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Abstract. Our daily interaction with the soundscape is in flux, and
complex natural sound combinations have shown to have adverse impli-
cations on user experience. A computational approach to stabilise the
sonic environment, tailored to a user’s current affective state may prove
beneficial in a variety of scenarios, including workplace efficiency, and
exercise. Herein, we present initial perception test results, from a rudi-
mentary approach for soundscape augmentation utilising chromatic fea-
ture sonification. Results show that arousal and valance dimensions of
emotion can be altered through augmentation of three classes of natu-
ral soundscape, namely ‘mechanical’, ‘nature’, and ‘human’. Proceeding
this we outline a possible approach for an affective audio-based recogni-
tion and generation system, in which users (either individually or as a
group within a specific environment) are provided with an augmentation
of their current soundscape, as a means of improving wellbeing.

Keywords: Audio generation · Wellbeing · Machine learning · Human
Computer Interaction

1 Introduction

The soundscape is the combined audio components being heard at a given
moment in time [52]. Involuntarily, we are continually interacting with the sound-
scape, as – unlike visual interaction – we cannot ‘close our ears’ to stop an
audible input. With this in mind, uncontrolled audio environments, have shown
to impact individual wellbeing, substantially heightening stress, and causing a
long-term decline in workplace efficiency [31].

In regards to these topics, there are many more research efforts occurring in
the fields of affective acoustic ecology [15], and general sound recognition [12],
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with smart-device applications for aiding sleep, and meditative states now being
much more common1. However, such apps do not yet personalise the audio in
real-time manner.

Herein, we present background and initial findings to support the devel-
opment of a system which does create a personalised interaction with sound.
Showing through previous studies that multiple modalities can be used non-
intrusively to gain an understanding of a user’s current state [3], and that deep
generative approaches show the ability to generate affective data [4].

This contribution is structured as follows; first we conduct a brief literature
review of related work under the topics of sound and stress reduction, Human
Computer Interaction (HCI) and affective audio, and computational audio gen-
eration approaches. We then perform a preliminary perception study, based on
a rudimentary approach for soundscape augmentation, and discuss the results.
Proceeding this we propose a state-of-the-art method for the application of affec-
tive soundscape audio augmentation. Finally, we conclude our results, and sum-
maries our outlook for the next steps of this research area.

2 Related Work

2.1 Sound for Wellbeing

When discussing sound as a taxonomy, this extends across many branches, from
environmental sounds to speech. Within the field of sound healing, there are
many sound sources including; acoustic and synthetic, which show to have a
variety of wellbeing benefits including stress reduction [50]. Previous studies
have suggested that excessive sound levels can have an effect on the hospital
working environment, having long-term implications for nursing staff [40].

Acoustic-based tools are used commonly by healing practitioners, e. g. tun-
ing forks at 128 Hz for relieving tissue-based abnormalities [19], or ritual com-
munal drumming, which has shown to improve wellbeing in young people [59].
Another sound-based practice aimed at the reduction of stress is Transcenden-
tal Meditation (TM) [27], partially utilising the spoken mantra2. Additionally,
through the integration of both sound and breathing techniques, TM has shown
to both physiologically and psychologically reduce stress, quantitatively show-
ing a decreased average theta (θ) when monitoring via Electroencephalography
(EEG) and increased alpha (α) [18].

As well as such vocal mantras, practitioners of TM integrate a series of acous-
tic instruments such as the Tibetan or crystal singing bowls. These bowls have a
long history of use in mediation [24] and are played with a continuous oscillation
around the circumference of the bowl, resulting in a full overtone sound which

1 Popular applications currently available for the purpose of aiding sleep and reducing
states of arousal include: Headspace, Noisli, Pzizz, Slumber, Calm, Sleep Cycle, etc.

2 The spoken mantra, through the repetition of phrases such as ‘has no meaning’,
would be personal to the individual and is selected due to the resonant and harmon-
ising ability within the meditator.



Interaction with the Soundscape 231

sustains a prolonged resonation. The Tibetan singing bowl has been applied to
many stress reducing scenarios – including as an aid to school teachers [9] – and
has shown to increase feelings of spirituality, in turn relieving symptoms of stress
including tension [20]. The Tibetan Singing bowl has also been integrated in a
variety of mHealth stress reducing targeted apps [22].

