DNN) based detec-
tors, the sources of mis-detections are often hard to explain intuitively. The
key idea of our approach is that we separate at point level the dynamic and
static regions of the input RMB Lidar cloud PRMB, and search for further possi-
ble objects of interest in the dynamic segments of PRMB. In this way, we expect
improvement for two reason: first we re-locate our previously undetected objects
into a different context, where a second-round detection can be successful. Sec-
ond, if a dynamic object’s point cloud is heavily merged with a static obstacle’s
blob, the elimination of background points can highlight the object’s real shape,
which step can highly facilitate the classification.

We separate the dynamic and static regions of PRMB through multimodal
background subtraction, where the registered HDL map P∗

Map provides the
background point cloud. Following our earlier approach [2], we transform the
point clouds PRMB and P∗

Map into range images by ray tracing, and apply
a Markov Random Field based binary change segmentation in the 2D image
domain (Fig. 4). Finally, we backproject the obtained change labels from the
range images to the 3D point cloud (Fig. 5).

The next step is object separation within the change regions of the PRMB

cloud, which is performed by our efficient two-level grid based clustering method
introduced in [1]. This process is implemented using a 2D cell map: at super cell
level, a region growing algorithm is executed, where empty cells act as stopping
criterion. This step may merge several nearby entities into the same object.
Therefore, we apply a refinement step at the sub-cell level: a super-level object
is divided into different parts, if we find a separator line composed of low density
sub-cells at the fine resolution.

The above process provides as output a set of blobs, where some of them
might represent further objects of interest ignored by RTDOD, while the other
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ones belong to a general street clutter class, which is currently out of our focus.
For the final decision, we trained a Support Vector Machine with a Radial Basis
Function (RBF) [4] kernel, which classifies the blobs based on the set of features
listed in Table 1. After classification, the blobs labeled as vehicles or pedestrians
are added to the object list of the detector.

Table 1. Feature vector used for SVM classification

No. Description Dim.

f1 Number of points included in the object 1

f2 The minimum distance to the object center 3

f3 3D covariance matrix of the object points 6

f4 Principial component of the object 3

f5 3D bounding box sizes (height, width, depth) 3

3 Evaluation

We have evaluated the proposed technique on real dynamic point cloud sequences
recorded by a car mounted Velodyne HDL 64-E Lidar scanner, on roads with
heavy traffic in Budapest, Hungary. The High Density Localization (HDL) map
was prepared in our laboratory from high resolution point clouds of a Riegl VMX-
450 MLS system, provided by the city’s road management company (Budapest
Közút Zrt). During HDL map generation, the raw MLS data also undergo a
semantic segmentation step [7] for ghost object removal and road detection. As
state-of-the-art RTDOD method, we used the PointPillars technique [5] which
was trained on a mixed dataset composed of the KITTI [3] benchmark, and
additional annotated samples from our Budapest data [1].

Qualitative results are shown in Fig. 6 and 7. Figure 6 displays a large scene
where the proposed model provides us a comprehensive scene interpretation,
although several vehicles (both cars and trams) and pedestrians are jointly
present. Figure 7 demonstrates the improvements of using our map-based app-
roach versus the pure RTDOD technique. At the top (Fig. 7(a)(b)), we find two
false vehicle predictions which are successfully removed based on the background
cloud, while at the bottom (Fig. 7(c)(d)), we illustrate that even in a crowded
scene with multiple pedestrians we can find new previously undetected people
with our change detection based approach.

For quantitative evaluation, we have selected five heavy traffic road sections
recorded in the city center of Budapest, near Deák square (Fig. 6), Múzeum
boulevard, Fővám square, Károly boulevard and Kálvin square, respectively.
From each location, the evaluation dataset contains 50 different frames; and in
average 5 vehicles and 16 pedestrians are present in a single time frame. The
numerical performance results compared to the original PointPillars [5] output
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Fig. 6. Result of object detection by Deák square, Budapest

Table 2. Quantitative results versus PointPillars [5]

Method Class Precision Recall F-score

Only RTDOD [5] Pedestrian 95,62% 67,42% 79,08%

Vehicle 75,19% 88,19% 81,11%

All 88,75% 72,22% 79,64%

RTDOD with the proposed method Pedestrian 94,60% 84,43% 87,52%

Vehicle 95,02% 88,19% 91,38%

All 94,71% 81,43% 87,57%

are shown in Table 2. With the proposed false-positive removal step (Sect. 2.2),
we obtained a 19, 83% precision improvement for the vehicle class, by eliminating
many false vehicle-like regions of the RMB Lidar measurements. As result of the
change detection based blob classification step (Sect. 2.3), we could significantly
improve the recall rate of pedestrians with 17.01%. In general for both classes,
we observed an overall improvement of 7, 93% in F -score, versus relying purely
on the state-of-the-art RTDOD approach.
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(a) RTDOD output vehicles (b) Result of false vehicle removal

(c) RTDOD output pedestrians (d) Added pedestrians (green boxes)

Fig. 7. Qualitative demonstration of improvements by using the proposed model (right)
versus RTDOD (left) (Color figure online)

The algorithms were tested on a desktop computer with CPU implementa-
tion, where the average computation time was 100 ms per frame for the regis-
tration and 80 ms per frame for the change detection step, respectively.

4 Conclusion and Future Work

We introduced a new method to exploit High Definition Localization (HDL)
maps for performance improvement of state-of-the-art Lidar based dynamic
object detection algorithms. We have shown that the proposed approach can
efficiently balance the precision and recall values with significant overall improve-
ment for both vehicles and pedestrians. Most of the remaining detection errors
were related to pedestrians too close to each other, and vehicles fare away where
the point cloud is much sparser, which problems may be reduced by adopting
object tracking in the future.



402 Ö. Zováthi et al.

Acknowledgements. This work was supported by the National Research, Develop-
ment and Innovation Fund under grant number K-120233, by the European Union and
the Hungarian Government from the projects Thematic Fundamental Research Col-
laborations Grounding Innovation in Informatics and Infocommunications under grant
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