
Anne Remke
Valerio Schiavoni (Eds.)

LN
CS

 1
21

35

20th IFIP WG 6.1 International Conference, DAIS 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020, Proceedings

Distributed Applications
and Interoperable Systems

Lecture Notes in Computer Science 12135

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Anne Remke • Valerio Schiavoni (Eds.)

Distributed Applications
and Interoperable Systems
20th IFIP WG 6.1 International Conference, DAIS 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020
Proceedings

123

Editors
Anne Remke
University of Münster
Münster, Germany

Valerio Schiavoni
University of Neuchâtel
Neuchâtel, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50322-2 ISBN 978-3-030-50323-9 (eBook)
https://doi.org/10.1007/978-3-030-50323-9

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© IFIP International Federation for Information Processing 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1493-6603
https://doi.org/10.1007/978-3-030-50323-9

Foreword

The 15th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2020) took place during June 15–19, 2020. It was organized by the
Department of Computer Science at the University of Malta, but was held online due to
the abnormal circumstances worldwide affecting physical travel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

• The IFIP WG6.1 22nd International Conference on Coordination Models and
Languages (COORDINATION 2020)

• The IFIP WG6.1 19th International Conference on Distributed Applications and
Interoperable Systems (DAIS 2020)

• The IFIP WG6.1 40th International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems (FORTE 2020)

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, that gathered attendants from
the three conferences. These included joint invited speaker sessions and a joint session
for the best papers from the respective three conferences.

Associated with the federated event, two satellite events took place:

• The 13th International Workshop on Interaction and Concurrency Experience
(ICE 2020)

• The First International Workshop on Foundations of Consensus and Distributed
Ledgers (FOCODILE 2020)

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2020 was only possible thanks to the
dedicated work of the Organizing Committee, including Davide Basile and Francisco
“Kiko” Fernández Reyes (publicity chairs), Antonis Achilleos, Duncan Paul Attard,
and Ornela Dardha (workshop chairs), Lucienne Bugeja (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing framework, and the University of Malta for providing the support and
infrastructure to host the event.

June 2020 Adrian Francalanza

Preface

This volume contains the papers presented at the 20th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS 2020), sponsored by the
IFIP (International Federation for Information Processing) and organized by the IFIP
WG6.1. The DAIS conference series addresses all practical and conceptual aspects of
distributed applications, including their design, modeling, implementation, and oper-
ation, the supporting middleware, appropriate software engineering methodologies and
tools, as well as experimental studies and applications.

DAIS 2020 was meant to be held during June 15–19, 2020, in Valletta, Malta, as
part of DisCoTec, the 15th International Federated Conference on Distributed Com-
puting Techniques. However, due to the COVID-19 pandemic, the organizers decided
to turn the conference into a virtual event to be held completely online.

There were 30 initial abstract registrations for DAIS, which were then followed by
17 full papers. Each submission was reviewed by up to three Program Committee
(PC) members. The review process included an in-depth discussion phase, during
which the merits of all papers were discussed by the PC. The committee decided to
accept ten full papers, one short paper, and one invited paper.

Accepted papers address challenges in multiple application areas, including system
support for machine learning, security and privacy issues, experimental reproducibility
and fault-tolerance, as well novel networking approaches for future network genera-
tions. Researchers continue the trend of focusing on trusted execution environments,
for instance in the case of database systems. Instead, we notice fewer research efforts
devoted to blockchain topics.

The virtual conference, especially during these last months full of unpredictable
events, was made possible by the work and cooperation of many people working in
several committees and organizations, all of which are listed in these proceedings. In
particular, we are grateful to the Program Committee members for their commitment
and thorough reviews and for their active participation in the discussion phase, and all
the external reviewers for their help in evaluating submissions. Finally, we also
thankful to the DisCoTec general chair, Adriano Francalanza, and the DAIS Steering
Committee chair, Rui Oliveira, for their constant availability, support, and guidance.

June 2020 Anne Remke
Valerio Schiavoni

Organization

General Chair

Adrian Francalanza University of Malta, Malta

Program Committee Chairs

Anne Remke University of Münster, Germany
Valerio Schiavoni University of Neuchâtel, Switzerland

Steering Committee

Rocco De Nicola IMT Lucca, Italy
Pascal Felber University of Neuchâtel, Switzerland
Kurt Geihs University of Kasel, Germany
Alberto Lluch Lafuente DTU, Denmark
Kostas Magoutis ICS-FORTH, Greece
Elie Najm (Chair) Télécom ParisTech, France
Manuel Núñez Universidad Complutense de Madrid, Spain
Rui Oliveira University of Minho, Portugal
Jean-Bernard Stefani Inria Grenoble, France
Gianluigi Zavattaro University of Bologna, Italy

Program Committee

Pierre-Louis Aublin Keio University, Japan
Sonia Ben Mokhtar LIRIS-CNRS, France
Sara Bouchenak INSA, France
Antoine Boutet INSA, France
Silvia Bonomi Università degli Studi di Roma La Sapienza, Italy
Damiano Di

Francesco Maesa
University of Cambridge, UK

Davide Frey Inria, France
Paula Herber University of Münster, Germany
Mark Jelasity University of Szeged, Hungary
Evangelia Kalyvianaki University of Cambridge, UK
Vana Kalogeraki Athens University of Economics and Business, Greece
Rüdiger Kapitza Technical University of Braunschweig, Germany
João Leitão Universidade Nova de Lisboa, Portugal
Daniel Lucani Aarhus University, Denmark
Miguel Matos INESC-ID, University of Lisboa, Portugal
Kostas Magoutis University of Ioannina, Greece

Claudio Antares Mezzina University of Urbino, Italy
Alberto Montresor University of Trento, Italy
Daniel OKeeffe Royal Holloway University of London, UK
Emanuel Onica Alexandru Ioan Cuza University of Iasi, Romania
Marta Patino Universidad Politecnica de Madrid, Spain
José Orlando Pereira Universidade do Minho, INESC-TEC, Portugal
Hans P. Reiser University of Passau, Germany
Etienne Riviére École Polytechnique de Louvain, Belgium
Romain Rouvoy University of Lille 1, France
Pierre Sutra Télécom SudParis, France
Spyros Voulgaris Athens University of Economics and Business, Greece

Additional Reviewers

Isabelly Rocha University of Neuchâtel, Switzerland
Philipp Eichhammer University of Passau, Germany
Christian Berger University of Passau, Germany
Vania Marangozova-Martin IMAG, France

DisCoTec Organizing Committee

Adrian Francalanza
(General Chair)

University of Malta, Malta

Davide Basile
(Publicity Chair)

ISTI-CNR, Italy

Kiko Fernández-Reyes
(Publicity Chair)

Uppsala University, Sweden

Antonis Achilleos
(Workshops Chair)

Reykjavik University, Iceland

Duncan Attard
(Workshops Chair)

University of Malta, Malta

Ornela Dardha
(Workshops Chair)

University of Glasgow, UK

Lucienne Bugeja (Logistics) University of Malta, Malta

x Organization

Contents

Privacy and Security

On the Trade-Offs of Combining Multiple Secure Processing Primitives
for Data Analytics . 3

Hugo Carvalho, Daniel Cruz, Rogério Pontes, João Paulo,
and Rui Oliveira

Capturing Privacy-Preserving User Contexts with INDOORHASH 21
Lakhdar Meftah, Romain Rouvoy, and Isabelle Chrisment

Cloud and Systems

Towards Hypervisor Support for Enhancing the Performance
of Virtual Machine Introspection . 41

Benjamin Taubmann and Hans P. Reiser

Fed-DIC: Diagonally Interleaved Coding in a Federated
Cloud Environment . 55

Giannis Tzouros and Vana Kalogeraki

TailX: Scheduling Heterogeneous Multiget Queries to Improve
Tail Latencies in Key-Value Stores . 73

Vikas Jaiman, Sonia Ben Mokhtar, and Etienne Rivière

Fault-Tolerance and Reproducibility

Building a Polyglot Data Access Layer for a Low-Code Application
Development Platform (Experience Report) . 95

Ana Nunes Alonso, João Abreu, David Nunes, André Vieira,
Luiz Santos, Tércio Soares, and José Pereira

A Comparison of Message Exchange Patterns in BFT Protocols
(Experience Report). 104

Fábio Silva, Ana Alonso, José Pereira, and Rui Oliveira

Kollaps/Thunderstorm: Reproducible Evaluation of Distributed Systems:
Tutorial Paper. 121

Miguel Matos

Machine Learning for Systems

Self-tunable DBMS Replication with Reinforcement Learning 131
Luís Ferreira, Fábio Coelho, and José Pereira

DroidAutoML: A Microservice Architecture to Automate the Evaluation
of Android Machine Learning Detection Systems . 148

Yérom-David Bromberg and Louison Gitzinger

Distributed Algorithms

A Resource Usage Efficient Distributed Allocation Algorithm for 5G
Service Function Chains . 169

Guillaume Fraysse, Jonathan Lejeune, Julien Sopena, and Pierre Sens

A Self-stabilizing One-To-Many Node Disjoint Paths Routing Algorithm
in Star Networks . 186

Rachid Hadid and Vincent Villain

Author Index . 205

xii Contents

Privacy and Security

On the Trade-Offs of Combining Multiple
Secure Processing Primitives for Data

Analytics

Hugo Carvalho(B), Daniel Cruz, Rogério Pontes, João Paulo, and Rui Oliveira

INESC TEC and Universidade do Minho, Braga, Portugal
{hugo.a.carvalho,daniel.c.cruz,rogerio.a.pontes,

joao.t.paulo,rui.oliveira}@inesctec.pt

Abstract. Cloud Computing services for data analytics are increasingly
being sought by companies to extract value from large quantities of infor-
mation. However, processing data from individuals and companies in
third-party infrastructures raises several privacy concerns. To this end,
different secure analytics techniques and systems have recently emerged.
These initial proposals leverage specific cryptographic primitives lack-
ing generality and thus having their application restricted to particular
application scenarios. In this work, we contribute to this thriving body
of knowledge by combining two complementary approaches to process
sensitive data.

We present SafeSpark, a secure data analytics framework that enables
the combination of different cryptographic processing techniques with
hardware-based protected environments for privacy-preserving data stor-
age and processing. SafeSpark is modular and extensible therefore adapt-
ing to data analytics applications with different performance, security
and functionality requirements.

We have implemented a SafeSpark’s prototype based on Spark SQL
and Intel SGX hardware. It has been evaluated with the TPC-DS Bench-
mark under three scenarios using different cryptographic primitives and
secure hardware configurations. These scenarios provide a particular set
of security guarantees and yield distinct performance impact, with over-
heads ranging from as low as 10% to an acceptable 300% when compared
to an insecure vanilla deployment of Apache Spark.

Keywords: Data analytics · Privacy · Trusted hardware

1 Introduction

Data analytics plays a key role in generating high-quality information that
enables companies to optimize the quality of their business while presenting
several advantages such as making faster business decisions, predicting users

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-50323-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_1

4 H. Carvalho et al.

behaviours, elaborating better marketing plans, and improving relationships
with customers. As the amount of data to be analysed grows, companies tend
to resort to cloud services due to their high levels of reliability, flexibility, and
efficiency, as well as competitive costs. However, using cloud services to store
and process data increases the risk of unauthorized access to it, thus present-
ing serious issues to the users, given that some data may contain private or
sensitive information, such as personal e-mails, and medical or financial records.
The problem can arise internally, for instance when a system administrator man-
ages confidential data inappropriately [1], or externally through, for instance, the
exploitation of bugs in the cloud infrastructure [4,6,7]. Also, the existence of reg-
ulations such as the European General Data Protection Regulation (GDPR) [3]
stresses the need for a new set of security measures for sensitive data being stored
and processed at third-party services.

Current secure data analytics solutions aiming at overcoming the previous
challenges can be broadly divided into two groups. Applications in the first
one operate over encrypted data or protected data to be more generic. These
are based on cryptographic techniques such as deterministic [8,30] or homomor-
phic [24] encryption that allow doing different types of computations (e.g., equal-
ity, order, and arithmetic operations) over encrypted data. The second group of
solutions uses hardware-based protected environments or trusted hardware as it
is commonly known, such as Intel SGX [15] or Arm TrustZone [9], to process
data analysis with privacy and integrity guarantees. As expected, each approach
has its advantages and limitations as we will elaborate on below in Sect. 2.

With SafeSpark we combine, in a modular and extensible manner, both
approaches in a secure data analytics framework. To the best of our knowledge, it
is the first tool to do so. The contribution of this paper is threefold. We present a
modular and extensible framework capable of combining a growing set of crypto-
graphic data processing techniques with trusted hardware processing devices. We
have implemented a prototype that extends the Apache Spark framework with
secure operations using standard encryption, deterministic encryption, order-
preserving encryption techniques, and the Intel SGX technology while remaining
full Spark SQL compliant. And we thoroughly evaluate the prototype with the
TPC-DS Benchmark under three scenarios using different cryptographic primi-
tives and secure hardware configurations.

The remainder of the paper is organized as follows. Section 2 presents rele-
vant background and Sect. 3 reviews the state of the art for secure data analyt-
ics. Section 4 describes SafeSpark’s architecture and Sect. 5 details its prototype
implementation. Section 6 presents the experimental evaluation. Section 7 con-
cludes the paper.

2 Background

This section describes the cryptographic techniques we use and their security
guarantees as well as the Intel SGX technology.

On the Trade-Offs of Combining Multiple Secure Processing 5

2.1 Cryptographic Schemes

Current privacy-preserving solutions use different encryption techniques to
ensure data privacy [22,29].

STD is a symmetric encryption scheme that provides Indistinguishability
under Chosen-Plaintext Attack (IND-CPA) security which ensures that no infor-
mation is disclosed from ciphertexts [20]. This scheme has a strong security def-
inition but does not support any kind of computation over encrypted data. As
such, SafeSpark’s prototype uses STD to protect data that does not need to be
processed at the untrusted premises.

The DET scheme ensures that multiple encryption operations over the same
plaintext, and with the same encryption key, will result in the same ciphertext.
Therefore, this scheme leaks encrypted values that correspond to the same value
in plaintext, thus providing Indistinguishability under Distinct Chosen-Plaintext
Attacks (IND-DCPA) [30] security. Also, the DET scheme allows performing
equality comparisons over ciphertexts, for instance, it can be used to support
SQL queries such as GROUP BY, COUNT, or DISTINCT.

The OPE scheme allows comparing the order of two ciphertexts, which is
preserved from the original plaintexts [12]. With this scheme, range queries like
MAX, MIN, COUNT, ORDER BY and GROUP BY can be applied directly over
encrypted data. Since the OPE scheme preserves more properties from the orig-
inal plaintext data it also has weaker security guarantees - Indistinguishability
under Ordered Chosen-Plaintext Attack (IND-OCPA).

Other schemes, such as Paillier Encryption [24] or Secure Multi-Party Com-
putation [18] can also be used for building secure data processing systems. How-
ever, their performance impact is high thus affecting the practicality of the result-
ing solution [34]. Nevertheless, SafeSpark has a modular and extensible design
capable of supporting additional schemes such as these in the future.

2.2 Intel SGX

Intel SGX [15] is a trusted hardware solution contemplating protected execution
environments - called Enclaves - whose security relies on the processors’ instruc-
tions and a set of keys only accessible to the hardware. Enclaves have isolated
memory addresses with the assurance that no malicious external environment,
such as the operating system or hypervisor can compromise their security.

SGX splits an application into a trusted and an untrusted environment. When
a user wants to compute data using SGX, she starts by creating an Enclave,
which is placed in a trusted memory region. Then, when the user’s application
calls a trusted function (i.e., a function that runs within SGX Enclaves), the
execution of the application and the input data needed for that function, are
transferred to the enclave. Therefore, by exchanging encrypted data with the
enclave, and securely transmitting the corresponding encryption keys, applica-
tions can safely execute operations over the plaintext of sensitive data without
leaking information to the server where the operation is deployed [15].

6 H. Carvalho et al.

Enclaves also provide sealing capabilities that allow encrypting and authenti-
cating the data inside an enclave so that it can be written to persistent memory
without any other process having access to its contents. Also, SGX relies on
software attestation, which ensures that critical code is running within a trusted
enclave. One of the main advantages of SGX against its predecessors is its lower
Trusted Computing Base (TCB). This factor defines the set of components, such
as hardware, firmware, or software components that are considered critical to
system security. With SGX, TCB only includes the code that users decide to run
inside their enclave. Thus, SGX provides security guarantees for attacks from
malicious software running on the same computer.

2.3 Threat Model

SafeSpark considers a trusted and untrusted site. The Spark client resides on the
trusted site (e.g.: private infrastructure) and the Spark cluster is deployed on the
untrusted one (e.g.: public cloud). We assume a semi-honest, adaptive adversary
(internal attacker) with control over the untrusted site, with the exception of
the trusted hardware. The adversary observers every query, its access patterns
and can also replay queries. However, our model assumes that the adversary is
honest-but-curious and thus does not have the capability of modifying queries
nor their execution. The parameters and results of queries are encrypted with a
secret key only available to the client and enclaves.

3 Related Work

Current secure data analytics platforms fall into two broad approaches. One, like
the Monomi [33] system, resort to cryptographic schemes such as DET and OPE
to query sensitive data on untrusted domains. The other, relies on hardware-
based protected environments.

Monomi, in particular, splits the execution of complex queries between the
database server and the client. The untrusted server executes part of the query,
and when the remaining parts cannot be computed on the server or can be more
efficiently computed on the client-side, the encrypted data is sent to the client,
which decrypts it and performs the remaining parts of the query. Seabed [25] has
a similar approach with an architecture based on splitting the query execution
between the client and the server. This platform proposes two new cryptographic
schemes, ASHE and SPLASHE which allow executing arithmetic and aggrega-
tion operations directly over the cryptograms.

Contrarily, VC3 [31] and Opaque [35] follow a trusted hardware approach.
Namely, they use Intel SGX [16] to create secure enclaves where sensitive data
can be queried in plaintext without revealing private information. VC3 uses SGX
to perform secure MapReduce operations in the cloud, protecting code and sen-
sitive data from malicious attackers. Opaque is based on Apache Spark and adds
new operators that, in addition to ensuring the confidentiality and integrity of
the data, ensure that analytical processing is protected against inference attacks.

On the Trade-Offs of Combining Multiple Secure Processing 7

These additional security guarantees lead however to a high impact on perfor-
mance, with Opaque being up to 62 times slower than the original Spark.

Segarra et al. in [32] propose a secure processing system build on top of
Spark Streaming that uses Intel SGX to compute stream analytics over pub-
lic untrusted clouds. This solution offers security guarantees similar to those
proposed in Opaque without requiring changes to applications code.

Unlike previous work, this paper aims at exploring the combination of both
cryptographic and trusted hardware primitives for the Spark SQL engine. To the
best of our knowledge, this approach is still unexplored in the literature and, as
shown in the paper, provides novel trade-offs in terms of performance, security,
and functionality that better suit a wider range of data analytics applications.

4 Architecture

SafeSpark’s architecture is based on the Apache Spark platform [10], which cur-
rently does not support big data analytics with confidentiality guarantees. In this
section, we describe a novel modular and extensible architecture that supports
the simultaneous integration of cryptographic and trusted hardware primitives.

4.1 Apache Spark

Apache Spark is an open-source data analytics engine for large-scale distributed
and parallel data processing. Spark uses in-memory processing, which makes
it way faster than its predecessors, such as Apache Hadoop [19]. Our work is
based on Spark SQL, which is an upper-level library for structured data process-
ing. Spark SQL provides a programming abstraction, called DataFrames, which
presents a data table with rows and named columns, similar to a database table,
and on which one can perform traditional SQL queries [10].

Spark’s architecture, depicted by the white boxes in Fig. 1, consists of three
main components. The Driver Program is responsible for managing and schedul-
ing the queries submitted to the Spark cluster, while the Cluster Manager allo-
cates resources (e.g., CPU, RAM) to each query, dividing it into smaller tasks to
be processed by the Spark Workers. Spark proposes a distributed architecture
that scales horizontally. Namely, by launching Spark Workers on new servers,
the queries being processed by the Spark cluster can leverage the additional
computational resources of such servers.

Spark considers a Data Storage phase where information is uploaded to a
given data source (e.g., Apache HDFS). Stored data is then loaded into tabular
representation (in-memory DataFrames) that can be efficiently queried.

During the Data Processing phase, clients start by creating a SparkContext
object, that connects the program being executed (Driver Program) to the Spark
environment. Then, each client submits queries to the system through the Spark
SQL component, which generates an execution plan that is sent to the Cluster
Manager. The latter divides the execution plan into multiple tasks and assigns
each task to a subset of Spark Workers with available resources (e.g., CPU,

8 H. Carvalho et al.

RAM). When all the tasks are completed, the result is sent from the Spark
Workers to the Driver Program, which returns the output to the clients.

4.2 SafeSpark

SafeSpark extends Spark’s architecture [10] by integrating multiple secure pro-
cessing primitives that can be combined to offer different performance, secu-
rity and functionality trade-offs to data analytics applications. Figure 1 shows
the proposed architecture which contemplates four new components: SafeSpark
Worker, Handler, CryptoBox and SafeMapper.

Fig. 1. SafeSpark’s architecture

During the Data Storage phase, sensitive data is encrypted on the trusted
site before being uploaded to the untrusted Spark data source. For this, the
user must first specify in a configuration file how the data will be represented
in a tabular form. Then, for each data column, the user will specify the type of
cryptographic scheme (e.g. STD, DET, OPE) or trusted hardware technology
(e.g. Intel SGX) to be employed.

The SafeMapper module is responsible for parsing the information contained
in the configuration file and forwarding it to the SafeSpark Worker. The latter
will intercept the plaintext data being uploaded to the untrusted data source and
will encrypt each data column with the specified secure technique. The conver-
sion of plaintext to encrypted data is actually done by the Handler component,
which provides encode() and decode() methods for encrypting and decrypting
information, respectively. Moreover, the Handler uses modular entities, called
CryptoBoxes, each one corresponding to a different cryptographic technique or

On the Trade-Offs of Combining Multiple Secure Processing 9

trusted hardware technology. Each CryptoBox contains an API with methods
that allow generating a key, as well as methods to encrypt and decrypt data
using the respective CryptoBox key.

The SafeSpark Worker is present on both sites and has the goal of abstract-
ing the integration of cryptographic techniques and trusted hardware into the
system. In addition to the encode() and decode() methods, it also implements a
process() method that is used on the untrusted side to execute secure operations,
during the Data Processing phase. This method is essential to enable the exe-
cution of secure operations, such as sums or averages, at the trusted hardware
enclaves deployed on the untrusted premises.

The proposed architecture allows exploring different trade-offs between per-
formance, privacy, and functionalities through the combination of different secure
processing and storage primitives. Also, SafeSpark’s modular design aims at
easing the integration of new cryptographic algorithms and trusted hardware
technologies, such as ORE [13], into the platform.

4.3 Flow of Operations

To exemplify the flow of operations in our platform let us consider the use-case
of a company that wishes to store and query their employees’ information in a
third-party cloud service. The company’s database will have an Employees table
holding the Salary, Age, and Category of each employee (database columns).
These columns contain sensitive information so the company’s database admin-
istrators define a secure schema using SGX for the Salary, OPE for the Age and
DET for the Category.

Firstly, the database’s information must be uploaded to the corresponding
cloud service (➀). Given the sensitive nature of this data, the upload request is
intercepted by the SafeSpark Worker (➁) that initializes the SGX, OPE, and
DET CryptoBoxes specified in the configuration schema (➂), while using them
to encrypt the corresponding data columns (➃). The resulting encrypted data
columns (➄) are then uploaded into the untrusted data storage source (➅).

Note that for encrypting data with the SGX technology, we consider a sym-
metric cipher similar to the STD scheme. During SafeSpark’s bootstrap phase,
the client application, running on the trusted premises must generate this key
and exchange it with the enclave, through a secure channel, so that encrypted
data can be decrypted inside the secure enclave and the desired operations can
be done privately over plaintext data. This paper tackles the architectural chal-
lenges of integrating Intel SGX and other cryptographic primitives in Spark.
Thus, we do not focus on the protocols of secure channel establishment or
key exchange between clients and remote enclaves. Such challenges have been
addressed in [11,27], which SafeSpark can rely upon in a real-world instantiation
and that would not require any code changes at Spark’s core codebase.

After completing the database’s loading phase, clients can then query the
corresponding information. Let us consider a SQL query that averages employees’
salaries who are between 25 and 30 years and then groups the results by category.

10 H. Carvalho et al.

SELECT Category, avg(Salary)
FROM Employees
WHERE Age BETWEEN 25 AND 30
GROUP BY Category

By sending the query through the Spark Context (➊), the request is inter-
cepted by the SafeSpark Worker, which verifies the user-defined configuration
file (➋), checking whether it is necessary to change the query, in order to invoke
secure operators from CryptoBoxes (➌). Since stored values for the column Age
are encrypted with OPE, the SafeSpark Worker encrypts the values “25”and
“30” by resorting to the same OPE CryptoBox and key. Moreover, as the
Salary column is encrypted using SGX, the operation avg needs to be performed
within secure SGX enclaves. Therefore, SafeSpark provides a new operator that
allows computing the average within SGX enclaves, while the SafeSpark Worker
replaces the common operator avg by this new operator (AVG SGX).

Then, after protecting sensitive query arguments at the trusted premises,
the request is sent to the untrusted premises, namely to the Cluster Manager,
which dispatches the tasks to Spark Workers (➎). Since the GROUP BY and
BETWEEN operators internally perform equality and order comparison opera-
tions, and considering that Category and Age columns are encrypted with DET
and OPE schemes, Spark is able to execute the operation directly over cipher-
texts. However, the operation avg needs to be executed by the SafeSpark Workers
using the process() method of the CryptoBox SGX (➏). At the SGX enclave,
this method receives the input data to calculate avg and decrypts it with the
previously agreed key. Then it does the avg calculation in plaintext and encrypts
the result before sending it back to the untrusted Spark engine.

The query’s encrypted result is sent to the Spark Client (➐) and intercepted
by SparkWorker that, based on the SafeMapper component (➑), decrypts it
using the appropriate CryptoBox (➒). Lastly, the plaintext result is sent back
to the client (➓).

5 Implementation

SafeSpark’s prototype leverages the SafeMapper and CryptoBox components
used by SafeNoSQL [22]. Thereby, the STD and DET schemes were implemented
with an AES 128-bit key in CBC mode with and without a random initialization
vector, respectively, and by using the OpenSSL cryptographic library [5]. For the
OPE scheme, we follow the implementation proposed by Boldyreva et al., using
the OpenSSL and MPFR (Multiple-Precision Floating-Point) libraries [5,17].
On the other hand, since the SafeNoSQL platform does not consider the use of
SGX technology, we extended the library of CryptoBox components, in order to
support arithmetic and relational operations using SGX. Next, we describe the
implementation of the other SafeSpark components.

On the Trade-Offs of Combining Multiple Secure Processing 11

5.1 Data Storage

The conversion of plaintext data to encrypted one, during the data storage phase
(Fig. 1), is done by using Parquet files [26] as these provide the standard format
for Spark environments [14]. Parquet is a column-oriented data storage format
that provides optimizations that make it very efficient, particularly for analytical
processing scenarios. Our converter was implemented using the JAVA program-
ming language, and it provides encode and decode (i.e., encrypt and decrypt)
methods that allow protecting sensitive data based on a secure database con-
figuration schema. Thus, each column at the Parquet file is encrypted with the
chosen encryption methods before being uploaded to the untrusted premises.

5.2 Data Processing

For the data processing phase the SafeSpark Worker, deployed at the untrusted
site, is able to natively perform equality and order operations over columns
protected with DET and OPE. However, when the SGX technology is being
used, operations must be redesigned to execute within secure enclaves. For this
reason, we resorted to Spark Used-Defined Functions (UDF) and User-Defined
Aggregate Functions (UDAF’s) since these allow us to change Spark’s behaviour
without directly changing its source code. The Scala programming language was
used to implement these UDF/UDAFs. However, since SGX technology does
not support the Scala programming language, we used the Java Native Interface
(JNI) to call functions, developed in the C language, that are able to perform
arithmetic and comparison operations using the SGX technology.

Considering this new set of functionalities, the SQL query presented at
Sect. 4.3 is translated by the SafeSpark Worker, by invoking the corresponding
SafeSpark operators, in the following way:

SELECT Category, AVG_SGX(Salary)
FROM Employees
WHERE Age BETWEEN 0FC6AC2E AND 0FC6D497
GROUP BY Category

Note that the avg operator is replaced by AVG SGX, which is a new operator
provided by SafeSpark that computes the salary average within secure SGX
Enclaves. Moreover, the values “25” and “30” are replaced by “0FC6AC2E”
and “0FC6D497”, respectively, which is the hexadecimal representation for the
output produced by the OPE encryption operation.

As a drawback of the current implementation, the Spark’s framework does
not yet provide a stable API for enabling a developer to define their own User-
Defined Types (UDT). Therefore, if a specific data column was protected with
SGX and that column is included in a GROUP BY or ORDER BY clause, its
execution is not attainable since it is not possible to specify a UDF or UDAF for
these two clauses. To solve this problem, we adopt a column duplication strategy.
Thereby, when a data column is encrypted using SGX and one needs to perform
GROUP BY or ORDER BY operations over it, that column is duplicated and

12 H. Carvalho et al.

protected with a DET or OPE primitive, respectively. However, this approach
is not suitable for nested arithmetic and order operations, for instance, a SUM
operation followed by an ORDER BY operation applied to the same column.
Furthermore, as proposed by SafeNoSQL [22], this column duplication strategy
is also used to improve the performance impact of decrypting data protected
with the OPE scheme. Since this is a time-consuming operation, a duplicate
column with the STD scheme is introduced so that, whenever a value encrypted
with OPE needs to be retrieved in plaintext to the client (e.g., the age of an
employee) a faster decryption method is applied. The performance and storage
space overhead trade-offs of these optimizations are further analysed in Sect. 6.

Finally, Spark SQL’s DataFrames API was extended by creating a new oper-
ator, called collectDecrypt, that is responsible for decrypting the result of a query
before presenting it to the user.

6 Experimental Evaluation

SafeSpark’s prototype was evaluated to understand the impact of combining dif-
ferent privacy-preserving techniques. Namely, we compared Spark Vanilla against
three different secure settings, on which we alternate the cryptographic and
trusted hardware primitives being used and the data these are applied to.

6.1 Experimental Setup and Methodology

The experiments consider a distributed cluster composed of five nodes, config-
ured with Cloudera Manager v.6.1.1. We used version 2.4 of Apache Spark and
version 3.0.0 of HDFS for data storage. For the Client node, which is responsible
for executing the queries and managing the cluster, we used a node equipped
with an Intel Core i3-4170 CPU 3.70 GHz, 15.9GiB (DDR3) of RAM, a SATA3
119GiB SSD and with a Gigabit network interface. The nodes with data process-
ing function (Workers) are equipped with an Intel Core i3-7100 CPU 3.9 GHz
(with Intel SGX support), 7.8GiB (DDR3) of RAM, a SATA3 119GiB SSD and
with a Gigabit network interface. During the data storage phase, we used a sep-
arate server to encrypt the data. This is equipped with an Intel (R) Xeon (R)
CPU E5-2698 v4 @ 2.20 GHz, 31.3GiB (DDR3), and a Gigabit network interface.

We used the TPC-DS [23] benchmark, which models the decision support
functions of a retail product supplier, considering essential components of any
decision support system: data loading, multiple types of queries, and data main-
tenance. To explore different user behaviors for a decision support system, the
TPC-DS benchmark provides four classes of SQL queries, each one representing
a different database user activity in this type of system: Iterative, Data Mining,
Reporting, and Ad-Hoc queries. For the experiments, we selected two queries
from each group based on previous work [21,28]. Namely, we chose queries 24
and 31 from the Iterative OLAP class, queries 27 and 73 from the Reporting
class, queries 37 and 82 from the Ad-Hoc class, and queries 40 and 46 from the

On the Trade-Offs of Combining Multiple Secure Processing 13

Data Mining class. TPC-DS was configured with a 10× scale factor, correspond-
ing to a total of 12 GB of data to be loaded into Spark’s storage source.

We performed ten runs of each TPC-DS query for Spark Vanilla, which com-
putes over plaintext data, and for the different SafeSpark setups, which run on
top of encrypted data. For each query, we analyzed the mean and standard devia-
tion of the execution time. Also, the dstat framework [2] was used at each cluster
node to measure the CPU and memory consumption, as well as the impact on
disk read/write operations and on the network traffic. Moreover, we analyzed
the data storage times and the impact of encrypted data on storage space.

6.2 SafeSpark Setups

The evaluation considers three SafeSpark setups with specific combinations of
secure primitives for protecting TPC-DS’s database schema, namely:

SafeSpark-SGX. This setup aims at maximizing the usage of SGX for doing
queries over sensitive information at the TPC-DS database schema. Thus,
the data columns which are used within arithmetic operations or filters of
equality and order were encrypted using SGX. The OPE scheme was used
for all the columns contemplating ORDER BY operations since this type of
operation is not supported by the SGX operator, as explained in Sect. 5.2.
For the remaining columns contemplating equality operations as GROUP
BY or ROLL OUT, we used the DET scheme.

SafeSpark-OPE. This scenario aims at maximizing the use of cryptographic
schemes, starting by using OPE and followed by the DET scheme. Therefore,
in this case, SGX was only used for operations that are not supported by
DET and OPE, namely arithmetic operations, sums or averages. Thus, OPE
was used for all the operations containing order and equality comparisons,
as ORDER BY, GROUP BY or BETWEEN clauses. For the remaining
columns, that only require equality operations, the DET scheme was used.

SafeSpark-DET. As in the previous scenario, this one also maximizes the use
of cryptographic schemes. However, it prioritizes the DET primitive instead
of the OPE one, thus reducing the number of OPE columns that were being
used in GROUP BY and ROLL UP operations in the previous scenario.
Thus, SGX was only used for operations not supported by OPE or DET
primitives. For columns that need to preserve equality, we used DET. For
columns requiring order comparisons, we used the OPE scheme. In some
cases, it was necessary to duplicate some columns already protected with
the DET scheme. For example, when a column is targeted simultaneously
by a GROUP BY (equality) and ORDER BY (order) operation.

Finally, we used the STD scheme to protect all columns on which no
server-side data processing is performed. The secure setups used are fur-
ther detailed at https://hugocarvalho9.github.io/safespark/testing-setups.html
where it is shown the different secure primitives used for the TPC-DS schema.

https://hugocarvalho9.github.io/safespark/testing-setups.html

14 H. Carvalho et al.

6.3 Results

This section presents the results obtained from the experimental evaluation.

6.3.1 Loading and Storage
Table 1 shows that Spark Vanilla took 4.7 min for the storage phase. For the
SafeSpark configurations, we considered not only the loading time but also
the time used to encrypt the data. The SafeSpark-SGX setup took 697.1 min
to encrypt and load the data, and the stored data size increased by 4.73×.
The SafeSpark-OPE loading time was 735.1 min, and the data size increased by
6.23×. Lastly, the loading time for SafeSpark-DET was 776.3 min, and the data
size increased by 6.39×.

Table 1. Loading time and data size.

Setup Vanilla SafeSpark-SGX SafeSpark-OPE SafeSpark-DET

Loading time 4.7 min 637.1 min 735.1 min 776.4 min

Data size 4.1 GB 19.4 GB 25.54 GB 26.2 GB

The impact shown throughout the storage phase can be explained by the use
of the OPE scheme to encrypt data since it has a longer encoding time comparing
with the other schemes, especially when the plaintext size is larger [22]. Also, the
cryptograms produced by this scheme are significantly larger than the original
plaintext, which can sustain the observed increase for the stored data size. In
some situations, the cryptogram’s size increases up to 4× when compared to the
size of the original plaintext. It is important to note that all setups resort to
the OPE primitive. However, SafeSpark-SGX is the setup that uses least this
primitive and so has the fastest loading time. On the other hand, SafeSpark-DET
has a higher loading time because it duplicates some columns to incorporate both
DET and OPE primitives, as explained in Sect. 6.2.

6.3.2 Latency
Figure 2 presents the query latency results for the three SafeSpark configurations
and Vanilla Spark. The values reflect each query execution time, as well as the
time used to encrypt the query’s parameters and to decrypt the query results
when these are sent back to the client.

As expected, SafeSpark has worse performance than Spark Vanilla due to the
secure primitives performance overhead. The SafeSpark-SGX scenario exhibits
the highest overhead, while its best result occurs for query 24 with a 1.54×
penalty and the worst for query 82 with a 4.1× penalty. These values can be
justified by two factors. First, this scenario maximizes the use of SGX to protect
data, leading to a wide number of data transfer and processing operations being
executed within the SGX enclaves. We noted that, for example, query 31 has

On the Trade-Offs of Combining Multiple Secure Processing 15

0

25

50

75

100

125

150

Q24 Q27 Q31 Q37 Q40 Q46 Q73 Q82

Queries

La
te

nc
y

(s
)

Spark Vanilla
SafeSpark-SGX
SafeSpark-OPE
SafeSpark-DET

Fig. 2. Query execution times.

done approximately 4.5 million operations to SGX enclaves with an average
time of 2.2µs for each operation. Second, we use Spark SQL UDFs to perform
operations on data protected with SGX. However, a limitation of Spark is that it
currently does not support query plan optimizations for UDFs. Thus, the same
query running on Spark Vanilla and SafeSpark may generate different execution
plans, which can compromise the performance values obtained.

The SafeSpark-OPE maximizes the use of cryptographic schemes, thereby
reducing the number of operations that are performed within SGX Enclaves.
As we can observe in the Fig. 2, this testing scenario is more efficient than the
previous one. This improvement is justified not only by the lower number of
operations within Enclaves but also by reducing the use of UDFs, which leads
Spark to generate optimized query execution plans. The best (1.15× penalty)
and worst (2.86× penalty) execution times are still visible at queries 24 and
82, respectively. Although SafeSpark-OPE improves the results presented by
SafeSpark-SGX, there are some queries where the execution time is significantly
penalized by the time to encrypt the query parameters and decrypt the query
results. For example, we noticed that query 31 took on average 14,226 s for
decrypting the results, while 13,112 s were spent on OPE’s decryption opera-
tion. In fact, the use of OPE to decrypt results shows a notable impact on the
execution time, considering that the process of decrypting data using OPE is
significantly slower than the analogous operations for the DET or STD ciphers,
especially when the size of the cryptogram is larger.

SafeSpark-DET has its best execution time also for query 24, with a penalty
of 1.13×. The worst result is for query 37, which is 2.4× slower than the same
query executed on Spark Vanilla. It is also worth highlighting that there are six
queries (24, 27, 31, 40, 46 and 73) where the execution time penalty is between
1.13× and 1.52×. Ad-Hoc queries (37 and 82) require a higher execution time
due to the usage of UDFs for arithmetic operations done within SGX enclaves.

16 H. Carvalho et al.

The results also show that SafeSpark-DET alleviates the penalty of decrypt-
ing data, by reducing the usage of the OPE scheme and maximizing the usage
of the DET scheme. Consequently, as the number of values decrypted with the
OPE scheme decreases, so it does the query execution time.

6.3.3 Resource Usage
Overall, resource usage results were similar for all SafeSpark setups. Due to space
constraints, Table 2 highlights the worst-case results obtained for each resource
(i.e., CPU, memory, disk and network I/O). The full results can be consulted at
https://hugocarvalho9.github.io/safespark/resource-usage.html.

Table 2. Resource consumption results

Resource Query Setup Master Worker #1 Worker #2 Worker #3 Worker #4

CPU (%) 40 Spark Vanilla 16 15.2 11 15.4 15.9

SafeSpark-DET 10.5 19.1 24.9 17.7 24.2

Memory (GB) 37 Spark Vanilla 14.8 6.6 5.6 5.8 5.9

SafeSpark-SGX 15.8 6.5 6.7 6.4 7

Disk read (KB/s) 46 Spark Vanilla 0.7 1.4 193.9 686.2 594.9

SafeSpark-SGX 0.9 516.3 909.5 656.2 975.9

Disk write (KB/s) 82 Spark Vanilla 84.1 2726.6 2783.4 2791 2149.2

SafeSpark-DET 83.7 11354.4 165.3 160.6 8961.2

Network recv (MB/s) 46 Spark Vanilla 304 1570.5 1939.4 3013 3083.1

SafeSpark-DET 301.5 4309 4501.5 4467.6 4853.2

Network send (MB/s) 46 Spark Vanilla 7.4 0.3 0.5 0.6 1

SafeSpark-DET 15.8 0.5 0.6 0.9 0.6

The CPU and memory consumption does not show notable changes, even
considering the process of decrypting the query results and the computational
power used by Intel SGX. The worst CPU consumption result occurred on
query 40 with SafeSpark-DET, presenting an overhead 31%, when compared
to Vanilla Spark. Regarding memory consumption, the worst overhead was 10%
for SafeSpark-SGX, also on query 37.

SafeSpark has an impact on disk and network I/O. Query 46 with SafeSpark-
SGX shows an overhead of 107% on disk reads, and query 82 with SafeSpark-
DET has a 97% overhead on disk writes, when compared with Spark Vanilla.
Finally, network traffic has the highest impact on query 46 with SafeSpark-DET
(approximately 87%). These overheads are justified by the fact that cryptograms
generated by SafeSpark, which will be sent through network channels and stored
persistently, are larger than plaintext data. This is even more relevant when using
the OPE scheme as it generates larger cryptograms.

https://hugocarvalho9.github.io/safespark/resource-usage.html

On the Trade-Offs of Combining Multiple Secure Processing 17

6.4 Discussion

Based on the experimental results presented, we distilled a set of considerations
that are described next.

Applications that collect vast amounts of real-time data and focus on decreas-
ing the loading time and transferred/stored data size should avoid the usage
of OPE. As we have seen, this scheme generates larger cryptograms and its
encryption/decryption time introduces a significant impact on the loading time.
Thereby, reducing the usage of OPE leads to better results in the storage phase,
as well as on network and disk I/O traffic.