In regards to synthetic-based sound tools, there have been a variety of stud-
ies which have shown stress reduction results, in various environments [31]. Syn-
thetic music within a hospital has shown to have a strong impact on a patient’s
experience [61]. Similarly, the acoustic environment of a workplace benefits from
artificial acoustic design [30], and through integration of synthetically designed
audio environments the workplace experience also improves [25]. Synthetic audio
generation has also been investigated in the realm of therapeutic applications,
specifically exploring how synthetic sound might influence listeners experiences
in psychological areas, such as creativity or self-perception [44].

There is also much research focused on how listeners perceive music and how
emotions are brought on by music or what psychological mechanisms causes
these emotions [26]. For example, music is often used to enhance the emotional
impact of movies [7]. Unlike most other stimuli that evoke emotions, such as
encounters with dangerous animals, threats or facial expressions, music has no
obvious, intrinsic survival value [34]. Blood et al. presented a novel approach to
the study of music and emotion, using positron emission tomography to measure
cerebral correlates of affective and perceptual responses to musical dissonance [8].

2.2 HCI and the Use of Audio for Wellbeing Applications

Over the past two decades, researchers have increasingly realised the importance
of recognising the emotional aspects which occur during human-computer inter-
action (HCI) [11]. For example, in many HCI scenarios a computer aided tutor-
ing system is highly desirable and a response based on emotional or cognitive
state of the human user may improve user experience [55]. During interaction
humans provide emotion-based cues from physical gesture, facial expressions and
also the voice [23]. Nowadays affective recognition systems are mainly developed
through 2 key qualitative steps: understanding emotional response, adapting the
development based on user experience.

One method for non-intrusively understanding a user’s experience is through
the voice, and there is an abundance of HCI applications specifically in the
realm speech recognition, e. g. voice dialling [43]. Automated speech recognition
systems are also integrated in language learning paradigms to improve pronun-
ciation [51]. As well as his Voice-based user interfaces are becoming ubiquitously
available, being embedded both into everyday mobility via smartphones, and
into the life of the home via assistant devices [46].

As well as the voice, there has been an increased interest in the impact
of in-game audio. Paterson et al. developed an audio design with a complex
and immersive soundscape, which is emotionally engaging and supports the
game narrative [45]. Similarly, Roden et al. proposed a framework for interactive
narrative-based audio only adventure games [47], and Sliwinski et al. explored
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the development of an audio-visual game to induce wellbeing and mindfulness
[56] Similarly, Rogers et al. discussed games which are considered relaxing and
encourages research directions for exploring the role of game audio specifically,
to improve player wellbeing, via stress reduction [48].

Thus, there is much research exploring the potential use of audio for wellbe-
ing. Roger et al. identified the effect of music in games as a preventative measure
against stress in everyday life by facilitation of relaxation [48]. In relation to
health specifically, Willianmson et al. explored first-time mothers’ breast-feeding
difficulties through the use of audio-diaries [58], and Mirelman used audio-
biofeedback for improving Parkinson’s patients balance [38]. Additionally, Dijk
et al. presented the concept of auditory–tactile stimulation for health and well-
being through carefully selected audio–tactile stimuli causing a person’s bodily,
mental and emotional state to be altered [13].

2.3 Audio Generation

Although the scope of this study is focused largely on the generation of complex
soundscapes, audio generation can refer to an array of audio-based fields, from
speech synthesis to instrument modelling. In this regard, many of the methods
mentioned will be found across all such domains, but are not limited to them.
Conventional computational methods for audio generation would include a vari-
ety of digital signal processing approaches, such as Hidden Markov Models [53]
or cellular automata [10]. These methods are still applied today, however the
current state-of-the-art for the term audio generation would refer to a division
within machine learning in which systems are largely data-driven [57].

An earlier deep approach for generating audio was Deep Minds WaveNet [57].
WaveNet is a progressive auto regressive generator, and is an audio adaptation of
the PixelCNN [42], modelling features of raw audio which are represented as 8-
bit audio files, with 256 possible values. During the training process, the model
predicts values for waveforms (audio signals with a temporal resolution of at
least 16 kHz samples per second) at each step comparing them to the true value,
using cross-entropy as a loss function. In this way, the WaveNet architecture is
applying a multi-class classification of 256-classes [35]. As a means of decreasing
the computational time expense, that may be associated to such a classifica-
tion task, WaveNet applies the method of stacked dilated casual convolutions,
reducing the receptive field without any substantial loss in the resolution [60].