Concerning the queries execution time, we observed that performance can
be influenced by two main factors: i) The number of columns that need to be
decrypted with the OPE scheme when the result is sent back to the client; ii)
The number of operations performed within SGX enclaves.

The first could be improved by leveraging SafeSpark’s modular design to
integrate more efficient secure order-preserving primitives such as ORE [13].

Regarding the second challenge, a significant source of overhead comes from
our current implementation relying on Spark SQL’s UDF/UDAF mechanisms
for supporting SGX operations. These are not integrated with Spark’s query
planner component and thus, do not provide optimized query execution plans.
A potential approach to face this problem could be to develop our own Spark
operators and optimized execution plans, as done in Opaque [35]. Also, as future
work, we could devise batching strategies to enable multiple operations to be
executed in a single enclave call, which would reduce the number of calls to the
enclave and their inherent performance overhead.

Finally, the SafeSpark-DET setup, which only uses OPE for ORDER BY
operations and SGX for operations not supported by deterministic schemes,
is able to achieve the best performance results. In fact, this setup supports
six queries with overheads between 13% and 52%, when compared to Spark
Vanilla. Nevertheless, it is important to have in mind that, with this perfor-
mance increase, one is reducing the provided security guarantees. For instance,
SafeSpark-DET presents lower security guarantees than SafeSpark-SGX.

Comparing our platform with the existing state-of-the-art systems, SafeSpark
differs from the hardware-based approaches [31,32,35] since it enables the use
of deterministic schemes to compute equality and order operations. This func-
tionality makes it possible to achieve better performance results while relaxing
the security guarantees. On the other hand, SafeSpark distinguishes itself from
Monomi and Seabed platforms by using the SGX technology to perform arith-
metic operations instead of using Homomorphic Encryption schemes.

7 Conclusion

This paper presents SafeSpark, a modular and extensible secure data analytics
platform that combines multiple secure processing primitives to better handle the
performance, security, and functionality requirements of distinct data analytics

18 H. Carvalho et al.

applications. Distinctively, SafeSpark supports both cryptographic schemes and
the Intel SGX technology according to users’ demand.

SafeSpark’s experimental evaluation shows that it is possible to develop a
practical solution for protecting sensitive information being stored and processed
at third-party untrusted infrastructures with an acceptable impact on applica-
tion performance. Moreover, while supporting the entire Spark SQL API. When
comparing SafeSpark’s performance with Spark Vanilla, the prototype’s over-
head ranges from roughly 10% to 300%. Particularly, with the SafeSpark - DET
configuration, we show that for a majority of queries it is possible to maintain
the performance overhead below 50%.

Currently, we are working to extend SafeSpark with other secure processing
primitives with different security and performance trade-offs (e.g., ORE [13]).
Evaluation with even larger data sets and new types of queries is underway too.

Acknowledgements. We thank the anonymous reviewers and our shepherd Pierre-
Louis Aublin for their helpful suggestions. The research leading to these results has
received funding from the European Union’s Horizon 2020 - The EU Framework Pro-
gramme for Research and Innovation 2014–2020, under grant agreement No. 857237
and FCT - Fundação para a Ciência e a Tecnologia grant SFRH/BD/142704/2018.

References

1. The cambridge analytical files. https://www.theguardian.com/news/series/cambri-
dge-analytica-files. Accessed 2019

2. Dstat: versatile resource statistics tool. http://dag.wiee.rs/home-made/dstat/. Acc-
essed 2020

3. Eu general data protection regulation. https://eugdpr.org/. Accessed 2020
4. Isaac, M., Frenkel, S.: Facebook security breach exposes accounts of 50

million users. https://www.nytimes.com/2018/09/28/technology/facebook-hack-
data-breach.html. Accessed 2020

5. Openssl - cryptography and SSL/TLS toolkit. https://www.openssl.org/. Accessed
2020

6. Perlroth, N.: All 3 billion yahoo accounts were affected by 2013 attack. https://
www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html. Acc-
essed 2020

7. Roman, J.: Ebay breach: 145 million users notified. https://www.bankinfosecurity.
com/ebay-a-6858. Accessed 2020

8. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574. ACM (2004)

9. ARM, A.: Security technology building a secure system using trustzone technology
(white paper). ARM Limited (2009)

10. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
pp. 1383–1394. ACM (2015)

11. Bahmani, R., et al.: Secure multiparty computation from SGX. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 477–497. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 27

https://www.theguardian.com/news/series/cambri-dge-analytica-files
https://www.theguardian.com/news/series/cambri-dge-analytica-files
http://dag.wiee.rs/home-made/dstat/
https://eugdpr.org/
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.openssl.org/
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://www.bankinfosecurity.com/ebay-a-6858
https://www.bankinfosecurity.com/ebay-a-6858
https://doi.org/10.1007/978-3-319-70972-7_27
https://doi.org/10.1007/978-3-319-70972-7_27

On the Trade-Offs of Combining Multiple Secure Processing 19

12. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

13. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

14. Chambers, B., Zaharia, M.: Spark: The Definitive Guide: Big Data Processing
Made Simple. O’Reilly Media Inc, Sebastopol (2018)

15. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016(086), 1–118 (2016)

16. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1155–1166. ACM (2016)

17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. (TOMS) 33(2), 13 (2007)

18. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version
78 (1998)

19. Hadoop, A.: Apache hadoop. http://hadoop.apache.org. Accessed 2020
20. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca

Raton (2014)
21. Kocberber, O., Grot, B., Picorel, J., Falsafi, B., Lim, K., Ranganathan, P.: Meet the

walkers: accelerating index traversals for in-memory databases. In: Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pp.
468–479. ACM (2013)

22. Macedo, R., et al.: A practical framework for privacy-preserving NoSQL databases.
In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), pp. 11–
20. IEEE (2017)

23. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, pp. 1049–1058. VLDB Endow-
ment (2006)

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

25. Papadimitriou, A., et al.: Big data analytics over encrypted datasets with seabed.
In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 587–602 (2016)

26. Parquet, A.: Apache parquet. Accessed 2020
27. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure

processors. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 260–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 10

28. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload
analysis. In: Proceedings of the 33rd International Conference on Very Large Data
Bases, pp. 1138–1149. VLDB Endowment (2007)

29. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pp. 85–100. ACM (2011)

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
http://hadoop.apache.org
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10

20 H. Carvalho et al.

30. Rogaway, P., Shrimpton, T.: Deterministic authenticated-encryption. Citeseer
(2007)

31. Schuster, F., et al.: VC3: Trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy (SP), pp. 38–54. IEEE (2015)

32. Segarra, C., Delgado-Gonzalo, R., Lemay, M., Aublin, P.-L., Pietzuch, P., Schi-
avoni, V.: Using trusted execution environments for secure stream processing of
medical data. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS, vol. 11534, pp.
91–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22496-7 6

33. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries
over encrypted data. In: Proceedings of the VLDB Endowment, vol. 6, pp. 289–300.
VLDB Endowment (2013)

34. Van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-
preserving cloud computing. HotSec 10, 1–8 (2010)

35. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: NSDI, pp.
283–298 (2017)

https://doi.org/10.1007/978-3-030-22496-7_6

Capturing Privacy-Preserving User
Contexts with IndoorHash

Lakhdar Meftah1(B) , Romain Rouvoy2(B) , and Isabelle Chrisment3(B)

1 Inria/University Lille, Lille, France
lakhdar.meftah@inria.fr

2 University Lille/Inria/IUF, Lille, France
romain.rouvoy@univ-lille.fr

3 LORIA-TELECOM Nancy/University Lorraine, Lorraine, France
isabelle.chrisment@loria.fr

Abstract. IoT devices are ubiquitous and widely adopted by end-users
to gather personal and environmental data that often need to be put into
context in order to gain insights. In particular, location is often a critical
context information that is required by third parties in order to analyse
such data at scale. However, sharing this information is i) sensitive for
the user privacy and ii) hard to capture when considering indoor envi-
ronments.

This paper therefore addresses the challenge of producing a new loca-
tion hash, named IndoorHash, that captures the indoor location of a
user, without disclosing the physical coordinates, thus preserving their
privacy. This location hash leverages surrounding infrastructure, such as
WiFi access points, to compute a key that uniquely identifies an indoor
location.

Location hashes are only known from users physically visiting
these locations, thus enabling a new generation of privacy-preserving
crowdsourcing mobile applications that protect from third parties re-
identification attacks. We validate our results with a crowdsourcing cam-
paign of 31 mobile devices during one month of data collection.

Keywords: Location hash · Mobile computing · User privacy

1 Introduction

In order to meet the user expectation, mobile apps are supposed to understand
the user environment and act accordingly. To better capture the surrounding
context, these mobile apps rely on data gathered from embedded sensors and
user location data sits at the top of the list of key context information. However,
the processing of raw location data may leak some privacy-sensitive knowledge

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 21–38, 2020.
https://doi.org/10.1007/978-3-030-50323-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_2&domain=pdf
http://orcid.org/0000-0002-0292-3795
http://orcid.org/0000-0003-1771-8791
https://doi.org/10.1007/978-3-030-50323-9_2

22 L. Meftah et al.

that the end user might not accept. Furthermore, embedded location sensors
(e.g., GPS) fail at locating the end user once indoor, which seriously prevents
the deployment of location-based services at a small scale (e.g., offering location-
based services in a mall).

To address these two challenges, we propose a new data structure to accu-
rately capture the indoor location of end users without disclosing their physical
location. By inferring such a logical location or place, we intend to leverage the
development of location-based services that can work in indoor environments
without exposing the user privacy. More specifically, our contribution consists in
the definition of a new similarity hash function (also known as simhash), named
IndoorHash, which encodes the indoor location of an end user in a privacy-
preserving way. Interestingly, this IndoorHash is robust to re-identification
attacks, as the physical location cannot be inferred by an adversary, but allows
location-based services to compare the similarity of locations through pair-
wise comparisons. In this paper, we report on the robustness and accuracy of
IndoorHash built from WiFi scan data, which is a lightweight contextual infor-
mation to collect. As a matter of evaluation, we embedded IndoorHash in a
mobile app that has been deployed during one month to capture the daily routine
of 31 users. Our results show that IndoorHash succeeds to accurately capture
the location of end users by inferring stable logical places, while preserving their
privacy.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 introduces our implementation of a privacy-preserving
indoor location hash, named IndoorHash. Section 4 evaluates IndoorHash
along an empirical deployment we conducted. Section 5 illustrates the benefits
of IndoorHash for building privacy-sensitive location-based services. Finally,
Sect. 6 concludes on this work.

2 Related Work

Mobile devices are equipped with a wide panel of embedded sensors that mobile
apps can use to acquire key insights about the surrounding environment and
the user activities. Among the context information of critical importance, GPS
location and WiFi networks are common data that are heavily exploited to
locate the user. More specifically, when it comes to indoor location, most of
indoor positioning systems and WiFi fingerprinting systems use the surrounding
scanned WiFi access points to locate users indoor or to track users’ places.

2.1 WiFi Indoor Positioning Systems

Due to the absence of the Global Positioning System (GPS) signal inside build-
ings, many systems have been proposed as an indoor positioning system [12].
Among these systems, WiFi-based systems, which take advantage of the legacy
WiFi Access Points (APs) to estimate the location of a mobile device down to
1.5 meters precision using the WiFi signal strength [14]. While some research

Capturing Privacy-Preserving User Contexts with IndoorHash 23

works require a prior training phase (online mode) to map the location of the
antennas [26,36], other proposals have been proposing an automatic way to
build a radio map without any prior knowledge about the antennas [16,18,32].
In particular, Liu et al. [17] propose a peer-assisted localization method to
improve localization accuracy. Li et al. [15] introduce a privacy-preserving WiFi
indoor localization system. However, they argue that the localization query
can inevitably leak the client location and lead to potential privacy violations.
Jin et al. [13] propose a real-time WiFi positioning algorithm with the assis-
tance of inertial measurement unit to overcome the Received Signal Strength
(RSS) variation problem. Pulkkinen et al. [26] present an automatic fingerprint-
ing solution using theoretical properties of radio signals, they rely on the loca-
tions of WiFi APs and collecting training measurements. Salamah et al. [29]
use the Principle Component Analysis (PCA) to reduce the computation cost
of the WiFi indoor localization systems based on machine learning approach.
Yiu et al. [37] apply training measurements and a combined likelihood func-
tion from multiple APs to measure the indoor and the outdoor user position.
Capurso et al. [4] present an indoor and outdoor detection mechanism, which can
be used to optimize GPS energy usage. Yiu et al. [36] review the various methods
to create the radiomap. Then, they examined the different aspects of localiza-
tion performance like the density of WiFi APs and the impact of an outdated
radiomap. Ahmed et al. [1] provide a new optimized algorithm for fast indoor
localization using WiFi channel state information. Caso et al. [5] introduce an
indoor positioning system that relies on the RSS to generate a discrete RSS
radiomap. Li et al. [16] present SoiCP, a seamless outdoor-indoor crowdsourcing
positioning system without requiring site surveying. Crowdsourced WiFi signals
are used to build a radiomap without any prior knowledge.

Synthesis. Indoor location systems leveraging WiFi scans are proven to be very
useful and accurate. However, existing indoor location systems remain limited to
a restricted number of buildings, which have to be either equipped specifically
to locate users from WiFi APs, or have to consider a large number of users
to reduce the location errors. Most approaches propose to learn the position of
these WiFi antennas for every building. In our work, we do not require any prior
knowledge about the building and the location of the WiFi antennas. Moreover,
we do not intend to physically locate the user, but to capture her context by
observing if she is located in a different place or not, which can be answered
without an a priori knowledge of a map. Then, we consider the related work
that uses WiFi fingerprinting to capture the user context.

2.2 WiFi Fingerprinting Systems

Given the attractive cost of considering WiFi signals instead of GPS [38], the
state of the art has been extensively considering WiFi signals to capture both
indoor and outdoor user contexts. Surrounding WiFi APs can be exposed to
mobile apps and act as a place fingerprint—different WiFi AP signals received
thus result in different places. As such, using WiFi scans, one can track end users

24 L. Meftah et al.

for several hours and obtain valuable information about activities [24], person-
ality traits [23] and routines [27]. However, these WiFi scans can also be used to
establish a unique user fingerprint [8,39], extract social networks [33] or track
users offline [31,35]. Furthermore, by knowing the location of WiFi APs, the loca-
tion of users can be inferred from their fingerprint. In particular, some research
works are focusing on optimizing the similarity distance between two WiFi fin-
gerprints [2,9,20,37]. Zhang et al. [40] introduce Polaris, a location system
using cluster-based solution for WiFi fingerprints. They explain how to collect
and compress city-scale fingerprints, and then, how to find the location of a user
using similar WiFi fingerprints. Sakib et al. [28] present a method to contextual-
ize the mobile user using the WiFi APs fingerprints, with a clustering algorithm
that creates a place for each group of WiFi APs. They validate their results with
cellular cell ids datasets. Sapiezynski et al. [30] use WiFi to enhance GPS traces
composed of one GPS location per day, they can locate 80% of mobility across
the population. Wind et al. [34] use WiFi scans to infer stop locations for users,
their algorithm can tell if a user is moving or in a stationary state using just
WiFi fingerprints. Finally, Choi et al. [7] propose a method for an energy efficient
WiFi scanning for user contextualization, they try to minimize the number of
scans depending on the scanned WiFi APs.

Synthesis. While a lot of work have been done to localize the user using WiFi
indoor location techniques, most of them require either a training phase or user
input to locate the user using the WiFi antennas. Several research works have
been focusing on the WiFi fingerprinting based on the clustering algorithms and
similarity distances, but they do not report on the utility of the collected data,
its cost or its privacy-preserving methods. Furthermore, they do not provide any
library or framework in order for their methods to be adopted, evaluated and
further improved.

3 Introducing IndoorHash

This section introduces our current design of IndoorHash and the properties
we build on to control the number of relevant hashes.

3.1 Computing an IndoorHash

To design our IndoorHash, we implement a modified version of the SimHash
algorithm [6]. SimHash is a technique for quickly estimating how similar two sets
are. This algorithm was reported to be used by the Google Crawler to find near
duplicate pages.

In the context of IndoorHash, we tokenize the words from the SimHash
algorithm as pairs of digits in the hexadecimal MAC address format—e.g., we
convert the MAC address 00:FF:AB:0F:C2:C7 into the set of words {〈00 :
1〉, 〈FF : 1〉, 〈AB : 1〉, 〈0F : 1〉, 〈C2 : 1〉, 〈C7 : 1〉}. Then, the input text we use
is the list of all WiFi APs MAC addresses that is returned when triggering a

Capturing Privacy-Preserving User Contexts with IndoorHash 25

WiFi scan. This list is therefore converted into a set of unique words weighted by
the apparition frequencies resulting. For example, a list of 3 MAC addresses can
result in the following input set {〈00 : 3〉, 〈FF : 2〉, 〈AB : 2〉, 〈0F : 3〉, 〈C2 : 2〉, 〈C7 :
1〉, 〈C7 : 1〉, 〈D0 : 1〉, 〈02 : 1〉, 〈DD : 1〉, 〈BE : 1〉}. From this input set, we compute
a SimHash whose size can be defined according to the targeted precision (cf.
Algorithm 1).

Algorithm 1. IndoorHash Algorithm.
function TokenizeScan(scan)

tokens ← ∅
for all 〈bssid〉 ∈ scan do

words ← Split(bssid, ‘ : ‘)
for all word ∈ words do

if word ∈ tokens then
frequency ← GetFrequency(tokens, word)
tokens ← tokens ∪ 〈word : frequency + 1〉

else
tokens ← tokens ∪ 〈word : 1〉

end if
end for

end for
return tokens

end function

function ComputeIndoorHash(scan, size)
tokens ← TokenizeScan(scan)
return SimHash(tokens, size)

end function

3.2 Comparing an IndoorHash

Unlike standard hashing algorithms, hashes computed by the SimHash algorithm
can be compared to estimate the similarity of their respective input sets. To
compute this similarity, IndoorHash computes the Hamming distance between
the two input hashes to report on the ratio of similar bits (cf. Algorithm 2).

However, applying standard SimHash similarity on IndoorHash tends to
report a ratio above 0.50, due to the high probability of sharing words between
dissimilar MAC addresses. We therefore chose to expand our similarity range,
and only consider the values between 0.50 and 1.0 as relevant similarity values.
This approach improves the sensibility of the IndoorHash when comparing
their values.

26 L. Meftah et al.

Algorithm 2. IndoorHash Similarity.
function CompareIndoorHash(hash1, hash2)

distance ← HammingDistance(hash1, hash2)
sim ← 1 − (distance/Size(hash1))
if sim < 0.5 then

return 0
end if
return (sim − 0.5) × 2 � Expand the similarity score

end function

3.3 Indexing an IndoorHash

We store an IndoorHash in a K-Nearest Neighbors (KNN) graph that orga-
nizes all the computed IndoorHash according to their pairwise similarity (cf.
Algorithm 3). The IndoorHash storage procedure searches and binds to the
closest neighbors in the KNN graph. If the most similar IndoorHash is already
connected to k other hashes, the farest hash is propagated among the remaining
neighbors.

Algorithm 3. IndoorHash Storage.
procedure StoreIndoorHash(from,hash)

similarity ← CompareIndoorHash(hash, from)
neighbors ← GetKnnNeighbors(from)
maxsim, simnode ← Max(hash, neighbors,CompareIndoorHash)
if similarity < maxsim then � Propagates hash to the most similar neighbor

StoreIndoorHash(hash, simnode)
else � from is the most similar hash

k ← Size(neighbors)
if k < K_MAX then

AddKnnNeighbour(from, hash)
else � Replaces the least similar neighbor by hash

minsim, node ← Min(hash, neighbors,CompareIndoorHash)
RemoveKnnNeighbour(from, node)
AddKnnNeighbour(from, hash)
StoreIndoorHash(from, node)

end if
end if

end procedure

This indexing structure allows to quickly search for a similar IndoorHash in
the KNN graph by starting from any random node in this graph and converging
through the closest neighbors—i.e., most similar IndoorHash in our case. The
similarity search (SimSearch) returns a node if the similarity of the closest
neighbor with the input IndoorHash is above an expected similarity threshold
(cf. Algorithm 4).

Capturing Privacy-Preserving User Contexts with IndoorHash 27

Algorithm 4. IndoorHash Search.
function SimSearch(storage, hash, threshold)

seed ← RandomNode(storage)
simnode ← SearchIndoorHash(seed, hash, ratio)
similarity ← CompareIndoorHash(hash, simnode)
if similarity >= threshold then

return simnode
end if
return NONE

end function

function SearchIndoorHash(from, hash)
similarity ← CompareIndoorHash(from, hash)
neighbors ← GetKnnNeighbors(from)
maxsim, simnode ← Max(hash, neighbors,CompareIndoorHash)
if similarity > maxsim then � from is the most similar neighbor

return from
end if
return SearchIndoorHash(simnode, hash)

end function

3.4 Classifying an IndoorHash

IndoorHash leverages the SimHash algorithm [6] to generate a robust hash
from a list of visible WiFi APs. Depending on situations, we can consider that:

1. IndoorHash refers to a new hash—i.e., whenever a hash is stable for more
than 5mn, a new IndoorHash is stored locally,

2. IndoorHash refers to a known hash when it is stored locally,
3. IndoorHash refers to a commuting hash when no hash can be computed or

the hash keeps changing after every scan.

Algorithm 5 describes how we classify an IndoorHash along the above situ-
ations. This context classification algorithm allows not only the device to adjust
its behavior accordingly, but also avoid an explosion of the number of collected
IndoorHash. Indeed, by setting an appropriate DELAY and SIMILARITY thresh-
old, one can filter out any candidate IndoorHash that is considered as irrelevant
(e.g., spending less than 5mn in a place does not require to be remembered). By
adjusting the reference storage, the algorithm can leverage a graph of shared
location hashes to quickly classify it as a known location, without waiting for
the classification delay to be elapsed.

3.5 Sharing an IndoorHash

IndoorHash does not make any strong assumption on the mobile device that is
used to capture the current indoor location. As such, it can therefore be shared
among users to ease the detection of known locations, and even used as a location

28 L. Meftah et al.

Algorithm 5. IndoorHash Classification.
function ClassifyIndoorHash(storage, timestamp, hash)

if hash <> lastHash then
lastHash ← hash
lastT imestamp ← timestamp
return COMMUTING_HASH

else
found ← SimSearch(storage, hash, SIMILARITY) � Similarity search
if found then

return KNOWN_HASH
else

if timestamp − lastT imestamp > DELAY then
StoreIndoorHash(storage, hash)
return KNOWN_HASH

end if
return NEW_HASH

end if
end if

end function

key to store some context information. For example, whenever an IndoorHash
is computed, a device can query a cloud service to obtain some information
associated to this location. The remote service can adjust the similarity score to
constrain how similar two indoor locations should be in order to share the asso-
ciated information, thus avoiding adversaries accessing any information shared
online. Conversely, the remote storage service only manipulates IndoorHash
and cannot learn about the physical location of the end user, thus avoiding any
leak of sensitive geolocated information (cf. Sect. 4.1). Furthermore, at scale,
the remote storage of known IndoorHash can leverage the indexing structure
introduced in Sect. 3.3 to quickly find the most similar IndoorHash among the
graph of known hashes shared online.

4 Empirical Evaluation

This section reports on the empirical evaluation we conducted to assess
IndoorHash as a robust indoor location hash that can be used to capture
the current indoor location of a user, while preserving her privacy. We therefore
start by conducting a privacy analysis of our contribution, before introducing
the DayKeeper app we deployed to assess the accuracy of IndoorHash to
capture indoor locations.

4.1 Privacy Analysis

Recover the GPS Location of IndoorHash. Existing WiFi fingerprinting meth-
ods exploit raw MAC addresses to recover a GPS location from crowdsourced

Capturing Privacy-Preserving User Contexts with IndoorHash 29

datasets that share key-value pairs of MAC addresses and the associated GPS
location [30]. In our case, IndoorHash shares the hash of a set of MAC
addresses. Hashing a single MAC address is not enough to preserve the user
privacy, as a rainbow table could be created for all the hashes. In our solution,
we therefore hash all detected MAC addresses of WiFi APs, which adds a huge
entropy to the generated hash and therefore reduces the risk to infer the phys-
ical location captured by a given IndoorHash. Concretely, to recover all the
possible hashes, a rainbow table would have to be created for 240 bits—when
assuming hashes built from 5 MAC addresses (48 bits)—which is far beyond the
state of the art. Additionally, as IndoorHash does not make any assumption
on the number of input MAC addresses, such an attack becomes impracticable.

Identify Users from Clusters of IndoorHash. As no GPS location can be recov-
ered from an IndoorHash, the state-of-the-art geo-spatial attacks, like the ST-
DBSCAN [3], fail to cluster the user locations. Therefore, running a similar
attack on a set of IndoorHash can only produce clusters of hashes grouped
by similarity, which fails to disclose any sensitive information about the user.
Indeed, even though an IndoorHash can be considered as Point of Interest
(POI), no metata (label, location, category, etc.) can be exploited by an adver-
sary to infer some privacy sensitive knowledge.

Conclusion. IndoorHash provides a robust location hash that captures the
physical context of a user, without disclosing any privacy sensitive information
regarding the locations she visited. Yet, the adoption of IndoorHash does
not prevent developers from carefully anonymizing any payload that could be
attached to such a hash (e.g., IP address, device model, user identifier) to avoid
indirect privacy breach.

4.2 DayKeeper Android App

To demonstrate and assess IndoorHash in the wild, we developed an Android
app that embeds our IndoorHash as a software library. This Android app,
named DayKeeper, aims at keeping track of the daily activities of end users in
order to report on the time they spent in different locations (home, office, shop-
ping, leisure). When users opt in, IndoorHash and some metrics (cf. Sect. 4.3)
are also periodically synchronized on a remote server, using the APISENSE
platform [10], for postmortem analysis purpose. This data collection campaign
conforms to the Institutional Review Board (IRB) approval associated to the
exploitation of the APISENSE platform.1

Figure 1 depicts some screenshots of the DayKeeper Android app.2 In par-
ticular, users of DayKeeper are free to navigate through daily (cf. Fig. 1a),
weekly (cf. Fig. 1b) and monthly views (cf. Fig. 1c) and to eventually label the

1 https://apisense.io.
2 Available from https://play.google.com/store/apps/details?id=io.apisense.netqulity.

https://apisense.io
https://play.google.com/store/apps/details?id=io.apisense.netqulity

30 L. Meftah et al.

reported IndoorHash to keep track of their personal timeline. With Day-
Keeper, we aim at demonstrating that IndoorHash can offer a fine grain
analysis of user activities by splitting different activities observed in a single
building (e.g., office, meeting, cafetaria, gym). Furthermore, as DayKeeper
leverages the WiFi APs, it provides a lightweight activity logger that does not
drain the device battery by continuously requesting the GPS sensor.

(a) Daily view (b) Weekly view (c) Monthly view

Fig. 1. Screenshots of the DayKeeper Android App.

The IndoorHash is continuously updated by DayKeeper using a back-
ground service that periodically scans the surrounding WiFi APs, computes the
associated IndoorHash (cf. Sect. 3.1) and classifies it with regards to known
hashes (cf. Sect. 3.4). In DayKeeper, known hashes are reflected as a con-
tinuous timeline of a given color, while commuting hashes are displayed as a
transition ‘Moving’ between two known hashes.

4.3 Deployment Statistics

Overall, we can report that the DayKeeper has been installed by 31 users along
one month. During this period, users have detected 58, 500 unique WiFi APs,
resulting in 12, 201 IndoorHash. The remainder of this section covers the statis-
tics we collected along our experimentation period (cf. Fig. 2). One should note
that we filtered out 9 users of DayKeeper who used our mobile app, but did
not opt in the sharing of their metrics. As users come and go and can activate
or deactivate the context acquisition, the data contributed by each user varies
greatly. Figure 2a therefore depicts the number of WiFi scans triggered per user
as a more representative indicator of the activity of registered users.

Capturing Privacy-Preserving User Contexts with IndoorHash 31

Then, Fig. 2b reports on the number of unique WiFi AP per user, this number
reflects the diversity of locations that have been visited by a user: the more
the user moves, the more WiFi APs. Figure 2c shares some indications on the
number of WiFi APs that can be captured along a scan. This number depends
on the density of WiFi APs exposed to a user, but it clearly shows that users are
often exposed to more than 5 MAC addresses, thus strengthening the resilience
of IndoorHash against rainbow table attacks (cf. Sect. 4.1). Finally, Fig. 2d
reports the average number of WiFi APs per hour for each user, thus giving a
clear signal about the continuous WiFi coverage of users.

Fig. 2. DayKeeper App Deployment Statistics.

Overall, Figs. 2 delivers some insightful feedback about the diversity of pro-
files of DayKeeper users—e.g., whether they are moving or stationary. For
example, we can observe that the user with the identifier 20 was mostly station-
ary, as her device contributed a lot of hours (cf. Fig. 2a), but with only 57 unique
WiFi APs (cf. Fig. 2b) and an average of 0.10 WiFi APs per hour (cf. Fig. 2d).
On the other side, the user with identifier 19 has been using the DayKeeper
app for a shorter period of time, but exhibiting a more active profile. The rest of
our evaluation considers all the users who have been sharing their IndoorHash
with our remote storage server, no matter their profile.

32 L. Meftah et al.

4.4 IndoorHash Evaluation

This section focuses on a quantitative evaluation of the IndoorHash. To assess
our contribution, we compare it to alternative hashing and similarity algorithms
adopted by the state of the art, as described below.

Evaluation Metrics. In the context of this evaluation, we focus on assessing the
robustness of the location hash to accurately capture the context of a user. We
therefore consider the following metrics:

– Total period represents the total number of hours of activities recognized
by the algorithms for all of the users (the higher the better). This metrics
reflects the capability of the algorithm to classify the context of the user;

– Max period reflects the maximum number of hours assigned to a single
location hash (the higher the better). This metrics highlights the capability
of each algorithm to detect known locations;

– Max occurrences represents the maximum number of occurrences that can
be observed for one location hash (the higher the better). This metrics demon-
strate the capability of the algorithms to infer similar location hashes for
recurrent locations;

– Hashes with 1+hour represents the number of location hashes that last
for more than one hour (the higher the better). This metrics highlights the
capability of the location hash to capture stationary conditions;

– Max detected hashes represents the maximum number of distinct location
hashes for a given location (the lower the better). This metrics reflects the
quality of the generated location hashes.

Hashing and Similarity Algorithms. We start by comparing IndoorHash with
the most-related similarity algorithms:

– The Jaccard index is the baseline algorithm that we apply to compare raw
scans including plain MAC addresses of detected WiFi APs,

– The SimHash correspond to the standard SimHash algorithm [6] applied to
plain MAC addresses,

– The IndoorHash refers to the approach described in this paper.

For all the algorithms, we consider a similarity threshold of 0.60f as a conserva-
tive policy to classify the inferred location hashes.

Table 1. Comparison of alternative hashing and similarity metrics

Variant Overall period Max period Max occurrences Hashes of 1+hour Max detected hashes

Jaccard 2,077 524 3,684 58 22

SimHash 1,112 350 3,127 50 63

IndoorHash 2,022 524 3,684 59 23

Overall, we can observe in Table 1 that IndoorHash competes with the
Jaccard index while providing stronger privacy guarantees. The missing 55 h

Capturing Privacy-Preserving User Contexts with IndoorHash 33

that are not recognized by IndoorHash refers to short periods of time (<5min)
where the recognition algorithm of IndoorHash considers the location as a new
hash (cf. Algorithm 5).

Impact of MAC addresses. To further evaluate IndoorHash, we consider 3 vari-
ants of IndoorHash to evaluate the impact of the number of MAC addresses on
the stability of the computed hashes. Table 2 shows the metrics for the following
variants:
– No limit refers to the baseline IndoorHash that does not limit the number

of MAC addresses to be included in the computation of the hash;
– 10 MAC is a variant that limits the computation of the IndoorHash to

the first 10 MAC addresses return by the scan;
– 5 MAC is a variant that limits the IndoorHash computation to the first 5

MAC addresses.
– 1 MAC is the extreme variant that only consider the first MAC address to

compute an IndoorHash.

Table 2. Impact of the MAC addresses on the stability of IndoorHash.

Variant Overall period Max period Max occurrences Hashes of 1+hour Max detected hashes

No limit 2,022 524 3,684 59 23

10 MAC 2,001 524 3,772 59 30

5 MAC 1,958 524 2,192 62 41

1 MAC 1,847 524 1,776 61 233

Overall, one can observe that limiting the number of MAC addresses has
a harmful impact on the privacy (cf. Sect. 4.1), but also on the accuracy of
IndoorHash. Indeed, the variant considering a single MAC address offers the
worst performances: the maximum number of occurrences drops to 1, 776 com-
pared to the default variant that captures up to 3, 684 occurrences. This can
result in some physical places not being recognized by the algorithm. At the
same time, one can see that most important places (Hashes with 1+hour) keep
being recognized with the same accuracy as the baseline, thus indicating that
limiting MAC addresses tends to reduce the capability to capture places visited
for shorter periods.

5 Towards Privacy-Preserving Location-Based Services

In this paper, we believe that Location-Based Services (LBS) require to guarantee
the user privacy by design, in order to avoid any potential risk of data leaks that
might contribute to learn sensitive knowledge from visited locations (e.g., home,
office, leisure). Such privacy-preserving LBS cannot collect and process the raw
user locations, but should rather build on location hashes that reveal the neces-
sary bits of information that are required to implement the service. This section
therefore lists candidate LBS features that could benefit from IndoorHash in
the future.

34 L. Meftah et al.

Points of Interest (POIs) refer to known physical locations that may reveal
sensitive information about the habits and tastes of end users (e.g., shopping
mall, restaurants) and can be used by third parties to feed recommendation
algorithms. IndoorHash can be considered as fine-grained POI that does not
reveal any semantics about the location visited by a user, but can still be used
to recommend alternative nearby locations by comparing similar hash histories
among users.

Social networking is another example of LBS that can benefit from IndoorHash
by comparing the hash histories in order to identify potential connections within
a crowd of users without revealing the exact locations where these users use to
meet. IndoorHash can therefore support the definition of proximity datasets
that are commonly used for various purposes, such as mobile testing [22], by
reporting on the colocation of end users and potential connections in a crowd
that can support the evaluation of dissemination protocols [19,21].

Context prediction can also leverage the history of IndoorHash to understand
the mobility of end users and possibly predict the next location (e.g., using
markov chains or n-grams) of a given user in order to anticipate some actions,
like fetching some content or buffering a video before loosing an Internet connec-
tion [25]. This context prediction can also be used to support the development
of context-aware applications whose behaviors can adjust accordingly. For exam-
ple, maintaining a different profile of a web browser to avoid that a private or
professional web history being exploited by third-party cookies in a different
context, which might be unknown and thus sensitive.

Routine analysis refers to the detection of user activities to better understand her
daily habits. While DayKeeper (cf. Sect. 4.2) provides an example of personal
activity tracker built on top of IndoorHash, we believe that one can provide
advanced features to detect if a user is in or out of a routine and react accordingly.
Such a mechanism can help the user to focus on her tasks (e.g., by enabling a
do not disturb mode) or trigger specific assistance when she is not in a routine.

Mobile crowdsourcing consists in gathering field measurements from a crowd of
participants. In mobile crowdsourcing systems, the user location is often used
to group data along spatial dimensions to build some specific maps (e.g., the
open signal initiative)3. In such cases, beyond raw GPS locations, Geohash and
Pluscode4 provide a compact encoding of any physical location on earth. While
both of them can fuzz the user location by adjusting their encoding scheme,
they keep disclosing a critical information for the end user. Yet, user location
may only be required to group or aggregate field measurements by location
without sharing the physical location with anyone. In these situation, we believe
that IndoorHash can provide a privacy-preserving spatial keys that can be

3 https://www.opensignal.com/.
4 https://plus.codes/.

https://www.opensignal.com/
https://plus.codes/

Capturing Privacy-Preserving User Contexts with IndoorHash 35

used to process geolocated measurements. Interestingly, the indexing structure
allows end users who can compute the IndoorHash to access these aggregated
measurements. For example, one can imagine a user getting the history of indoor
air pollution using her current hash to query a remote measurement service built
on top of IndoorHash [11].

6 Conclusion

Location-Based Services (LBS) are increasingly getting adopted by end users
who expect to be delivered personalized user experiences depending on their
current context. However, the characterization of this context often relies on the
physical location of the user which is i) hard to capture in indoor environments
and ii) highly sensitive from a privacy perspective.

In this paper, we tackle both of these challenges by introducing a new indoor
location hash, named IndoorHash. More specifically, IndoorHash captures a
logical user location without disclosing the physical place visited by this user.
Our contribution consists in applying the SimHash algorithm to the processing
of MAC addresses exposed by WiFi APs. We show that the IndoorHash com-
puted from such input data offers a robust location hash that accurately capture
any user location. We also implement a distributed system that allows to store
and index IndoorHash in order to ease the detection of known locations and
share geolocated data with privacy guarantees.

As a matter of perspectives, we are interested in extending the IndoorHash
to a more general location hash scheme that can leverage additional signals sur-
rounding a user, like the GSM antennas or BLE beacons in order to increase the
coverage of inferred locations. We are also interested in exploring new operations
on location hashes to support privacy-preserving data clustering algorithms.

References

1. Ahmed, A.U., Bergmann, N.W., Arablouei, R., Kusy, B., De Hoog, F., Jurdak,
R.: Poster abstract: fast indoor localization using WiFi channel state information.
In: 17th International Conference on Information Processing in Sensor Networks
(IPSN 2019), pp. 120–121. IEEE, April 2018

2. Beder, C., Klepal, M.: Fingerprinting based localisation revisited: a rigorous app-
roach for comparing RSSI measurements coping with missed access points and
differing antenna attenuations. In: International Conference on Indoor Positioning
and Indoor Navigation (IPIN), pp. 1–7. IEEE (2012)

3. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-
temporaldata. Data Knowledge Eng. 60(1), 208–221 (2007)

4. Capurso, N., Song, T., Cheng, W., Yu, J., Cheng, X.: An android-based mecha-
nism for energy efficient localization depending on indoor/outdoor context. IEEE
Internet Things J. 4(2), 299–307 (2017)

36 L. Meftah et al.

5. Caso, G., De Nardis, L., Lemic, F., Handziski, V., Wolisz, A., Di Benedetto, M.G.:
Vifi: virtual fingerprinting wifi-based indoor positioning viamulti-wall multi-floor
propagation model. IEEE Transactions on Mobile Computing (2019)

6. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
34th ACM Symposium on Theory of Computing, pp. 380–388. ACM (2002)

7. Choi, T., Chon, Y., Cha, H.: Energy-efficient WiFi scanning for localization. Per-
vasive Mob. Comput. 37, 124–138 (2017)

8. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the
crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)

9. Del Corte-Valiente, A., Gómez-Pulido, J.M., Gutiérrez-Blanco, O.: Efficient tech-
niques and algorithms for improving indoor localization precision on WLAN net-
works applications. Int. J. Commun. Netw. Syst. Sci. 2(07), 645 (2009)

10. Haderer, N., Rouvoy, R., Seinturier, L.: Dynamic deployment of sensing experi-
ments in the wild using smartphones. In: Dowling, J., Taïani, F. (eds.) DAIS 2013.
LNCS, vol. 7891, pp. 43–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38541-4_4

11. Hanoune, B., et al.: Conception and deployment of the Apolline sensor network for
IAQ monitoring. In: 10th International Conference on Indoor Air Quality, Venti-
lation and Energy Conservation in Buildings (IAQVEC 2019), September 2019

12. He, S., Chan, S.H.G.: Wi-fi fingerprint-based indoor positioning: recent advances
and comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2015)

13. Jin, M., Koo, B., Lee, S., Park, C., Lee, M.J., Kim, S.: IMU-assisted nearest neigh-
bor selection for real-time WiFi fingerprinting positioning. In: International Con-
ference on Indoor Positioning and Indoor Navigation (IPIN 2014), pp. 745–748.
IEEE, October 2014

14. Krumm, J., Horvitz, E.: Locadio: inferring motion and location from wi-fi signal
strengths. In: Mobiquitous, pp. 4–13 (2004)

15. Li, H., Sun, L., Zhu, H., Lu, X., Cheng, X.: Achieving privacy preservation in WiFi
fingerprint-based localization. In: IEEE INFOCOM, pp. 2337–2345. IEEE, April
2014

16. Li, Z., Zhao, X., Hu, F., Zhao, Z., Carrera, J.L., Braun, T.: Soicp: a seamless
outdoor-indoor crowdsensing positioning system. IEEE internet of Things J. 6,
8626–8644 (2019)

17. Liu, H., et al.: Push the limit of WiFi based localization for smartphones. In: 18th
International Conference on Mobile Computing and Networking (Mobicom 2012),
p. 305. ACM, New York (2012)

18. Luo, C., Hong, H., Chan, M.C.: Piloc: a self-calibrating participatory indoor local-
ization system. In: 13th International Symposium on Information Processing in
Sensor Networks (IPSN 2014), pp. 143–153. IEEE (2014)

19. Luxey, A., Bromberg, Y.D., Costa, F.M., Lima, V., da Rocha, R.C., Taïani, F.:
Sprinkler: a probabilistic dissemination protocol to provide fluid user interaction
in multi-device ecosystems. In: International Conference on Pervasive Computing
and Communications (PerCom), pp. 1–10. IEEE (2018)

20. Lymberopoulos, D., Liu, J.: The microsoft indoor localization competition: expe-
riences and lessons learned. IEEE Signal Process. Magazine 34(5), 125–140 (2017)

https://doi.org/10.1007/978-3-642-38541-4_4
https://doi.org/10.1007/978-3-642-38541-4_4

Capturing Privacy-Preserving User Contexts with IndoorHash 37

21. Meftah, L., Rouvoy, R., Chrisment, I.: FOUGERE: user-centric location privacy
in mobile crowdsourcing apps. In: Pereira, J., Ricci, L. (eds.) DAIS 2019. LNCS,
vol. 11534, pp. 116–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22496-7_8

22. Meftah, L., Rouvoy, R., Chrisment, I.: Testing nearby peer-to-peer mobile apps
at large. In: 6th International Conference on Mobile Software Engineering and
Systems (MOBILESoft 2019), pp. 1–11. IEEE (2019)

23. de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personal-
ity using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G.,
Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37210-0_6

24. Nguyen, T.B., Nguyen, T., Luo, W., Venkatesh, S., Phung, D.: Unsupervised infer-
ence of significant locations from wifi data for understanding human dynamics. In:
13th International Conference on Mobile and Ubiquitous Multimedia, pp. 232–235.
MUM 2014, ACM, New York (2014)

25. Paspallis, N., Alshaal, S.E.: Improving QOE via context prediction: a case study
of using wifi radiomaps to predict network disconnection. In: ICPE Companion,
pp. 31–34. ACM (2017)

26. Pulkkinen, T., Verwijnen, J., Nurmi, P.: WiFi positioning with propagation-based
calibration. In: 14th International Conference on Information Processing in Sensor
Networks (IPSN 2015), pp. 366–367. ACM (2015)

27. Rekimoto, J., Miyaki, T., Ishizawa, T.: LifeTag: wifi-based continuous location
logging for life pattern analysis. In: Hightower, J., Schiele, B., Strang, T. (eds.)
LoCA 2007. LNCS, vol. 4718, pp. 35–49. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-75160-1_3

28. Sakib, M.N., Halim, J.B., Huang, C.T.: Determining location and movement pat-
tern using anonymized WiFi access point BSSID. In: 7th International Conference
on Security Technology (SecTech 2014), pp. 11–14. IEEE, December 2015

29. Salamah, A.H., Tamazin, M., Sharkas, M.A., Khedr, M.: An enhanced WiFi indoor
localization system based on machine learning. In: 2016 International Conference
on Indoor Positioning and Indoor Navigation (IPIN 2016), pp. 1–8. IEEE, October
2016

30. Sapiezynski, P., Stopczynski, A., Gatej, R., Lehmann, S.: Tracking humanmobility
using WiFi signals. PLoS One 10(7), e0130824 (2015)

31. Sapiezynski, P., Stopczynski, A., Wind, D.K., Leskovec, J., Lehmann, S.: Offline
behaviors of online friends. arXiv preprint arXiv:1811.03153 (2018)

32. Shen, G., Chen, Z., Zhang, P., Moscibroda, T., Zhang, Y.: Walkie-markie: indoor
pathway mapping made easy. In: 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2013), pp. 85–98 (2013)

33. Stopczynski, A., et al.: Measuring large-scale social networks with high resolution.
PLoS One 9(4), e95978 (2014)

34. Wind, D.K., Sapiezynski, P., Furman, M.A., Lehmann, S.: Inferringstop-locations
from WiFi. PLoS One 11(2), e0149105 (2016)

35. Xie, X., Xu, H., Yang, G., Mao, Z.H., Jia, W., Sun, M.: Reuse of WiFi infor-
mation for indoor monitoring of the elderly. In: 17th International Conference on
Information Reuse and Integration (IRI 2016), pp. 261–264. IEEE, July 2016

36. Yiu, S., Dashti, M., Claussen, H., Perez-Cruz, F.: Wireless RSSI fingerprinting
localization (2017)

https://doi.org/10.1007/978-3-030-22496-7_8
https://doi.org/10.1007/978-3-030-22496-7_8
https://doi.org/10.1007/978-3-642-37210-0_6
https://doi.org/10.1007/978-3-540-75160-1_3
https://doi.org/10.1007/978-3-540-75160-1_3
http://arxiv.org/abs/1811.03153

38 L. Meftah et al.

37. Yiu, S., Yang, K.: Gaussian process assisted fingerprinting localization. IEEE Inter-
net of Things Journal 3(5), 683–690, October 2016

38. Zandbergen, P.A.: Accuracy of iphone locations: a comparison of assisted GPS,
wifi and cellular positioning. Trans. GIS 13, 5–25 (2009)

39. Zhang, H., Yan, Z., Yang, J., Tapia, E.M., Crandall, D.J.: mFingerprint: privacy-
preserving user modeling with multimodal mobile device footprints. In: Kennedy,
W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS, vol. 8393, pp. 195–203.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05579-4_24

40. Zhang, N., Feng, J.: Polaris: a fingerprint-based localization system over wireless
networks. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012.
LNCS, vol. 7418, pp. 58–70. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32281-5_7

https://doi.org/10.1007/978-3-319-05579-4_24
https://doi.org/10.1007/978-3-642-32281-5_7
https://doi.org/10.1007/978-3-642-32281-5_7

Cloud and Systems

Towards Hypervisor Support
for Enhancing the Performance
of Virtual Machine Introspection

Benjamin Taubmann(B) and Hans P. Reiser

University of Passau, Passau, Germany
{bt,hr}@sec.uni-passau.de

Abstract. Virtual machine introspection (VMI) is the process of exter-
nal monitoring of virtual machines. Previous work has demonstrated that
VMI can contribute to the security of cloud environments and distributed
systems, as it enables, for example, stealthy intrusion detection. One
of the biggest challenges for applying VMI in production environments
is the performance overhead that certain tracing operations impose on
the monitored virtual machine. In this paper, we show how this perfor-
mance overhead can be significantly minimized by incorporating minor
extensions for VMI operations into the hypervisor. In a proof-of-concept
implementation, we demonstrate that the pre-processing of VMI events
in the Xen hypervisor reduces the monitoring overhead for the use case
of VMI-based process-bound monitoring by a factor of 18.

1 Introduction

Virtual machine introspection (VMI) is the process of analyzing the state of a
virtual machine from outside, i.e., the perspective of the hypervisor [5]. Based
on the external view, VMI-based monitoring has certain properties that make it
appealing for many application scenarios, including solutions that aim to enhance
the security in cloud environments and distributed systems [6,8]. Hence, it is
not surprising that the first application for VMI was an intrusion detection
system [5]. Those properties are: isolation between the monitoring and the mon-
itored system, an untampered view on the system state, and the stealthiness of
monitoring.

In the following we use the term production virtual machine for the virtual
machine that is monitored via VMI and is performing the normal operations. The
term monitoring virtual machine is used for the virtual machine that analyzes
the production virtual machine using VMI [18]. The focus of this paper is on the
Xen architecture. Hence, the term monitoring virtual machine refers to either
the Dom0 of Xen or any other virtual machine with the permissions to perform
VMI-based operations. The VMI application that performs the analysis does not
run directly in the hypervisor.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 41–54, 2020.
https://doi.org/10.1007/978-3-030-50323-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_3

42 B. Taubmann and H. P. Reiser

There are two forms of virtual machine introspection: asynchronous and syn-
chronous. The main difference between these operation modes is how the analysis
is started [8]. We speak of asynchronous virtual machine introspection if the anal-
ysis is started by external events, such as timers that periodically retrieve the
system state. This is useful to regularly observe the system state and retrieve
information that is in memory for a longer time frame, such as the list of running
processes. Synchronous virtual machine introspection is triggered by sensitive
operations in the control flow of the monitored system, e.g., software break-
points. This can be required to retrieve ephemeral information that resides in
main memory only for a short period, such as the parameters of function calls.

In this paper we use the term performance impact to quantify the overhead
induced on the execution in the production virtual machine due to VMI-based
operations. The overhead is mainly caused by the fact that the production virtual
machine is paused for the analysis, which has three different reasons. The first one
concerns the case when the production virtual machine and monitoring virtual
machine share the same physical CPU core. In this case, the production virtual
machine gets paused when the monitoring system is running. This overhead
factor can be reduced by using an additional CPU core or by minimizing the
amount of time required for the analysis.

The second reason is that the production virtual machine must be paused
to prevent that the analyzed data structure (e.g., the process list) is modified
during the analysis. If the analysis were performed on a running system, memory
contents changing concurrently to the analysis could result in incorrect informa-
tion. In order to obtain reliable information, it is, therefore, necessary to perform
the analysis in a non-modifying state in order to retrieve a consistent view of the
system state. A common approach to address this problem is to take a snapshot
of the contents in main memory and then run the analysis on it. However, tak-
ing a snapshot of the main memory may also require to pause the production
virtual machine. Klemperer et al. [9] addressed this problem by implementing a
snapshot mechanism that uses a copy-on-write strategy.

The third reason is that the production virtual machine is paused due to
synchronous VMI-based mechanisms, e.g., when a breakpoint is invoked and the
control flow of the production virtual machine traps to the monitoring virtual
machine. The impact on the performance of the production virtual machine, in
this case, depends on how often the monitored virtual machine is interrupted
and the time how long the monitored system is paused for the analysis.

While the first two causes of performance overhead have adequate solutions,
the third reason is an open problem that severely limits the applicability of
synchronous VMI-based monitoring in practical use cases. In this paper, we
focus on how to minimize the performance overhead in this third case and discuss
mechanisms to enable efficient VMI-based monitoring. In detail, we discuss an
approach that reduces the overhead of process-bound system call monitoring.
Minimizing the overhead of synchronous VMI-based monitoring is important
to implement VMI-based security solutions in production environments that
tolerate only a minimal performance impact.

Towards Hypervisor Support for Enhancing VMI Performance 43

The contributions of this paper are:

– a presentation of different approaches that aim to minimize the performance
impact of synchronous virtual machine introspection;

– a proof-of-concept implementation that minimizes the performance impact of
process-bound monitoring;

– the evaluation of the proof-of-concept implementation.

The outline of the paper is as follows: Sect. 2 introduces the most impor-
tant technologies used by virtual machine introspection and the most common
mechanisms of synchronous virtual machine introspection. Section 3 discusses
approaches on how to minimize the overhead of synchronous VMI-based mon-
itoring. In Sect. 4, we discuss a prototype implementation that aims at mini-
mizing the monitoring overhead of process-bound system call tracing. In Sect. 5,
we measure the performance gain of the prototype. Section 6 discusses related
approaches and Sect. 7 concludes the paper.

2 Virtual Machine Introspection

This section describes the technologies that are used for virtual machine intro-
spection and synchronous monitoring.

2.1 Hardware Requirements

Synchronous virtual machine introspection requires that the CPU is able to
trap to the hypervisor in order to monitor the execution of a virtual machine.
For example, the hardware virtualization instruction set of Intel processors
(Intel VT-x) allows trapping to the hypervisor (VM-Exit) when certain sensitive
instructions are invoked in a virtual machine [7,20]. The virtual-machine control
structure (VMCS) defines for each virtual machine in which case it should trap
to the hypervisor (VMX root mode). While the hypervisor handles the event,
the virtual machine that invoked the sensitive operation is paused.

2.2 Hypervisor Support

The hypervisor has an important role for virtual machine introspection. For asyn-
chronous introspection, the hypervisor must give the monitoring virtual machine
the permissions to access the main memory of the production virtual machine.
This can be done for example by mapping the memory pages from the produc-
tion virtual machine into the address space of the monitoring virtual machine.
For synchronous monitoring, the hypervisor needs to forward the information
about traps to the monitoring virtual machine so that it can run analysis opera-
tions. The concepts presented in this paper are mostly hypervisor independent.
However, the focus of this paper is on the design of the Xen architecture.

Xen [1] is a bare-metal hypervisor that supports the hardware virtualization
instruction set of Intel. The relevant components for VMI-based operations using

44 B. Taubmann and H. P. Reiser

Xen hypervisor

Kernel

Libraries

Linux Kernel

libxc

libvmi

CPU Memory CPU Memory

VMI Application

Production VMDom0 / Monitoring VM

Monitoring

X
en

 e
ve

nt
 c

ha
nn

el

1

Application

5

4 8

6237

Fig. 1. VMI architecture using Xen and Libvmi. The arrows show the control flow of
VM Exit/Entry-based context switches when a sensitive instruction in the production
VM triggers a VMI event. The numbered items illustrate that synchronous tracing with
breakpoints requires two iterations, the first to intercept the breakpoint and single-
step the original instruction, the second to re-insert the breakpoint and resume the
production VM.

Xen are depicted in Fig. 1. The Dom0 is the virtual machine with the most per-
missions and can access the main memory of all virtual machines running on this
hypervisor. Thus, most VMI-based approaches implement the VMI application
in Dom0. However, with the Xen security modules (XSM) it is possible to grant
other virtual machines than the Dom0 the permissions required to perform VMI-
based operations [17,18]. This has certain advantages and can be useful in cloud
computing when it is necessary to restrict the VMI permissions of a monitoring
virtual machine to the production virtual machine of a specific user.

Asynchronous VMI-based operations can be implemented with Xen by map-
ping the relevant memory pages of a virtual machine to the monitoring virtual
machine, e.g., the Dom0. The functions that map memory pages are imple-
mented in the libxencontrol (libxc) library and use Xen hypercalls to instruct
the hypervisor. For synchronous VMI-based operations, sensitive operations in
the production virtual machine cause a trap to the hypervisor. Then, the mon-
itoring module of the hypervisor becomes active and sends the corresponding
VMI event via the event channel to the VMI application in the Dom0/monitoring

Towards Hypervisor Support for Enhancing VMI Performance 45

virtual machine. While the event is processed in the monitoring virtual machine,
the production virtual machine is paused.

2.3 VMI Applications

LibVMI [13,14] is the defacto standard library that helps to build VMI-based
monitoring applications. LibVMI provides the API to perform VMI-based oper-
ations on Xen and KVM. This includes, for example, functions for reading and
writing content from the main memory and functions for translating virtual
and physical addresses. In addition, LibVMI supports synchronous monitoring
with Xen. For this purpose, it provides primitives for listening on VMI-events
generated by the Xen hypervisor.

2.4 Basic Synchronous VMI Methods

The main advantages of synchronous virtual machine introspection are that it
can be used to monitor the control flow of virtual machines and to extract
ephemeral information such as parameters of function calls. The mechanisms
of synchronous monitoring utilize the concepts of hardware virtualization that
allow trapping to the hypervisor under certain conditions, e.g., when sensitive
instructions are invoked. In the following, we explain the most common VMI-
based monitoring techniques: breakpoints, the monitoring of the write access to
CPU control registers, and system call tracing.

Breakpoints. A common approach to monitoring the control flow using vir-
tual machine introspection is to insert software breakpoints, by using the INT3
instructions that trap to the hypervisor when they are invoked. One approach to
implement a software breakpoint mechanism for virtual machine introspection
requires the following eight steps. First, the software breakpoint is inserted at
the function that should be monitored, either by changing the content in mem-
ory or by manipulating the page tables1. Second, the production virtual machine
invokes the function and the CPU traps to the hypervisor. Third, the hypervi-
sor handles the trap caused by the INT3 instruction, creates a VMI monitoring
event and sends it via the Xen event channel to the virtual machine handling the
event. Fourth, the monitoring virtual machine gets active and the VMI appli-
cation receives the new event. Fifth, the VMI application analysis the state of
the production virtual machine and re-inserts the original instruction. The VMI
application finishes the investigation and tells the hypervisor that the production
virtual machine should perform a single-step and execute the original instruc-
tion. Sixth, the CPU is configured to run the original instruction in the context
of the production virtual machine in single-step mode. Afterward, the CPU traps

1 The approach of manipulating the page tables uses the altp2m feature of Xen [10].
This approach does not modify the original memory page. Instead, it creates a new
memory page that includes the software breakpoint. By switching the content in the
memory tables it can activate/deactivate the breakpoint.

46 B. Taubmann and H. P. Reiser

again to the hypervisor. Seventh, steps four and five are repeated with the dif-
ference that the VMI application inserts the original breakpoint. Eight, the VMI
application tells the hypervisor to resume the production virtual machine.

In total, this procedure requires switching twice between the monitoring vir-
tual machine and the production virtual machine. First, to handle the break-
point, and second, to reinsert it after the original instruction is executed in
single-step mode. Since a software breakpoint actually traps first to the Xen
hypervisor and is then handled by a monitoring virtual machine, eight VM
Exit/Entry-based context switches are required to handle a single breakpoint
(see Fig. 1).

Also, since the VMI application is usually implemented as a userspace appli-
cation in monitoring virtual machine, additional context switches between the
kernel of monitoring virtual machine and the VMI applications are required. The
actual number of required context switches depends on many factors, such as
the scheduler’s decision and how many processes are active in the monitoring
virtual machine.

Access to Control Registers. Modifications to the control registers of a CPU
can change the general behavior of the system. Hence, observing the changes
is a valuable mechanism of virtual machine introspection. The most common
example is the monitoring of modifications of the CR3 register. In the Intel
architecture, the CR3 register holds a pointer to the directory table base (DTB)
of a process. Whenever a process is dispatched by the scheduler of the operating
system, it updates the contents of the CR3 register to point to the DTB of the
next process. Thus, monitoring changes of the CR3 register can be used to be
informed whenever a new process becomes active.

2.5 System Call Tracing

Software breakpoints can be used to monitor the invocation of system calls. To
do so, the breakpoint is set on the first instruction of the system call handler
function. Since the operating system kernel is used by all processes, this means
that all invocations of system calls of all processes are monitored when a break-
point is set on a system call handler. Thus, if only the system calls of one process
should be monitored, this approach can have unnecessary high overhead.

There are two strategies to obtain the system call invocations of a specific
process. The first one is to use post-processing. This means that the monitoring
application itself filters the events in order to obtain only those system calls that
belong to a process with a specific process identifier (PID). This, of course, does
not have any positive impact on the performance at run-time. The second strat-
egy is to additionally monitor modifications of the CR3 register, which indicate
that a different process in the production virtual machine is being dispatched.
Every time a new process is dispatched, the breakpoints can be inserted/removed
from main memory so that the tracing is only active when specific processes are
running. Sentanoe et al. [16] call this approach process-bound monitoring.

Towards Hypervisor Support for Enhancing VMI Performance 47

3 Improving the Performance

The methods of synchronous virtual machine introspection have a severe perfor-
mance impact on the production virtual machine. One big part of that problem
is the long chain of subsequent operations that are required to handle a VMI
event in the hypervisor and the monitoring virtual machine while the production
virtual machine is paused. Those steps are processed for each VMI event, even
if the VMI application just disregards the event because it does not match a
certain filter.

The processing of a breakpoint in the VMI application can be organized
into three processing layers. On the lowest layer, the breakpoint is handled with
the steps explained in Sect. 2.4. Then on the layer above, the VMI-events of a
breakpoint are filtered and processed in the VMI application, e.g., when only
breakpoints of a specific process should be monitored VMI events can be filtered
based on the value stored in the CR3 register. On the highest layer, additional
data from the production virtual machine, e.g., the parameters passed to a func-
tion are extracted.

In the following, we discuss possible approaches that aim at minimizing the
VMI performance overhead. All of these approaches achieve this goal by reducing
the time needed by the data extraction routine and the time during which the
monitored virtual machine is paused.

Pre-filtering of Events: In some cases, only a few of the VMI events are necessary
for a specific use case. For example, in the case of process-bound monitoring,
many events are generated by changes in the CR3 register. However, only events
for changes that either write the value of the DTB of the process to be monitored
to CR3 or replace that value with a different value are required to enable/disable
the breakpoints. All other CR3-based events (e.g., when a context switch from
a not monitored to another not monitored process occurs) don’t need to be
observed. Nevertheless, in the usual approach to monitor CR3 events, a context
switch to the monitoring virtual machine is required in all cases, even if the VMI
application simply ignores irrelevant events.

One approach to solve this problem is to filter events at the hypervisor level.
For example, CR3 events that are captured because of the production virtual
machine changing the register from oldDTB to newDTB could be forwarded to
the userspace VMI application only if either oldDTB or newDTB match the
DTB of the process to be monitored.

Breakpoint Mechanism: A fast and efficient breakpoint mechanism helps to min-
imize the tracing overhead. Since breakpoints can occur frequently, small opti-
mizations can make a big difference. Hence, the implementation of breakpoints
should be as optimized as possible so that it requires as little time as possible.

Moreover, the breakpoint mechanism should be implemented into the hyper-
visor. This eliminates the need to switch to the monitoring virtual machine after
a single-step operation was executed as the restoration of the original instruc-
tion is independent of the VMI application logic. So instead of switching to the

48 B. Taubmann and H. P. Reiser

Xen hypervisor

Kernel

Libraries

Linux Kernel

libxc

libvmi

CPU Memory CPU Memory

VMI Application

Production VMDom0 / Monitoring VM

Monitoring

Application

CR3 Event Filter

co
nf

ig
ur

at
io

n
hy

pe
rc

al
l

X
en

 e
ve

nt
 c

ha
nn

el

Fig. 2. Our prototype architecture that pre-filters CR3 events in the hypervisor

virtual machine with the VMI application twice, only one context switch to the
VMI application is required.

Pre-processing of Events: Another approach to reducing the number of context
switches of VMI-based monitoring is to integrate parts of the analysis into the
hypervisor so that it is not necessary to always switch to the monitoring vir-
tual machine. However, hypervisors should be designed to be very minimal and
contain only the functions to manage virtual machines. Integrating additional
VMI code would violate this principle. Thus, we propose to run only very basic
information extraction routines that are necessary to access ephemeral data in
the context of the hypervisor. Complex analysis of this data should still occur in
the context of the monitoring virtual machine. With that approach, it should be
possible to minimize the time when production virtual machine must be paused,
i.e., the time to extract ephemeral data. The extracted data must then be sent
to the VMI-application in the monitoring virtual machine so that it can process
the data asynchronous to the execution of the production virtual machine.

4 Prototype

In the following, we describe how the performance impact of process-bound
VMI-based monitoring can be minimized by implementing basic pre-filtering

Towards Hypervisor Support for Enhancing VMI Performance 49

primitives into the hypervisor. The implemented architecture is depicted in
Fig. 2. This goal of process-bound monitoring is to decrease the monitoring over-
head, especially, when the production virtual machine runs many applications
that are not relevant to trace for the analysis. As described in Sect. 2.4, one way
to implement process-bound monitoring is to intercept write access to the CR3
register and en-/disable the breakpoints based on the fact which process becomes
active. The problem of this approach is that the operating system updates the
CR3 registers frequently. Hence, depending on how often the operating system
changes the active process, many VMI-events must be processed by the VMI
application. However, most of those events are irrelevant, because the VMI-
application does not need to be informed about context switches between two
processes that are not monitored.

To tackle that problem, our prototype implements a basic pre-filtering mech-
anism in the Xen hypervisor. The VMI application can configure the filter so that
only CR3 events are forwarded to the VMI application when the current or the
new value of the CR3 register matches the DTB of the monitored process. The
filter can be configured at run-time using hypercalls from the monitoring virtual
machine. To achieve that, we extend the hypercall API of Xen to activate or
disable the monitoring and set values of CR3 events that should be forwarded.
With this approach, we eliminate the need for many context switches to the
monitoring virtual machine.

The changes to the Xen hypervisor are essentially the extension of the hyper-
call and the filtering mechanism. Both modifications require only a few lines of
code in the Xen hypervisor. Additionally, the libxc used by the VMI application
must be extended to support the introduced parameter of the hypercall. Finally,
the VMI application must be extended to use the new CR3 filtering.

5 Evaluation

In this section, we evaluate the performance improvement of our prototype imple-
mentation for process-bound monitoring. In our evaluation, we examine whether
our prototype that pre-filters VMI events in the hypervisor can help to reduce
the performance overhead. For that purpose, we use a similar use case as Senta-
noe et al. for the Sarracenia Honeypot [16], which aims to reconstruct the inputs
and outputs of an attacker in a bash terminal session. Hence, for this use case,
it is sufficient to monitor only the read, write and exec system calls invoked by
the main bash process of an SSH session.

We obtain the performance impact of tracing by measuring the time that is
consumed by extracting the zip file of the jansson library2 and compiling the
source code. Both the extracting of the zip file and the compilation process
require the invocation of many system calls. Most of them are not important for
monitoring the attacker’s behavior as they belong to the compilation process.
Thus, process-bound monitoring of the main bash process that only starts the
extraction and compilation should help to reduce the monitoring cost.
2 https://github.com/akheron/jansson.

https://github.com/akheron/jansson

50 B. Taubmann and H. P. Reiser

Table 1. Measurements of the time, the number of intercepted system calls (read,
write, open, close and exec) and CR3 events using four different monitoring mechanisms

Monitoring method 1 2 3 4

Mean time per run [s] 5.25 ± 0.022 148.92 ± 8.66 117.69 ± 8.66 8.31 ± 0.0078

Monitored syscalls – 1,245,130 4 6

Monitored CR3 events – – 20,553,669 276

Overhead – 2736% 2141% 58%

In our evaluation, we run this use case while monitoring with four different
mechanisms:

1. No monitoring.
2. Monitoring the 6system calls of all running processes.
3. Monitoring the system calls of the bash process only. The tracing is based

on the fact which process is currently running. The CR3 events are not pre-
filtered in the hypervisor. This is similar to the approach of Sentanoe et al.

4. Monitoring the system calls of the bash only by en-/disabling the tracing
based on the fact which process is currently running. The CR3 events are
pre-filtered in the hypervisor.

The measurements are executed on an HP Elitebook 820 G4 with an Intel(R)
Core(TM) i5-7200U CPU @ 2.50 GHz processor. The production virtual machine
has one CPU core and 256 MB of main memory. The VMI application is running
in the Dom0 and is implemented to monitor the read, write, open, close and exec
system call of the bash process of an SSH session that runs the extraction and
compilation. The monitoring of the system calls is implemented by placing a
breakpoint on the corresponding system call handler function.

The results of our measurements are depicted in Table 1. The second row
shows the average execution time of the compilation process that was executed
ten times. The execution time is measured in the production virtual machine
using the Linux time command. We use the elapsed real-time to quantify the
run-time of the unpacking and compilation process over all ten iterations. The
third and fourth rows provide the number of monitored system calls and CR3
events over all ten iterations.

At first glance, the approach of process-bound monitoring of system calls
appears to be beneficial in order to reduce the impact of monitoring. However,
the measurements of monitoring method three show that the required monitoring
of write access to the CR3 register in the VMI application almost annihilates this
positive effect. This is because the CR3 events are more frequent than system
call events. Nevertheless, we measure a slight improvement in performance. The
results of the method four show that implementing basic analysis mechanisms
into the hypervisor can significantly reduce the impact of VMI-based monitoring.
Based on method four we can estimate the overhead for a single CR3 event by
dividing the overhead through the number of CR3 events. From this calculation,

Towards Hypervisor Support for Enhancing VMI Performance 51

we get an overhead of about 11 ms per CR3 event. This long time period can be
explained with the different layers in which the event is processed (see Fig. 1).

To sum up, the process of pre-filtering CR3 events decreases the run-time
of the execution with process bound tracing from 148.92 s to 8.31 s, which is
about 18 times faster. Additionally, these measurements show that integrating
basic VMI primitives into the hypervisor can reduce the performance overhead
and help to make VMI applicable in production environments. Hence, there is
ample room for performance improvement in the current Xen mechanisms for
VMI that needs to be addressed by future research. To further improve the
performance of synchronous VMI-based monitoring, we, therefore, suggest that
more VMI monitoring primitives should be implemented in the Xen hypervisor.
Nevertheless, by adding VMI-based functionality to the hypervisor, an additional
access control mechanism should be added to the hypervisor. Additionally, if
code is loaded to the hypervisor, it must be verified that it does not affect the
reliability and security of the overall system.

6 Related Work

The field of dynamic control flow instrumentation has a long history and in
the last decades has been many different approaches that tackle the perfor-
mance overhead. In the following, we want to discuss the most important related
approaches. DTrace [3] is a tracing framework for the Solaris operating system.
One of the main objectives of DTrace is to have no impact on the performance
when the tracing is not implemented. This is implemented by inserting no-
operation (nop) instruction at possible probing points. When the monitoring
is activated, the nop instructions are replaced by jumps to the analysis routines.
The monitoring actions can be implemented by users in the D programming
language.

Our prototype approach follows the same approach as the eBPF filters in the
Linux kernel [4,12], which have a similar concept as DTrace. The core concept
of eBPF is to run application-specific tracing code in the high privileged Linux
kernel in order to monitor functions in user and kernel space. This approach
helps to minimize (synchronous) context switches to the user space that stalls the
execution. The features of eBPF filters are very advanced and the Linux kernel
is already able to run small programs, whereas our prototype for VMI-based
tracing currently only allows pre-filtering tracing events in the Xen hypervisor.

Tuzel et al. [19] analyzed the performance impact of VMI-based monitoring
techniques in detail. The focus of their paper is to analyze to which extent
VMI-based monitoring techniques can be detected from the production virtual
machine. The result of their conducted study is that VMI-based monitoring
in their setup is not stealthy to applications running in the production virtual
machine. The focus of our paper is to decrease the monitoring overhead to make
it applicable in production environments but not to make VMI-based monitoring
completely stealthy.

Klemperer [9] proposed to use copy-on-write-based snapshots in order to
perform the analysis on a non-changing system state. For this purpose, they

52 B. Taubmann and H. P. Reiser

extended the KVM hypervisor and hook instructions that alter memory pages
during the normal execution. If a page is modified they copy the original version
of the page for the snapshot. After the analysis is finished, the snapshot gets
deleted and changes to memory pages are not monitored anymore. This approach
is probably most effective when larger parts of main memory must be analyzed.
For the extraction of function call parameters when a breakpoint is invoked this
approach is too expensive.

Drakvuf [11] is a VMI framework that uses libvmi and Xen and is mainly
designed for dynamic analysis of Windows malware. It uses the altp2m app-
roach [10] to implement software breakpoints. The advantage of this approach
is that instead of replacing the original instruction with the INT3 instruction in
memory, it creates a new memory page with the software breakpoint. Depending
on whether a process in the production virtual machine is reading from that page
or executing an instruction the memory page is swapped in the page tables. The
rVMI framework designed by Pfoh and Vogl [15] is similar to Drakvuf. However,
it uses a patched version of KVM and Qemu instead of Xen3. The communication
between the VMI application and Qemu is established via the QMP interface of
Qemu.

Westphal et al. [21] define a VMI monitoring language that supports the
most common methods for VMI. Their prototype is implemented for the VMware
KVM hypervisor. Similarly to our proposed approach, they execute VMI analysis
scripts in the domain of the KVM hypervisor.

Bushouse et al. [2] implement VMI-based monitoring into Linux containers
running in the Dom0 of Xen instead of running the VMI-application in a mon-
itoring virtual machine. This should not have any positive beneficial impact on
the performance.

7 Conclusions

By implementing a pre-filtering approach in the hypervisor, we significantly
reduce the impact of VMI-based monitoring on the production virtual machine.
Our prototype reduces the monitoring overhead for process-bound monitoring
by a factor of 18. We, therefore, conclude that more complex event processing
in the hypervisor, such as the implementation of a breakpoint mechanism, can
help to solve the problem of minimizing the performance impact of VMI-based
tracing.

Acknowledgment. This work has been supported by the German Research Founda-
tion (DFG) in the project ARADIA (RE 3590/3-1).

3 Currently, the KVM hypervisor does not support synchronous VMI-based moni-
toring out of the box. To use synchronous VMI-based monitoring mechanisms, the
KVM hypervisor must be patched.

Towards Hypervisor Support for Enhancing VMI Performance 53

References

1. Barham, P., et al.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.
37(5), 164–177 (2003)

2. Bushouse, M., Reeves, D.: Furnace: self-service tenant VMI for the cloud. In: Bailey,
M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol.
11050, pp. 647–669. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00470-5 30

3. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-
duction systems. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC 2004, pp. 15–28. USENIX Association, Berkeley
(2004). http://dl.acm.org/citation.cfm?id=1247415.1247417

4. Fleming, M.: A thorough introduction to eBPF (2017). https://lwn.net/Articles/
740157/. Accessed 26 Sept 2019

5. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

6. Hebbal, Y., Laniepce, S., Menaud, J.M.: Virtual machine introspection: techniques
and applications. In: 2015 10th International Conference on Availability, Reliability
and Security, pp. 676–685, August 2015. https://doi.org/10.1109/ARES.2015.43

7. Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer’s Man-
ual (2017). https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf

8. Jain, B., Baig, M.B., Zhang, D., Porter, D.E., Sion, R.: SoK: introspections on
trust and the semantic gap. In: IEEE Symposium on Security and Privacy, pp.
605–620 (2014)

9. Klemperer, P., Jeon, H.Y., Payne, B.D., Hoe, J.C.: High-performance memory
snapshotting for real-time, consistent, hypervisor-based monitors. IEEE Trans.
Depend. Secur. Comput., 1 (2018). https://doi.org/10.1109/TDSC.2018.2805904

10. Lengyel, T.K.: Stealthy monitoring with Xen altp2m (2016). https://blog.
xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/. Accessed 31
Jan 2019

11. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference,
pp. 386–395 (2014)

12. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: Proceedings of the USENIX Winter 1993 Conference, USENIX
1993, p. 2. USENIX Association, Berkeley (1993). http://dl.acm.org/citation.cfm?
id=1267303.1267305

13. Payne, B.D.: Simplifying virtual machine introspection using LibVMI. Sandia
Report, pp. 43–44 (2012). http://libvmi.com/

14. Payne, B.D., de A. Carbone, M.D.P., Lee, W.: Secure and flexible monitoring
of virtual machines. In: 23rd Annual Computer Security Applications Conference
(ACSAC 2007), pp. 385–397, December 2007. https://doi.org/10.1109/ACSAC.
2007.10

15. Pfoh, J., Vogl, S.: rVMI - a new Paradigm for Full System Analysis (2017). https://
github.com/fireeye/rvmi. Accessed 31 Jan 2019

https://doi.org/10.1007/978-3-030-00470-5_30
https://doi.org/10.1007/978-3-030-00470-5_30
http://dl.acm.org/citation.cfm?id=1247415.1247417
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://doi.org/10.1109/ARES.2015.43
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1109/TDSC.2018.2805904
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
http://dl.acm.org/citation.cfm?id=1267303.1267305
http://dl.acm.org/citation.cfm?id=1267303.1267305
http://libvmi.com/
https://doi.org/10.1109/ACSAC.2007.10
https://doi.org/10.1109/ACSAC.2007.10
https://github.com/fireeye/rvmi
https://github.com/fireeye/rvmi

54 B. Taubmann and H. P. Reiser

16. Sentanoe, S., Taubmann, B., Reiser, H.P.: Sarracenia: enhancing the perfor-
mance and stealthiness of SSH honeypots using virtual machine introspection. In:
Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 255–271. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03638-6 16

17. Shi, J., Yang, Y., Li, C.: A disjunctive VMI model based on XSM. In: 2015 IEEE
International Conference on Smart City/SocialCom/SustainCom (SmartCity), pp.
921–925, December 2015. https://doi.org/10.1109/SmartCity.2015.188

18. Taubmann, B., Rakotondravony, N., Reiser, H.P.: CloudPhylactor: harnessing
mandatory access control for virtual machine introspection in cloud data centers.
In: The 15th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom 2016). IEEE (2016)

19. Tuzel, T., Bridgman, M., Zepf, J., Lengyel, T.K., Temkin, K.: Who watches
the watcher? Detecting hypervisor introspection from unprivileged guests. Digit.
Invest. 26, S98–S106 (2018). https://doi.org/10.1016/j.diin.2018.04.015

20. Uhlig, R., et al.: Intel virtualization technology. Computer 38(5), 48–56 (2005).
https://doi.org/10.1109/MC.2005.163

21. Westphal, F., Axelsson, S., Neuhaus, C., Polze, A.: VMI-PL: a monitoring language
for virtual platforms using virtual machine introspection. Digit. Invest. 11, S85–S94
(2014). https://doi.org/10.1016/j.diin.2014.05.016. http://www.sciencedirect.com/
science/article/pii/S1742287614000590, fourteenth Annual DFRWS Conference

https://doi.org/10.1007/978-3-030-03638-6_16
https://doi.org/10.1109/SmartCity.2015.188
https://doi.org/10.1016/j.diin.2018.04.015
https://doi.org/10.1109/MC.2005.163
https://doi.org/10.1016/j.diin.2014.05.016
http://www.sciencedirect.com/science/article/pii/S1742287614000590
http://www.sciencedirect.com/science/article/pii/S1742287614000590

Fed-DIC: Diagonally Interleaved Coding
in a Federated Cloud Environment

Giannis Tzouros(B) and Vana Kalogeraki

Department of Informatics, Athens University of Economics and Business,
Athens, Greece

{tzouros,vana}@aueb.gr

Abstract. Coping with failures in modern distributed storage systems
that handle massive volumes of heterogeneous and potentially rapidly
changing data, has become a very important challenge. A common prac-
tice is to utilize fault tolerance methods like Replication and Erasure
Coding for maximizing data availability. However, while erasure codes
provide better fault tolerance compared to replication with a more afford-
able storage overhead, they frequently suffer from high reconstruction
cost as they require to access all available nodes when a data block needs
to be repaired, and also can repair up to a limited number of unavailable
data blocks, depending on the number of the code’s parity block capa-
bilities. Furthermore, storing and placing the encoded data in the feder-
ated storage system also remains a challenge. In this paper we present
Fed-DIC, a framework which combines Diagonally Interleaved Coding
on client devices at the edge of the network with organized storage of
encoded data in a federated cloud system comprised of multiple inde-
pendent storage clusters. The erasure coding operations are performed
on client devices at the edge while they interact with the federated cloud
to store the encoded data. We describe how our solution integrates the
functionality of federated clouds alongside erasure coding implemented
on edge devices for maximizing data availability and we evaluate the
working and benefits of our approach in terms of read access cost, data
availability, storage overhead, load balancing and network bandwidth
rate compared to popular Replication and Erasure Coding schemes.

1 Introduction

In recent years, the management and preservation of big data has become a
vital challenge in distributed storage systems. Failures, unreliable nodes and
components are inevitable and such failures can lead to permanent data loss and
overall system slowdowns. To guarantee availability, distributed storage systems
typically rely on two fault tolerance methods: (1) Replication, where multiple
copies of the data are made, and (2) Erasure Coding, where data is stored in

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 55–72, 2020.
https://doi.org/10.1007/978-3-030-50323-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_4

56 G. Tzouros and V. Kalogeraki

the form of smaller data blocks which are distributed across a set of different
storage nodes.

Replication based algorithms as those utilized in Amazon Dynamo [1], Google
File System (GFS) [2,3], Hadoop Distributed File System (HDFS) [4,5] are
widely utilized. These can help tolerate a high permanent failure rate as they
provide the simplest form of redundancy by creating replicas from which systems
can retrieve the lost data blocks, but cannot easily cope with bursts of failures.
Furthermore, replication introduces a massive storage overhead as the size of the
created replicas is equal to the size of their original data e.g. 3-way replication
occupies 3 times the volume of the original data block in order to provide fault
tolerance.

On the other hand, Erasure Coding [6] can provide higher redundancy while
also offering a significant improvement in storage overhead compared to repli-
cation. For example, a 3-way replication creates 3 replicas of a data block and
causes a 3x storage overhead for providing fault tolerance, while an erasure code
can provide the same services for half the storage overhead or even lower by
creating smaller parity blocks that can retrieve lost data more efficiently than
full-sized replicas. Thus, Erasure codes are more storage affordable than replica-
tion but their reliability is limited to the number of parity blocks for repairing
erasures. For example, an erasure code that creates 3 parity chunks cannot fix a
data block with 4 or more unavailable or lost chunks.

Yet the most critical challenge with erasure coding is that it suffers from high
reconstruction cost as it needs to access multiple blocks stored across different
sets of storage nodes or racks (groups of nodes inside a distributed system) in
order to retrieve lost data [7], leading to high read access and network band-
width latency. The majority of the distributed file systems deploy random block
placement [8] and one block per rack policies [9,10] to achieve optimized relia-
bility and load balancing for stored encoded data. However, storing data across
multiple nodes and/or racks can lead to higher read and network access costs
among nodes and racks during the repairing processes. For example, in the worst
case, repairing a corrupted or unavailable block in a node may require traversing
all nodes across different racks, causing a heavy amount of data traffic among
nodes and racks. Also, in a typical cross-rack storage, the user does not have any
control over the placement of the data blocks across different racks, limiting the
ability of the system to tolerate a higher average failure rate.

To reduce the cost of accessing multiple nodes or racks, file systems can keep
metadata records regarding the topology of the encoded data codewords (groups
that contain original data blocks alongside their parity blocks) in private nodes.
However, the placement of the metadata files among the system’s nodes is also
challenging. For example, storing a codeword in a small group of nodes while
keeping metadata about the data blocks scattered throughout the public clouds
instead of a specific storage node [11], will also require to traverse all nodes at
worst in order to recover any failed data inside the codeword. This problem leads
to high cross-node read and network access costs, despite the use of metadata.

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 57

In this paper we propose Fed-DIC (Federated cloud Diagonally Interleaved
Coding), a novel compression framework deployed on an edge-cloud infrastruc-
ture where client devices perform the coding operation and they interact with
the federated cloud to store the encoded data. Fed-DIC’s compression approach
is based on diagonal interleaved erasure coding that offers improved data avail-
ability while reducing read access costs in a federated cloud environment. It
employs a variation of diagonally interleaved codes on streaming data organized
as a grid of input records. Specifically, the grid content is interleaved into groups
that diagonally span across the grid, and then the interleaved groups of data are
encoded using a simple Reed-Solomon (RS) erasure code. Next, our framework
organizes the encoded data into batches based on the number of clusters in the
federated cloud and places each batch to a different cluster in the cloud, while
keeping a metadata index of the locations of each stored data stream. The benefit
is that Fed-DIC will only access the cluster with the requested data records and
retrieve the correspondent diagonals, enabling the system to efficiently extract
the corresponding records.