Although WaveNet has been showcased in the speech synthesis domain, the
applications are broad. The original architecture showed promise for high fidelity
in music with comparable human perception results [57]. Recently, an adaptation
of the WaveNet framework is the NSynth (Neural Synthesizer) auto encoder
specifically tailored towards synthesis of musical notes [16].

Another neural network approach, which was motivated by WaveNet , is Sam-
pleRNN [37]. This model is an unconditional end-to-end neural audio generation
architecture that uses auto-regressive multilayer perceptron’s and a Recurrent
Neural Network (RNN), in a hierarchical structure, to capture temporal variance
over large audio signal durations. Despite showing competitive human perception
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results against WaveNet , the SampleRNN suffers from unrealistic computation
time and the perception results are not shown to be significant, rather tenden-
cies [37]. However, the advantages of time dependent RNNs would be suitable
for soundscape generation offline.

First proposed by Goodfellow et al. in 2014 [21], Generative Adversarial Net-
works (GANs) have found recent popularity within the data generation domain
and are arguably becoming a fundamental approach for this type of task. Essen-
tially, generating new samples of audio based on raw audio signals, GANs are a
pair of unsupervised networks which compete against each other, generating new
instances of data until the discriminator, can no longer reliably tell a difference.

As well as being applied for the task of unsupervised representation learn-
ing from audio spectrograms [1], GANs aimed specifically for use with audio
generation were first introduced in 2018, with WaveGANs and SpecGANS [14].
Approaches typically applied in the vision domain, were explored by extract-
ing spectrogram images and comparing the networks ability to generate audible
spectrogram instances. This was followed by the Conditional WaveGAN [33],
which specifically focused on waveform generation through a concatenation based
conditioning approach. Despite WaveGAN showing strong results for what is
described as human audible samples, post-processing for noise reduction and
appropriate optimisation due to instability were required.

3 First Step Soundscape Augmentation Perception Study

To evaluate the efficacy of augmentation of the original soundscape to alter
emotional perception, we conducted a short listening test with 10 individuals3.
Listeners evaluated arousal and valence dimensions of emotion [49], for each
audio file (listening in a randomised order, twice before giving their score), on
a 5-point Likert scale (e. g. 0 = Low arousal/valence, 4 = High arousal/valence).
All listeners used headphones for this study.

3.1 Preliminary Acoustic Analysis

As we have mentioned previously in Sect. 2.1, the singing bowl is a common
acoustic instrument used by healing practitioner (including in Transcendental
Meditation) for improving states of wellbeing. With this in mind, we have cho-
sen to use its most similar synthetic signal – a Sine wave – for this first-step
augmentation approach. A sine wave (also known as a sinusoid) is a continuous
periodic oscillation. As a function of time (t), a sine wave can be expressed as:

y(t) = Asin(2πft + ϕ)

where in this case A refers to amplitude from zero, f the frequency, i. e. the
number of oscillations (cycles) occur over t, and ϕ is phase i. e. when the cycle
of oscillation is t = 0.

3 5 Female and 5 Male. Nationalities: 2 British, 4 Chinese, 4 German.
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Fig. 1. Spectrogram representation of 30 s from a Tibetan Singing bowl recording (left),
and a generated pure sine tone (right). Although similar in fundamental frequency, it
should be noted, that overtones (as well as reverberation) which can be observed in
the spectrogram representation of the singing bowl, may play a strong part in altering
a listener’s affective state.

We performed an initial acoustic analysis of multiple recordings from the
singing bowl, taken from the Acoustics Sounds for Wellbeing Dataset [6], and
compared this sine waves of matching frequency. Findings show that character-
istics of the audio are similar (cf. Fig. 1, for spectrogram representation). For
example, both are a continuous single frequency oscillation, and when monitor-
ing pitch continuously the standard deviation came to 24.9 Hz, and 23.4 Hz for
Tibetan and Sine, respectively. However, it is worth noting that aspects from
the singing bowl such as resonance (and even human intervention) may play a
deeper part in the improvement of wellbeing, and this is not replicated intrinsi-
cally through a single sine wave generator.

3.2 Audio Generation Approach

To summaries the rudimentary audio generation approach applied for this initial
study, we utilised the Emo Soundscapes Database [17], and extracted Chroma
features from 56 audio files (28 with lower rating of arousal and valence, and 28
with higher ratings of arousal and valence). Audio files were within the classes
of ‘Mechanical’, ‘Human’, and ‘Nature’, and we then, sonified the corresponding
chromatic notes (A-G#) as sine waves, overlaying this onto the original sound-
scapes.