Fed-DIC has multiple benefits: it maximizes the availability of the encoded
data by ordering input data into smaller groups, based on diagonally interleaved
coding, and encoding each group using the erasure coding technique. Further-
more, it supports efficient archival and balances the load by storing each version
of the streaming data array in a rotational basis among the storage nodes, e.g.
if we have an infrastructure with 3 file clusters, for the first version of the data
array, the first batch of diagonals is stored on the first node cluster, the second
batch on the second node cluster and the third batch on the third cluster. For
the second version of the array, the first batch of diagonals is stored on the sec-
ond cluster, the second batch on the third cluster and the third batch on the
first cluster and so on. We present an approach how multiple storage usage can
optimize read access costs while keeping data availability and low bandwidth
cost for retrieving data by utilizing multiple storage clusters in the same cloud
environment instead of storing data in a single cluster. We illustrate the effec-
tiveness of our approach with an extended experimental evaluation in terms of
read access cost, data availability, storage overhead, load balancing and network
bandwidth rate compared to popular Replication and Erasure Coding schemes.

2 Background

In this section we provide some background material regarding the technologies
that we utilize at Fed-DIC: the Federated Cloud environment, Erasure Coding
and Diagonally Interleaved Coding.

2.1 Federated Storage Systems

Many large-scale distributed computing organizations that need to store and
maintain continuous amounts of data deploy distributed storage systems, such as
HDFS [4,5], GFS [2,3] (which were mentioned above), Ceph [12], Microsoft Azure

58 G. Tzouros and V. Kalogeraki

[13,14], Amazon S3 [15], Alluxio [16] etc., which comprise multiple nodes, often
organized into groups called racks. Currently, most of these systems write and
store large data as blocks of fixed size, which are distributed almost evenly among
the system’s nodes using random block placement or load balancing policies. In
each system, one of the nodes operates as the master node e.g. the NameNode
in HDFS, that keeps a record of the file directories and redirects client requests
toward the storage API for opening, copying or deleting a file. However, these
policies are limited as they depend on the size of the data stored in the systems
as well as the policies followed by the specific storage nodes (e.g., load balancing
policies). Our framework assumes the deployment of multiple HDFS clusters
within the federated cloud environment, each comprising a different master node
and storage layer. The client edge device can communicate with each of the
master nodes with a different interface in order to store different groups of data
into separate HDFS clusters.

2.2 Erasure Codes

Distributed systems deploy erasure codes as a storage-efficient alternative to
replication so as to guarantee fault tolerance and data availability for their stored
data. Erasure codes are a form of Forward Error Correction (FEC) codes that
can achieve fault tolerance in the communication between a sender and a receiver
by adding redundant information in a message; this enables the detection and
correction of errors without the need for re-transmission. For instance, a sender
node encodes a file with erasure coding and generates a data codeword or a
stripe containing original and redundant parity data. Next, the sender node
sends sequentially the blocks of the encoded stripe to a receiver node. In its
turn, the receiver node detects whether there is a sufficient number of available
blocks in order to decode them into their original content. If no original blocks
are received, the parity blocks can repair them up to a finite range.

The most commonly used erasure code algorithm is the Reed-Solomon (RS),
a maximum distance separable code (MDS) which is expressed as a pair of
parameters (b, k) (RS(b, k)) where b is the number of input chunks on a data
block and k is the number of parity chunks created by the erasure code. The
parity chunks are generated by utilizing Cauchy or Vandermonde matrices over
a GF (2m) Galois Field, where 2m is the number of elements in the field and m
is the word size of encoding. The code constructs a matrix of size k × d which
contains values from the GF (2m) field that correspond to the dimensions of
the matrix and represent the positions of the input chunks. Next, the RS code
derives an inverse k×k submatrix from the previous matrix. The original matrix
is multiplied by the inverse submatrix in order to convert the top square of the
former into a k × k identity matrix which will keep the content of the original
data chunks unaltered during the encoding and decoding processes. The result
is a stripe of length n = b + k, that contains the b chunks of the original data
and the k parity chunks generated by the code. RS is k-fault tolerant due to the
fact that the original data can be recovered for up to k lost chunks. In other
words, while replication needs to copy and store the original data n + 1 times,

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 59

Fig. 1. A pictorial representation of diagonally interleaved coding for an input message
with (c, d, a) = (2, 5, 2). The data blocks are rearranged into diagonals and each diago-
nal is encoded into stripes (D1...D4) by the systematic code. B Symbols in time steps
from −1 to 0 and from 3 to 6 are assumed to have zero, null or non-positive values,
and they are not part of the input message.

erasure codes only require to store the data n−k
n times, which costs considerably

less compared to replication.
Reed-Solomon codes are also characterized by linearity [17]. In other words,

they perform linear coding operations based on the Galois field arithmetic. More
formally, given an (b, k) code, let B1, B2, ..., Bb be the b original data chunks
and P1, P2, ..., Pk be the k parity chunks. Each parity chunk Pj (0 < j < k) can
be expressed as Pj =

∑b
i=1(cji ·Bi), where cji ⊂ GF (2m) is a coding coefficient

specified by the RS code for computing Pj .
This technique is limited as the redundancy provided by simple RS codes

can repair up to k unavailable nodes. If there are more than k chunk erasures,
the code will not be able to fully repair their original data. Our framework tries
to deal with limited redundancy by deploying a more advanced erasure coding
technique based on Reed-Solomon and Diagonally Interleaved Coding, the latter
of which we describe in the next section.

2.3 Diagonally Interleaved Coding

Leong et al. have studied a burst erasure model in [18], where all erasure patterns
with limited-length burst erasures are admissible so that they can construct an
asymptotically optimal convolutional code that achieves maximum message size
for all available patterns. This code involves stripes derived from one or more
data messages interleaved in a diagonal order.

For a set of parameters (c, d, k), where c is the interval between input mes-
sages, d is the total number of symbols in the encoded message (original data
and parity symbols) and k is the number of generated parity symbols, an input
message is equally split into a vector of c columns and d − k rows. Next, tables
of blank or null symbols are placed around the message table that represent

60 G. Tzouros and V. Kalogeraki

non-existent messages before and after the input message. The symbols of the
entire table are interleaved in diagonal pattern, forming well-defined diagonals
containing at least one symbol from the input message. Finally, a systematic
block code is used to create k parity symbols for every diagonal, thus construct-
ing a convolutional code with d− 1 diagonal stripes that can repair up to k lost
symbols in each diagonal and span across d consecutive time steps. As a result,
diagonally interleaved codes are able to handle an extended number of erasure
bursts in one message and allow smaller erasures to be fixed without accessing
massive amounts of data. In Fig. 1 we illustrate with an example how diagonally
interleaved coding is applied for a single data block.

The process of splitting an input message into a vector can be applied only if
the input data is organized in single data stripes. To optimize data availability,
our framework uses a derived version of diagonally interleaved coding that takes
as input data organized in a grid and interleaves all content into diagonals before
encoding them with a Reed-Solomon code.

3 Challenges

In this section we present the challenges of existing schemes and how we propose
to address them in our Fed-DIC framework.

High Read Access and Network Bandwidth Costs During Data
Retrieval. One major challenge in typical cloud environments is the lack of
user-oriented control in data distribution and storage. Most cloud systems store
data blocks in randomly chosen nodes and nodes within racks in their clusters
without balancing the load. For example, a system that uses an RS(b, k) to
encode its streamed data, will distribute the d = b + k chunks of the generated
codeword to d different nodes in a random order. However, in cases of node
failures, the system needs to retrieve data from other nodes within the rack or
even across racks to retrieve parity data, leading to high read access costs and
network overhead, which can considerably slow down the repair process.

Fed-DIC deals with this problem by uploading and distributing the encoded
data to a federated cloud with multiple autonomous Hadoop clusters in the same
network, each with a unique NameNode. To retrieve a particular data record, the
framework keeps a metadata file containing the locations of the stored encoded
data. The metadata file is created and can be accessed by the edge device in
order to locate the requested data record and retrieve it faster with a significantly
reduced read access latency, limited to the cluster where the specific data record
is stored, without the need to traverse all nodes or maintain scattered metadata
among nodes or clusters. Fed-DIC’s topology in terms of the stored data among
the clusters of the federated cloud, combined with the reduced storage size of the
data chunks generated from its encoding process, provide significantly smaller
read access costs and transfer bandwidth overhead for nodes in the cloud.

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 61

Limited Data Availability. Distributed systems deploy erasure coding meth-
ods to achieve higher redundancy than replication with more affordable storage
cost. However, the availability provided by simple erasure codes such as Reed-
Solomon codes for the encoded data is restricted to the number of parity chunks
generated by the code. More specifically, a Reed-Solomon code that creates k
parity data chunks from b original data chunks (RS(b, k)) can repair up to k
failures between the original or parity data. If there are more than k unavailable
or failed chunks in the stripe, the RS code will not be able to restore the data
back to their original state.

To deal with this challenge, several advanced erasure codes have been pre-
sented, including alpha entanglement codes [19] and diagonally interleaved codes
[18]. Fed-DIC uses a variation of diagonally interleaved coding on a group of
streaming data containing input records from multiple sensor groups (columns)
across multiple days (rows). The array data are interleaved diagonally and
encoded with multiple parity chunks for each arranged diagonal pattern, achiev-
ing higher data availability and greater repairing range than conventional erasure
coding methods.

Load Balancing Unreliability. Most large-scale distributed systems deploy
load balancing policies for node distribution or utilizing one-node-per-rack
[8–10] to balance the storage load across the cluster. However, most load balanc-
ing policies require the use of sophisticated techniques which may lead to load
imbalances among nodes, especially when the number of the data chunks in a
stripe exceeds the number of nodes that comprise a cluster.

Fed-DIC groups the encoded data diagonals into batches before they are
stored to multiple node clusters in a non-random order. If the user decides to
upload a data array and store it over the old one, the framework rotates the
directions of the clusters in which the new batches will be stored in order to
achieve good load balancing.

4 Design of the Fed-DIC Framework

To deal with the above problems of conventional erasure coding on federated
clouds, we designed and developed Fed-DIC (Federated cloud Diagonally Inter-
leaved Coding), a framework that utilizes diagonal interleaving and erasure cod-
ing on streaming data records in a federated edge cloud environment. The goal of
our framework is to reduce the read access cost and network overhead caused by
accessing multiple nodes in a federated cloud while maximizing data availability
for the data stored in the federated cloud environment. Fed-DIC also supports
load balancing by storing multiple versions of the data records among clusters
in a rotational order, while keeping storage availability, using the techniques we
have developed and its API for distributing the data and balancing them across
the clusters. In cases of high load in a cluster due to data congestion or unavail-
able nodes, Fed-DIC can reconfigure the number of batches and the content size
of each batch in order to achieve load balancing by storing data to a smaller
number of clusters with more nodes and larger storage space.

62 G. Tzouros and V. Kalogeraki

Fig. 2. The architecture of Fed-DIC, which comprises the client devices, where all
operations are performed, the network hub, which connects the clients with the cloud
and the federated cloud, which contains multiple independent storage clusters.

4.1 Framework Architecture

As illustrated in Fig. 2 Fed-DIC comprises three main components: the client
side (edge devices), a federated cloud comprising multiple independent clusters
where each cluster consists of multiple independent nodes, and a network hub
that connects the two other components through the network. The client devices
are operated by the user and provide six services: (1) The Interleaver module
which re-orders the input data set into a grid and interleaves them into diag-
onal groups, (2) the Coder module which encodes all diagonal groups prior to
the uploading process and decodes received diagonal stripes containing user-
requested data, (3) the Destination module which splits the encoded stripes
into batches and configures the order of destination clusters where the batches
will be stored, (4) the Hadoop Service which communicates with the NameN-
odes of each cluster in order to upload the diagonal stripe batches, (5) the
Metadata service which creates a metadata index file during the upload pro-
cess and provides a query interface for the user during the retrieval process, and
(6) the Extractor module which searches through a received diagonal stripe in
order to extract the data record requested by the user and store it to a new file.

Our framework works as follows: A client takes as input a set of streaming
data records and organises them into a grid of D columns and G rows. The data
records in the grid are re-ordered into C = D+G−1 diagonal groups, which are
then encoded with Reed-Solomon, generating up to k parity chunks per diago-
nal using an 8-bit Galois Field. Next, Fed-DIC groups the diagonal stripes into
H batches and stores each batch into a different cluster in the federated cloud.
Simultaneously, the client creates a metadata file that contains information for
each stored data record: The day the record was created, the group of sensors
that generated the record and the diagonal stripe in which the record was inter-
leaved. To retrieve selected data records, the client receives user-created request
queries about data records and communicates with their correspondent clusters
to download the stripes that include the records so as to extract their contents

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 63

in output files. To upload a new version of the already stored data while archiv-
ing the older versions, the cluster destinations are rotated in a stack order by
setting the first cluster destination at the position of the last cluster destination
in a circular pattern. In that way, Fed-DIC achieves not only the maintenance
of multiple versions, but also load balancing throughout all clusters within the
federated cloud. If Fed-DIC kept uploading newer versions into the same clusters
each time, there could have been inconsistencies between the clusters. Especially,
the first and last clusters in the cloud would have smaller data load than the
other clusters.

4.2 Read Access Latency

The read access cost for a data query q from a group of Q queries, is given by the
sum of the access time a client needs to traverse l lines in the metadata file to
find the requested data, the latency needed to access any h clusters that contain
the data (h ≤ H) and the search delay caused by any missing d data chunks
in a cluster. The probability pi shows if a chunk is available for transferring. If
pi = 0, the chunk is missing. This is computed by the following formula:

Tq = l · rmd + h · rh +
∑d

i=1
((1 − pi) · tm)

where rmd is the time a client needs to read a line from the metadata file, rh is the
time to access a cluster in the federated cloud and tm is the search delay caused
by missing data chunks in the cloud. The read access latency Lq for downloading
and extracting a requested data query q is given by the access cost Tq which was
computed previously, plus the time required to download all available d chunks
in the diagonal stripe that includes the data using an internet connection of B
bandwidth and the computation time T dec

q a client needs to decode the diagonal
stripe so as to extract the result. The formula for the overall query storage
latency is given below:

Lq = Tq +
∑d

i=1(pi · tp)
B

+ T dec
q

where tp is the elapsed time for an available data chunk to be transferred from
the federated cloud to a client device. Similarly, the total read access latency LQ

is the sum of the read access latency for all Q queries:

LQ =
∑Q

q=1
(Lq)

The read access latency for erasure coding is computed in a similar way to Lq,
with the only difference that the metadata access time is not taken into account.

4.3 Data Loss Percentage

When stored chunks are missing or unavailable in the federated cloud due to
failures or nodes being disabled in the cloud’s clusters, erasure codes try to

64 G. Tzouros and V. Kalogeraki

utilize any available parity chunks in order to reconstruct the damaged encoded
file. However, if a decent amount of chunks are not available in a cluster, there
may be permanent loss of the original data, due to the number of available data
chunks being insufficient for use with erasure codes. The data loss percentage
DC of a fault tolerance method is measured by the fraction of the probability pi
of a data chunk ci being available with the total number of data chunks in the
entire cloud, subtracted from 1, as follows:

DC = (1 −
∑C

i (pi · ci)
C

) · 100

4.4 Framework API

Fed-DIC provides an API with the following four operations:

Encode(). This operation interleaves the input data set into D diagonal data
groups of varied length. Then, it merges data in each group into new data blocks
so as to be encoded with a unique Reed-Solomon erasure code.

Store(). This operation groups the encoded diagonal data stripes into H batches
containing an equal number of (D/H) codewords in each batch and communi-
cates with all the NameNodes of the federated cloud in order to upload and
store each batch in a different cluster, while keeping track of the data locations
and information in a metadata file stored in the client devices. The metadata
file can be shared and backed up in all clients in order to avoid any corruptions.
If, for any reason, the cloud changes the location of its clusters, the clients need
to update the metadata accordingly. However, a small non-significant access
overhead may occur in the case that the client device that performs the Store()
process becomes unavailable and the metadata have to be accessed from another
client. Due to the integrity of our private client nodes, the probability of this sit-
uation is extremely rare, so it is not considered when measuring the read access
latency.

Retrieve(). This method provides an interface to the user for entering multiple
queries regarding a data record the user aims to retrieve. Once the user issues his
queries, the method searches for each requested data record the diagonal stripe
in which it is included and downloads it accessing immediately the correspond-
ing storage cluster.

Decode(). Once the clients receive the diagonal stripes with the data requested
by the user, this operation decodes any available chunks in a stripe into its
original merged data block and extracts the requested result from the block
before deleting it.

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 65

4.5 Uploading and Downloading Algorithms

We describe the two main algorithms implemented by our framework:

Storing Data to the Federated Cloud: A client takes as input the data
records to be uploaded, these correspond to G sensor data groups over a time
period R days, stored in .csv files. The client invokes the Encode() operation
to organize the content into a grid with dimensions G × R, where its elements
are interleaved into C dynamic diagonal arrays of varied length (as shown in
Fig. 1). Records are inserted into the grid according to the day and sensor group
indicated on the record. Starting with the record of the last sensor group during
the first day, the client forms a diagonal line from bottom right to top left and
inserts any existing grid elements in the diagonal line, into a dynamic diagonal
array. The diagonal arrays span through the entire grid with the last one con-
taining only the record of the first sensor group during the last day. Next, in
each diagonal array, the data in the elements are merged into a single data object
and encoded using a (b, k) Reed-Solomon code. The encoding process splits each
merged data object into equally sized b chunks and generates k parity chunks,
creating a stripe of length d = b + k. Next, the client uses the operation Store()
to group the diagonal stripes into H batches containing an equal number of
(C/H) stripes in each batch and to upload the batches into the different clusters
of the federated cloud by communicating with every NameNode within the cloud.
Once the NameNode of a cluster receives the data, it distributes the chunks in
random order to its nodes. During the storage process, the clients write and
store metadata records about the stored data, their version, the date and sensor
group as well as the number of the diagonal stripes they belong to. The meta-
data file helps the edge devices to access the stored data faster and more easily
by reducing the access costs among the HDFS clusters. The distribution of the
batches is performed in a sequential way. For example, in a federated cloud of
F clusters, the first data batch is stored into the first cluster and so on until
the last batch is stored in the F -th cluster. When the user wants to upload a
new version of the data over the already stored versions, the clients swap the
order of the cluster destinations by placing the first cluster destination right after
the last cluster destination of the older version in a Last In, First Out (LIFO)
order. In our example, for the second version of our data, the first batch will be
uploaded into the F -th cluster, the second one to the first cluster and so on with
the last cluster being uploaded to the (F -1)-th cluster. The way data records are
stored in Fed-DIC enables us to traverse 1–2 clusters at most to recover any data
segment. Whereas, conventional (b, k) Reed-Solomon would merge r1 with every
other record in the input into a single data block, split it into b original chunks
and encode it using a Galois Field matrix to generate k parity chunks which are
distributed to the cloud via Hadoop. Thus, even if a small part of data must be
recovered, the data encoded with RS need to be restored in their entirety, which
may require traversing all clusters in the cloud, incurring a heavy read access
cost.

66 G. Tzouros and V. Kalogeraki

Retrieving Data from the Federated Cloud: The clients provide an inter-
face to the user awaiting response queries. When the user issues a query, the
clients gather all entered queries into a list array and use Retrieve() to search
through the metadata file generated from the uploading process for the diago-
nal stripes where the query data are stored. For every entry in the query list,
the client connects to the correspondent cluster to download the diagonal stripe
with the requested data. If the edge device fails to download sufficient amount of
chunks for restoring the stripe into its original data, it informs the user that the
queried data from that diagonal stripe cannot be recovered. If it receives enough
chunks from the stripe, it deploys Decode() to restore the diagonal stripe using
RS(b, k) back to its original content. Finally, the clients search through the recov-
ered data objects for the requested record entries and extract them as a result.
When there are multiple concurrent requests from users, the clients schedule
the requests to the hub in multiple rows according to the source cluster of the
requested data and return the result for the oldest request each time.

5 Experimental Evaluation

In this section we evaluate Fed-DIC in terms of data loss, maximum transfer net-
work rate and storage overhead, compared to the Replication and conventional
Reed-Solomon Erasure Coding techniques. The client machines we used were
desktop computers with an Intel i7-7700 4-core CPU at 3.5 GHz per core, with
16 GB RAM and a Western Digital WD10EZEX-08WN4A0 hard disk drive of
1 TB. The machines run Microsoft Windows 10 and are connected to the network
using a Cisco RV320 Dual Gigabit WAN VPN Router with a data throughput
of 100 Mbps and support of 20,000 concurrent connections. The router operates
as our network hub and due to its specifications, the probability of a failure or
bottleneck is extremely small. Although there are several ways to deal with such
failures, this is outside the scope of our paper. For the experiments, we deploy
via Oracle VirtualBox 4 clusters each comprising 4 nodes, 16 virtual machines
(VMs) in total running Apache Hadoop 3.1.1 in Linux Lubuntu 16.04 for eval-
uating Fed-DIC against Replication and Reed-Solomon. For memory and disk
allocation reasons, the VMs are running across 2 real desktop machines: Our
client device and a second machine with the same hardware specifications as
the first, which is connected to the same network. 8 VMs are running on each
machine, connected to the same network as the client machines using a bridged
adapter. Our setup is restricted to the equipment and network availability in
our local computing and communication environment, however the algorithms
we have developed can adapt well to accommodate larger clusters with thou-
sands of nodes by modifying the number of batches in which the encoded data
will be grouped as well as the content size in each batch. Also, we can set the
batches to be stored in clusters with higher reliability within a large cloud. Our
data set for the experiments is a collection of transport values obtained from
SCATS sensors that are deployed in the Dublin Smart City [20]. This data set
contains a huge amount of records with information regarding the specific sensor

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 67

Fig. 3. Read access latency for Reed-
Solomon and Fed-DIC (multiple
queries)

Fig. 4. Data Loss rate among Replica-
tion, Erasure Coding and Fed-DIC

that captured the snapshot and its capture date; the data needs to be stored and
maintained in the cloud to be further analyzed by the human operators (i.e., to
identify congested streets and entire geographical areas over time). Fed-DIC is
responsible to store and recover this data to and from the cloud.

Our first experiment involves the total read latency of recovering data with
Fed-DIC (7, 4) compared to Reed-Solomon (7, 4). For RS (7, 4) we merge the
input files of the data grid used by Fed-DIC to a single .csv file. When the
file is encoded to a stripe of 11 chunks (7 original and 4 parity), we distribute
3 chunks to each of the first 3 clusters, with the last 2 being stored in the
last cluster. Note, that Reed-Solomon could retrieve the encoded file traversing
only 3 clusters instead of going through all 4 clusters. In fact, Fed-DIC could
also be easily configured (by appropriately setting the number of batches where
diagonal stripes are grouped) to store and retrieve the data successfully utilizing
only 3 clusters. However, in order to take advantage of the entire experimental
environment (4-cluster cloud system with a total of 16 nodes) we utilize all 4
clusters for both techniques, to avoid load imbalances (data distributed in 3
clusters, while the 4th cluster is unused) and minimize the impact on the data
loss percentage (in cases of failures). Due to the data chunks spanning across
all 4 clusters, a simple decoding process with RS takes almost 20 s to complete,
as seen in Fig. 3. This happens due to the clients having to access all 4 clusters
in order to download all the chunks needed for recovering the stripe’s original
data. Even if we request a small portion of the encoded data, Reed-Solomon
has no built-in features that allow us to retrieve a specific part of data, so it
will still have to retrieve and decode the entire file content in order to give us
an output. Our Fed-DIC technique on the other hand, reduces the total access
latency by returning only requested parts of the stored data instead of the entire
data content by accessing 1 to 2 clusters at most. For 1 to 4 queries for data
inside the same cluster, Fed-DIC achieves at least 60% lower read access latency
compared to RS. Even in the case that we request 2 data queries that are stored
in two different clusters, Fed-DIC still reads the data in a shorter time compared
to RS.

68 G. Tzouros and V. Kalogeraki

a. Single Chunk b. All data chunks

Fig. 5. Storage overhead for Replication, Erasure Coding, and Fed-DIC

Our second experiment evaluates the reliability between 3-way Replication,
RS (7, 4) and Fed-DIC (7, 4) in the data loss scenario. We performed 3 runs
of experiments. As Fig. 4 indicates, due to its organized multi-cluster storage
policies, Fed-DIC manages to achieve lower data loss rates than RS. Even when
only up to 40% of the nodes are available in the federated cloud, Fed-DIC may
be able to maintain a sufficient number of chunks in some diagonal stripes, which
allows it to restore a portion the original data.

Fig. 6. Comparing Replication, Erasure Coding and Fed-DIC in terms of maximum
network transfer rate (single record retrieval and 1 diagonal retrieval)

The next experiment we evaluate the storage overhead and the maximum
network transfer rate between these fault tolerance methods. As Fig. 5a shows,
Replication stores the entire data content inside the cluster without splitting
it, causing a large storage overhead even for single blocks, compared to a chunk
produced by simple Erasure Coding and Fed-DIC. In Fig. 5b we present the total
storage overhead for all three methods. 3-Way replication occupies a massive
portion of the storage with all 3 replicas combined, while all chunks generated by
Erasure Coding and Fed-DIC produce lower overheads, with the latter occupying
slightly less storage than erasure coding due to the varied sizes of the chunks. We
also measured the rates during data transferring using performance monitoring
programs included with Lubuntu OS. As seen in Fig. 6 due to the size of the

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 69

replicas, Replication severely burdens the network with a high transfer rate of
1.2 MBps, followed by Erasure Coding with a transfer rate of 900 KBps. Fed-
DIC operates with smaller data transfers and thus provides smaller and less
burdening network data rates when transferring one or multiple queried data
records.

Finally, Fig. 7 shows the load balancing achieved in the three fault tolerance
methods between 4 4-node clusters, while uploading 4 different data streams
with similar sizes. Due to the random distribution of replicas and chunks in the
HDFS cloud, Replication and client-side Reed-Solomon erasure codes are very
inconsistent in terms of load balancing. Specifically, a majority of data may be
stored to one cluster, while other clusters store less data, even though Erasure
Coding seems more consistent than Replication. It is worth to note that we
do not consider HDFS server-side erasure coding since it requires a code with
higher parameters, which generates a number of chunks equal to the number
of nodes in a single cluster. Meanwhile, Fed-DIC, using the rotational stack
policy for cluster destinations described previously, it can store new streams
in the federated cloud’s clusters in a different order for every stream. Since
our framework stores data of different size in each cluster in every uploading
process, it can maintain an almost perfect load balance between H clusters for
each H uploaded streams. For example, in Fig. 7 for every 4 streams uploaded
in the cloud, Fed-DIC can achieve storage consistency and good load balancing
between the 4 clusters.

a. Replication b. Reed-Solomon c. Fed-DIC

Fig. 7. Load balancing between 4 file clusters for all fault methods including Fed-DIC

6 Related Work

Several approaches over the last decade have been proposed for improving read
access costs and the reliability of erasure coding in cloud storage environments.
In particular, a method that drastically improves read access costs and data
reconstruction in erasure coded storage systems is Deterministic Data Distribu-
tion, or D3 for short [7]. D3 maximizes the reliability of a storage system and
reduces cross rack repair traffic by utilizing deterministic distribution of data
blocks across the storage system. D3 uses orthogonal arrays to define the data
layout in which the data will be distributed across multiple racks, ignoring the

70 G. Tzouros and V. Kalogeraki

one block per rack placement, while balancing the load among nodes across the
system’s racks. This implementation works on single HDFS clusters with multi-
ple racks but it does not seem to support federated clouds or other systems with
independent clusters, unlike our approach with Fed-DIC. Even if we modify D3

to support multiple clusters, the clusters need to contain a certain number of
nodes in order to apply server-side erasure coding, whereas in Fed-DIC, erasure
coding is performed by the client devices.

Simple erasure codes provide efficient fault tolerance but their reliability is
restricted to the parameters set by the user. Advanced erasure coding techniques
like Alpha entanglement codes by Estrada et al. [19], increase the reliability and
the integrity of a system compared to normal Reed-Solomon codes by entangling
old and new data blocks and creating robust, flexible meshes of interdependent
data with multiple redundancy paths. Also in the Ring framework for key-value
stores (KVS) [21], Taranov et al. introduce Stretched Reed-Solomon (SRS) codes
which support a single key-to-node mapping for multiple resilience levels. These
lead to higher and more expanded reliability compared to conventional Reed-
Solomon codes. However, this work is only restricted to key-value stores and
is not available to conventional databases for use. Also, unlike our work, the
reliability ranges of SRS are limited only to the parameters of specific key-to-
node mappings.

Hybris [11] by Dobre et al. is a hybrid cloud storage system that scatters
data across multiple unreliable or inconsistent public clouds, and it stores and
replicates metadata information within trusted private nodes. The metadata are
related to the data scattered across the public clouds, providing easier access
and strong consistency for the data, as well as improved system performance
and storage costs compared to existing multi-cloud storage systems. In our case,
Fed-DIC uses metadata containing information about the topology of data stored
in a federated cloud so that the client can connect immediately to the cluster
that contains a requested portion of the data, thus drastically reducing the read
access cost in these systems compared to simple erasure codes.

7 Conclusion

In this paper, we presented Fed-DIC, our framework that integrates Diagonal
Interleaved Coding with organized storage of the encoded data in a federated
cloud environment. Our framework takes as input data organized in a grid, inter-
leaves them into diagonal stripes that are encoded using a Reed-Solomon erasure
code. The encoded diagonal stripes are grouped into batches which are stored to
different clusters in the cloud. The user issues queries to retrieve portions of the
data without the need for the clients to access every cluster in the cloud, thus
reducing the access cost compared to other methods like Replication and simple
Erasure Codes. Our experimental evaluations illustrate the benefits of our frame-
work compared to other fault tolerance methods in terms of total read access
latency, data loss percentage, maximum network transfer rate, storage overhead
and load balancing. For future work, one direction we are following is to deploy

Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment 71

Fed-DIC in a federated environment with different hardware equipment where
we plan to evaluate the working and benefits as well as the corresponding costs
of our approach when different types of equipment are utilized.

Acknowledgment. This research has been supported by the Computer Systems and
Communications Laboratory at AUEB. The authors would like to thank Dr. Davide
Frey for shepherding the paper. This research has been supported by European Union’s
Horizon 2020 grant agreement No 734242.

References

1. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: ACM
SIGOPS Operating Systems Review, vol. 41, no. 6. ACM (2007)

2. Ghemawat, S., Gobioff, H., Leung., S.-T.: The Google file system (2003)
3. Wang, M., et al.: Formalizing Google file system. In: 2014 IEEE 20th Pacific Rim

International Symposium on Dependable Computing, pp. 190–191. IEEE (2014)
4. Shvachko, K., et al.: The hadoop distributed file system. In: MSST, vol. 10, pp.

1–10 (2010)
5. Karun, A.K., Chitharanjan, K.: A review on Hadoop—HDFS infrastructure exten-

sions. In: 2013 IEEE Conference on Information & Communication Technologies,
pp. 132–137. IEEE (2013)

6. “Erasure coding vs. Replication: A quantitative comparison”
7. Li, Z., et al.: D3: deterministic data distribution for Ecient data reconstruction

in erasure-coded distributed storage systems. In: 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 545–556. IEEE (2019)

8. Ambade, S.V., Deshpande, P.: Hadoop block placement policy for different file
formats. Int. J. Comput. Eng. Technol. (IJCET) 5(12), 249–256 (2014)

9. Sathiamoorthy, M., et al.: Xoring elephants: novel erasure codes for big data. arXiv
preprint arXiv:1301.3791 (2013)

10. Muralidhar, S., et al.: f4: Facebook’s warm {BLOB} storage system. In: 11th
{USENIX} Symposium on Operating Systems Design and Implementation (fOS-
DIg 2014), pp. 383–398 (2014)

11. Dobre, D., Viotti, P., Vukolić, M.: Hybris: robust hybrid cloud storage. In: Pro-
ceedings of the ACM Symposium on Cloud Computing, pp. 1–14. ACM (2014)

12. Weil, S.A., et al.: Ceph: a scalable, high-performance distributed file system. In:
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, pp. 307–320 (2006)

13. Chappell, D., et al.: Introducing Windows Azure. In: Microsoft, Dec (2009)
14. Calder, B., et al.: Windows Azure storage: a highly available cloud storage service

with strong consistency. In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pp. 143–157 (2011)

15. Amazon, E.: Amazon web services, November 2012. http://aws.amazon.com/es/
ec2/

16. Chang, X., Zha, L.: ‘The performance analysis of cache architecture based on
Alluxio over virtualized infrastructure. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 515–519. IEEE
(2018)

17. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16.
Elsevier (1977)

http://arxiv.org/abs/1301.3791
http://aws.amazon.com/es/ec2/
http://aws.amazon.com/es/ec2/

72 G. Tzouros and V. Kalogeraki

18. Leong, D., Qureshi, A., Ho, T.: On coding for real-time streaming under packet era-
sures. In: 2013 IEEE International Symposium on Information Theory, pp. 1012–
1016. IEEE (2013)

19. Estrada-Galinanes, V., et al.: Alpha entanglement codes: practical erasure codes
to archive data in unreliable environments. In: 2018 48th Annual IEEE/IFIP DSN,
pp. 183–194. IEEE (2018)

20. SCATS. https://data.smartdublin.ie/dataset/traffic-volumes/resource/4d45af2f-
5ec1-4728-820a-a0fe350ad1dd

21. Taranov, K., Alonso, G., Hoee, T.: Fast and strongly-consistent peritem resilience
in Key-Value Stores. In: EuroSys, pp. 39–1 (2018)

https://data.smartdublin.ie/dataset/traffic-volumes/resource/4d45af2f-5ec1-4728-820a-a0fe350ad1dd
https://data.smartdublin.ie/dataset/traffic-volumes/resource/4d45af2f-5ec1-4728-820a-a0fe350ad1dd

TailX: Scheduling Heterogeneous Multiget
Queries to Improve Tail Latencies

in Key-Value Stores

Vikas Jaiman1,2 , Sonia Ben Mokhtar3 , and Etienne Rivière2(B)

1 Institute of Data Science (IDS), Maastricht University,
Maastricht, The Netherlands

v.jaiman@maastrichtuniversity.nl
2 ICTEAM, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium

etienne.riviere@uclouvain.be
3 INSA Lyon, LIRIS, CNRS, Villeurbanne, France

sonia.benmokhtar@insa-lyon.fr

Abstract. Users of interactive services such as e-commerce platforms
have high expectations for the performance and responsiveness of these
services. Tail latency, denoting the worst service times, contributes
greatly to user dissatisfaction and should be minimized. Maintaining low
tail latency for interactive services is challenging because a request is not
complete until all its operations are completed. The challenge is to iden-
tify bottleneck operations and schedule them on uncoordinated backend
servers with minimal overhead, when the duration of these operations are
heterogeneous and unpredictable. In this paper, we focus on improving
the latency of multiget operations in cloud data stores. We present TailX,
a task-aware multiget scheduling algorithm that improves tail latencies
under heterogeneous workloads. TailX schedules operations according to
an estimation of the size of the corresponding data, and allows itself to
procrastinate some operations to give way to higher priority ones. We
implement TailX in Cassandra, a widely used key-value store. The result
is an improved overall performance of the cloud data stores for a wide
variety of heterogeneous workloads. Specifically, our experiments under
heterogeneous YCSB workloads show that TailX outperforms state-of-
the-art solutions and reduces tail latencies by up to 70% and median
latencies by up to 75%.

Keywords: Distributed storage · Performance · Scheduling

1 Introduction

Serving users requests in interactive applications or websites generally involves
handling a number of operations to backend services and databases. For instance,
the display of a social network page may involve fetching and aggregating a

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 73–92, 2020.
https://doi.org/10.1007/978-3-030-50323-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_5&domain=pdf
http://orcid.org/0000-0002-0272-2993
http://orcid.org/0000-0003-2821-7714
http://orcid.org/0000-0002-4133-394X
https://doi.org/10.1007/978-3-030-50323-9_5

74 V. Jaiman et al.

number of images, posts, ads, etc. NoSQL cloud databases increasingly offer
multi-get operations in their APIs, enabling to fetch values associated with a
collection of keys with a single call [3,17,27,32]. In practice, multiget requests
vary in the number of accessed keys and value size. A workload analysis at
Facebook [32] shows that a request contains an average of 24 keys while 5% of the
requests contain more than 95 keys. Another analysis from a SoundCloud trace
presented by the authors of Rein [35] shows a heavy-tailed distribution of the
number of keys: 40% of the requests involve multiple keys with an average size of
8.6 keys and the maximum number of keys reaches up to ∼2,000 keys. Similarly,
another analysis of key-value stores production workloads at Facebook [4] shows
that value size typically ranges from a few Bytes to several MBs: Value sizes
are highly skewed towards smaller sizes but very few large value sizes consume
a large share of computational resources [11].

A multiget request finishes when all of its operations complete. The response
time of a request depends on the response time of the slowest operation in that
multiget request and, as a result, multiget operations are affected more often by
high tail latencies [11,15,17,28]. Reducing tail latency is of uttermost importance
in online services, as high service delays may have serious consequences on user
quality-of-experience and satisfaction.

Several past works have considered the problem of reducing tail latency by
scheduling single-key requests in key-value stores [20,24,37]. These approaches
offer solutions to the head-of-line-blocking problem that results from the hetero-
geneity in the value sizes stored in the database: single-key requests for small
values may get scheduled after a request for a large value (incurring, therefore,
a long processing time). Requests for small values may be delayed after requests
for large values, increasing average and tail latencies. In contrast, other works
have considered the scheduling of multiget requests in key-value stores [14,35],
but under the assumption of homogeneous service times for operations, i.e., of
requests for fixed-size values. Scheduling multiget requests is more involved than
scheduling single-key requests but also offers more opportunities when it is per-
formed in a task-aware manner, i.e., when taking into account the entirety of the
request for scheduling its constituents rather than considering these constituents
independently. In particular, as the completion time of a multiget requests is, in
fine, that of its longest operation, a task-aware scheduling algorithm may decide
to delay the processing of non-critical operations of a multiget request in favor
of more critical operations of another multiget request. The occurrence of long
operations is intrinsically linked with the number but also with the size of the
values fetched by these requests and, thus, by the heterogeneity in the size of
queried data.
Contributions. We present TailX, a task-aware multiget scheduling algorithm
that reduces tail latencies under heterogeneous workloads i.e. (i) when multiget
requests are formed of operations for values of different sizes and (ii) when the
number of operations for different multiget requests vary. TailX addresses two key
challenges associated with the scheduling of multiget requests in a distributed,
horizontally-scalable key-value store:

TailX: Scheduling Heterogeneous Multiget Queries 75

– First, a multiget request arrives at an entry point server in the key-value store,
called the coordinator, which must split it into multiple sub-requests called
opset, fetch values from different replicas, and send an aggregated response to
the client. Selecting the appropriate replica for each opset must be performed
in an online fashion, and service time cannot be known a priori and based
solely on the keys. In other words, requests are processed in a non-clairvoyant
fashion [31]. This is a result of two factors: (i) the load at the different replicas
(amount of pending requests) is unknown by the coordinator and (ii) the size
of the values corresponding to the keys is known by the replicas who hold
them, but unknown to the coordinator that performs request splitting and
replica selection.

– Second, once an opset reaches the selected replica, it must be scheduled for
execution at that replica based on the overall execution time for the corre-
sponding multiget request. Ideally, opset that are more critical for the overall
execution time of a multiget query should be executed with higher priority
than opset that are not as critical. The notion of “criticality” of a specific
opset is, however, unknown to the replica, as the knowledge of the overall
multiget requests is at the coordinator. As a result, a replica may take non-
optimal decisions in processing opset, such as answering opset that could have
been postponed without impacting the latency of the corresponding multiget
requests, and conversely postponing critical opset.

TailX implements the sharing of information between coordinators and repli-
cas and associated algorithms for end-to-end, task-aware scheduling of multiget
requests:

– For coordinators, it enables awareness of the load of the different replicas
and awareness of the size of values associated with given keys. The neces-
sary information is exchanged between all nodes (coordinators and replicas–
in many designs, nodes assume both roles) using an efficient and fast gossip
protocol. The load of replicas, as indicated by the length of their queues of
pending requests, enables avoiding overloads and reduces the impact of head-
of-line-blocking. As sharing globally a map between all keys and the size of
corresponding values would be impractical in terms of costs and scalability,
and as request splitting and scheduling happen in the critical path of the
request/response loop, TailX favors the pragmatic and efficient use of a com-
pact data structure–a Bloom filter [6]–that probabilistically indicates keys
that are associated to large values (i.e. above a threshold size).

– For replicas, TailX scheduling takes into account the possible influence of
opset on tail latency and supports procrastinating non-critical opset in favor of
the execution of more critical opset. These decisions are based on information
embedded by the coordinator in an opset, indicating how much this opset is
estimated to be allowed to wait before it can influence negatively the latency
of its enclosing multiget request.

76 V. Jaiman et al.

Fig. 1. Handling of a multiget request in Cassandra.

We implement TailX in the industry-grade key/value store Cassandra [25]. We
compare TailX with Rein [35], a state-of-the-art algorithm for multiget requests
scheduling, using a deployment on a cluster of 16 servers on the Grid’5000
testbed [5]. We use YCSB [10] to generate workloads that contain various pro-
portions of accessed keys and value size, based on the description of production
traces by Facebook [4]. Compared to Rein, TailX improves median latency by
75% as well as tail latency by up to 70%.

The remaining of this paper is structured as follows. We first present back-
ground on multiget scheduling in key-value stores (Sect. 2) and explain state-
of-the-art algorithms. Next, we further detail the design of TailX (Sect. 3) and
present its implementation and performance evaluation (Sect. 4). Finally, we dis-
cuss related work (Sect. 5) and conclude the paper (Sect. 6).

2 Multiget Requests in Key-Value Stores

We detail the execution of multiget queries in key-value stores with the example
of Cassandra [25]. We note that the operation of other horizontally scalable,
hash-partitioned key-value stores [3,17,27,32] supporting multiget queries are
very similar. In the example of Fig. 1, nodes 1, 2 and 3 are replicas for the values
associated with keys (A, B), (C, D) and (E, F) respectively. The example uses
a single replica per key, but replication is used in practice to guarantee data
availability. A client sending a multiget request mget(A, B, C) connects to any
of the nodes that will act as coordinator (step 1). The coordinator uses a parti-
tioner that returns tokens, as hash values for these keys (steps 2 and 3). These
tokens together with the knowledge of the replication policy allow identifying the
replicas holding copies of the values associated with the keys. The coordinator
is in charge of (1) splitting the multiget request into a set of requests for one or

TailX: Scheduling Heterogeneous Multiget Queries 77

Fig. 2. An example scenario. Left: Requests assigned to server facing delayed response
time. Right: Procrastinate opsets into delay queue to take benefits of delay allowance

more keys and (2) fetching the values from the corresponding replicas (steps 4
and 5). When all opsets have been answered, the coordinator may serialize the
result and send it back to the client (step 6).

We illustrate the difficulty in scheduling multi-get requests efficiently to
obtain low overall latencies with an example in Fig. 2 where the same request
mget(A, B, C) is processed in a system where other single-key and multiget
requests are ongoing. On the left of Fig. 2 servers 1, 2, 3 hold values for keys (A,
B), (C, D) and (E, F, G, H, I) respectively. A small box represents a request to
a small value and a large rectangle box (in this example for key D) represents a
request to a large value. For the sake of simplicity, we assume that all replicas
have a service time of 1 operation per unit time for serving a small value and
of 5 unit time for serving a large value. For the request mget(A, B, C), (A, B)
and (C) are the two opsets. With a FIFO scheduling as shown on the left of the
figure, mget(A, B, C), mget(D, E), mget(F, G) and mget(H, I) will complete in
2, 6, 3 and 5 time units respectively, yielding an average response time of 4 time
units.

We note that task awareness in scheduling individual opset at the replicas can
allow reducing the average response time. A key observation is that each opset
can be associated with a delay allowance that the replica can use to schedule
other operations from its queue with higher priority (and, therefore, not neces-
sarily in FIFO order). The delay allowance can be calculated as the difference in
time between an approximated execution time for the largest or costliest opset.
In the multiget request mget(D, E), the collection of D takes 6 time units whereas
the collection of E will take 1 time unit. It is, therefore, possible to postpone
(or procrastinate) the request for key E by at most 5 time units, leaving way for
other requests. In this scenario, on the right side of the figure, mget(A, B, C),
mget(D, E), mget(F, G) and mget(H, I) will complete in 2, 6, 2 and 4 time units
respectively yielding an average response time of 3.5 time units.

Multiget Scheduling State-of-the-Art. The state-of-the-art in multiget
requests scheduling is represented by Rein [35]. It uses two policies which include

78 V. Jaiman et al.

Fig. 3. Overview of TailX.

the Shortest Bottleneck First (SBF) and Slack-Driven Scheduling (SDS). In SBF,
every operation of a multiget request has a priority which corresponds to the
cost of the bottleneck opset while in SDS, it deprioritizes the operations based
on how long they can afford to be slacked. The goal of Rein is to improve tail
latency. To this end, Rein predicts which of the operations will likely be a bottle-
neck, i.e. create a head-of-line-blocking situation. This detection is based on the
number of keys in the opset. The opset(s) with the highest number of keys is or
are simply considered as the bottleneck opset. Based on this information, Rein
uses a client-side priority assignment that prioritizes multiget requests with a
smaller number of keys in their bottleneck opset. The determination of the bot-
tleneck requests in Rein, however, does only take into account the number of
keys in the opset but never the size of the corresponding values. The result is
that the detected bottleneck opset may execute much faster than another opset
from the same multiget query that is not detected as such.

3 TailX Design and Implementation

An overview of the architecture of TailX is given by Fig. 3. When a request is
issued, the coordinator node selects the best replica out of total target replicas
based on the past read performance of replica servers. An appropriate replica
selection mechanism (dynamic snitching [39]) is applied to select the best replica.

Afterwards, the request goes to a splitter where it is split into opsets by a
partitioner (Murmur3 [34]). The number of operations and value sizes associated
with keys varies in these opsets. Among these, some opsets that contain smaller
operations with shorter execution time will finish earlier whereas opsets that
contain operations with larger execution time finish later. To execute a multiget
request with minimum latency, all the opsets should finish at the approximately
same time. Therefore, to correctly estimate the total execution time of each
opset, TailX identifies the operations that take more time. For this, it passes
through size estimation module. The objective of this module is to estimate
whether a given operation will access a small or a large value. It keeps track of
keys that associated with large values and store the keys of those operations.

TailX: Scheduling Heterogeneous Multiget Queries 79

Once the value size of an operation is identified, delay allowance estimation
module estimates the cost of each opset i.e. approximate total execution time and
calculates the approximate delay allowance that occurred by each opset. This
delay allowance is inserted as metadata in each operation of an opset. After
delay allowance assignment, opsets go through the delay queue. The objective
of this step is to procrastinate each opset which has delay allowance and let
other requests execute at that time. If an operation has delay allowance then it
inserted in a delay queue with given procrastinating time. The operations reside
in the delay queue until the given procrastinate time expires.

Finally, operations go to the required server that is holding the data. Once the
operations finish, they return the data to the coordinator. We present in the fol-
lowing sections the details of all proposed modules. First, we present the replica
selection mechanism based on the load estimated among servers (Sect. 3.1). Next,
we describe the request splitting based on the data storage (Sect. 3.2). Finally,
we explain the delay allowance policies including delay estimation of operations
and scheduling mechanism (Sect. 3.3) (Fig. 4).

Fig. 4. Operating principle of TailX scheduling.

3.1 Load Estimation and Replica Selection

The operations of a multiget request select the target replicas according to the
hash-based mechanism followed by the replica server. The number of replicas
depends on the replication factor followed by the storage systems. Afterwards,
a replica selection algorithm (dynamic snitching [25] which considers past read
performance of the replicas) is applied for scoring the replicas and a faster replica
is chosen to complete the operation. The role of this component is to select the
replica that is expected to serve a given request faster than other replicas.

3.2 Request Splitting

In a key-value store, all storage nodes are divided into hash-based token ranges.
After selecting the intended replica, request splits into opset according to the

80 V. Jaiman et al.

partitioner (e.g. Murmur3 [34]). Each opset goes to a different replica server and
contains a varied number of operations with different value size. Our goal is to
schedule the operations in a way that can complete each opset at the approx-
imately same time. This gives better flexibility to other requests to execute at
that time.

3.3 Delay Allowance Policies

The algorithms for delay allowance policies are described in Algorithm 1 and
Algorithm 2. The role of these algorithms is to procrastinate the opsets which
are finishing earlier than the other opsets.

Every opset has a different completion time due to the variations in value
size and the number of operations in it. Therefore, some operations of an opset
have to wait for bottleneck operations. This results in increasing the latency of
the overall request.

To overcome this situation, the delay allowance module calculates the cost
of each opset (opcost) i.e. opset execution time on the server. Calculation of
the opset cost is based on the value size estimation since we need to know the
number of operations for large values (NL) in each opset. The operations of
large values are the sole reason for inflating the operation cost. Therefore, we
match the keys of large value to the keys stored in Bloom filter [6] (step 4 of
Algorithm 1). Next, it calculates the opset cost of each opset based on the request
service time for small value (TS) and request service time for large value (TL)
(step 5 of Algorithm 1). Afterwards, it calculates delay allowance Tw (step 8
of Algorithm 1) and tags the allowance to each opset. Finally, it procrastinates
operations that have delay allowance (step 11 of Algorithm 1) otherwise send the
opset to the corresponding replica server. In Algorithm 2, if the delay allowance
time has finished then the request is dequeued and sent to the corresponding
replica server.

Delay Allowance Estimation. The role of delay estimation is to estimate
the approximate execution cost of each opset and calculate the approximate
delay allowance which can be occurred at each opset. The calculation of delay
allowance is based on the value size estimation of each operation.

Value Size Estimation. An important question that TailX addresses is to deter-
mine whether an operation will access a large or a small value. In this context,
we set a threshold (say THRL) where values above this threshold are considered
as large by TailX. We assume that this choice is application dependent and that
it is up to the database administrator to set the value of THRL according to the
data distribution over her database.

TailX uses Bloom filters to keep track of keys corresponding to large values.
A Bloom filter [6] is a space-time efficient probabilistic data structure that allows
performing to test whether a given item belongs to a predefined set. It is a vector

TailX: Scheduling Heterogeneous Multiget Queries 81

of m bits initially set to 0, with an associated set of k hash functions (generally
k � m). Inserting an element in the Bloom filter is done by hashing the element
using the k hash functions and setting the corresponding bit positions to 1.
Testing the presence of an element in the Bloom filter is done similarly by hashing
the element using the k hash functions and testing whether all the corresponding
bit positions are set to 1. Querying a Bloom filter may lead to false-positive but
will never lead to false-negative.

After identifying keys that correspond to the large value, it calculates the
opset cost i.e. how much time the opset will take to execute. To estimate the
opset cost (opcost), it calculates the service time of operations for large values
(TL) and small values (TS). Afterwards, it multiplies them by their respective
number of operations to get the overall cost of the opset.

Further, it calculates the delay allowance (Tw) for each opset. Delay allowance
is calculated based on the cost difference of maximum opset cost (opcostmax)
and cost of opset for which it is calculating the delay allowance. It means every
opset has the allowance time in which it can wait and let other operations to
complete.

Delay Scheduling. The role of a delay queue is to procrastinate the opset
which has some delay allowance. This gives better flexibility for other queries to
execute in the delay allowance time.

Delay Queue Design. Delay queue (Qd) is an unbounded blocking queue imple-
mented in Java for opsets which have delayed allowance. The idea of the delay
queue is to procrastinate some operations. An element can be taken out once
the delay has expired. The element which is at the head of the queue has the
expired delay furthest in the past.

Scheduling of Requests Which has Delay Allowance. If the request is tagged by
delay allowance (Tw > 0) during delay estimation then the request will be sent to
delay queue. The scheduler adds the system current time in the delay allowance
i.e. procrastinate time (Td), which helps to correctly estimate the procrastinated
opset.

Scheduling of Requests with Zero Delay Allowance. If the request is tagged by
delay allowance (Tw == 0) during delay estimation then the request will be sent
directly to the server without delay. Since these are the requests which take time
to execute and don’t offer any allowance for slacking that opset.

Finally, operations are sent to the intended server directly or after completion
of the procrastination time.

4 Evaluation

We implement TailX as an extension of Cassandra [25], a very popular key-
value store. We evaluate its effectiveness in reducing tail latency using synthetic

82 V. Jaiman et al.

Algorithm 1: Opset delay allowance algorithm
Data: ksName = keyspace name, K = set of keys, CF = tablename, op = opset,

opcostmax= max opset cost, req = multiget request, opsets = set of opsets, NL = set
of keys correspond to large values in an opset, Qd = delay queue, BF = bloom filter;

Input: req (ksName,K,CF);
Output: Procrastinated opsets.

1 begin
2 opcostmax = 0;
3 for op ∈ opsets do

/* Calculate number of keys correspond to large values
in an opset */

4 NL := {opr ∈ op | match(BF, opr.key) = 1};
/* Calculate opset cost */
// TL= request service time (in nanosec) for large value

// TS= request service time (in nanosec) for small value

// opsize = number of keys in an opset
5 opcost = TL ∗ |NL| + TS ∗ (opsize − |NL|);

/* Calculate max opset cost */
6 opcostmax = max(opcost, opcostmax);

7 for op ∈ opsets do
/* Calculate delay allowance */

8 Tw = opcostmax − op.opcost;

/* Tag Tw to each opset */
9 tag(Tw, op);

/* Calculate procrastinating time */
// Tcurrent = current system time

10 Td ←− Tcurrent + Tw;
11 if op.Tw > 0 then

/* insert opset in delay queue */
12 Qd.enqueue(op, Td);

13 else
14 send op to corresponding replica;

Algorithm 2: Opset dequeue algorithm
1 begin
2 while Qd �= ∅ && Tcurrent − Td ≥ 0 do
3 deque from Qd;
4 send op to corresponding replica;

dataset generated using the Yahoo! Cloud Serving Benchmark (YCSB) [10].
We compare different latency percentiles, particularly the tail, under TailX,
against state-of-the-art algorithm i.e. Rein. We conduct extensive experiments

TailX: Scheduling Heterogeneous Multiget Queries 83

on Grid’5000 [5], exploring the impact of varying ratios of multiget request sizes
and their value sizes. Overall, our evaluation answers the following questions:

1. How does TailX performance effects by the multiget request sizes in the key-
value stores? (Sect. 4.2)

2. How does TailX performance effects by the proportion of large values in the
key-value stores? (Sect. 4.2)

We start this section by presenting our evaluation setup (Sect. 4.1) before pre-
senting our results (Sect. 4.2).

4.1 Experimental Setup

Experimental Platform. We evaluate TailX on Grid’5000 [5]. We use a 16 node
cluster in which each machine is equipped with 2 Intel Xeon X5570 CPUs (4
cores per CPU), 24GB of RAM and a 465GB HDD. The machines are running
the Debian 8 GNU/Linux operating system.

Configuration. We evaluate TailX in Cassandra. We used the industry-standard
Yahoo! Cloud Serving Benchmark (YCSB) [10] to generate datasets and run our
workloads. As YCSB only generates a single value size datasets for each given
client, we modified its source code to allow generation of mixed size datasets.
Specifically, for mixed size workloads, we kept the proportion of large values com-
pared to small values the same. For generating client workloads, we configured
YCSB on a separate node.

Moreover, in all the generated workloads, the access pattern of stored values
(whether small or large) follows a Zipfian distribution (with a Zipfian param-
eter ρ= 0.99). To have an idea of the size a given synthetic dataset, we insert
20 million of small records (1KB size) and 100K of large records (2 MB size).
This approximately represents 4̃1GB of data per node. We kept the replication
factor as 3 which means each piece of value is available on 3 servers. Each mea-
surement involves 1 million or 10 million requests and is repeated 5 times. Each
multiget request access various operations with different value sizes. We test the
cluster of its maximum attainable throughput and kept the 75% system load for
all our experiments.

4.2 TailX on Variable Configurations of the Synthetic Dataset

We evaluate in this section the effectiveness of TailX along different dimensions of
heterogeneous workloads, i.e., the impact of long operations on multiget requests
and the impact of operations correspond to large values.

Impact of Multiget Requests Containing Large Number of Operations.
To study the impact of the proportion of long multiget requests (i.e. multiget
request size is large) on the system performance, we fix the size of multiget
request as 100 and short multiget request to 5. We keep the ratio of long multiget

84 V. Jaiman et al.

request to 20% i.e. for each 100 multiget requests, 80 multiget are of size 5 and
20 multiget are of size 100. Through this, we can see the impact of long multiget
over short multiget requests. We present the improvement of TailX over Rein
for 1 million operations and 10 million operations in Fig. 5 and 6 respectively.
Figure 7 shows the different latency percentiles to give a closer look in system. In
this experiment, we start by generating datasets in which each multiget request
contains 1KB values.
Results show that TailX reduces the tail latencies over Rein by up to 63% while
reducing the median latency by up to 71%. TailX achieves a better gain for
median latency compare to tail latency. In terms of absolute latency (for 1 million
operations), say for 99th percentile, it is 56 ms for TailX but roughly 152 ms

Median Average 90th 95th 99th
0

50

100

150

La
te
nc
y
(in

m
s)

TailX Rein

Fig. 5. Improvement of TailX over latency with different multiget request sizes (80%
multiget of size 5 and 20% multiget of size 100) for 1 million operations.

Median Average 90th 95th 99th
0

20

40

60

La
te
nc
y
(in

m
s)

TailX Rein

Fig. 6. Improvement of TailX over latency with different multiget request sizes (80%
multiget of size 5 and 20% multiget of size 100) for 10 million operations.

TailX: Scheduling Heterogeneous Multiget Queries 85

for Rein respectively. For median latency, absolute value is 4.57 ms for TailX
whereas it is around 14.3 ms for Rein.

Impact of Multiget Requests Having Keys of Large Value Sizes. To
study the impact of the proportion of large requests (request having large value
i.e. 2 MB) on the system performance, we fix the size of multiget request as
20. We keep the percentage of large multiget requests as 20% and vary the
proportion of large values.

Varying Proportion of Large Value Sizes. We vary the proportion of large value
from 10% to 50% in a multiget request. As specified before, these variations are
only for 20% of multiget requests. We present the latency reduction of TailX
over Rein for 1 million operations. In the following, we zoom into the specific
percentage of large value sizes.

10th 30th 50th 70th 90th
0

5

10

15

20

25

30

Latency percentiles

La
te
nc
y
(in

m
s)

TailX Rein

Fig. 7. Analysis of different latency percentiles for different multiget request sizes (80%
multiget of size 5 and 20% multiget of size 100) for 10 million operations.

Multiget of 10% Large Values. In this experiment, 20% of each multiget contains
10% of large values. Figure 8 and 9 show the improvement of TailX over Rein
i.e., 30% latency reduction in 95th and 99th percentiles. TailX achieves a better
gain for median latency compare to tail latency, i.e., roughly 75% v.s. 30%.
In terms of absolute latency, say for 99th percentile, it is 97ms for TailX but
roughly 135ms for Rein respectively. For median latency, absolute value is 11ms
for TailX whereas it is around 43ms for Rein.

86 V. Jaiman et al.

Median Average 90th 95th 99th 99.9th
0

50

100

150

200

250

300

350

La
te
nc
y
(in

m
s)

TailX Rein-SBF Rein-SDS

Fig. 8. Improvement of TailX over latency with different multiget request value sizes
(80% of multiget requests are for small values (1 KB) and the remaining 20% multiget
requests have 10% of requested large values) for 1 million operations.

Multiget of 20% Large Values. Figure 10 and 12 show the improvement of TailX
over Rein i.e., 40% and 45% latency reduction in 95th and 99th percentiles
respectively. TailX achieves a better gain for median latency compare to tail
latency, i.e., roughly 56% v.s. 45%. In terms of absolute latency, say for 99th
percentile, it is 112ms for TailX but roughly 203ms for Rein respectively. For
median latency, absolute value is 8ms for TailX whereas it is around 18ms for
Rein.

10th 30th 50th 70th 90th
0

20

40

60

80

Latency percentiles

La
te
nc
y
(in

m
s)

TailX Rein-SBF Rein-SDS

Fig. 9. Analysis of different latency percentiles for different multiget request value sizes
(80% multiget requests have small values (1 KB) and rest 20% multiget requests have
10% of large values) for 1 million operations.

TailX: Scheduling Heterogeneous Multiget Queries 87

Median Average 90th 95th 99th 99.9th

0

100

200

300

400

500

600

700
La

te
nc
y
(in

m
s)

TailX Rein-SBF Rein-SDS

Fig. 10. Improvement of TailX over latency with different multiget request value sizes
(80% multiget requests have small values (1 KB) and rest 20% multiget requests have
20% of large values) for 1 million operations.

Median Average 90th 95th 99th 99.9th
0

50

100

150

200

250

300

350

La
te
nc
y
(in

m
s)

TailX Rein-SBF Rein-SDS

Fig. 11. Improvement of TailX over latency with different multiget request value sizes
(80% multiget requests have small values (1 KB) and rest 20% multiget requests have
50% of large values) for 1 million operations.

Multiget of 50% Large Values. Figure 11 and 12 show the improvement of TailX
over Rein i.e., 18% and 27% latency reduction in 95th and 99th percentiles
respectively. TailX achieves a little less gain for median latency compare to tail
latency, i.e., roughly 13%. In terms of absolute latency, say for 99th percentile, it
is 109ms for TailX but roughly 150ms for Rein respectively. For median latency,
absolute value is 5.9ms for TailX whereas it is around 6.76ms for Rein.

Summarizing, TailX outperforms Rein in most of the configurations. TailX
is effective when there are some long requests in the systems. Also, the effective-
ness of TailX can be seen when some multiget requests have some percentage of
large values. We note that TailX is designed to handle heterogeneous workloads

88 V. Jaiman et al.

10th 30th 50th 70th 90th
0

10
20
30
40
50
60
70
80

Latency percentiles

La
te
nc
y
(in

m
s)

(a) Analysis of 20% of large values

10th 30th 50th 70th 90th
0

5

10

15

20

25

30

Latency percentiles

La
te
nc
y
(in

m
s)

(b) Analysis of 50% of large values.
TailX Rein-SBF Rein-SDS

Fig. 12. Analysis of different latency percentiles for different multiget request value
sizes (80% multiget requests have small values (1 KB) and rest 20% multiget requests
have a) 20% of large values b) 50% of large values) for 1 million operations.

that have high variance across requests sizes w.r.t number of operations and
their value sizes. When the proportion of value sizes of requests increases, the
impact of TailX is visible more. TailX improves the tail latency till 20% whereas
while workload having 50% of large value, the improvement decreases compare
to the 20%. Since TailX filter the requests with large values with bloom filter
and therefore if there are bulk of requests which have large value it increases the
overhead. Therefore, less impact is seen in this case. Overall in these configu-
rations, TailX reduces the median latency up to 75% and tail latency by up to
70%.

5 Related Work

Several works addressed the problem of tail latency in distributed storage sys-
tems. Some have addressed the impact of incoming workloads that are coming
on the system. We present our related work as follows:

Web Workloads. Atikoglu et al. [4] described the workload analysis of a Mem-
cached [32] traffic at Facebook. It studies 284 billion requests over 58 days for
five different Memcached use cases. It presents the CDFs of value size in different
Memcached pools. ETC pool is the largest and most heterogeneous value size
pool where value sizes vary from few bytes to MBs.

Network-Specific. Orchestra [8] uses weighted fair sharing where each trans-
fer is assigned a weight and each link in the network is shared proportionally
to the weight of the transfer. Baraat [15] is a decentralized task-aware schedul-
ing system that dynamically changes the level of multiplexing in the network to
avoid head-of-line-blocking. It uses task arrival time to assign a globally unique
identifier and put a priority for each task. All flows of a task use this priority

TailX: Scheduling Heterogeneous Multiget Queries 89

irrespective of the network they traverse. Varys [9] is another coflow scheduling
system that decreases communication time for data-intensive jobs and provides
predictable communication time. It assumes complete prior knowledge of coflow
characteristics such as the number of flows, their sizes, etc. Aalo [7] is another
scheduling policy that improves performance in data-parallel clusters without
prior knowledge. To improve the performance in datacenters, pFabric [2] decou-
ples flow scheduling from rate control mechanisms.

Redundancy-Specific. Redundancy is a powerful technique in which clients
initiate an operation multiple times on multiple servers. The operation which
completes first is considered and the rest of them is discarded. Vulimiri et al. [38]
characterize the scenarios where redundancy improves latency even under excep-
tional conditions. It introduces a queuing model that gives an analysis of sys-
tem utilization and server service time distribution. Sparrow [33], a stateless
distributed scheduler that adapts the power of two choices technique [29] by
selecting two random servers. It put the tasks on the server which has fewer
queued tasks. Sparrow [33] uses batch sampling where instead of sampling each
task it places m tasks of a job on least loaded randomly selected servers. This
approach performs better for parallel jobs since they are sensitive to tail task
wait time.

Task-Aware Schedulers. Hawk [13] and Eagle [12] are two systems proposing
a hybrid scheduler that schedules jobs according to their sizes. In Hawk [13], long
jobs are scheduled using a centralized scheduler while small jobs are scheduled
in a fully distributed way. Omega [36] is a shared-state scheduler in which a
separate centralized resource manager maintains a shared scheduling state.

Request Reissues and Parallelism. Kwiken [21] optimizes the end-to-end
latency using a DAG of interdependent jobs. It further uses latency reduction
techniques such as request reissues to improve the latency of request-response
workflows. Haque et al. [19] propose solutions for decreasing tail latencies by
dynamically increasing the parallelism of individual requests in interactive ser-
vices. Few-to-Many (FM) selectively parallelizes the long running requests since
that are the ones contributing the most to the tail latency. Recent efforts [22,23]
show that it is challenging to schedule tasks during the arrival of variable size
jobs. These works try to predict the long-running queries and parallelize them
selectively. Instead of targeting the more general problem of predicting job sizes,
which in some cases involves costly computations.

Jeon et al. [23] focus on the parallelizing long running queries which are few
compared to the short ones. It aims to achieve consistent low response time for
web search engines.

Multiget Scheduling. In key-value stores, multiget scheduling is a common
pattern for scheduling requests efficiently. Systems like Cassandra [25], Mon-
goDB [30] offer such algorithms in these systems. Rein [35] uses a multiget
scheduling algorithm to schedule the multiget request in a fashion that can
reduce the median as well as tail latency.

90 V. Jaiman et al.

Tail Latency Specific. Minos [14] is another in-memory key-value store that
uses size aware sharding to send small and large requests to different cores. It
ensures that small requests never wait due to the large request which improves
tail latencies. Metis [26] is an auto-tuning service to improve tail latency by
using customized Bayesian optimization. SyncGC [18] tries to reduce the tail
latency in Cassandra by proposing a synchronized garbage collection technique
that schedules multiple GC instances to sync with each other. Sphinx [16] uses
a thread-per-core approach to reduce tail latency in a key-value store by using
application-level partitioning and inter-thread messaging. Some authors [1] pro-
vide bounds on tail latency for distributed storage systems by using erasure
coding. It helps to provide optimization to minimize weighted tail latency prob-
abilities.

6 Conclusion

In this paper, we addressed the problem of tail latencies in key-value stores
under heterogeneous workloads for multiget requests. For multiget scheduling,
an in-depth study of state-of-the-art has highlighted the fact that it doesn’t
perform well under heterogeneous workloads. We proposed TailX, a task-aware
multiget scheduling algorithm that effectively deals with heterogeneous multiget
requests. It identifies the bottleneck operations apriori and procrastinates them
to avoid head-of-line-blocking. The result is an improved overall performance of
the key-value store for a wide variety of heterogeneous workloads. Specifically,
our experiments under heterogeneous YCSB workloads in a Cassandra based
implementation shows that TailX outperforms state-of-the-art algorithm and
reduces the tail latencies by up to 70% while reducing the median latency by
up to 75%.

Acknowledgments. Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations. This work
was partially supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 692178 (EBSIS project), by CHIST-ERA under
project DIONASYS, and by the Swiss National Science Foundation (SNSF) under
grant 155249.

References

1. Al-Abbasi, A.O., Aggarwal, V., Lan, T.: Ttloc: taming tail latency for erasure-
coded cloud storage systems. IEEE Trans. Netw. Serv. Manag. 16(4), 1609–1623
(2019)

2. Alizadeh, M., et al.: pFabric: minimal near-optimal datacenter transport. In: SIG-
COMM (2013)

3. Ananthanarayanan, G., et al.: Pacman: coordinated memory caching for parallel
jobs. In: NSDI (2012)

TailX: Scheduling Heterogeneous Multiget Queries 91

4. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. In: SIGMETRICS (2012)

5. Balouek, D., et al.: Adding Virtualization capabilities to the Grid’5000 testbed.
In: Ivanov, I.I., van Sinderen, M., Leymann, F., Shan, T. (eds.) CLOSER 2012.
CCIS, vol. 367, pp. 3–20. Springer, Cham (2013). https://doi.org/10.1007/978-3-
319-04519-1_1

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

7. Chowdhury, M., Stoica, I.: Efficient coflow scheduling without prior knowledge. In:
SIGCOMM (2015)

8. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data trans-
fers in computer clusters with orchestra. In: SIGCOMM (2011)

9. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with varys. In:
SIGCOMM (2014)

10. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SoCC (2010)

11. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013)
12. Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware scheduling in Eagle:

divide and stick to your probes. In: SoCC (2016)
13. Delgado, P., Dinu, F., Kermarrec, A.M., Zwaenepoel, W.: Hawk: hybrid datacenter

scheduling. In: USENIX ATC (2015)
14. Didona, D., Zwaenepoel, W.: Size-aware sharding for improving tail latencies in

in-memory key-value stores. In: NSDI (2019)
15. Dogar, F.R., Karagiannis, T., Ballani, H., Rowstron, A.: Decentralized task-aware

scheduling for data center networks. In: SIGCOMM (2014)
16. Enberg, P., Rao, A., Tarkoma, S.: The impact of thread-per-core architecture on

application tail latency. In: ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS) (2019)

17. Fan, B., Andersen, D.G., Kaminsky, M.: Memc3: compact and concurrent mem-
cache with dumber caching and smarter hashing. In: NSDI (2013)

18. Han, S., Lee, S., Hahn, S.S., Kim, J.: SyncGC: a synchronized garbage collection
technique for reducing tail latency in Cassandra. In: Proceedings of the 9th Asia-
Pacific Workshop on Systems, APSys (2018)

19. Haque, M.E., Eom, Y.H., He, Y., Elnikety, S., Bianchini, R., McKinley, K.S.: Few-
to-many: incremental parallelism for reducing tail latency in interactive services.
In: ASPLOS (2015)

20. Jaiman, V., Mokhtar, S.B., Quéma, V., Chen, L.Y., Rivière, E.: Héron: taming tail
latencies in key-value stores under heterogeneous workloads. In: SRDS (2018)

21. Jalaparti, V., Bodik, P., Kandula, S., Menache, I., Rybalkin, M., Yan, C.: Speeding
up distributed request-response workflows. In: SIGCOMM (2013)

22. Jeon, M., He, Y., Kim, H., Elnikety, S., Rixner, S., Cox, A.L.: TPC: target-driven
parallelism combining prediction and correction to reduce tail latency in interactive
services. In: ASPLOS (2016)

23. Jeon, M., et al.: Predictive parallelization: taming tail latencies in web search. In:
SIGIR (2014)

24. Jiang, W., Xie, H., Zhou, X., Fang, L., Wang, J.: Understanding and improvement
of the selection of replica servers in key-value stores. Inf. Syst. 83, 218–228 (2019)

25. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

26. Li, Z.L., et al.: Metis: robustly tuning tail latencies of cloud systems. In: USENIX
ATC (2018)

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1

92 V. Jaiman et al.

27. Lim, H., Han, D., Andersen, D.G., Kaminsky, M.: Mica: a holistic approach to fast
in-memory key-value storage. In: NSDI (2014)

28. Misra, P.A., Borge, M.F., Goiri, I.N., Lebeck, A.R., Zwaenepoel, W., Bianchini, R.:
Managing tail latency in datacenter-scale file systems under production constraints.
In: EuroSys (2019)

29. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)

30. MongoDB. https://www.mongodb.com/
31. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. In: Proceedings of

the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (1993)
32. Nishtala, R., et al.: Scaling memcache at Facebook. In: NSDI (2013)
33. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low

latency scheduling. In: SOSP (2013)
34. Partitioners. https://docs.datastax.com/en/cassandra/3.0/cassandra/architec

ture/archPartitionerAbout.html
35. Reda, W., Canini, M., Suresh, L., Kostić, D., Braithwaite, S.: Rein: taming tail

latency in key-value stores via multiget scheduling. In: EuroSys (2017)
36. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,

scalable schedulers for large compute clusters. In: EuroSys (2013)
37. Suresh, L., Canini, M., Schmid, S., Feldmann, A.: C3: cutting tail latency in cloud

data stores via adaptive replica selection. In: NSDI (2015)
38. Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J., Ratnasamy, S., Shenker, S.: Low

latency via redundancy. In: CoNEXT (2013)
39. Williams, B.: Dynamic snitching in Cassandra: past, present, and future (2012).

http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-
present-and-future

https://www.mongodb.com/
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

Fault-Tolerance and Reproducibility

Building a Polyglot Data Access Layer
for a Low-Code Application Development

Platform
(Experience Report)

Ana Nunes Alonso1(B), João Abreu2, David Nunes2, André Vieira2,
Luiz Santos3, Tércio Soares3, and José Pereira1

1 INESC TEC and U. Minho, Braga, Portugal
ana.n.alonso@inesctec.pt, jop@di.uminho.pt

2 OutSystems, Lisboa, Portugal
{joao.abreu,david.nunes,andre.vieira}@outsystems.com

3 OutSystems, Braga, Portugal
{luiz.santos,tercio.soares}@outsystems.com

Abstract. Low-code application development as proposed by the Out-
Systems Platform enables fast mobile and desktop application develop-
ment and deployment. It hinges on visual development of the interface
and business logic but also on easy integration with data stores and ser-
vices while delivering robust applications that scale.

Data integration increasingly means accessing a variety of NoSQL
stores. Unfortunately, the diversity of data and processing models, that
make them useful in the first place, is difficult to reconcile with the sim-
plification of abstractions exposed to developers in a low-code platform.
Moreover, NoSQL data stores also rely on a variety of general purpose
and custom scripting languages as their main interfaces.

In this paper we report on building a polyglot data access layer for
the OutSystems Platform that uses SQL with optional embedded script
snippets to bridge the gap between low-code and full access to NoSQL
stores.

1 Introduction

The current standard for integrating NoSQL stores with available low-code plat-
forms is for developers to manually define how the available data must be
imported and consumed by the platform, requiring expertise in each particu-
lar NoSQL store, especially if performance is a concern. Enabling the seamless
integration of a multitude of NoSQL stores with the OutSystems platform will

This work was supported by Lisboa2020, Compete2020 and FEDER through Project
RADicalize (LISBOA-01-0247-FEDER-017116 — POCI-01-0247-FEDER-017116) and
also by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia within project UIDB/50014/2020.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 95–103, 2020.
https://doi.org/10.1007/978-3-030-50323-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_6

96 A. N. Alonso et al.

offer its more than 200 000 developers a considerable competitive advantage over
other currently available low-code offers.

Main challenges include NoSQL systems not having a standardized data
model, a standard method to query meta-data, or in many cases, by not enforcing
a schema at all. Second, the value added by NoSQL data stores rests precisely on
a diversity of query operations and query composition mechanisms, that exploit
specific data models, storage, and indexing structures. Exposing these as visual
abstractions for manipulation risks polluting the low-code platform with mul-
tiple particular and overlapping concepts, instead of general purpose abstrac-
tions. On the other hand, if we expose the minimal common factor between all
NoSQL data stores, we are likely to end up with minimal filtering capabilities
that prevent developers from fully exploiting NoSQL integration. In either case,
some NoSQL data stores offer only very minimal query processing capabilities
and thus force client applications to code all other data manipulation opera-
tions, which also conflicts with the low-code approach. Finally, ensuring that
performance is compatible with interactive applications means that one cannot
resort to built-in MapReduce to cope with missing query functionality, as it
leads to high latency and resource usage. Also, coping with large scale data sets
means avoiding full data traversals by exposing relevant indexing mechanisms
and resorting to approximate and incomplete data, for instance, when displaying
a developer preview.

In this paper we summarize our work on a proof-of-concept polyglot data
access layer for the OutSystems Platform that addresses these challenges, thus
making the following contributions:

– We propose to use a polyglot query engine, based on extended relational
data and query models, with embedded NoSQL query script fragments as
the approach that reconciles the expectation of low-code integration with the
reality of NoSQL diversity.

– We describe a proof-of-concept implementation that leverages an off-the-shelf
SQL query engine that implements the SQL/MED standard [4].

As a result, we describe various lessons learned, that are relevant to the inte-
gration of NoSQL data stores with low-code tools in general, to how NoSQL
data stores can evolve to make this integration easier and more effective, and to
research and development in polyglot query processing systems in general. An
extended version of this work is available in [1].

The rest of the paper is structured as follows. Section 2 describes our pro-
posal to integrate NoSQL data stores in the OutSystems platform, including
our current proof-of-concept implementation. Section 3 concludes the paper by
discussing the main lessons learned.

2 Architecture

Our proposal is based on two main criteria. First, how it contributes to the vision
of NoSQL data integration in the low-code platform outlined in Sect. 1 and how

Bulding a Polyglot Data Access Layer for Low-Code 97

it fits the low-code approach in general. Second, the talent and effort needed for
developing such integrations and then, later, for each additional NoSQL system
that needs to be supported.

We can consider two extreme views. On the one hand, we can enrich the
abstractions that are exposed to the developer to encompass the data and query
processing models. This includes: data types and structures, such as nested
tuples, arrays, and maps; query operations, ranging from general purpose data
manipulation (e.g., flattening a nested structure) to domain-specific operations
(e.g., regarding search terms in a text index); and finally, where applicable, query
composition (e.g., with MapReduce or a pipeline).

This approach has however several drawbacks. First, it pollutes the low-
code platform with a variety of abstractions that have to be learned by the
developers to fully use it. Moreover, these abstractions change with support for
additional NoSQL systems and are not universally applicable. In fact, support
for different NoSQL systems would be very different, making it difficult to use
the same know-how to develop applications on them all. Finally, building and
maintaining the platform itself would require a lot of talent and effort in the
long term, as support for additional systems could not be neatly separated in
plugins with simple, abstract interfaces.

On the other hand, we can map all data in different NoSQL systems to a
relational schema with standard types and allow queries to be expressed in SQL.
This results in a mediator/wrapper architecture that allows the same queries to
be executed over all data regardless of its source, even if by the query engine at
the mediator layers.

This approach also has drawbacks. First, mapping NoSQL data models to
a relational schema requires developer intervention to extract the view that is
adequate to the queries that are foreseen. This will most likely require NoSQL-
specific talent to write target queries and conversion scripts. Moreover, query
capabilities in NoSQL systems will remain largely unused, as only simple filters
and projections are pushed down, meaning the bulk of data processing would
need to be performed client-side.

Our proposal is a compromise between these two extreme approaches, that
can be summed up as: support for nested data and its manipulation in the
abstractions shown to the low-code developer, along with the ability to push
aggregation operations down to NoSQL stores from a mediator query engine,
will account for the vast majority of use cases. In addition, the ability to embed
native query fragments in queries will allow fully using the NoSQL store when
talent is available, without disrupting the overall integration. The result is a
polyglot query engine, where SQL statements are combined with multiple foreign
languages for different NoSQL systems.

The proposed architecture is summarized in Fig. 1, highlighting the proposed
NoSQL data access layer. To the existing OutSystems platform, encompassing
development tools and runtime components, we add a new Polyglot connector,
using the Database Integration API to connect to the Polyglot Query Engine
(QE) through standard platform APIs. The Polyglot QE acts as a mediator.

98 A. N. Alonso et al.

Fig. 1. Architecture overview

It exposes an extended relational database schema for connected NoSQL stores
and is able to handle SQL and polyglot queries.

For each NoSQL Store, there is a Wrapper, composed of three sub-
components: metadata extraction, responsible for determining the structure of
data in the corresponding store using an appropriate method and mapping it to
the extended SQL data model of the Polyglot QE; a query push-down compo-
nent, able to translate a subset of SQL query expressions, to relay native query
fragments, or produce a combination of both in a store-specific way; and finally,
the cursor, able to iterate on result data and to translate and convert it as
required to fit the common extended SQL data model.

The Polyglot QE makes use of Local storage for the configuration of NoSQL
store adapters and for holding materialized views of data to improve response
times. The Job Scheduler enables periodically refreshing materialized views by
re-executing their corresponding queries.

2.1 Implementation

We base our proof-of-concept implementation on open source components. The
main component to select is the SQL query engine used as the mediator. Besides
its features as a query engine, we focus on: the availability of wrappers for
different NoSQL systems and the talent needed to implement additional fea-
tures; the compatibility of the open source license with commercial distribution;

Bulding a Polyglot Data Access Layer for Low-Code 99

the maturity of the code-base and supporting open source community; and
finally, on its compatibility with the OutSystems low-code platform. We con-
sider two options.

PostgreSQL with FDW[7]. It is an option as it supports foreign data wrap-
pers according to the SQL/MED standard (ISO/IEC 9075-9:2008). The main
attractive for PostgreSQL is that it is a very mature open source product, with
a business friendly license, a long history of deployment in production, and an
unparalleled developer and user community. There is also support for .NET and
Java client application platforms. In terms of features, PostgreSQL provides a
robust optimizer and an efficient query engine, that has recently added parallel
execution, with excellent support for SQL standards and multiple useful exten-
sions. It supports nested data structures both with the json/jsonb data types,
as well as by natively supporting arrays and composite types. It has extensive
support for traversing and unnesting them. Regarding support for foreign data
sources, besides simple filters and projections, the PostgreSQL Foreign Data
Wrapper (FDW) interface can interact with the optimizer to push down joins
and post-join operations such as aggregations. With PostgreSQL FDW, it is
possible to declare tables for which query and manipulation operations are del-
egated on adapters. The wrapper interface includes the ability to either impose
or import a schema for the foreign tables. Imposing a schema requires the user
to declare data types and structure and it is up to the wrapper to make it fit
by using automatic type conversions as possible. If this automatic process is
not successful the user will need to change the specified data type to provide
a closer type match. The wrapper can also (optionally) advertise the possibil-
ity of importing a schema. In this case, the user simply instructs PostgreSQL
to import meta-data from the wrapper and use it for further operations. This
capability is provided by the wrapper and currently, this is only supported for
SQL databases, for which the schema can be easily queried. Furthermore, Post-
greSQL FDW can export the schema of the created foreign tables. In addition to
already existing wrappers for many NoSQL data sources, with variable features
and maturity, the Multicorn1 framework allows exposing the Python scripting
language to the developer, to complement SQL and express NoSQL data manip-
ulation operations.

In terms of our goals, PostgreSQL falls short on automatically using exist-
ing materialized views in queries. The common workaround is to design queries
based on views and later decide whether to materialize them, which is usable
in our scenario. Another issue is that schema inference is currently offered for
relational data sources only. The workaround is for the developer to explicitly
provide the foreign table definition.

Calcite[2] (in Dremio OSS[3]). The Calcite SQL compiler, featuring an exten-
sible optimizer, is used in a variety of modern data processing systems. We
focus on Dremio OSS as its feature list most closely matches our goal. Calcite

1 https://github.com/Kozea/Multicorn.

https://github.com/Kozea/Multicorn

100 A. N. Alonso et al.

is designed from scratch for data integration and focuses on the ability to use
the optimizer itself to translate parts of the query plan to different back end
languages and APIs. It also supports nested data types and corresponding oper-
ators. Dremio OSS performs schema inference, but treats nested structures as
opaque and, therefore, does not completely support low-code construction of
unnesting operations, in the sense that the user still needs to explicitly handle
these. Still, it provides the ability to impose a table schema ad-hoc or flexibly
adapt data types which is a desirable feature for overriding incorrect schema
inference. Also, Dremio OSS adds a distributed parallel execution engine, based
on the Arrow columnar format, and a convenient way to manage materialized
views (a.k.a., “reflections”), that are automatically used in queries. Unfortu-
nately, one cannot define or use indexes on theses views, which reduces their
usefulness in our target application scenarios.