To achieve this, we developed the first iteration of wellSounds4 In this
‘chromatic approach’ we extract a 12 dimensional chromatic feature set from each
trimmed (7 sec) audio file (prior to normalisation). At a given time-step based
on the duration of the audio file. Features are then assigned to the corresponding
Sine wave frequency (e. g. 65.4 Hz = C2, and 110.0 Hz = A2), and combined to
make polyphonic (naive) chord combinations. The segments of audio are then
concatenated to make a continuous ‘augmentation’ of the original audio file. The
4 To apply the methods used in this study to new audio of fixed length visit the
wellSounds Github: https://github.com/wellSounds/chromatic-approach.

https://github.com/wellSounds/chromatic-approach
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Fig. 2. Spectrogram representation of original audio and augmented audio. For each
of the 3 classes – Mechanical, Human, and Nature. Through post processing of the
original soundscapes it can be seen that the energy of noise is also reduced in the
augmented soundscape, particularly prominent in the nature example.

resulting synthetic sine wave augmentation is then mixed onto the original audio
file (proceeding a number of post-processing steps including equalisation and
compression). A spectrogram representation of the WellSounds augmentation
can be seen in Fig. 25.

3.3 Perception Study Results

Results from the study (based on the 3 classes), are shown in Table 1. To evaluate
the significant (or not) difference between soundscape augmentation and original
soundscape, we conduct a two-tailed T-test, rejecting the null-hypothesis at a
significance level of p < 0.05 and below.

When observing the results from a class basis (cf. left of Table 1), of note we
see there is a change in emotion perception across all classes, and particularly for
the ‘Nature’ class a significant difference is shown between the augmented and
original data types (p = 0.001, and 0.04 for valence and arousal, respectively).
Although not necessarily a positive affect for the augmented soundscapes, this
does show promise for the ability of such an augmentation approach to alter
states of wellbeing. Additionally, from Fig. 3, we see that the standard deviation
between listeners is quite wide, and therefore further studies with a larger group
of listeners may give a more reliable trend.

5 A selection of original and augmented soundscapes can be heard at the following
link http://bit.ly/2T7uu4P.

http://bit.ly/2T7uu4P
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Table 1. Results from perception study. Evaluating the perception of 10 listeners on
a Likert scale of 0–4 for (V)alence and (A)rousal of the (Ori)ginal and (Aug)mented
version of the soundscape. In the left table, results are presented based on the 3 sound-
scape classes (Mechanical, Nature, Human). In the right table, results are grouped by
original ratings of (high) a (low) emotional dimensions of valence and arousal from the
EmoSoundscape DB. Reporting Mean (µ) and Standard Deviation (±) across all listen-
ers. * indicates significant difference, between (Ori)ginal soundscape, and (Aug)mented.

Mechanical Nature Human
V A V A V A

Ori (µ) 1.74 1.92 2.44 2.32 2.16 2.08
Aug (µ) 1.48* 2.05 1.88* 1.98* 1.55* 2.22
Ori (±) 0.93 1.11 1.17 1.09 0.92 1.03
Aug (±) 0.82 1.03 1.04 1.10 0.95 1.02

High Low
V A V A

Ori (µ) 2.44 2.51 1.80 1.71
Aug (µ) 1.74 2.34 1.51 1.85
Ori (±) 1.18 1.04 0.81 0.99
Aug (±) 1.04 1.06 0.85 0.99

When looking at Table 1 (right) – where audio files have been grouped
based on their original Emo Soundscapes DB emotion rating (i. e. High
valence/arousal, and Low valence/arousal) – we see that although consistently
different to the original source, High emotion does remain to higher than low
emotional audio groups. Suggesting that trends in the audio files which are inher-
ent to the emotion are left unchanged. However, this assumption requires further
study.

Given this naive approach, further adaptation and audio choices based on
emotional content may see further improvements in affective change. It is also
worth noting that the audio applied here is extremely rudimentary, and fur-
ther digital signal processing techniques, along with the use of more typically
‘pleasing’ audio may would be of value to explore.

4 A Deeper Approach for Soundscape Augmentation

Based on our initial findings, in this section we briefly outline a methodology for
a soundscape augmentation, which is based on an individual’s current state, and
would be applied in further studies by the authors on this topic. An overview of
this system is given in Fig. 3. Predominately an audio-based approach, we aim to
utilise methodologies from the field of Speech Emotion Recognition (SER) [54],
as well Generative Voice Conversion [28]. First in this section, we outline the
feature extraction method for understanding and individuals state. Following
this an offline system, in which the user would define a duration of listening,
in a quiet space is defined. We also propose an online system, which in real-
time ‘augments’ the natural soundscape, through sonification of audio features,
generated based on emotional understanding of the user.
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Fig. 3. Overview of the proposed affective soundscape generation system for wellbeing,
via multimodal monitoring.