Although Calcite has a growing user and developer community, its matu-
rity is still far behind PostgreSQL. The variety of adapters for different NoSQL
systems is also lagging behind PostgreSQL FDW, although some are highly
developed. For instance, the MongoDB adapter in Dremio OSS is able to exten-
sively translate SQL queries to MongoDB’s aggregation pipeline syntax, thus
being able to push down much of the computation and reduce data transfer.
The talent and effort needed for exploiting this in additional data wrappers is,
however, substantial. Both for Dremio and PostgreSQL, limitations in schema
imposition/inference do not impact querying capabilities, only the required tal-
ent to use the system. For PostgreSQL FDW, this can be mitigated by extending
adapters to improve support for nested data structures, integrating schema infer-
ence/extraction techniques. Finally, the main drawback of this option is that, as
we observed in preliminary tests, resource usage and response time for simple
queries is much higher than for PostgreSQL.

Choosing PostgreSQL with FDW. In the end, we found that our focus on
interactive operational applications and the maturity of the PostgreSQL option,
outweigh, for now, the potential advantages from Calcite’s extensibility.

Additional Development Completing a proof-of-concept implementation
based on PostgreSQL as a mediator requires additional development in the low-
code platform itself, an external database connector, and in the wrappers. As
examples, we describe support for two NoSQL systems. The first is Cassan-
dra, a distributed key-value store that has evolved to include a typed schema
and secondary indexes. It has, however, only minimal ad-hoc query processing
capabilities, restricted to filtering and projection. The second is MongoDB, a
schema-less document store that has evolved to support complex query process-
ing with either MapReduce or the aggregation pipeline. Both are also widely
used in a variety of applications.

Bulding a Polyglot Data Access Layer for Low-Code 101

Schema Conversion. In order to support relational schema introspection, we
reuse mongodb-schema2, extending it to provide a probabilistic schema, with
fields and types, for each collection in a MongoDB database. Top-level document
fields are mapped as table attributes. When based on probabilistic schemas, all
discovered attributes are included, leaving it to the user/developer to decide
which attributes to consider. Nested documents’ fields are mapped as top-level
attributes, named as the field prefixed with its original path. Nested arrays are
handled by creating a new table and promoting fields of inner documents to
top-level attributes. Documents from a given collection become a line of the cor-
responding table (or tables). An alternative would be to create a denormalized
table. Notice that this is equivalent to the result of a natural join between the
corresponding separate tables. However, separate tables fit better what would
be expected from a relational database and thus improve the low-code experi-
ence. It should be pointed out that viewing the original collection as a set of
separate relational tables has no impact on the performance of a query with a
join between these tables. The required unnesting directives, using the $unwind
pipeline aggregation operator are also generated and added to the table defini-
tion. We also provide the option, on by default, of adding a column referencing
the id of the outermost table to all inner tables on schema generation, that can
serve as an elementary foreign key.

MongoDB Wrapper. There are multiple FDW implementations for Mon-
goDB. We selected one based on Multicorn,3 for ease of prototyping, and change
it extensively to include schema introspection and, taking advantage of aggre-
gation pipeline query syntax, to allow push-down to work with user supplied
queries. This is greatly eased by MongoDB’s syntax for the aggregation pipeline
being easily manipulated by programs, by adding additional stages.

Cassandra Wrapper. We also use a wrapper based on Multicorn.4 In this
case, we add the ability to use arbitrary Python expressions to compute row
keys from arbitrary attributes, as in earlier versions of Cassandra it was usual
to manually concatenate several columns. Even if this is no longer necessary in
recent versions of Cassandra, it is still common practice in other NoSQL systems
such as HBase. The currently preferred interface to Cassandra, CQL, is not the
best fit for being manipulated by programs, although, being so simple, it can be
done with relatively small amount of text parsing.

Connectors. We implemented custom connectors for each NoSQL store based
on the original PostgreSQL connector. This allows the developer to directly pick
the target data store from the platform’s visual development environment [6]

2 https://github.com/mongodb-js/mongodb-schema.
3 https://github.com/asya999/yam fdw.
4 https://github.com/rankactive/cassandra-fdw.

https://github.com/mongodb-js/mongodb-schema
https://github.com/asya999/yam_fdw
https://github.com/rankactive/cassandra-fdw

102 A. N. Alonso et al.

drop-down menu and provide system specific connection options. It also allows
system specific projection and aggregation operators to be handled.

Developer Platform. The changes needed in the platform to fully accommo-
date the integration are the ability to express nesting and unnesting operators in
the data manipulation UI, and to generate SQL queries that contain them when
using the NoSQL integration connectors. It is, however, possible to workaround
this by configuring multiple flattened views of data, as needed, when the schema
is introspected and imported.

3 Lessons Learned

We discussed the challenges in integrating a variety of NoSQL data stores with
the OutSystems low-code platform. This is achieved by a SQL query engine that
federates multiple NoSQL sources and complements their functionality, using
PostgreSQL with Foreign Data Wrappers as a proof-of-concept implementation.
It allowed us to learn some lessons about NoSQL systems and to propose a good
trade-off between integration transparency and the ability to take full advan-
tage of each systems’ particularities. Lessons target low-code platform providers
(1,2), polyglot developers (3,4,5,6) and NoSQL data store providers (7,8).

1. Target an extended relational model. The relational data model when
extended with nested composite data types such as maps and arrays can success-
fully map the large majority of NoSQL data models with minimal conversion or
conceptual overhead. Moreover, when combined with flatten and unflatten oper-
ators, the relational query model can actually operate on such data and represent
a large share of target query operations. This is very relevant, as it provides a
small set of additional concepts that have to be added to the low-code platform
or, preferably, none at all as unnesting is done when importing the schema.

2. A query engine is needed. Due to the varying nature of query capa-
bilities in different data sources, a query engine that can perform various com-
putations is necessary to avoid that developers have to constantly mind these
differences. This is true even for querying a single source at a time.

3. Basic schema discovery with overrides is needed. Although Cloud-
MdsQl [5] has shown that it is possible to build a polyglot query engine without
schema discovery, by imposing ad-hoc schemas on native queries, it severely
restricts its usefulness in the context of a low-code platform. However, after get-
ting started with automatically inferred schema, it is useful to allow the devel-
oper to impose additional structure such as composite primary keys in key value
stores.

4. Embedded scripting is required. Although many data manipulation
operations could be done in SQL at the query engine, embedding snippets of
a general purpose scripting language allows direct reuse of existing code and
reduces the need for talent to translate them. Together with the ability to over-
ride automatic discovery, this is key to ensuring that the developer never hits a
wall imposed by the platform.

Bulding a Polyglot Data Access Layer for Low-Code 103

5. Materialized view substitution is desirable. Although our proof-of-
concept implementation does not include it, this is the main feature from the
Calcite-based alternative that is missing. The ability to define different native
queries as materializations of various sub-queries is the best way to encapsulate
alternative access paths encoded in a data-store specific language.

6. Combining foreign tables with scripting is surprisingly effective.
Although CloudMdsQl [5] proposed its own query engine, a standard SQL engine
with federated query capabilities, when combined with a scripting layer for devel-
oping wrappers such as Multicorn, is surprisingly effective in expressing queries
and supporting optimizations.

7. A NoSQL query interface should be targeted at machines, not
only at humans. NoSQL systems such as MongoDB or Elasticsearch, that
expose a query model based on an operator pipeline, are very friendly to inte-
gration as proposed. In detail, it allows generating native queries from SQL
operators or to combine partially hand-written code with generated code. Iron-
ically, systems that expose a simplistic SQL like language that is supposed to
be more developer friendly, such as Cassandra, make it harder to integrate as
queries in these languages are not as easily composed.

8. Focus on combining query fragments. It might be tempting to over-
look some optimizations that are irrelevant when a human is writing a complete
query, e.g., as pushing down $match in a MongoDB pipeline. However, these
optimizations are fairly easy to achieve and greatly simplify combining partially
machine generated queries with developer written queries.

References

1. Alonso, A.N., et al.: Towards a polyglot data access layer for a low-code application
development platform. https://arxiv.org/abs/2004.13495 (2020)

2. Apache Calcite - Documentation. https://calcite.apache.org/docs/. Accessed 27 Feb
2020

3. Dremio - The Data Lake Engine. https://docs.dremio.com. Accessed 27 Feb 2020
4. ISO/IEC: Information technology - Database languages - SQL - Part 9: Management

of External Data (SQL/MED). ISO/IEC standard (2016)
5. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:

CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distrib. Parallel Databases 34(4), 463–503 (2015). https://doi.org/10.1007/s10619-
015-7185-y

6. Development and Deployment Environments. https://www.outsystems.com/
evaluation-guide/outsystems-tools-and-components/#1. Accessed 02 Mar 2020

7. PostgreSQL Foreign Data Wrappers. https://wiki.postgresql.org/wiki/Foreign
data wrappers. Accessed 27 Feb 2020

https://arxiv.org/abs/2004.13495
https://calcite.apache.org/docs/
https://docs.dremio.com
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/s10619-015-7185-y
https://www.outsystems.com/evaluation-guide/outsystems-tools-and-components/#1
https://www.outsystems.com/evaluation-guide/outsystems-tools-and-components/#1
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers

A Comparison of Message Exchange
Patterns in BFT Protocols

(Experience Report)

Fábio Silva(B), Ana Alonso, José Pereira, and Rui Oliveira

INESC TEC and U. Minho, Braga, Portugal
{fabio.l.silva,ana.n.alonso}@inesctec.pt, {jop,rco}@di.uminho.pt

Abstract. The performance and scalability of byzantine fault-tolerant
(BFT) protocols for state machine replication (SMR) have recently come
under scrutiny due to their application in the consensus mechanism of
blockchain implementations. This led to a proliferation of proposals that
provide different trade-offs that are not easily compared as, even if these
are all based on message passing, multiple design and implementation
factors besides the message exchange pattern differ between each of them.
In this paper we focus on the impact of different combinations of cryp-
tographic primitives and the message exchange pattern used to collect
and disseminate votes, a key aspect for performance and scalability. By
measuring this aspect in isolation and in a common framework, we char-
acterise the design space and point out research directions for adaptive
protocols that provide the best trade-off for each environment and work-
load combination.

1 Introduction

The popularization of cryptocurrencies backed by blockchain implementations
such as Bitcoin has led to a renewed interest in consensus protocols, particu-
larly in protocols that can tolerate Byzantine faults to prevent malicious partic-
ipants from taking fraudulent economic advantage from the system. Instead of
using established BFT protocols such as PBFT [7] to totally order transactions,
permissionless blockchains such as Bitcoin’s [14] and Ethereum [6] currently use
protocols based on Proof-of-Work [14], as scalability in the number of processes
is known to be an issue for classic BFT consensus protocols. This, however,
represents a trade-off: the ability to scale to large numbers of processes with a
possibly very dynamic membership comes at the cost of increased transaction
latency and probabilistic transaction finality.

An alternative path is taken by permissioned blockchains such as Hyperledger
Fabric [1], which use classical consensus protocols to totally order transactions,
motivating the need for higher scalability in BFT protocols. The result has been

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 104–120, 2020.
https://doi.org/10.1007/978-3-030-50323-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_7

A Comparison of Message Exchange Patterns in BFT Protocols 105

that a variety of BFT protocols have been proposed, which, having identified
the number and/or size of the messages to be exchanged as the bottleneck for
scalability, take advantage of different message exchange patterns combined with
different cryptographic primitives [2,4,8,9,12,17].

The proposed protocols might be generally compared through decision
latency and throughput measurements in a common experimental setup, and
relative scalability evaluated by varying only the number of processes. There are
however a number of implementation factors that can affect performance and
hide the impact of the abstract protocol, including the programming language,
concurrency control strategy, and networking and cryptographic libraries.

We argue that a more interesting result for the proposal and implementation
of future protocols can come from assessing the impact of the selected message
exchange patterns and cryptographic primitives, in isolation of other implemen-
tation factors, as these are key aspects for protocol performance and strongly
impact scalability to a large number of processes.

This work makes the following contributions:

– We propose an experimental harness for reliably reproducing the performance
and scalability characteristics of the vote dissemination and collection phases
in a BFT protocol, including the message exchange pattern and the crypto-
graphic primitive.

– We run experiments for four message exchange patterns and three crypto-
graphic primitives, thus characterizing the design space for these protocols
in terms of resource usage (CPU and network) and potential parallelism. We
use these results to draw lessons for future research and development.

The rest of this paper is structured as follows. Section 2 briefly describes
existing protocols in terms of the message exchange patterns and cryptographic
primitives used. Section 3 proposes a model for reproducing and measuring the
impact of these protocol features, Sect. 4 presents the results obtained, which
are discussed in Sect. 5. Finally, Sect. 6 presents the main lessons learned and
outlines future work.

2 Background

A practical BFT protocol for state machine replication was initially proposed by
Castro and Liskov [7]. It allows clients to submit requests to a set of processes
that order and execute them. The challenge lies in ensuring that all correct pro-
cesses execute the same sequence of requests, regardless of crash faults, where
processes forget what has not yet been saved to a persistent log and byzantine
faults, where malicious processes behave arbitrarily, possibly generating mes-
sages that do not comply with the protocol. The number of tolerated faults is
bound to the number of processes in such a way that it requires 3t+1 processes
to provide safety and liveness in the presence of t faults.

The challenge is addressed with a three phase message exchange protocol.
In a first stage, pre-prepare the current leader proposes a sequence number for

106 F. Silva et al.

a pending request. In a second stage, prepare, all processes that recognize the
sender of the message as the leader acknowledge it to all others. This is how-
ever not enough for agreement, as malicious processes might be sending different
messages to different destinations. Therefore, in the third phase, commit, pro-
cesses that got 2t acknowledgments will then confirm the outcome to all others.
Upon reception of 2t + 1 confirmations, the request can be executed. Note that
messages need to be authenticated to prevent malicious processes from forging
messages by impersonating other processes.

Fig. 1. Message exchange pattern in BFT agreement in three phases. It includes (a)
sending a message to all others; (b) receiving a message from all others; and (c)
quadratic number of messages being transmitted in the network.

The resulting message exchange pattern (broadcast) is depicted in Fig. 1.
Even if these messages do not convey the requests themselves and are restricted
to protocol information, it is problematic for performance in various ways. First,
(a) it requires each process to send a message to all others, which without a
true broadcast medium consumes CPU time in transport and network layers.
Second, each process has to receive and handle messages from all others (b). In
fact, even if only 2t+1 replies are needed for progress, in the normal case where
no process is faulty, 3t+ 1 messages will have to be delivered and decoded, thus
consuming CPU time. Finally, as all-to-all messages are exchanged, the network
bandwidth used grows quadratically with the number of processes. These issues
are bound to become scalability bottlenecks.

The typical answer to these issues is to design a message exchange pattern
that trades latency for bandwidth and exploits parallelism. For instance, instead
of directly sending a message to all destinations, it is first sent to a selected
subset that then relays it to some other subset. This avoids any of the processes
having to deal directly with all destinations and enables message exchange to be
done in parallel by the various intermediate processes. A similar strategy can be
used when collecting acknowledgments.

An option used in agreement protocols in the crash-stop model [11], is to
employ a centralized pattern, i.e., to rely on the central coordinator to collect
messages from all processes and then re-broadcast to all, making the number of

A Comparison of Message Exchange Patterns in BFT Protocols 107

messages grow linearly with the number of processes at the expense of an addi-
tional communication step. Another option is to organize processes in a logical
ring and have each of them add to and forward the message to the next (ring
pattern). This is the option taken in Ring Paxos [13] and in the Chain configu-
ration of the Aliph protocol [2]. Gossiping is a well known efficient distributed
information dissemination and aggregation strategy, hence it has also been pro-
posed in this context [12]. In this case, each bit of information is routed to a
small random subset of destinations, where it can be combined and forwarded
(gossip pattern).

Unfortunately, the assumption of byzantine faults makes this harder to
achieve than in the variants of Paxos for the crash-stop fault model, as a process
cannot trust others to correctly forward the information contained in messages
from others unless the original (simple) cryptographic signature is included ver-
batim. This works when disseminating information but is less useful when col-
lecting information from other processes, as the agreement protocol needs to do
in prepare and commit phases, as multiple signatures need to be included (set),
making message size grow with the number of processes. It is nonetheless viable
and is used in the Chain configuration of Aliph [2].

Some protocols employ cryptographic techniques that enable signatures to be
combined to mitigate this increase in message size. Designating specific processes
to act as collectors, which combine a pre-defined number of signatures into a
single one (threshold signatures), can be used in protocol phases that require the
collection of a minimum number of replies/confirmations [9,17]. Alternatively,
other protocols leverage techniques that allow signatures to be aggregated at each
step (aggregate signatures), thus eschewing the need to define specific processes
to carry out this operation but, in turn, verification requires knowing exactly
which signatures have been aggregated [4,12].

Table 1. Representative protocols for different message exchange patterns (rows) and
cryptographic primitive combinations (columns).

Simple/set Threshold Aggregate

Broadcast PBFT [7] n/a n/a

Centralized SBFT [9], HotStuff [17] LibraBFT [4]

Ring Chain [2]

Gossip Multi-level [12]

Table 1 lists representative combinations of message exchange patterns and
cryptographic primitives for creating digital signatures used in BFT protocols.
Notice that for the broadcast message pattern used in the original PBFT pro-
tocol [7] there is no need to use a cryptographic primitive to combine message
signatures, as these are sent directly. The other options might lead to useful

108 F. Silva et al.

combinations, as the computational effort required by different cryptographic
primitives needs to be weighed against savings in the amount of data that is
transmitted.

3 Model

To assess the impact of each combination of message exchange pattern and
cryptographic primitive we built a cycle-based simulation of the core phases of
a byzantine fault tolerant protocol. This allows us to highlight the impact of
these two factors without the experimental noise that would result from imple-
mentation details such as language, concurrency, networking, serialization and
cryptographic libraries. This also allows us to exhaustively experiment with all
combinations, including those that haven’t been tried before.

The protocol model is as follows. It reproduces only the common path of
the replication protocol, namely, the pre-prepare, prepare, and commit phases
of PBFT [7] as shown in Fig. 1. A designated process (the coordinator) starts
a protocol instance by disseminating a proposal. Each process, upon receiving
that proposal, disseminates a first phase vote. Upon collecting first phase votes
from two thirds of processes (a first phase certificate), a process disseminates
a second phase vote. Agreement is reached when one third of processes collect
a second phase certificate (second phase votes from two thirds of processes).
The model thus omits request execution, interaction with clients, and the view
change protocol, needed to deal with failure of the coordinator.

The key to achieving different message exchange patterns is to allow each
process to forward information. In this case, the relevant information consists
of the votes for each phase of the protocol: instead of a process having to send
a vote directly to all others, as in the original PBFT protocol, it is possible for
the vote to be forwarded by intermediate processes, thus avoiding the need for
direct communication. We do this in a simple fashion: each process is able to
send all votes collected so far in each phase instead of just sending out its own.
The decision for when these votes are sent and to whom depends on a strategy
parameter, which leads to different message exchange patterns. Based on the
protocols described in Sect. 2, the considered message exchange patterns are:

Broadcast: The coordinator broadcasts the proposal and each process broad-
casts its own votes.

Centralized: The coordinator broadcasts the proposal and each process sends
its own votes only to the coordinator. Upon collecting a certificate, the coor-
dinator forwards it to the remaining processes.

Ring: Processes are disposed in a logical ring. The coordinator sends the pro-
posal to its successor. A process forwards the proposal and collected votes
to its successor until it forwards a second phase certificate.

Gossip: The coordinator sends the proposal to fanout processes. A process
forwards the proposal and collected votes to fanout processes every time it
receives a set that contains messages (either proposal or votes) it does not

A Comparison of Message Exchange Patterns in BFT Protocols 109

know about, until it forwards a second phase certificate. The destinations are
picked from a random permutation of all possible destinations, in a cyclic
order, to ensure deterministic termination [15].

All patterns except Broadcast require processes to forward collected votes.
Votes must be authenticated and same phase votes from distinct processes, if
correct, differ only in their signature. These signatures can be sent individually,
as a set, or make use of cryptographic techniques to reduce the size of messages
as follows:

Set: A simple approach is to forward a set containing known signatures. How-
ever, this entails that message size will be proportional to the number of
signatures.

Threshold: Threshold signatures allow any process to convert a set of signatures
into a single signature. However, this can only happen when the set contains
a pre-defined number of signatures – the threshold value. Up until that point
the whole set must be forwarded. In this context, the threshold value should
be two thirds of the number of processes (the size of certificates).

Aggregation: With signature aggregation, processes can aggregate any num-
ber of signatures into a single signature at any moment, but forwards must
include information about which processes’ signatures have been aggregated.
Additionally, for the gossip pattern, forwarded information must also include
how many times each signature has been aggregated, as these may, in turn,
be further aggregated.

Regarding the simulator, in each cycle, each active process runs to comple-
tion, sequentially processing all pending messages. In detail, a process is active
if it is the coordinator at the start of the protocol or if there is an incoming
message, ready to be received. Each process can thus receive and send multiple
messages per cycle. Messages sent in a cycle are made available at the destination
in the next cycle. This allows us to obtain several interesting metrics:

Number of Cycles to Reach a Decision: The number of cycles required to
reach a decision is the primary metric, as it provides a measurement of how
many communication steps are required.

Number of Messages Sent and Received: The number of messages sent and
received provide a measurement of network bandwidth used. By recording
these metrics individually for each process, we are also able to point out the
cases where the load is asymmetrically distributed.

Message Size in Bytes: The overhead that the message exchange pattern
combined with the cryptographic primitive entails in bytes. The space taken
by view, sequence number, requests, among others, are not regarded. This
metric is calculated from the content of the messages exchanged and is key
to assess the impact of collecting multiple votes in each forwarded message.

Number of Active Processes: The number of active processes is a measure
of parallelism, pointing out how many processes are able to make progress
in parallel and how evenly computational load is distributed.

110 F. Silva et al.

Actual CPU Time: Since the implementation used to process each message is
complete, i.e., includes de-serialization of the input signatures, protocol state
changes, cryptographic operations, and serialization of output signatures,
and would be usable in a real implementation, we measure the used CPU time
using hardware counters, and consider this as a measure of computational
effort.

The protocol model and cycle-based simulators have been implemented in
C++ and executed in a Linux server with dual AMD Opteron 6172 processors
(2100 MHz and 24 cores/hardware threads) with 128 GB RAM. All cryptogra-
phy is provided by the Chia-Network BLS signatures library.1

Fig. 2. Number of cycles needed to reach a decision in an agreement instance, by each
process, per message exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145
processes; and (d) 193 processes.

4 Results

The cycle-based simulator and protocol model are now used to obtain results for
each relevant message exchange pattern and cryptographic primitive. It should
be pointed out that the broadcast pattern uses only simple message signatures,
as each process only sends its own vote and sends it directly to every other
process. On the other hand, in centralized, ring and gossip patterns, processes
forward collected votes and thus are evaluated with all cryptographic primitive

1 https://github.com/Chia-Network/bls-signatures.

https://github.com/Chia-Network/bls-signatures

A Comparison of Message Exchange Patterns in BFT Protocols 111

Fig. 3. Number of messages sent in an agreement instance, by each process, per message
exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145 processes; and (d) 193
processes.

Fig. 4. Number of messages received in an agreement instance, by each process, per
message exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145 processes; and
(d) 193 processes.

112 F. Silva et al.

Fig. 5. Message overhead due to signatures (in bytes), averaged per process, for each
combination of message exchange pattern and cryptographic primitive, for 97 processes.

Fig. 6. Overall average message overhead due to signatures (in bytes) for an increas-
ing number of processes, per cryptographic primitive: set of signatures (a), threshold
signatures (b) and signature aggregation (c). Values for the Broadcast pattern are also
presented for comparison.

A Comparison of Message Exchange Patterns in BFT Protocols 113

Fig. 7. Total CPU usage (in ms) for each process, per combination of message exchange
pattern and cryptographic primitive, for 97 processes.

Fig. 8. Average CPU usage (in ms) per process, for an increasing number of pro-
cesses, per cryptographic primitive: set of signatures (a), threshold signatures (b) and
signature aggregation (c). Values for the Broadcast pattern are also presented for com-
parison.

114 F. Silva et al.

Fig. 9. Number of active processes in each cycle (a) and the average number of incoming
and outgoing messages processed by each active process (b), per message exchange
pattern, for 193 processes. Ring continues past 400 cycles (cropped).

options. In addition, the number of destinations in the gossip pattern is set as
fanout = 2, the lowest value that can still define the pattern. These experiments
don’t account for either network or process faults, so there is no need for retrans-
missions, no messages are lost and messages are always correct. All experiments
are repeated with 49, 97, 145 and 193 processes, the number of processes required
to tolerate 16, 32, 48 and 64 malicious processes, respectively.

Because the gossip message pattern includes an element of randomness, the
results of several runs were analysed. In order to consolidate the results of those
runs, we first ranked the measurements for each metric per run. Then we cal-
culated the average value per rank. An alternative could be to use the identity
of each process to calculate average measurements. However, the identity of
processes in different runs is ultimately unrelated. Thus, the ranking method
provides better predictive ability, allowing us to provide, for example, an esti-
mate for how long it will take for the first process to decide and also for the last
to decide.

Figure 2 shows the number of simulation cycles needed for deciding an
instance of the protocol, with each of the message exchange patterns. This is
the number of communication steps needed for processes to agree on the next
command to execute. For instance, with the broadcast pattern processes agree

A Comparison of Message Exchange Patterns in BFT Protocols 115

in four communication steps: first the coordinator broadcasts a proposal; pro-
cesses then receive the proposal and broadcast its first phase vote; afterwards
processes receive all first phase vote and broadcast a second phase votes; and
finally processes receive all second phase votes.

Results shown in Figs. 3, 4, 5, 6, 7 and 8 focus on resource usage. Note that
Figs. 3, 4, 5 and 7 plot a dot for the result observed in each process, showing
where appropriate the dispersion of results depicted by the level of color satu-
ration: the more overlap, the higher the color saturation. This is evident in the
centralized pattern, as measurements regarding the coordinator are depicted as
mostly transparent and color saturation reveals the overlap regarding remaining
processes.

In detail, Figs. 3 and 4 show, respectively, the number of messages sent and
received for an agreement instance, for each message exchange pattern and for
a growing number of processes. Figure 5 shows the message overhead in bytes
due to votes carried, including the signatures in a run with 97 processes. A dot
is plotted for each process, showing the average message size for that process,
which in some configurations is variable. Figure 6 then shows how the average
message size varies with the number of processes in the system. Likewise, Fig. 7
shows the CPU time consumed by each process. A dot is plotted for each of
them, showing that in some cases the load is variable. Figure 8 then shows how
the average CPU time used varies with the number of processes in the system.

Finally, Fig. 9 describes how the load is distributed across different processes
and across time, during the run of an agreement instance. In detail, Fig. 9(a)
shows the number of active processes (i.e., those that receive and send mes-
sages in that cycle) as time progresses. Figure 9(b) shows the average number
of incoming and outgoing messages that are processed by each of the active
processes.

5 Discussion

The considerations put forth in this section are based on the analysis of the
results presented in Sect. 4.

Broadcast. We start by discussing the results for the broadcast pattern as a
baseline, as it matches the original PBFT protocol [7]. In this pattern, each pro-
cess sends and receives messages directly to and from all others. Therefore, all
processes work in parallel sending and receiving n messages in each phase. Mes-
sages contain only one signature, thus the message overhead due to signatures
is always the same and does not change with the total number of processes.
The total CPU time is the same for all processes and increases linearly with the
number of processes, corresponding to the number of messages processed. As a
consequence, a decision is achieved in a small number of cycles.

116 F. Silva et al.

Centralized. For the centralized pattern we need to make a distinction between
the coordinator and the remaining processes since they behave differently. The
coordinator sends 3n messages and receives 2n messages while the remaining
processes always send 2 messages and receive 3 messages. The coordinator and
the remaining processes alternate executions, with the latter computing in par-
allel. The coordinator sends and receives n messages in each cycle (high load)
while the remaining processes only send and receive 1 message per cycle (low
load). The overhead due to signatures in messages received by the coordinator,
sent by the remaining processes, is always the same, since the messages only
contain one signature regardless of the cryptographic primitive.

Initially, regardless of the cryptographic primitive used the coordinator sends
proposals, which are always the same size (one signature). However, with the set
of signatures it forwards 2n/3 signatures in each phase. The total CPU time for
the coordinator is slightly higher than in the broadcast primitive because of the
certificates being forwarded. On the other hand, the remaining processes verify
the signatures from each certificate in batch, which is faster than verifying them
one by one as they do in the broadcast pattern. The total CPU time increases
linearly with the number of processes for both the coordinator and the remaining
processes.

With threshold signatures, all messages sent by the coordinator contain only
one signature, so the overhead due to signatures per message does not change
with the total number of processes. The coordinator’s total CPU time is roughly
the same as in the set of signatures primitive since the benefit of creating smaller
messages mitigates the drawback of computing threshold signatures. As with the
baseline set of signatures option, it also increases linearly with the number of pro-
cesses. The remaining processes only have to make a single signature verification
thus its total CPU time is the lowest overall and remains constant irrespective
of the number of processes.

Finally, with the aggregate signatures primitive, the certificates the coordina-
tor forwards contain one signature plus info detailing which signatures have been
aggregated. Aggregating signatures is a more expensive operation than creating
a threshold signature thus the total CPU time for the coordinator is the highest
among the centralized alternatives and it also increases linearly. The remaining
processes have to compute the info to verify the aggregated signature which is
slower than verifying a threshold signature but faster than verifying a set of
signatures.

Ring. With the ring pattern, the protocol completes after 2+1/3 laps around the
ring which results in two thirds of the processes to send and receive 2 messages
while one third sends and receives 3 messages. Processes compute sequentially
which results in no parallel processing. Process load is small as each process only
sends and receives 1 message per cycle.

With the set of signatures, message sizes range from 1 up to 4n/3 signatures
(two certificates) resulting in a big variation in the average size of messages
among processes. The total CPU time is the same for all processes, lower than
in broadcast and increases linearly with the number of processes.

A Comparison of Message Exchange Patterns in BFT Protocols 117

Using threshold signatures, messages are smaller than if using the set primi-
tive because when the number of signatures for a phase reaches 2n/3, a threshold
signature is created, replacing those individual signatures. The total CPU time
varies per process since some processes only verify the computed threshold sig-
natures. Despite the variation, it is lower than when using the set of signatures
and also increases linearly with the number of processes, although at a slower
rate.

Using aggregate signatures, messages contain up to 3 signatures plus related
information, namely the processes for which signatures have been aggregated.
Regarding total CPU time, there is a large variation between processes because
the computational effort of the processes that send and receive 3 messages is
considerably larger than that of processes that only send and receive 2 messages.
Still, even among processes that exchange the same number of messages some
variation occurs as those that receive a certificate from their predecessor are not
required to aggregate their signatures. This makes it the worst combination of
message exchange pattern and cryptographic primitive for the total CPU time
since it also grows exponentially with the number of processes.

Gossip. The number of messages each process sends and receives with the gossip
pattern is lower than with the broadcast message pattern and increases only
logarithmically with the number of processes. The number of active processes
in each cycle increases exponentially with base fanout . After logF n cycles, all
processes execute in parallel and each process sends and receives a small number
of messages in each cycle (low load).

With the set of signatures, message sizes can grow up to 4n/3 signatures (two
certificates). Since each process sends and receives more messages, the variation
of the average size of messages is smaller than in the ring pattern. The total
CPU time shows a small variation between processes but is always lower than
for the broadcast pattern, increasing linearly with the number of processes.

Using threshold signatures, messages are smaller because, again, when the
number of signatures for a phase reaches 2n/3, a threshold signature is created
replacing these. The total CPU time also shows a small variation among different
processes, being higher overall than if using the set of signatures. The reason is
that it is likely that by the time some process is able to generate a threshold
signature and send it to others, most of the processes will have also collected
enough messages to generate a certificate themselves. This means that most pro-
cesses will use CPU time to generate threshold signatures but few processes will
actually make use of the threshold signatures generated by others. Nevertheless,
it is still lower than with the broadcast pattern and increases linearly with the
number of processes.

Using aggregate signatures, messages contain up to 3 signatures plus informa-
tion on aggregation. There is a big variation among different processes regarding
the total CPU time, with the average being higher than with the broadcast
pattern. It increases linearly with the number of processes.

118 F. Silva et al.

6 Lessons Learned and Future Work

Considering the results obtained with our simulation model of the core part of
the protocol needed for a byzantine fault tolerant replicated state machine, we
can now draw some important lessons to steer future research and development
effort:

There is No Absolute Best Message Exchange Pattern. The first interesting con-
clusion is that none of the tested message exchange patterns performs optimally
in all scenarios. In fact, if processes can handle sending and receiving as many
messages as the number of processes (i.e., small clusters of powerful servers),
then the centralized pattern combined with threshold signatures should be the
best option, since it requires exchanging the least messages and results in lower
computational effort for the majority of processes, when compared to the broad-
cast pattern. This is the approach of SBFT [9] and HotStuff [17]. However, as the
number of processes grows it becomes harder to sustain such loads. In this case,
the gossip pattern with signature aggregation might be the best choice since it
evenly distributes the load across servers, without the overhead of the broadcast
pattern. The ring pattern induces very high latency since there is no parallel
processing. However, it might allow for high throughput if multiple protocol
instances run in parallel. Moreover, there are also other patterns not included in
this work, such as the communication trees employed by ByzCoin [10].

Cryptographic Primitives Provide a Range of CPU vs Network Bandwidth Trade-
Offs. The threshold signatures primitive requires a set of signatures to be for-
warded until the threshold value is reached, which is a disadvantage when com-
bined with either the ring or the gossip patterns. Moreover, if the set of processes
changes, new private keys must be generated for each process to create a new
master public key with which threshold signatures can be verified. In terms of
computation, the signature aggregation primitive is always the slowest. This is
partly due to the operations necessary for aggregating signatures and for verify-
ing them. This means that we get a range of trade-offs between computational
effort and network bandwidth, that suit different environments. Finally, we also
believe that the cryptographic library is not optimized to re-aggregate exist-
ing aggregate signatures, which affects ring and gossip but not the centralized
pattern [5].

Overall Conclusion: The Case for Adaptive Protocols. The results obtained thus
make a strong case for adaptive protocols that can be configured to use differ-
ent message exchange patterns and a choice of cryptographic primitives to suit
different environment and application scenarios. Moreover, these results make
a strong case for automated selection of the best message pattern and crypto-
graphic primitive combination by monitoring the current environment. Current
proposals addressing these issues are Aliph [2] and ADAPT [3] which, however,
don’t cover the full spectrum of options. Other optimizations can also be included
in such a protocol, like recent work on distributed pipelining [16], since they are
orthogonal to this proposal.

A Comparison of Message Exchange Patterns in BFT Protocols 119

Future Work. First, the proposed simulation model can be used to obtain addi-
tional results and as a test bed for the optimization of the various patterns. For
instance, message size in the gossip pattern, for any cryptographic primitive,
might be further reduced if one takes into consideration the destination process.
For example, if a second phase vote from the destination is already known, there
is no point in sending it the first phase certificate. We can also collect results
for a wider range of protocol parameters (e.g., varying the fanout in the gossip
pattern) and, also, assess the behavior or each combination in the presence of
faults, by implementing the view change protocol. Finally, these results also pave
the way for research, namely, by providing data that can be used to train and
test adaptation policies.

Acknowledgment. This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia within project
UIDB/50014/2020.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference
EuroSys 2018. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3190508.3190538

2. Aublin, P.L., Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700
BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015). https://doi.
org/10.1145/2658994

3. Bahsoun, J.P., Guerraoui, R., Shoker, A.: Making BFT protocols really adaptive.
In: Proceedings of the 29th IEEE International Parallel & Distributed Processing
Symposium, May 2015

4. Baudet, M., et al.: State machine replication in the libra blockchain (2019)
5. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller

blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

6. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper

7. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation OSDI 1999,
pp. 173–186. USENIX Association, Berkeley (1999). http://dl.acm.org/citation.
cfm?id=296806.296824

8. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles SOSP 2017, pp. 51–68. ACM, New York (2017).
https://doi.org/10.1145/3132747.3132757

9. Gueta, G.G., et al.: SBFT: a scalable and decentralized trust infrastructure. In:
IEEE International Conference Dependable Systems and Networks (DSN) (2019)

10. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th {usenix} Security Symposium ({usenix} Security 16), pp. 279–296 (2016)

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://github.com/ethereum/wiki/wiki/White-Paper
http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1145/3132747.3132757

120 F. Silva et al.

11. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
12. Long, J., Wei, R.: Scalable BFT consensus mechanism through aggregated sig-

nature gossip. In: 2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pp. 360–367, May 2019. https://doi.org/10.1109/BLOC.2019.
8751327

13. Marandi, P.J., Primi, M., Schiper, N., Pedone, F.: Ring Paxos: a high-throughput
atomic broadcast protocol. In: 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN), pp. 527–536. IEEE (2010)

14. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

15. Pereira, J., Oliveira, R.: The mutable consensus protocol, pp. 218–227 (2004).
https://doi.org/10.1109/RELDIS.2004.1353023

16. Voron, G., Gramoli, V.: Dispel: byzantine SMR with distributed pipelining. arXiv
preprint arXiv:1912.10367 (2019)

17. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356 (2019)

https://doi.org/10.1109/BLOC.2019.8751327
https://doi.org/10.1109/BLOC.2019.8751327
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/RELDIS.2004.1353023
http://arxiv.org/abs/1912.10367

Kollaps/Thunderstorm: Reproducible
Evaluation of Distributed Systems

Tutorial Paper

Miguel Matos(B)

U. Lisboa & INESC-ID, Lisbon, Portugal
miguel.marques.matos@tecnico.ulisboa.pt

https://www.gsd.inesc-id.pt/∼mm/

Abstract. Reproducing experimental results is nowadays seen as one of
the greatest impairments for the progress of science in general and dis-
tributed systems in particular. This stems from the increasing complexity
of the systems under study and the inherent complexity of capturing and
controlling all variables that can potentially affect experimental results.
We argue that this can only be addressed with a systematic approach
to all the stages and aspects of the evaluation process, such as the envi-
ronment in which the experiment is run, the configuration and software
versions used, and the network characteristics among others. In this tuto-
rial paper, we focus on the networking aspect, and discuss our ongoing
research efforts and tools to contribute to a more systematic and repro-
ducible evaluation of large scale distributed systems.

1 Introduction

Evaluating distributed systems is hard. The underlying network topology, in par-
ticular, can have a drastic impact on key performance metrics, such as through-
put and latency but also on correctness depending, for instance, on the asyn-
chrony assumptions made by the system designer. With the increasingly popu-
lar deployment of geographically distributed applications operating at a global
scale [5], assessing the impact of geo-distribution, and hence network topology,
is fundamental to build and tune systems that perform correctly and meet the
desired Service Level Objectives. Unfortunately, there is still an important gap
between the easiness of deploying a distributed system and its evaluation.

On the one hand, the deployment of geographically distributed systems was
made simpler thanks to the increasing popularity of container technology (e.g.,
Docker [13], Linux LXC [8]). Big IT players introduced such technologies in their
commercial offering (e.g., Amazon Elastic Container Service [1], Microsoft Azure
Kubernetes Service [2] or Google Cloud Kubernetes Engine [7]), and they are an
attractive mechanism to deploy large-scale applications.

On the other hand network properties such jitter, packet loss, failures of
middle-boxes (i.e., switches, routers) are by definition difficult, if not impossi-
ble, to predict from the standpoint of a system developer, who has no control
over the underlying network infrastructure. Moreover, such conditions are the

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 121–128, 2020.
https://doi.org/10.1007/978-3-030-50323-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_8&domain=pdf
http://orcid.org/0000-0001-6916-2866
https://doi.org/10.1007/978-3-030-50323-9_8

122 M. Matos

 0

 50

 100

 150

 200

 250

26.02.19 12.03.19 26.03.19 09.04.19In
te

r-
R

eg
io

n
La

te
nc

y
(m

s)

Latencies measures from us-east-1
eu-north-1 ap-northeast-2 eu-central-1 us-west-2 sa-east-1

Fig. 1. Latency variability between five different AWS regions across the world over
45 days. Latencies vary on average between 90ms and 250 ms, while spikes occur across
all regions.

 0

 32

 64

 96

 128

0 12H 24H 36H 48H
 0
 5
 10
 15
 20
 25
 30
 35
 40client: Portugal server:Switzerland

T
hr

ou
gh

pu
t (

M
bi

t/s
)

P
in

g
(R

T
T

)

Variability of network conditions (27.04.19-28.04.19)
bandwidth latency

Fig. 2. Dynamic network conditions between two university campuses in Europe, in
Portugal and Switzerland respectively.

norm rather than the exception, in particular when considering large-scale wide-
area networks that might cross several distinct administrative domains. As a
motivating example, consider Fig. 1 which shows the average latency between
six AWS [1] regions over 45 days measured by https://www.cloudping.info. We
observe that even in the infrastructure of a major cloud provider, there are
significant and unpredictable variations in latency.

Variability is not limited to latency. We demonstrates this with a measure-
ment experiment for two different cases. The first set of measures are taken
between two stable endpoints inside university networks, respectively in Por-
tugal and Switzerland, shown in Fig. 2. The second case measures the network
conditions between a remote AWS instance in the ap-northeast-1a zone (in
Tokyo) and a server node in Switzerland (Fig. 3). As we can observe, there are
important variations both for bandwidth and latency. Such variability can have
a dramatic effect not only on a system’s performance but also on reliability as
shown by recent post-mortem analysis of major cloud providers [4]. The chal-
lenge, therefore, is how to equip engineers and researchers with the tools that
allow to systematically understand and evaluate how this variability affects sys-
tem’s performance and behavior.