4.1 Feature Extraction and Emotional Prediction

From the user’s input, a fusion of features known to the affective computing
community (e. g., MFCCs, and spectral) [29], can be extracted from multiple
modes (including the voice, as well as the current soundscape). Of note, in recent
works we have found a correlation between biological signals, including hormone-
based cortisol and speech features, during a stressful situation [3], suggesting that
handcrafted features may be useful in this context to gain an understanding
of a user state of lower wellbeing. As well this, if appropriate based on user-
device, biological feature can also be utilised for understanding states of lower
wellbeing [2].

Utilising deep, pre-trained neural networks, the tailored feature sets can then
be classified for their emotionality (e. g., level of arousal and valence) [32]. The
resulting, prediction are then used to define the current state of a user, as a
condition for audio generation.

4.2 Offline Audio Generation

For the offline generation, perhaps in the scenario where a listener aims to reduce
their affective state for short-term period, a pre-existing synthetic emotional
source could be used. In this case, a dataset of synthetic audio could be applied,
such as the richly annotated EmoSynth database [5]. From this, one-minute
emotional samples can be created based on their emotional values; typically,
this equates to aspects in audio such as, high arousal being equal to higher pitch
and low arousal being equal lower pitch, with valence being a somewhat more
complex aspect of emotion in terms of acoustic representation. As a means of
obtaining varied (i. e. novel for each user interaction) audio outputs for each
user, with more fine-grained differences, a generative adversarial strategy can
be applied, such as ‘StarGAN’ [28]. In this scenario, a network can be trained
on a selection of emotional classes. Following this depending on the given emo-
tional prediction (or target) of the individuals state, a synthetic soundscape (the
source) is then generated based on the target (user defined) emotion,e. g. if the
user is in a state of high arousal, a low aroused soundscape is generated, for a
(user-defined) given period of listening.
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4.3 Online Generation Including Feature Sonification

For longer interaction periods, possibly even continual (i. e. for implementation
in a chaotic working environment), we propose a method in which the offline
audio generation is combined with a sonification of the features from the natural
ongoing soundscape. To summarise this process, features such as, chromatic,
energy, and F0 can be extracted from the incoming soundscape signal, and
reasoning be applied to sonify the Chroma and pitch-based features based on the
energy of the signal at a given time-point. As well as this, the natural rhythm of
the soundscape can be extracted and as an option, then applied to the resulting
real-time generation. Rhythm is included, as a consistent rhythm has shown
to have positive effects on wellbeing, producing a calming affect [36]. These
two sonification approaches (feature-based and rhythm) are then applied to the
offline generation process previously described, and the user is able to balance
the level for each.

5 Conclusion and Outlook

In this contribution, we made preliminary user studies on the effect of augment-
ing natural soundscapes, as well as proposing a ‘next-step’ methodology for a
personalised version of such a system. A series of perception studies [39] including
those by the authors [5], support the initial assumption that specific combina-
tions of audio can alter states of individual wellbeing - and initial results in
this contribution also show similar trends. Thus, these findings support further
development of the work described herein.

When monitoring states of poor wellbeing, there are many emotional states
linked to this, prior work by the authors has focused on public-facing speech, as a
marker of stress [3]. Findings have shown that through the use of a combination
of conventional acoustic features, and machine learning algorithms, biological
signals including skin conductance, blood volume pressure, and cortisol can be
predicted during such states of lower wellbeing. Based on this, it would be of
great interest to approach the development of a multimodal system, however
with audio monitoring being non-intrusive and lower in resources, it may alone
be the optimal modality.

In regards to audio generation, a deep auto regressive generative model such
as WaveNet [41] has shown promise for generating affective data [4], and through
the use of a generative adversarial network, the authors are currently experiment-
ing with emotional data in a conversion paradigm, i.e., from one emotion to the
other, e. g., happy to sad. Integrating such a generation method here, may allow
for more variety in generation, however a naive training approach based on single
emotions does also show promise for the desired outcome.

Acknowledgements. This work is funded by the Bavarian State Ministry of Educa-
tion, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).
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