In our ongoing work, we are conducting research and developing tools to
precisely enable these experiments. In this tutorial paper, we briefly introduce

https://www.cloudping.info

Kollaps/Thunderstorm 123

 0

 32

 64

 96

 128

0 12H 24H 36H 48H
 0

 50

 100

 150

 200

 250

client: AWS-AP (Tokyo) server: Switzerland

T
hr

ou
gh

pu
t (

M
bi

t/s
)

P
in

g
(R

T
T

)

Variability of network conditions (30.04.19-02.05.19)
bandwidth latency

Fig. 3. Dynamic network conditions between a university node in Switzerland and a
node in AWS ap-northeast-1a (Tokyo).

Kollaps [10], a decentralized and scalable topology emulator (Sect. 2), and
Thunderstorm [12], a compact domain specific language to describe dynamic
experiments on top of Kollaps (Sect. 3). Then we present some experiments
enabled by Kollaps and Thunderstorm in Sect. 4 and conclude in Sect. 5.

2 Kollaps

In this section, we briefly describe the architecture and workflow Kollaps,
depicted in Fig. 4.

First, the user must describe the topology in the Thunderstorm Descrip-
tion Language (TDL), discussed in the next section. This includes the network
topology, network dynamics, if any, and the Docker images of the distributed
application being evaluated (Fig. 4, define step). These images can come from
either private repositories or public ones such as Docker Hub [3].

With the experiment defined, the user invokes the deployment generator, a
tool shipped with Kollaps that transforms the TDL into a Kubernetes Manifest
file, or a Docker compose file. This file is ready to be deployed using Kubernetes
or Docker Swarm, but the user can manually fine-tune it if needed.

The user can then use this file to deploy the experiment in any Kubernetes
cluster (Fig. 4, deploy step). This deploys not only the target application under
evaluation but also an Emulation Manager component per physical machine
(Fig. 4, execute step). The Emulation Manager is a key component of Kollaps
responsible for maintaining and enforcing the emulation model in a distributed
fashion. More details on the design and implementation of Kollaps can be
found in [10].

3 Thunderstorm

In this section, we describe the Thunderstorm Description Language (TDL).
The TDL abstracts the low level details of Kollaps and allows to succinctly
express dynamic experiments. An example of the TDL, illustrating the main
features of the language can be found in Listing 1.1.

124 M. Matos

Users

c
Virtual

topology

Physical
nodes

c

s

sc

xml img

D
ep

lo
y

E
xe

cu
te

Docker
daemon

Container
orchestrator

master

Topology, pods,
dynamics, ...

On
every
node

out

Container Orchestrator

Results

r

r
r

(k8s,swarm)

(k8s,swarm)

Container

Router

Dynamics

Fig. 4. Kollaps architecture and workflow. We assume the existence of an existing
cluster and a working Docker Swarm or Kubernetes environment.

The language describes the services (lines 3–6), the static topology (lines
10–14) and the dynamics in the topology (lines 16–26). The service, bridge
and link elements can get an arbitrary number of tags. In the example, the api
and db services belong to the backend, while the server belongs to the frontend.
These three are grouped into the same application together, expressed by the app
tag. The client is not part of the application. We use tags to group services and
links together based on real-world criteria. For example, one of the most common
causes for network “failures” is the distributed roll-out of software upgrades [14],
e.g. for routers. Tags help to capture groups of devices sharing network status-
relevant characteristics, e.g., driver versions that could be updated at the same
time. Tags could also be used to map services to data centers (i.e., what if
one’s connection suddenly changes?) or to logical parts of a distributed system
(frontend, backend). Bridges (line 8) must have unique names. Links must specify
the source, destination and the properties (e.g., latency, bandwidth, jitter, etc.).
The symmetric keyword allow to easily create bidirectional links with the same
specified properties.

The dynamic events can be expressed in a concise yet rich manner. In our
example, we first start all application services (3 replicas for the api and the
db, and 5 replicas for the server, lines 16–19), and after 30 s the clients (line
19). After 30 min, we inject several faults into the topology. The churn keyword
crashes either an absolute number of services, or a certain share of all instances
of that service. The replace keyword then specifies the probability of such
a service to immediately re-join the cluster. At line 20, we specify that the
server replicas will be subject to churn over a 3 h period. In particular, 40% of
the servers will crash uniformly at random over this period, and of those, 50%
will be replaced immediately. Although the language allows to define events
with a degree of randomness, such as the churn event above, it is possible to
systematically reproduce the same order of events by setting a fixed random
seed. We can also specify the dynamic behavior for a specific container. In the
example, one server instance leaves the system at four hours and twenty, and
joins 5 min later (lines 21–22).

Kollaps/Thunderstorm 125

1 boots t rapper thunderstorm : 2 . 0
2
3 s e r v i c e s e r v e r img=nginx : l a t e s t tags=frontend ; app
4 s e r v i c e api img=api : l a t e s t tags=backend ; app
5 s e r v i c e c l i e n t img=c l i e n t : 1 . 0 command =[’80 ’]
6 s e r v i c e db img=pos tg r e s : l a t e s t tags=backend ; app
7
8 br idge s s1 s2
9

10 l i n k se rver−−s1 latency=9.1 up=1Gb down=800Mb
11 l i n k api−−s1 latency=5.1 up=1Gb symmetric

12 l i n k s1−−s2 latency=0.11 up=1Gb symmetric

13 l i n k c l i e n t −−s1 latency=23.4 up=50Mb down=1Gb
14 l i n k db−−s2 latency=8.0 up=1Gb symmetric

15
16 at 0 s api join 3
17 at 0 s db join 3
18 at 0 s s e r v e r join 5
19 at 30 s c l i e n t join

20 from 30m to 3h30m se rv e r churn 40% replace 50%
21 at 4h20m server−−s1 leave

22 at 4h25m server−−s1 join

23 from 10h2m to 10h6m api−−s1 flap 0 .93 s
24 from 12h to 24h tags=be leave 60%
25 from 15h to 15h20s s e r v e r disconnect 1
26 at 18h20m api−−s1 set latency=10.2 jitter=1.2

Listing 1.1. Example of experiment descriptor using the Thunderstorm description
language. Link rates are given in ’per second’.

The language supports link flapping, where a single link connects and dis-
connects in quick succession [14]. In the experiment, the link between service
api and bridge s1 flaps every 0.93 s during a period of 4 min (line 23). The
leave action, used to define which entities should leave the emulation, takes as
a parameter an absolute number or a share of all selected instances. At line 24,
60% of all nodes with the backend tag, chosen uniformly at random, will leave
the experiment. Internally, when the language is translated into the lower level
format used by the Kollaps engine, we keep track of all nodes that have joined,
left, connected, or disconnected. Thus, if a percentage rather than an absolute
number is provided, that is always relative to the amount of legal targets in the
cluster at that moment.

The output of the parser is a XML file, ready to be consumed by the deploy-
ment generator and starting the experiment workflow discussed in the previ-
ous section. Further details about the design and implementation of Thunder-
storm can be found in [12].

126 M. Matos

4 Experiments

In this section, we illustrate the capabilities of Kollaps and Thunderstorm.
The goals are two-fold: show that the emulation is accurate, and also that it
allows to easily evaluate a system under network dynamics.

The evaluation cluster is composed of 4 Dell PowerEdge R330 servers where
each machine has an Intel Xeon E3-1270 v6 CPU and 64 GB of RAM. All nodes
run Ubuntu Linux 18.04.2 LTS, kernel v4.15.0-47-generic. The tests conducted on
Amazon EC2 use r4.16xlarge instances, the closest type in terms of hardware-
specs to the machines in our cluster.

 0
 100
 200
 300
 400
 500
 600

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

(m
s)

Throughput (ops/sec)

Throughput/Latency real vs. emulated

EC2 Read
EC2 Update

ThunderStorm Read
ThunderStorm Update

Fig. 5. Throughput/latency of a geo-replicated Cassandra deployment on Amazon EC2
and Kollaps

We start by comparing the results of benchmarking a geo-replicated Apache
Cassandra [6,11] deployment on Amazon EC2 and on Kollaps. The deployment
consists of 4 replicas in Frankfurt, 4 replicas in Sydney and 4 YCSB [9] clients in
Frankfurt. Cassandra is set up to active replication with a replication factor of
2. In order to model the network topology in Kollaps, we collected the average
latency and jitter between all the Amazon EC2 instances used, prior to execut-
ing the experiment. Figure 5 shows the throughput-latency curve obtained from
the benchmark on both the real deployment on Amazon and on Kollaps. The
curves for both reads and updates are a close match, showing only slight differ-
ences after the turning point where response latencies climb fast, as Cassandra
replicas are under high stress. This experiment demonstrates how such issues can
be identified, debugged and eliminated with Kollaps before expensive real-life
deployments.

We now highlight the unique support for dynamic topologies through the use
of the TDL. This allows to easily evaluate the behaviour of complex systems in
a variety of scenarios. In this experiment, the intercontinental link from EU to
AP used for the Cassandra experiment in Fig. 5 suddenly changes its latency to
half (at 240 s), and later on (at 480 s) the original latency is restored. In Fig. 6
we report the update latency observed by YCSB. Note that read operations do
not use the intercontinental link and hence are not affected (not shown). This
shows that the network dynamics imposed by Kollaps have a direct impact in

Kollaps/Thunderstorm 127

 0
 100
 200
 300
 400
 500
 600

0 120 240 360 480 600 720

latency

 halved latency

 restored

E
nd

-t
o-

en
d

la
te

nc
y

(m
s)

Seconds

Cassandra under varying latency

Fig. 6. Latency variations measured by YCSB during a transitory period: one of the
replicas is moved to a far away region.

client-facing metrics. Engineers and researchers can therefore use Kollaps and
Thunderstorm to conduct controlled and reproducible experiments to assess
the behavior of real system under a wide range of network dynamics and devise
the best strategies to adopt when such events happen in production.

5 Discussion

In this tutorial paper we illustrated the main features of Kollaps and Thun-
derstorm, in particular the accuracy of the emulation with respect to a real
system deployed in a real environment, and also the dynamic experiments that
Thunderstorm enables. Both tools are available as open source at https://
github.com/miguelammatos/Kollaps.

We believe the ability to systematically reproduce experiments in a controlled
environment, and the ability to subject a system to a wide range of dynamic
scenarios provided by Kollaps and Thunderstorm are a step towards building
more robust and dependable distributed systems.

Acknowledgments. The work presented in this tutorial paper is the joint effort of
researchers at the University of Lisbon, Portugal, and researchers at the Univerité
de Neuchâtel, Switzerland, namely: Paulo Gouveia, João Neves, Carlos Segarra, Luca
Lietchi, Shady Issa, Valerio Schiavoni and Miguel Matos. This work was partially sup-
ported by national funds through FCT, Fundação para a Ciência e a Tecnologia, under
project UIDB/50021/2020 and project Lisboa-01-0145- FEDER- 031456 (Angainor).

References

1. Amazon elastic container service. https://aws.amazon.com/ecs/
2. Azure kubernetes service. https://azure.microsoft.com/en-us/services/kubernetes-

service/
3. Docker hub. https://hub.docker.com/
4. Google cloud post-mortem analysis. https://status.cloud.google.com/incident/

cloud-networking/18012?m=1
5. Containers: real adoption and use cases in 2017. Technical report, Forrester, March

2017

https://github.com/miguelammatos/Kollaps
https://github.com/miguelammatos/Kollaps
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://hub.docker.com/
https://status.cloud.google.com/incident/cloud-networking/18012?m=1
https://status.cloud.google.com/incident/cloud-networking/18012?m=1

128 M. Matos

6. Apache Cassandra (2019). https://cassandra.apache.org/. Accessed 12 Mar 2020
7. Google cloud kubernetes engine (2019). https://cloud.google.com/kubernetes-

engine/. Accessed 12 Mar 2020
8. Linux LXC (2019). https://linuxcontainers.org/. Accessed 12 Mar 2020
9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing SoCC 2010, pp. 143–154. ACM, New York (2010). https://doi.
org/10.1145/1807128.1807152

10. Gouveia, P., et al.: Kollaps: decentralized and dynamic topology emulation. In:
Proceedings of the Fifteenth European Conference on Computer Systems EuroSys
2020. Association for Computing Machinery, New York (2020). https://doi.org/10.
1145/3342195.3387540

11. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). https://doi.org/10.1145/
1773912.1773922

12. Liechti, L., Gouveia, P., Neves, J., Kropf, P., Matos, M., Schiavoni, V.: THUNDER-
STORM: a tool to evaluate dynamic network topologies on distributed systems.
In: 2019 IEEE 38th International Symposium on Reliable Distributed Systems
SRDS2019 (2019)

13. Merkel, D.: Docker: lightweight Linux containers for consistent development
and deployment (2014). https://doi.org/10.1097/01.NND.0000320699.47006.a3.
https://bit.ly/2IuhKBv

14. Potharaju, R., Jain, N.: When the network crumbles: an empirical study of cloud
network failures and their impact on services. In: Proceedings of the 4th Annual
Symposium on Cloud Computing SOCC 2013, pp. 15:1–15:17. ACM, New York
(2013). https://doi.org/10.1145/2523616.2523638

https://cassandra.apache.org/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://linuxcontainers.org/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/3342195.3387540
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://bit.ly/2IuhKBv
https://doi.org/10.1145/2523616.2523638

Machine Learning for Systems

Self-tunable DBMS Replication
with Reinforcement Learning

Lúıs Ferreira , Fábio Coelho(B) , and José Pereira

INESC TEC and Universidade do Minho, Braga, Portugal
{luis.m.ferreira,fabio.a.coelho}@inesctec.pt, jop@di.uminho.pt

Abstract. Fault-tolerance is a core feature in distributed database sys-
tems, particularly the ones deployed in cloud environments. The depend-
ability of these systems often relies in middleware components that
abstract the DBMS logic from the replication itself. The highly config-
urable nature of these systems makes their throughput very dependent
on the correct tuning for a given workload. Given the high complexity
involved, machine learning techniques are often considered to guide the
tuning process and decompose the relations established between tuning
variables.

This paper presents a machine learning mechanism based on reinforce-
ment learning that attaches to a hybrid replication middleware connected
to a DBMS to dynamically live-tune the configuration of the middleware
according to the workload being processed. Along with the vision for the
system, we present a study conducted over a prototype of the self-tuned
replication middleware, showcasing the achieved performance improve-
ments and showing that we were able to achieve an improvement of
370.99% on some of the considered metrics.

Keywords: Reinforcement learning · Dependability · Replication

1 Introduction

Distributed systems, namely scalable cloud-based Database Management Sys-
tems (DBMS), encompass a growing number of tunable criteria that may deeply
affect the system’s performance [5]. This is particularly true for replicated DBMS
as replication capabilities are often tightly connected with the overall system
design, and the lack of proper tuning may impact on the system dependability,
degrading quality of service. Moreover, the inner characteristics of each workload
also directly affect how the DBMS engine performs.

The number and type of adjustable criteria available in each DBMS [4,16,18]
varies, but generally, they allow to configure a common set of properties, such as
memory space available, the number of parallel workers allowed, together with

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 131–147, 2020.
https://doi.org/10.1007/978-3-030-50323-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_9&domain=pdf
http://orcid.org/0000-0003-3364-3670
http://orcid.org/0000-0002-0188-6400
http://orcid.org/0000-0002-3341-9217
https://doi.org/10.1007/978-3-030-50323-9_9

132 L. Ferreira et al.

the dimension of execution pools for specific tasks. In what regards replication,
usually systems allow to tune the type of replication mechanism considered, the
number of active instances, the acknowledgement of delays admissible and how
far can a given replica drift on data consistency before the system’s dependability
is compromised.

The perceived performance of the system is usually measured through the
number of executed operations in a time frame, which is often collected as an
exogenous property provided by external benchmarking tools, and not as an
intrinsic system property. Ultimately, achieving the best possible configuration
is the result of a multi-stage process where trial and error plays an important role,
attributing to the database administrator (DBA) the tuning responsibility and
centring on him/her the intuition of former adjustments and their consequences.
Even when considering this approach, the DBA is faced with a daunting task as
the recommendations instruct configurations to be changed one-a-time, but it is
clear that tunable configurations are not independent [5].

The rapid expansion of autonomous and machine learning techniques is cur-
rently pushing these approaches to be considered in the optimization of systems,
namely for pattern discovery and recognition, and for self-tuning of systems.

Classical supervised learning approaches split the process into distinct stages,
encompassing a period strictly for learning based on previous feedback and a
second one for making predictions. The decoupling of these stages is restrictive
as they are disjoint, and typically incorporating new data patterns into the
model implies a new training period. The use of techniques that merge both
stages, learning and making predictions in unison e.g., Reinforcement Learning
(RL) [20] promises to overcome that limitation.

This paper presents a self-tunable mechanism based on Reinforcement Learn-
ing, to configure and adjust in real time a hybrid replication middleware, paired
together with a DBMS system. In a nutshell, when requests arrive at the repli-
cation middleware, they are split into shards, i.e., a set of logical partitions
based on the workload, which are then assigned to distinct DBMS replicas. The
system is able to probe the middleware configuration and tune it to an ideal
configuration in real-time, without having to incur in the cost of restarting the
middleware or the underlying DBMS. Moreover, it does so in a dynamic manner,
the configuration is constantly adjusted to reflect the best values for the current
workload.

We deployed and evaluated the system, considering the TPC-C benchmark to
inject a workload into PostgreSQL [17], the underlying DBMS system attached.
Results show that for some of the metrics considered, the gains were of 370.99%.

The rest of this paper is organized as follows: Sect. 2 provides the core con-
cepts and motivation for the system, while Sect. 3 goes over the design of the
architecture. The use of reinforcement learning is detailed in Subsect. 3.3 and the
system’s evaluation in Subsect. 3.5. Finally, related work is presented in Sect. 4
and Sect. 5 concludes this paper, highlighting the major takeaways and future
work.

Self-tunable DBMS Replication with Reinforcement Learning 133

2 Motivation

Nowadays, there is a plethora of DBMS, each focusing on a particular workload
type, namely: OnLine Transactional Processing (OLTP), OnLine Analytical Pro-
cessing (OLAP) and even newer Hybrid Transactional and Analytical Processing
(HTAP) workloads. Even though there are guidelines on how to assess and tune
a DBMS, the configurations are not universal and each vendor decides on which
tunable configurations to expose. Moreover, workload types are very distinct
to allow a common configuration across systems. This is so as optimizing an
OLTP targeted operation would intrinsically degrade OLAP performance and
vice-versa [6]. Therefore, as the type of configurations available for tuning is
increasing, and, most importantly, the fact that the challenges associated with
a given workload type are different for each vendor, renders the DBA with most
of the know-how and responsibility to assess and fine tune a workload in a par-
ticular DBMS.

This is particularly true for replication mechanisms and for the provision
of fault-tolerance and high-availability, as such features are usually deeply con-
nected with the way each DBMS handles data, particularly in OLTP systems.
Database systems typically provide fault-tolerance capabilities through replica-
tion at the cost of lowering the throughput, where the algorithms are intricately
deployed as part of the DBMS’s kernel. When pairing a DBMS engine with the
provision of fault-tolerance guarantees through external middleware systems,
the number of tunable configurations considered increases. The advantages that
come with the decoupling such as modularity and pluggability, come at the
expense of higher complexity and a possible detachment between the design
consequences of the replication middleware and their impacts on the underly-
ing DBMS considered. Moreover, the logical detachment is typically achieved
through standard interfaces such as the Java DataBase Connector (JDBC),
which also imposes new concerns.

As to reduce the complexity and automate the decision and tuning process
associated, particularly with the provision of fault-tolerance, we envision a sys-
tem architecture aided through the use of machine forecasting, via reinforcement
learning techniques.

Therefore, successfully joining the configurability and detachment of a repli-
cation middleware, with the capabilities of RL techniques to self-adjust the sys-
tem, would reduce the key features undermining the current solution.

3 System Design

On the basis of the previously described vision, the proposed architecture is
depicted in Fig. 1.

3.1 Overview

The system is abstracted in three distinct components, namely: (i) the middle-
ware replica nodes holding the metric Monitor and the Update Handler, (ii) the

134 L. Ferreira et al.

reinforcement learning system holding the metric Monitor Handler, the Update
Dispatcher and the Reinforcement Learning Agent itself and (iii) the underly-
ing DBMS. The replication middleware is built around the Apache Bookkeeper
Distributed Log (DL) [1].

replication log

Replica 1

JDBC

Monitor

Update
Handler

DB instance

Replica 2

JDBC

Monitor

Update
Handler

DB instance

DLog

Monitor
Handler

Update
Dispatcher

requests requests

Reinforcement
Learning

Agent
Replica 1

Client requests

Monitor
Handler

Update
Dispatcher

Reinforcement
Learning

Agent
Replica 2

Middleware(Environment)

(State,Reward)

Action Action

(State,Reward)

State State

Fig. 1. System architecture.

In a nutshell, the replication middleware receives incoming JDBC requests
from clients, which are then fed into a group of distributed log instances. The
distributed log is an efficient and high-performance solution to enable replica-
tion and replica communication. Its interface considers two roles in its architec-
ture, namely: writers and readers; holding the responsibility to push and read
records from the incoming events received through the log stream, i.e., incom-
ing database requests. The requests undergo a sharding procedure [8], splitting
them in slots according to a configurable number of DataBase (DB) instances
and mapping each distributed log instance to a group of shards. The replica
nodes execute the client requests assigned to them, while also writing the result-
ing state changes to the replication log. They also receive the replicated state
changes from other replicas and update their records accordingly. The replica-
tion middleware is based on the active replication protocol [24], with a semi-
active variant [13]. On one hand, as shards are assigned to a replica, that replica
becomes the primary, handling requests for that shard. On the other hand, the
same replica acts as backup, incorporating updates of other primary replicas in
charge of other shards.

The Reinforcement Learning system is built from a set of subcomponents: the
Monitor and Update Handler, that act as probes in each replica, and, the Monitor
Handler, the Update Dispatcher and the Learning Agent. The architecture com-
prehends an instance for each one of these components per replica. The Monitor
probes and aggregates metrics (Sect. 3.3) about each replica that are afterwards
pushed to the Monitor Handler. The results are then fed into the Reinforce-
ment Learning Agent that adjusts a base configuration and instructs replicas
to modify their configurations via the Update Dispatcher and the replica’s local

Self-tunable DBMS Replication with Reinforcement Learning 135

Update Handler probe. Changes are applied on-line, without having to restart
the middleware or the underlying DB instances.

In this paper we considered for adjustment all the tuning variables that are
made available by the middleware, as depicted in Table 1. The set of possible
actions for the reinforcement learner is composed by incremental changes to these
variables. Also, it should be noted that each replica has an independent rein-
forcement learning agent controlling its tuning variables, which can be deployed
in a different machine. This allows us to add new replicas to the cluster without
having to retrain the model for the already existing replicas. Also, since differ-
ent replicas process different shards, the workload may vary between them. By
tuning each one individually, we get a configuration that is optimized for the
workload of each replica.

Table 1. Adjustable configurations considered for on-line adjustment.

Configuration Description

db.pool Size of the connection pool

dlog.reader.threads Number of worker threads

db.writeset.transactions Max batch size

db.writeset.delay Delay between writes to replication log

3.2 Components

In order to feed the Reinforcement Learning mechanism, the design comprehends
a set of custom components to observe and collect metrics, but also, to trigger
the required configuration changes. The components are split into two groups,
the ones pertaining to the replica, the probes, and the ones that pertain to the
reinforcement learning agent.

Monitor. The monitor component is deployed in each replica of the replication
middleware. It probes a set of local properties that are then fed into the learning
mechanism. The cornerstone of this component is a publish-subscribe queueing
service [9], that periodically pushes readings into the Monitor Handler compo-
nent. In practice, this component feeds the reinforcement learning algorithm
with state and reward updates. Updates are sent every 15 s.

Update Handler. The Update Handler component is deployed in each replica
of the replication middleware. It receives asynchronous actions from the Update
Dispatcher and applies them directly in each node of the middleware (our envi-
ronment), allowing a dynamic change without having to restart the middleware
or the DB engine.

136 L. Ferreira et al.

Monitor Handler. The Monitor Handler component is deployed outside the
replica nodes, in each of the Reinforcement Learning Agents. It collects the
metrics sent by the Monitor agents in each replica by subscribing their updates
through the publish-subscribe service. This data will be used to determine the
current state of the environment and the reward associated with an action.

Update Dispatcher. The Update dispatcher component is also deployed on
each of the Reinforcement Learning Agents. It considers a set of actions dictated
by the RL component and triggers the Update Handlers to impose the changes
into the new configurations.

3.3 Reinforcement Learning Agent

Each replica is controlled by a distinct Reinforcement Learning agent. The RL
component is responsible for analysing data arriving from the Monitor via the
Monitor Handler. At each step, the RL algorithm characterizes incoming raw
data from the Monitor component into the state to be fed to the RL algorithm,
which will be translated by the agent’s policy to an action. That action is then
applied to the environment, the middleware replica. The reward derived from an
action is also obtained from the data retrieved by the Monitor Handler.

The tuning of the configuration variables is done dynamically, meaning that
configuration values are constantly being fine-tuned, in response to changes in
the workload.

The search space associated to these strategies is characterized by a combi-
natorial set built from all possible states and actions. The data that is collected,
the state, is characterized by the variables identified in Table 2, a set of dis-
crete variables, with a large search space associated. The algorithm chosen was
the Deep Q-learning algorithm, as it can accommodate larger search spaces. This
mechanism incorporates a complex neural network on top of the Q-learning algo-
rithm [23]. Given this choice, the action space was sampled into a subset of 10
possible choices, depicted in Table 3.

States. The states taken into account by the RL method are a composition
of the current values of the variables depicted in Table 1, which are then com-
plemented by a set of metrics that characterize the overall performance of the
system in each replica. These metrics represent an average value over the period
comprehended between two consecutive metric readings. The complete set of ele-
ments that compose the state of our Reinforcement Learning model are depicted
in Table 2.

The metrics allow to establish a relationship between the number of requests
received in a given replica and the number of requests executed in that same
replica. Moreover, the number of received and executed transactions on other
replicas of the system (which will not be optimised) are also part of the state.

Self-tunable DBMS Replication with Reinforcement Learning 137

This allows to establish a ratio between the number of replicated requests exe-
cuted and the total number of requests that other replicas have already sent to
the distributed log for persistence. Thus, it allows the system to know whether or
not a lower throughput of replicated transactions is due to a lack of performance
from the replica itself or from the replica that is sending the updates.

Table 2. Set of elements that compose the state in the RL process.

Configuration Description

db.pool Current size of the connection pool

dlog.reader.threads Current number of worker threads

db.writeset.transactions Current max batch size

db.writeset.delay Current delay between writes to replication log

ClientRequests Executed transactions

Txn Written Transactions’ (Txn) state updates sent to replication log

Replicated Txn Replicated transactions’ state updates applied to the DBMS

ClientRequests Nr. of new client requests for this replica

rep Txn in DL Transactions sent to replication log by other replicas

The current values for the variables that are being adjusted is made part of
the state so that relations between the variables’ values and between them and
the collected metrics can be established by the neural network, since the possible
actions, the outputs of our neural network, do not reflect actual values for the
variables, but rather incremental changes to them.

Actions. The actions decided by the neural network build the possible changes
that can be made on each step to the environment. While using Deep Q-Learning,
variables were sampled in the form of incremental changes. The possible set of
actions is depicted in Table 3. In order to prevent system crashes, an upper
and lower limit was set for each tuning variable. The increment and decrement
values were chosen by trial and error. The objective was to choose increments
that wouldn’t be so small that they wouldn’t have a significant effect on the
performance of the system, but not so large that the number of possible values
for each variable became very low (taking into account the boundaries set).
In summary, with each step of the algorithm, only one of the above mentioned
actions is executed. This means that only one variable is changed in each step,
and its value is only changed by a small amount, as described in Table 3.

The configuration variable db.writeset.transactions can be set to a special
value, 0. When this value is set, the limit on how many transactions can be
written on each batch is removed.

138 L. Ferreira et al.

Table 3. Actions considered in the RL process.

Actions Description

No action Nothing is changed

Increment db.pool Incremented by 1

Decrement db.pool Decremented by 1

Increment dlog.reader.threads Incremented by 1

Decrement dlog.reader.threads Decremented by 1

Increment db.writeset.transactions Increment by 100

Decrement db.writeset.transactions Decrement by 100

Set db.writeset.transactions special Set to 0

Increment db.writeset.delay Increment by 100

Decrement db.writeset.delay Decrement by 100

Reward Function. As the environment being considered is bounded to
database replication and overall database execution, the impact can be directly
associated with the overall throughput. A higher throughput represents a better
outcome. Consequently, the reward function is associated with the throughput,
being defined as the sum of all latest metric averages that refer to replica through-
put. Since all the averages are in transactions per second, there is no need for
any normalization or transformation to be applied to the values. In this case, all
reward components have the same weight towards the computed reward.

reward = ClientRequests + TxnWritten + ReplicatedTxn (1)

3.4 Reinforcement Learning Mechanism

Fig. 2. Reinforcement Learning in the environment

The mechanism proposed considers RL based on Deep Q-Learning. Within a
RL approach, the Agent monitors a certain Environment. For a given State the

Self-tunable DBMS Replication with Reinforcement Learning 139

agent decides on an Action, by means of its Policy. A Policy maps States to
Actions. The objective of the agent is to find the best possible Policy, the one
that maximizes the considered Reward. Reward values are calculated after an
Action is applied to the Environment using the Reward Function considered.
The system is depicted in Fig. 2.

The Deep Q-Learning algorithm sets an evolution over Q-Learning. The latter
establishes a table that defines the agent’s policy. It cross-matches the possible
actions and states, attributing to each combination a q-value.

At the beginning of the training process, all q-values are equal to zero. The
policy defines that for each state we should choose the action with the highest
q-value, corresponding to the biggest reward. However, always choosing the
action with the highest q-value could prevent the discovery of alternative plausi-
ble actions, which could become exacerbated as the number of states increases.
So, a small percentage of actions are chosen at random.

Introducing a neural network in place of a state table, enables Deep
Q-Learning to consider a larger combinatorial set of states. Each output node
represents a possible action and the value calculated by the network for that node
will be the q-value of the action. The neural network considered is depicted in
Fig. 3. It holds two hidden layers of 16 neurons each. In each step, the selected
action will be the one with the highest q-value. Rewards are used to adjust the
weights of the neural network by back-propagation. According to Fig. 3, the cho-
sen action would be incrementing dlog.reader.threads, because it’s the one with
the highest q-value, in the step depicted.

Fig. 3. Neural Network used in the Reinforcement Learning agents. Computed q-values
are depicted on the right hand side, paired with the respective action.

140 L. Ferreira et al.

3.5 Preliminary Evaluation

The evaluation of the system was built considering the TPC-C benchmark,
designed specifically for the evaluation of OLTP database systems. The TPC-C
specification models a real-world scenario where a company, comprised of sev-
eral warehouses and districts, processes orders placed by clients. The workload
is defined over 9 tables operated by a transaction mix comprised of five different
transactions, namely: New Order, Payment, Order-Status, Delivery and Stock-
Level. Each transaction is composed of several read and update operations, where
92% are update operations, which characterizes this as a write heavy workload.

Table 4. Configuration tuned with reinforcement learning from base configuration.
Baseline and cycle results in transactions per second (Txn/sec).

Metric Baseline RL#1 Gain RL#2 Gain

ClientRequests-R1 80.80 94.07 +16.42% 91.87 +13.70%

Replicated Txn-R1 35.24 55.56 +57.64% 55.00 +56.05%

Txn Written-R1 27.57 61.73 +123.92% 91.87 +233.25%

ClientRequests-R2 178.20 129.51 −27.32% 157.82 −11.44%

Replicated Txn-R2 27.16 61.75 +127.40% 91.56 +237.18%

Txn Written-R2 31.86 129.51 +306.44% 150.08 +370.99%

Avg Reward-R1 143.61 211.35 +47.17% 238.74 +66.24%

Avg Reward-R2 237.22 320.78 +35.22% 399.46 +68.39%

Metric Baseline RL#4 Gain RL#6 Gain

ClientRequests-R1 80.80 99.96 +23.71% 86.04 +6.49%

Replicated Txn-R1 35.24 52.57 +49.15% 52.09 +47.79%

Txn Written-R1 27.57 99.96 +262.59% 86.04 +212.11%

ClientRequests-R2 178.20 142.30 −20.15% 207.00 +16.16%

Replicated Txn-R2 27.16 99.96 +268.09% 68.21 +151.16%

Txn Written-R2 31.86 142.30 +346.57% 111.55 +250.09%

Avg Reward-R1 143.61 252.48 +75.81% 224.17 +56.09%

Avg Reward-R2 237.22 384.55 +62.11% 386.75 +63.03%

Metric Baseline RL#8 Gain RL#10 Gain

ClientRequests-R1 80.80 111.92 +38.52% 112.95 +39.79%

Replicated Txn-R1 35.24 30.45 −13.59% 69.08 +96.01%

Txn Written-R1 27.57 75.46 +173.74% 112.95 +309.73%

ClientRequests-R2 178.20 220.57 +23.77% 205.47 +15.30%

Replicated Txn-R2 27.16 68.20 +151.15% 98.25 +261.81%

Txn Written-R2 31.86 96.73 +203.57% 94.26 +195.82%

Avg Reward-R1 143.61 217.84 +51.69% 294.99 +105.41%

Avg Reward-R2 237.22 385.50 +62.51% 397.99 +67.77%

Self-tunable DBMS Replication with Reinforcement Learning 141

Setup. TPC-C was set up in a configuration comprising 150 warehouses with a
load of 50 client connections per warehouse. Moreover, the middleware replica-
tion component was set up to accommodate 25 warehouses per distributed log
instance. Tests were conducted on a local server built from a Ryzen 3700 CPU,
16 GB of RAM and 2 SSDs (with one of them being NVME), hosting all services.
Replica 1 (R1) and two distributed log bookies used the NVME driver, while
replica 2 (R2) and one other bookie used the other SSD drive.

Overall, the evaluation was achieved by running the TPC-C benchmark
and while it was sending transactions to be committed on the underlying
database through the replication middleware, the reinforcement learning agent
was deployed on a separate machine.

A total of 10 learning cycles were run, all starting from the same baseline
configuration. The initial baseline configuration was built from the researchers
assumptions of a reasonable configuration for the system being used. The initial
baseline configuration is the same for all learning cycles so that the initial state
of the middleware doesn’t differ between them.

The first 5 cycles were adjusted for a faster learning process, leaning more
towards exploration. This series of cycles was comprised by 100 steps each,
updating the Neural Network’s weights every 15 steps, and with a probability
for the action taken being chosen randomly of 20%.

On the final 5 cycles, weights were updated every 20 steps and actions were
chosen at random only 10% of the time. The number of steps was also increased
to 120 steps. The number of steps was chosen so that the reinforcement learning
agent is active for about the same time that the benchmark takes to conclude.
Each step involves taking one of the actions described in Table 3. The final
weights of the neural network on each cycle were transferred to the next, in
order to incrementally refine the Neural Network used by the Reinforcement
Learning agent.

It is worth noting that the learning mechanism benefits from environment
state updates within short intervals, which would otherwise induce large delays
in the learning process, hence the custom monitoring system implemented.

Results. Table 4 depicts the results for a subset of the learning cycles of the
reinforcement learning agent. The average results reported are the average results
for each evaluation cycle. The results show the impact on both deployed replicas,
depicted as R1 and R2. We can see that on all learning cycles, the performance
was better than for the baseline case. We can also see that the average reward
value tends to increase in the case of R1, while in the case of R2, the maximum
gain seems to have been achieved, at around 68%.

The actions that were taken in each RL adjustment are depicted in Fig. 4 and
5. The figures depict 6 of the 10 cycles, detailing the evolution of each considered
configuration.

It is possible to observe that the pattern for each configuration variable
evolved over the learning cycles, and that those patterns differ for each replica.

142 L. Ferreira et al.

(a) RL 1 - replica 1 (b) RL 1 - replica 2

(c) RL 2 - replica 1 (d) RL 2 - replica 2

(e) RL 4 - replica 1 (f) RL 4 - replica 2

(g) RL 6 - replica 1 (h) RL 6 - replica 2

(i) RL 8 - replica 1 (j) RL 8 - replica 2

Fig. 4. Evolution of actions taken on configuration variables during benchmarking,
Cycle 1, 2, 4, 6 and 8.

Self-tunable DBMS Replication with Reinforcement Learning 143

It’s also worth noting that there is a distributed component, and therefore, a
dependency between. The value for the Replicated Txn metric (Table 2) of one
replica can only be as high as the value for the TxnWritten metric of the other
replica. This means that the performance of a replica is partly influenced by the
performance of the other.

(a) RL 10 - replica 1 (b) RL 10 - replica 2

Fig. 5. Evolution of actions taken on configuration variables during benchmarking.
Cycle 10.

Moreover, a deeper look into the results depicted, allows complementary
conclusions, namely the fact that across all observed cycles in both replicas,
the db.writeset.transactions is set to 0 at some point. This implies that the
replicas were running with no limits for batching operations. Moreover, the
dlog.reader.threads, which guides the thread pool associated with the distributed
log read handler (in charge of acquiring data) was mostly reset to minimum val-
ues, which highlights the intense write profile of the considered benchmark.

Table 5 overviews the final results, extracted from Table 4. Overall, comparing
the baseline results to the last tuning cycle, the state metrics directly associated
with the replication mechanism registered a significant improvement, an order
of magnitude higher for some of the state parameters.

Table 5. Results overview.

Metric Baseline (Txn/sec) RL#10 (Txn/sec) Gain

ClientRequests-R1 80.80 112.95 +39.79%

Replicated Txn-R1 35.24 69.08 +96.01%

Txn Written-R1 27.57 112.95 +309.73%

ClientRequests-R2 178.20 205.47 +15.30%

Replicated Txn-R2 27.16 98.25 +261.81%

Txn Written-R2 31.86 94.26 +195.82%

This scenario holds a limited number of tuning variables, so a neural network
with two 16 hidden layers was enough to capture the complexity of the problem.

144 L. Ferreira et al.

Furthermore, our state contains information limited to the replication middle-
ware action, holding no variables associated with the underlying hardware, for
instance. These characteristics allowed us to train our model in a very short
time, but deny the possibility of applying the trained model from one machine
to another. We defer to future work the problem of inter-machine compatibility
of the models.

4 Related Work

Prominent related work is generally focused in providing optimisations towards
the physical deployment and data layouts of database systems. The linkage with
the physical data layout allow self-adjustment systems to expedite index [22] cre-
ation, data partitions [3] or materialized views [2]. However, these approaches are
unable to capture the details behind the DBMS, where the adjustment of specific
tuning requirements impact on the DBMS internals. Most database products like
IBM BD2, Microsoft SQL Server or MySQL include tools for tuning their respec-
tive systems in respect to the server performance [4,15]. Broadly speaking, these
systems test alternative configurations in off-production deployments and assess
their outcome. However, this solutions are bound to the discretion of the DBA
in selecting the strategies to apply and what subsequent actions are taken in the
DBMS.

The set of tools described also (indirectly) cover tunable criteria that strictly
concerns the adjustment of the replication techniques, as part of the tunable
configuration variables that are made available in each system. However, the
consideration of tunable variables is generally absent [5], although some systems
specialize in selecting the most meaningful configurations [19]. Even so, this is
usually an independent process.

Although not a novelty in the machine and autonomous learning interest
groups, Reinforcement Learning strategies are currently trendy techniques to be
applied in distinct realms of computation. This class of techniques encompass an
agent that tries to acquire state changes in their respective environment while
aiming to maximize a balance of long-term and short-term return of a reward
function [7]. Specifically in the field of database systems, such strategies have
started to be applied in the internals of DBMSs to aid query optimisers to out-
perform baseline optimisation strategies for join ordering [21] and overall query
planning [11]. The outcome is usually a sequential set of decisions based on
Markov Decision Chains [12,14]. The considered RL technique does not change
the optimisation criterion, but rather the how the exploration process is con-
ducted.

These techniques enable the agent to search for actions during a learning
stage where it deliberately takes actions to learn how the environment responds,
or to come closer to the optimisation goal. Moreover, these techniques are com-
monly powered through heuristic-based exploration methods, built on statistics
collected from the environment.

More recently, RL based solutions specific to single instance database self
configuration have been presented, they leverage either metrics made available

Self-tunable DBMS Replication with Reinforcement Learning 145

by the database [25], or information from the DBMS’s query optimizer and the
type of queries that compose the workload of the database [10]. In this paper
we try to demonstrate that this is also possible at the level of the replication
middleware. Moreover, we introduce the idea of dynamic configuration, meaning
that tuning variables are seen as constantly changing, adapting their values in
real time to changes in the workload.

We also show that although Deep Q-Learning can’t work with continuous
action spaces without them being sampled, contrary to some more recent algo-
rithms like Deep Deterministic Policy Gradient (DDPG), it still manages to
achieve very good results. The use of Deep Q-Learning versus DDPG might be
advantageous in resource limited contexts, since it uses only one neural network,
instead of two (one for the actor and one for the critic).

5 Conclusion

This paper details a reinforcement learning mechanism that attaches to a JDBC
replication middleware, optimising its tunable configurations. An architecture
was introduced, showcasing the components that are part of the design. After-
wards, we test a prototype of the system and evaluate its performance, relying
on the industry standard TPC-C Benchmark as a workload injector.

The main focus of this paper shows that it is possible to consider self-learning
mechanisms that are able to tune a replication middleware system, as so far,
optimisation efforts consider the database engines as a whole, and do not focus
in specific internal components such as the replication controllers. Moreover,
they do not consider external pluggable dependability mechanisms.

The evaluation allowed us to confirm the effectiveness of these techniques,
but also, the major impact that adjustable tuning variables have on the over-
all performance of the system. The results validate the approach, highlighting
maximum improvements of around 370.99% for some of the considered metrics
of the replication middleware.

Future work will guide us to improve the learning mechanism to go beyond
the number of tunable criteria considered, and perhaps to recognize which ones
may have more impact by analysing the system’s performance.

Acknowledgements. The authors would like to thank Claudio Mezzina and the
anonymous reviews for their helpful comments. The research leading to these results
has received funding from the European Union’s Horizon 2020 - The EU Framework
Programme for Research and Innovation 2014–2020, under grant agreement No. 731218.

References

1. Apache Distributed Log (2018). http://bookkeeper.apache.org/distributedlog/.
Accessed 19 July 2019

2. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in SQL databases. In: VLDB, pp. 496–505 (2000)

http://bookkeeper.apache.org/distributedlog/

146 L. Ferreira et al.

3. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach
to database replication and partitioning. Proc. VLDB Endow. 3(1–2), 48–57 (2010)

4. Dias, K., Ramacher, M., Shaft, U., Venkataramani, V., Wood, G.: Automatic per-
formance diagnosis and tuning in oracle. In: CIDR, pp. 84–94. CIDR (2005)

5. Duan, S., Thummala, V., Babu, S.: Tuning database configuration parameters with
ituned. Proc. VLDB Endow. 2(1), 1246–1257 (2009)

6. French, C.D.: “One size fits all” database architectures do not work for DSS. In:
Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, SIGMOD 1995, pp. 449–450. ACM, New York (1995). https://doi.org/10.
1145/223784.223871

7. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

8. George, L.: HBase: The Definitive Guide: Random Access to your Planet-Size Data.
O’Reilly Media Inc., Sebastopol (2011)

9. Hintjens, P.: ZeroMQ: Messaging for many Applications. O’Reilly Media Inc.,
Sebastopol (2013)

10. Li, G., Zhou, X., Li, S., Gao, B.: Qtune: a query-aware database tuning system
with deep reinforcement learning. Proc. VLDB Endow. 12(12), 2118–2130 (2019)

11. Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for join order enu-
meration. In: Proceedings of the First International Workshop on Exploiting Arti-
ficial Intelligence Techniques for Data Management, aiDM 2018, pp. 3:1–3:4. ACM,
New York (2018). https://doi.org/10.1145/3211954.3211957

12. Morff, A.R., Paz, D.R., Hing, M.M., González, L.M.G.: A reinforcement learning
solution for allocating replicated fragments in a distributed database. Computación
y Sistemas 11(2), 117–128 (2007)

13. Powell, D.: Delta-4: A Generic Architecture for Dependable Distributed Comput-
ing, vol. 1. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-84696-0

14. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

15. Schiefer, K.B., Valentin, G.: Db2 universal database performance tuning. IEEE
Data Eng. Bull. 22(2), 12–19 (1999)

16. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: Colt: continuous on-line tun-
ing. In: Proceedings of the 2006 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2006, pp. 793–795. ACM, New York (2006). https://
doi.org/10.1145/1142473.1142592

17. Stonebraker, M., Rowe, L.A.: The Design of Postgres, vol. 15. ACM, New York
(1986)

18. Storm, A.J., Garcia-Arellano, C., Lightstone, S.S., Diao, Y., Surendra, M.: Adap-
tive self-tuning memory in db2. In: Proceedings of the 32nd International Confer-
ence on Very Large Data Bases, pp. 1081–1092. VLDB Endowment (2006)

19. Sullivan, D.G., Seltzer, M.I., Pfeffer, A.: Using Probabilistic Reasoning to Auto-
mate Software Tuning, vol. 32. ACM, New York (2004)

20. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

21. Trummer, I., Moseley, S., Maram, D., Jo, S., Antonakakis, J.: Skinnerdb: regret-
bounded query evaluation via reinforcement learning. Proc. VLDB Endow. 11(12),
2074–2077 (2018). https://doi.org/10.14778/3229863.3236263

22. Valentin, G., Zuliani, M., Zilio, D.C., Lohman, G., Skelley, A.: Db2 advisor: an
optimizer smart enough to recommend its own indexes. In: Proceedings of 16th
International Conference on Data Engineering (Cat. no. 00CB37073), pp. 101–110.
IEEE (2000)

https://doi.org/10.1145/223784.223871
https://doi.org/10.1145/223784.223871
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1007/978-3-642-84696-0
https://doi.org/10.1145/1142473.1142592
https://doi.org/10.1145/1142473.1142592
https://doi.org/10.14778/3229863.3236263

Self-tunable DBMS Replication with Reinforcement Learning 147

23. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
24. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding

replication in databases and distributed systems. In: Proceedings 20th IEEE Inter-
national Conference on Distributed Computing Systems, pp. 464–474. IEEE (2000)

25. Zhang, J., et al.: An end-to-end automatic cloud database tuning system using
deep reinforcement learning. In: Proceedings of the 2019 International Conference
on Management of Data, pp. 415–432 (2019)

DroidAutoML: A Microservice
Architecture to Automate the Evaluation

of Android Machine Learning
Detection Systems

Yérom-David Bromberg(B) and Louison Gitzinger(B)

Université de Rennes 1, Rennes, France
{david.bromberg,louison.gitzinger}@irisa.fr

Abstract. The mobile ecosystem is witnessing an unprecedented
increase in the number of malware in the wild. To fight this threat, actors
from both research and industry are constantly innovating to bring con-
crete solutions to improve security and malware protection. Traditional
solutions such as signature-based anti viruses have shown their limits
in front of massive proliferation of new malware, which are most often
only variants specifically designed to bypass signature-based detection.
Accordingly, it paves the way to the emergence of new approaches based
on Machine Learning (ML) technics to boost the detection of unknown
malware variants. Unfortunately, these solutions are most often under-
exploited due to the time and resource costs required to adequately fine
tune machine learning algorithms. In reality, in the Android community,
state-of-the-art studies do not focus on model training, and most often
go through an empirical study with a manual process to choose the learn-
ing strategy, and/or use default values as parameters to configure ML
algorithms. However, in the ML domain, it is well known admitted that
to solve efficiently a ML problem, the tunability of hyper-parameters
is of the utmost importance. Nevertheless, as soon as the targeted ML
problem involves a massive amount of data, there is a strong tension
between feasibility of exploring all combinations and accuracy. This
tension imposes to automate the search for optimal hyper-parameters
applied to ML algorithms, that is not anymore possible to achieve man-
ually. To this end, we propose a generic and scalable solution to auto-
matically both configure and evaluate ML algorithms to efficiently detect
Android malware detection systems. Our approach is based on devOps
principles and a microservice architecture deployed over a set of nodes
to scale and exhaustively test a large number of ML algorithms and
hyper-parameters combinations. With our approach, we are able to sys-
tematically find the best fit to increase up to 11% the accuracy of two
state-of-the-art Android malware detection systems.

Keywords: Machine learning · Android · Malware · AutoML

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 148–165, 2020.
https://doi.org/10.1007/978-3-030-50323-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_10

DroidAutoML 149

1 Introduction

Smartphones are currently generating more than half of the global inter-
net traffic [1], and its related market surpasses by far computer sales. The
Android operating system is one of the most important market players. It
owns 70% of market shares, and accounts for 2.5 billion active devices world-
wide [6]. Unfortunately, this boundless adoption opens a lucrative business for
attackers and ill-intentioned people. The number of Android malware peaks
in 2020 [10]. Malicious applications spread across the Android ecosystem at
an alarming rate [3,4,7]. Attackers leverage on various techniques such as
dynamic code loading, reflection and/or encryption to design ever more com-
plex malwares [22,48] that systematically bypass existing scanners. To counter
this phenomenon, Android security actors, from both research and industry,
massively adopt machine learning techniques to improve malware detection
accuracy [11,15,16,39]. Although it is a first step towards improving detection,
unfortunately, most of related studies neglect the search for fine tuned learning
algorithms.

We argue that there are still rooms for improvements unexplored. In particu-
lar, it is commonly admitted in the machine learning domain, that performances
of trained machine learning models depend strongly on several key aspects: (i)
training datasets [25], (ii) learning algorithms [20], and (iii) parameters (i.e.
hyper-parameters) used to tune learning algorithms [19,21,23,46]. Accordingly,
the key underlying problem, usually referred as Automated Machine Learning
(AutoML) [29], is how to automate the process of finding the best suitable
configuration to solve a given machine learning problem. As far as our knowl-
edge, no attempts have been done towards improving Android malware detection
systems based on machine learning algorithms. Whether one [11,16] or several
algorithms [17,39,50] are evaluated, the evaluations are always carried out empir-
ically, implying a manual process with few and/or default hyper-parameter com-
binations. Testing various algorithms along with a large set of hyper-parameters
is a daunting task that costs a lot both in terms of time and resources [36].

In this paper, we present DroidAutoML, a new approach that automati-
cally performs an extensive and exhaustive search by training various learning
algorithms with thousand of hyper-parameter combinations to find the highest
possible malware detection rate given the incoming dataset. DroidAutoML is
both generic and scalable. Its genericity comes from its ability to be agnostic to
underlying machine learning algorithms used, and its scalability comes from its
ability to scale infinitely horizontally by adding as much as machines as required
to speed up the processing. To achieve this aim, and leveraging our expertise in
the field of Android malware detection, we have defined and deployed a dedicated
microservices architecture.

Our contributions are as follow:
– We propose the very first AutoML approach, named DroidAutoML, to

improve the accuracy of technics based on machine learning algorithms to
detect malware on Android. With DroidAutoML, there is no need anymore to
manually perform empirical study to configure machine learning algorithms.

150 Y.-D. Bromberg and L. Gitzinger

– We provide a dedicated microservices architecture specifically designed to ful-
fill the needs for genericity and flexibility as required by the Android malware
detection domain.

– We thoroughly evaluate our approach, and applied it to the state of the art
solutions such as Drebin [16] and MaMaDroid [39]. We demonstrated that
DroidAutoML enables to improve significantly their performances: detection
accuracy has been increased up to 11% for Drebin and 10% for MaMaDroid.

The remainder of this paper is organized as follows: Sect. 2 explains the con-
text of the study. Section 3 presents in details our microservices architecture,
and Sect. 4 details our thorough evaluation. We make a review of the state of
the art in Sect. 5, and finally conclude the paper in Sect. 6.

2 Background

Fig. 1. Overview of the malware detection process on Android

2.1 Emergence of Machine Learning Algorithms to Detect Android
Malware

Traditional anti-viruses heavily rely upon signatures to identify malware [8,9]
(see Fig. 1, ❶). As soon as new malware are discovered in the wild, antivirus soft-
ware companies put their hands on, and compute their related signatures. The
latter are added to the ground truth database (see Fig. 1, ❷) of the antivirus
software. In this way, anti-viruses calculate the signatures of files to be ana-
lyzed (see Fig. 1, ❸), and compare them with previously stored signatures to
perform the detection of malware. While signature based detection is efficient
to catch old and already seen malware, they struggle to deal with new mal-
ware generations [22,45]. Indeed, malware authors use various techniques, such
as polymorphism [31], to generate malware variants that inherently have unfore-
seen signatures to bypass anti-viruses. These new attacks emphases the need for

DroidAutoML 151

more intelligent systems to detect proactively unseen malware variants, com-
monly known as 0-day threats.

In this aforementioned perspective, the last decade, strong efforts have been
achieved to generalize the problem, and to develop new approaches based on
machine learning (ML) [11,16,17,39,50] (see Fig. 1, ❹). In contrast to signature
based anti-viruses, ML anti-viruses rely on sets of meticulously chosen heuristics,
or features (see Fig. 1, ❸) to train learning models from a ground truth (see
Fig. 1, ❷) dataset that includes both benign and malicious applications. Once
trained, models are thereafter able to make predictions on unseen files. They
give either a confidence score [32] or take a binary decision to decide whether a
file is benign or potentially harmful.

2.2 Importance of Features in ML Malware Classification Problem

Feature extraction, selection and encoding are essential steps towards building
an efficient classification system based on ML. Features must be chosen in such
a way that they help ML algorithms to generalize the classification problem and
help them to adequately classify them. When badly chosen, algorithms may be
unable to generalize the problem or suffer from overfitting. More importantly,
the number of used features can drastically slow down model training time.

Table 1. Examples of basic and behavioral features that can be extracted from an
Android application

Type Features Static analysis Dynamic analysis Location

Basic Permissions ✓ ✗ manifest

Intent-filters ✓ ✗ manifest

Components ✓ ✗ manifest

File signatures ✓ ✗ apk level

Protected method calls ✓ ✓ bytecode

Suspicious method calls ✓ ✓ bytecode

Behavioural Call graph ✓ ✓ bytecode

Dynamic code loading ✗ ✓ apk level

Network traffic ✗ ✓ OS level

Intent messages ✗ ✓ OS level

Feature Selection. Feature selection is a widely studied area regarding ML
malware detection in the Android ecosystem [11,16,39]. Mainly, we distinguish
two types of features: (i) basic, and (ii) behavioral features, as illustrated in
Table 1. Basic features qualify information inherent in an application, but by
themselves do not directly encode its corresponding behavior [16]. It is the cor-
relation of the features altogether that allows machine learning models to dif-
ferentiate a benign application from a malicious one. For instance, the basic
permission feature READ CONTACTS can be used by both benign and malicious

152 Y.-D. Bromberg and L. Gitzinger

applications. As such, it does not give any information about intentions of
the application. However, when correlated with the basic method call feature
url.openConnection(), it may highlight the intentions of a malicious applica-
tion to steal user’s contacts. Contrariwise, behavioral features are information
about an application that allows to extract both intentions and actions of an
application [39]. These features can be extracted by statically extracting the call
graph of an application or by monitoring the application during its execution.

Feature Extraction. Mainly two approaches can be used to extract features
from an Android application: (i) static, and (ii) dynamic analysis. A static anal-
ysis allows to quickly analyze binaries of Android applications without having
to execute it. In the Android ecosystem, static analysis is a widely used app-
roach [28,35,38,47] as they allow to analyze applications at scale without hav-
ing an impact on resources, and in particular on the reactiveness of applications
being scanned. However, static analysis are limited to the analysis of the visible
part of the application’s bytecode. Malware authors may use advanced obfus-
cations techniques such as dynamic code loading or encryption to try to defeat
static analysis.

Due to the weaknesses of static analysis, dynamic analysis are often explored
as an alternative in Android malware detection systems [27,49,51]. Dynamic
analysis consists of executing malware to monitor their behaviors at runtime.
Most often, to make it scales and for isolation purposes, such analyses are typ-
ically executed in sandboxed environments. However, malware may implement
evasion techniques such as logic bombs, and time bombs, which allow them to
bypass runtime surveillance. A logic bomb is the ability of a malware to detect its
runtime environment (i.e. a sandboxed environment such as a virtual machine),
and to prevent itself to trigger its own malicious behavior in such conditions [44].
A time bomb enables malware to trigger their malicious actions only after a cer-
tain amount of time or periodically, at specific hours. Accordingly, dynamic
analysis suffer from scalability issues, and are rarely used due to their inherent
strong requirements in terms of both time and resources.

Feature Encoding. Feature vectors are used to represent the characteristics
of studied items in a numerical way to simplify their analysis and comparison.
Most of ML classification algorithms such as neural networks, nearest neighbor
classification or statistical classification use feature vectors as input to train their
model. While it is easy to use pixels of an image as a numerical feature vector, it is
harder to numerically encode more complex features such as basic or behavioral
features of Android applications. For that reason, many studies [11,16,26,39]
provide new alternatives for feature encoding. Authors of Drebin [16] embed
basic extracted features into a feature vector using one-hot encoding to code
the presence, or the absence of a given feature. Contrariwise, MaMaDroid [39]
encodes behavioral extracted features using a Markov chain algorithm, which
calculates the probability for a method to be called by another in a call graph.

DroidAutoML 153

2.3 Choosing and Training the Classification Algorithm

While feature selection and encoding remain important in machine learning
based malware detection, the problem of training an accurate model also needs
to be addressed. On one side, Android application vendors must ensure that
no malicious applications bypass their security barriers. On the other side, dis-
carding too many applications, to stay conservative, may lead to profit losses,
as many benign applications can be flagged as false positive. Hence, training a
binary classifier with good performances in terms of precision and recall is essen-
tial. While features selection can be very helpful to solve this, choosing the best
classification algorithm with the best training parameters can greatly improve
classification.

Classification Algorithms. In machine learning, and especially on binary
classification problems, it is admitted that choosing the right learning algorithm
depends on many factors such as the available resources, the algorithm com-
plexity or the input data. As there is no silver bullet to always find the best
algorithm, researchers often go through an empirical process to find a good fit.
Regarding the Android ecosystem, various algorithms to train models, mostly
Random Forest (RF), Support Vector Machine (SVM), and k-nearest neigh-
bors (KNN), have already been tested depending on type of data extracted
from applications, and the number of applications used for training ML mod-
els [16,33,39,50]. Although all these studies show good evaluation performances,
all of them have been empirically evaluated with a manual trial and error strat-
egy. As it is a very time consuming task, it is a safe bet to say that these studies
did not found the best learning algorithm to solve the classification problem.
Therefore, we claim that automating such a task would be a great help for the
research community.

Hyperparameter Optimization. Another important aspect are parameters
used to train chosen learning algorithms (most often set to default values). Usu-
ally, the number of hyper-parameters for a given algorithm is small (≤5), but
may take both continuous and discrete values leading to a very high number of
different values and so of combinations. For instance, common hyper-parameters
include the learning rate for a neural network, the C and sigma for SVM, or
the K parameter for KNN algorithms. The choice of hyper-parameters can have
a strong impact on performances, learning time and resource consumption. As
a result, Automated hyper-parameter search is a trending topic in the machine
learning community [37,52]. Currently, grid search and brute force approaches
remain a widely used strategy for hyper-parameter optimization [18] but can
require time and computational resources to test all possibilities. To deal with
this issue, several frameworks are able to efficiently parallelize grid-searching
tasks on a single machine, but this does not scale with the ever growing search
space [12,41].

154 Y.-D. Bromberg and L. Gitzinger

3 A Microservice Architecture for ML

DroidAutoML relies on a microservice architecture that separates concerns
between data processing (feature selection, extraction and encoding) and train-
ing optimization ML models. Such a design enables DroidAutoML to scale and
stay agnostic to the evaluated scanner.

Fig. 2. Overview of DroidAutoML

Microservices Dedicated to Features Operations. Feature extraction and encoding
are both operations specifics to each scanner. As such, each scanner has its own
dedicated microservice for performing these operations (Fig. 2, ■). We define
k as the number of applications to process for a given dataset. For n different
scanners, n ∗ k instances of ■(i,j) microservices with i ∈ {1..n}∧j ∈ {1..k} will be
deployed. Each ■(i,j) instance takes as input an apk to generate its corresponding
features vector, interpretable by any machine learning algorithms. The generated
feature vector is then stored into the feature database microservice (See Fig. 2,★).

Microservices Dedicated to Model Training. ML model training operations are
specific to a classification algorithm and the set of hyper-parameter used to
parametrize it. Therefore, each algorithm has its own dedicated microservice to
perform the training and testing of a model for one hyper-parameter combination
(see Fig. 2, ▲). For l different algorithms, l different kinds of m instances of ▲(i,j)

with i ∈ {1..l}∧ j ∈ {1..m} will be deployed where m is equals to the number of
hyper-parameter combinations to test for a given algorithm. This allows to scale
horizontally by spreading the workload across the available nodes in the cluster.
A ▲ microservice takes two inputs: (i) a feature vector matrix from the feature

DroidAutoML 155

database ★, and (ii) a set of hyper-parameter values. ▲ microservices leverage
Scikit-learn to perform both training, and testing steps. Afterwards, each ▲
instance parametrizes its ML algorithm according to the input hyper-parameter
combination. All ML models are trained with a 10-cross fold validation process to
avoid overfitting problems. The input data is split according to machine learning
ratio standards: 60% of the data is used to fit the model and 40% to test it.
Performances of each model are assessed in terms of accuracy and F1 score.
Finally, trained models are stored within the database along with the configured
hyper-parameter settings so that they can further be used by the end-user. The
obtained results on the testing set are then communicated to score aggregator
microservices (see Fig. 2, ✚).

Microservices Dedicated to Score Aggregation. A third set of microservices are
the ones dedicated to the collecting of results from ▲ mircroservices to iden-
tify the pair {algorithm,hyper-parameters} that gives the best performances for
a given scanner. Each score aggregator microservice is dedicated to a couple
{scanner, algorithm} so that it collects only results related to it for all hyper-
parameter combinations tested. Accordingly, for n scanners and l algorithms,
there will be at least n ∗ l instances of aggregators. Once the best predictive
model have been found for a given scanner, the corresponding algorithm and
hyper-parameters are communicated to the end-user.

Efficient Microservice Scheduling. DroidAutoML is a system designed to run
on top of a cluster of hardware machines. To optimize resources and efficiently
schedule tasks on such a cluster, DroidAutoML leverages on a bin packing algo-
rithm [24]. As such, by splitting scanner benchmarking operations into smaller
tasks, DroidAutoML can capitalize on properties offered by microservice archi-
tectures. Firstly, DroidAutoML fully takes advantage of multi node clusters as
each microservice can be scheduled independently on any node in the cluster.
Secondly, as scanner benchmarks are parallelized, ▲ microservices can run side
by side with ■ microservices as long as they do not work for the same scanner.
Thirdly, if a microservice fails during its execution, only its workload is lost and
it can be automatically rescheduled.

4 Evaluation

4.1 Implementation

DroidAutoML is built on Nomad, an open-source workload orchestrator devel-
oped by HashiCorp [5], which provides a flexible environment to deploy applica-
tions on top of an abstracted infrastructure. More precisely our Nomad instance
federates a cluster of 6 nodes (see Fig. 3, ❶) that accounts for 600 GB of RAM
and 124 cores at 3.0 Ghz. We use the bin packing algorithm implemented in
Nomad to schedule (see Fig. 3, ❷) DroidAutoML microservices instances across
available nodes in the cluster as schematized in Fig. 3. Each microservice instance
is represented as a job managed by the Nomad scheduler. Hardware resources

156 Y.-D. Bromberg and L. Gitzinger

Fig. 3. Overview of DroidAutoML implementation

allocated to each microservice depend on its type: scanner specific instances take
2 cores and 4 GB of RAM each, model training instances take 1 core and 2 GB
of RAM, and score aggregator instances take 1 CPU and 1 GB or RAM. The
time required for a scanner instance to build a feature vector depends on the
size of the input apk as well as its operating time. It ranges from 6 s for a 2 MB
application to 61 s for a 100 MB application on average. The apk database of
DroidAutoML is currently composed of 11561 applications, 5285 malware and
6276 benign applications and the average size of an application is 20.25 MB with
a standard deviation of 21.48.

Given the resources required for one instance, our infrastructure can run
61 ■ microservice instances in parallel, therefore the entire apk database can
be processed in 24 min with our current cluster. The time required to train
and test a ML model depends on the algorithm, the set hyper-parameters used,
and the size of the input vector matrix. We provide in Table 4 the minimum,
average and maximum time required to train and test a model according to an
algorithm. As we use a grid-search approach to perform hyper-parameter tuning,
the number of ML models train to evaluate a scanner depends on the number
of hyper-parameter combinations to test. The Table 4 summarizes the values
tested for each hyper-parameter according to an algorithm as well as the number
of combinations to test them all. For example, given the resource constraints of
a ML model microservice, our cluster can run 123 ▲ microservice instances in
parallel, thus testing all 3120 hyper-parameter combinations for the Random
Forest takes on average 9 min for an input feature vector matrix of 11561 items.

4.2 Evaluation of Two State of the Art Scanners

To evaluate our approach, we propose to apply our microservice architecture to
two state-of-the-art machine learning based malware detection systems in order
to improve learning algorithm selection and training. More precisely, we conduct
our experiments on approaches proposed by Drebin [16] and MaMaDroid [39].
We benchmark our approach against the ground truth of the related work by
reusing the same ML algorithms used by the two approaches: Support Vector

DroidAutoML 157

Machine (SVM) for Drebin and Random Forest, SVM and K-Nearest Neighbors
for MaMaDroid.

We build a dataset of 11561 applications composed of 5285 benign and 6276
malware samples. Malicious samples are collected from three malware datasets:
the Drebin dataset [16], the Contagio dataset [2] and a dataset of 200 veri-
fied ransomware from Androzoo [13]. Concerning benign applications, we collect
samples from the top 200 of most downloaded applications for each app category
in the Google Play Store. To ensure that collected samples are really benigns, we
upload them to VirusTotal, an online platform that makes it possible to have a
file analyzed by more than 60 commercial antivirus products. According to the
literature [40], applications can be safely labeled as benign if less than 5 antivirus
detect it as malware, as several antivirus consider adwares as potentially dan-
gerous. Among the 6276 applications downloaded, 95, 04% (5965 samples) have
not been detected as malware at all and 99, 18% (6225 samples) by less than 5
antivirus. To guarantee the overall dataset quality, we remove all samples with
a detection rate over this threshold.

Table 2. Baseline results for Drebin and MaMaDroid models trained with original
hyper-parameters settings.

Scanner Algorithm Accuracy F1-Score Precision Recall TP TN FP FN

Drebin SVM 88.91 88.23 84.43 92.39 1833 2087 338 151

MaMaDroid KNN 82.35 81.76 83.25 80.33 1744 1887 427 351

Random Forest 80.54 83.08 72.65 97.01 2106 1445 65 793

SVM 79.22 81.97 71.57 95.90 2082 1411 89 827

Ground Truth Results. As original experiments by Drebin and MaMaDroid
authors were made on older data, both approaches may suffer from temporal
bias [14,43]. Temporal bias refers to inconsistent machine learning evaluations
with data that do not correctly represent the reality over time. To take this bias
into account, we start our experiment by measuring ground truth results for
both Drebin and MaMaDroid approaches using our own dataset. These results
will serve as a baseline to evaluate DroidAutoML performances and compare
further results against it. Authors from Drebin use a SVM algorithm to perform
the binary classification of malware and benign applications. As the original
source code of their approach is not available, we develop our own implementa-
tion of their solution using available information in the original paper. While our
implementation of Drebin may slightly differ from the original one, the approach
and the algorithm used (SVM) remain conceptually the same. As no details are
given about hyper-parameters used to parametrize the algorithm, we take com-
mon default values suggested by machine learning frameworks to train the algo-
rithm. Regarding MaMaDroid, authors tested three learning algorithms: Ran-
dom Forest, SVM and KNN. We calculate the baseline by using the MaMadroid’s
approach source code, and the same hyper-parameters set by the authors.

158 Y.-D. Bromberg and L. Gitzinger

The Table 3 reports the grid of hyper-parameter values used to train and test each
learning models for both approaches. The Table 2 reports the baseline results
for each trained model. We observe that the accuracy and F1 scores for both
approaches decrease compared to the original results. The accuracy score for
the Drebin SVM drops by 5.09% from 94% to 88.91%. Considering MaMaDroid,
F1-Scores are below 84% for all studied algorithms, with a false-positive rate
over 5%, which is more than 15% lower than best results presented originally in
terms of F1-Score. As samples in our dataset are more recent than those used
in original experiments, these results confirm that both Drebin and MaMaDroid
approaches are suffering from temporal bias.

Table 3. Default hyper-parameters used to parametrize evaluated algorithms

Parameters Mamadroid Drebin

Random Forest n estimators 101

max depth 32

min samples split 2

min samples leaf 1

max features auto

SVM C 1 1

kernel rbf linear

degree 3 3

gamma auto auto

KNN n neighbors [1, 3]

weights uniform

leaf size 30

p 2

Model Evaluation with DroidAutoML. In the following of this experiment, we
aim at answering the following questions:

– RQ1: Is DroidAutoML able to find a learning algorithm that performs better
than default algorithms used for studied scanners?

– RQ2: Can DroidAutoML improve the prediction results of studied scanners
by finding an optimal set of hyper-parameters?

We answer these questions by running DroidAutoML for each studied scan-
ner with a large grid of hyper-parameters (see Table 4) and 4 different learning
algorithms for each scanner: Random Forest, SVM, KNN, and a multi layer
perceptron (Neural Network).

DroidAutoML 159

Table 4. Grid hyper-parameters used to train models with DroidAutoML

Parameters Hyperparameters # of combinations to test Time for a single

run (in seconds

for 11 238 apks)

min avg max

Random Forest n estimators [200, 400, 600, 800,

1000, 1200, 1400, 1600,

1800, 2000]

10 * 13 * 3 * 4 * 2=3120 15 21 35

max depth [10, 20, 30, 40, 50, 60,

70, 80, 90, 100, 500,

1000,None]

min samples split [2, 4, 6, 10]

min samples leaf [2,5,10,20]

max features [auto,sqrt]

SVM C [0.0001,0.001,0.01,0.1,

1,10,100,1000,10000]

9* 4* 7=252 23 25 31

kernel [linear,rbf,sigmoid,poly]

gamma [0.0001,0.001,0.01,0.1,

1,auto,scale]

KNN n neighbors [1,3,4,5,6,7,8,9,10] 9 *2 *8 *2=288 23 42 56

weights uniform,distance

leaf size [1,3,5,10,20,30,50,100]

p [1,2]

MLP hidden layer sizes [(50, 50, 50), (50, 100,

50), (100,)]

3 *2 *3* 2* 2=72 123 164 250

activation [tanh, relu]

solver [sgd, adam, lbfgs]

alpha [0.0001, 0.05]

learning rate [constant, adaptative]

Table 5. Best results after model training on DroidAutoML

Scanner Algorithm Accuracy F1-Score Precision Recall TP TN FP FN

Drebin KNN 98.82 98.82 99.91 97.75 2169 2188 2 50

Random Forest 98.57 98.56 99.63 97.52 2163 2183 8 55

SVM 99.50 99.50 99.86 99.13 2168 2219 3 19

MLP 99.61 99.60 99.68 99.54 2164 2228 7 10

MaMaDroid KNN 85.48 86.41 93.69 80.17 2034 1735 137 503

Random Forest 87.93 88.57 94.98 82.98 2062 1815 109 423

SVM 88.97 88.49 86.09 91.03 1869 2054 302 184

MLP 84.71 85.36 90.55 80.73 1966 1769 205 469

The Table 5 reports the best results obtained for both Drebin and
MaMaDroid. For the Drebin approach, accuracy and F1 scores of the model
trained with SVM increase by 10.59% and 11.27% respectively compared to the
baseline. Moreover, we observe that the multi layer perceptron algorithm per-
forms slightly better than the SVM algorithm with +0.11% in accuracy and
+0.10% in F1-Score, thus reducing the number of false negative from 19 to
10. DroidAutoML also succeeds to improve MaMaDroid baseline results for all
three studied algorithms. In details, DroidAutoML increases MaMaDroid’s SVM

160 Y.-D. Bromberg and L. Gitzinger

Table 6. Hyper-parameters found for best case performance

Parameters Mamadroid Drebin

Random Forest n estimators 1600 1500

max depth 50 30

min samples split 2 4

min samples leaf 2 10

max features sqrt auto

SVM C 1000 1000

kernel linear rbf

degree 3 3

gamma auto scale

KNN n neighbors 3 5

weights uniform uniform

leaf size 30 20

p 2 2

MLP hidden layer sizes 100 50, 100, 50

activation tanh tanh

solver adam lbfgs

alpha 0.05 0, 0001

learning rate adaptative constant

baseline accuracy by 9.75%, KNN by 3.13% and RF by 7.39%. These accuracy
improvements are accompanied by a significant increase of F1-scores for all algo-
rithms. It represents a significant decrease of the number of false positives and
false negatives. In their paper, MaMaDroid’s authors discard the SVM algo-
rithm due to poor performance compared to other algorithms tested. We show
here that SVM is actually better than other algorithms tested by authors when it
is parametrized with the adequate hyper-parameter values as shown in Table 6.
Notice that in machine learning, optimal hyper-parameters values depends on
the problem to solve [23]. Therefore, as the feature vectors are encoded differ-
ently for Drebin and MaMaDroid, optimal hyper-parameter values may slighlty
differ from one approach to the other.

We answer RQ1 by showing that DroidAutoML has been able to find a
ML algorithm that performs better than those tested empirically with studied
scanners. More precisely, the Multi Layer Perceptron outperforms the SVM algo-
rithm used by Drebin originally and the MaMaDroid SVM originally discarded
by the authors due to poor results performs better than other algorithms initially
retained (i.e. RF and KNN).

DroidAutoML 161

Furthermore, we answer RQ2 by showing that DroidAutoML has been able
to find a combination of hyper-parameters in a reasonable amount of time
(less than 30 min) that enables to significantly improve prediction results for
all machine learning models trained for studied scanners.

5 Related Work

Machine Learning Based Malware Detection on Android. As of today, many
studies [11,16,33,39,42,50,53] use machine learning to improve malware detec-
tion in the Android ecosystem. Over time, trained models become more and more
accurate thanks to the heavy work on feature extraction and feature selection.
Among studies published on the subject, several of them [11,16,42] use basic
semantic feature to model application’s behavior. Particularly, in 2014, authors
of Drebin [16] use various features such as permissions, application compo-
nents, calls to hardware components, intent filters, etc. to train a support vector
machine on more than 5000 malware and 123 000 benign applications. Other
studies [39,53] model and encode the application control flow to increase the
robustness against adversarial attacks [22,48] that modify the application’s byte
code without touching its behavior. Unfortunately, the great majority of these
studies do not focus on model training, and most often go through a manual
process to choose the learning strategy. Only a few studies [39,50] are actually
testing more than one learning algorithms. However, the process is still done
manually and hyper-parameters are empirically chosen or left by default.

Automated Machine Learning Frameworks. Several works already studied auto-
mated machine learning as a research problem [30,34]. These works have mainly
paved the way to make machine learning available to non-experts from the
domain. Frameworks such as Auto-Sklearn and Auto-WEKA related to these
studies are actually responding to a demand for machine learning methods that
automatically works without expert knowledge. With Auto-Sklearn [30], authors
leverage on Bayesian optimization and past performance on similar datasets to
automate classifier selection and increase trained model efficiency. However as
stated before, the quality of a model training depends on the input data. While
an AutoML framework may find an acceptable solution for a given problem, it is
not sufficient in many expert domains, especially Android security and malware
detection where the best possible efficiency is required. It is a big assumption
to trust an AutoML framework to choose the best fit for the problem to solve.
Especially in Android malware detection, input data can vary a lot depending
on the feature selection and encoding approach. Moreover, while Auto-Sklearn
can efficiently parallelize on a single machine, it is not designed to horizontally
scale on a multi-node cluster. For that reason, we consider frameworks such as
Auto-Sklearn as another option to test along with others classical classifiers such
as Random Forest or SVM in DroidAutoML.

162 Y.-D. Bromberg and L. Gitzinger

6 Conclusion

We have identified that machine learning solutions are underexploited in the
Android ecosystem and proposed a novel approach to address this issue. We
have built DroidAutoML, a microservice architecture to test malware detection
scanners on a large number of machine learning algorithms and hyper-parameter
combinations. We have shown that DroidAutoML can significantly improve scan-
ners detection rate while optimizing used resources. DroidAutoML becomes a
cornerstone to correctly benchmark both existing and novel ML approaches on
existing ML algorithms.

As a future work we plan to integrate new machine learning algorithms in
our framework and potentially more efficient approaches to speed up the hyper-
parameter optimization process such as Bayesian optimization. We also plan
to release DroidAutoML as an open-source framework, as the Android security
community could greatly benefit from it.

References

1. Cisco visual networking index: Global mobile data traffic forecast update, 2017–
2022. https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.
pdf. Accessed 20 042020

2. Contagio dataset. http://contagiodump.blogspot.com/. Accessed 12 Sept 2019
3. Cyber attacks on android devices on the rise. https://www.gdatasoftware.

com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise. Accessed
30 Jan 2020

4. Mcafee mobile threat report q1 (2018). https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-mobile-threat-report-2018.pdf. Accessed 30 Jan 2020

5. Nomad by hashicorp. https://www.nomadproject.io/. Accessed 10 Feb 2020
6. There are now 2.5 billion active android devices - the verge. https://www.

theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-
total-number-statistic-keynote. Accessed 30 Jan 2020

7. Threat intelligence report 2019. https://networks.nokia.com/solutions/threat-
intelligence/infographic. Accessed 30 Jan 2020

8. Virustotal. https://www.virustotal.com/gui/home/upload. Accessed 04 Feb 2020
9. Yara. https://virustotal.github.io/yara/. Accessed 04 Feb 2020

10. Malware statistics & trends report — av-test (2020). https://www.av-test.org/en/
statistics/malware/. Accessed 20 Apr 2020

11. Aafer, Y., Du, W., Yin, H.: Droidapiminer: mining API-level features for robust
malware detection in android. In: Security and Privacy in Communication Net-
works (SecureCom) (2013)

12. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Sym-
posium on Operating Systems Design and Implementation (OSDI) (2016)

13. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions
of android apps for the research community. In: Working Conference on Mining
Software Repositories (MSR)

14. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets
yet relevant? In: International Symposium on Engineering Secure Software and
Systems (2015)

https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
http://contagiodump.blogspot.com/
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.nomadproject.io/
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://www.theverge.com/2019/5/7/18528297/google-io-2019-android-devices-play-store-total-number-statistic-keynote
https://networks.nokia.com/solutions/threat-intelligence/infographic
https://networks.nokia.com/solutions/threat-intelligence/infographic
https://www.virustotal.com/gui/home/upload
https://virustotal.github.io/yara/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

DroidAutoML 163

15. Amos, B., Turner, H., White, J.: Applying machine learning classifiers to dynamic
android malware detection at scale. In: International Wireless Communications
and Mobile Computing Conference (IWCMC) (2013)

16. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: Drebin: Effective
and explainable detection of android malware in your pocket. In: Annual Network
and Distributed System Security Symposium (NDSS) (2014)

17. Bedford, A., et al.: Andrana: Quick and Accurate Malware Detection for Android
(2017)

18. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

19. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization (2011)

20. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning (2008)
21. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-

eters for support vector machines. arXiv preprint arXiv:1502.02127 (2002)
22. Chen, X., et al.: Android HIV: a study of repackaging malware for evading machine-

learning detection. Trans. Inf. Forens. Secur. (TIFS) 15, 987–1001 (2019)
23. Claesen, M., De Moor, B.: Hyperparameter search in machine learning. arXiv

preprint arXiv:1502.02127 (2015)
24. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to

multiprocessor scheduling. SIAM J. Comput. 7(1), 1–17 (1978)
25. Cortes, C., Jackel, L.D., Chiang, W.P.: Limits on learning machine accuracy

imposed by data quality. In: Advances in Neural Information Processing Systems
(NIPS) (1995)

26. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards
automatic fingerprinting of android apps. In: 2013 Proceedings IEEE INFOCOM
(2013)

27. Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. Trans. Comput. Syst. (TOCS) 32(2), 5 (2014)

28. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection of
android malware through static analysis. In: International Symposium on Founda-
tions of Software Engineering (FSE) (2014)

29. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Practical auto-
mated machine learning for the AUTOML challenge 2018. In: International Work-
shop on Automatic Machine Learning at ICML (2018)

30. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter,
F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F.,
Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp.
113–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 6

31. Fogla, P., Sharif, M.I., Perdisci, R., Kolesnikov, O.M., Lee, W.: Polymorphic blend-
ing attacks. In: USENIX Security Symposium (2006)

32. Grace, M., Zhou, Y., Zhang, Q., Zou, H., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: International Conference on Mobile
Systems, Applications, and Services (MobiSys) (2012)

33. Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning framework for
android malware detection based on Linux kernel system call graphs. In: Interna-
tional Conference on Web Intelligence Workshops (WIW) (2016)

34. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka
2.0: automatic model selection and hyperparameter optimization in Weka. J. Mach.
Learn. Res. 18, 826–830 (2017)

http://arxiv.org/abs/1502.02127
http://arxiv.org/abs/1502.02127
https://doi.org/10.1007/978-3-030-05318-5_6

164 Y.-D. Bromberg and L. Gitzinger

35. Li, L., et al.: Static analysis of android apps: a systematic literature review. Inf.
Software Technol. 88, 67–95 (2017)

36. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

37. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for
parameter determination and feature selection of support vector machines. Expert
Syst. Appl. 35(4), 1817–1824 (2008)

38. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: Chex: statically vetting android apps for
component hijacking vulnerabilities. In: Conference on Computer and Communi-
cations Security (CCS) (2012)

39. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringh-
ini, G.: Mamadroid: detecting android malware by building Markov chains of
behavioral models. In: Annual Network and Distributed System Security Sym-
posium (NDSS) (2017)

40. Miller, B., et al.: Reviewer integration and performance measurement for malware
detection. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 122–141. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 7

41. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

42. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: International Conference on Tools with Artificial Intel-
ligence (2013)

43. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: Tesseract:
eliminating experimental bias in malware classification across space and time. In:
USENIX Security Symposium (2019)

44. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the Seventh European Workshop on System Security (2014)

45. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach
to malware detection. ACM Trans. Program. Lang. Syst. (TOPLAS) 30(5), 1–54
(2008)

46. Probst, P., Bischl, B., Boulesteix, A.L.: Tunability: importance of hyperparameters
of machine learning algorithms. arXiv preprint arXiv:1802.09596 (2018)

47. Rasthofer, S., Arzt, S., Lovat, E., Bodden, E.: Droidforce: enforcing complex, data-
centric, system-wide policies in android. In: International Conference on Availabil-
ity, Reliability and Security (2014)

48. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware
against transformation attacks. In: Symposium on Information, Computer and
Communications Security - ASIA CCS 2013 (2013)

49. Saracino, A., Sgandurra, D., Dini, G., Martinelli, F.: Madam: effective and efficient
behavior-based android malware detection and prevention. Trans. Depend. Secur.
Comput. 15(1), 83–97 (2016)

50. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “andromaly”: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2012)

51. Sun, M., Wei, T., Lui, J.C.: Taintart: a practical multi-level information-flow track-
ing system for android runtime. In: Conference on Computer and Communications
Security (CCS) (2016)

https://doi.org/10.1007/978-3-319-40667-1_7
https://doi.org/10.1007/978-3-319-40667-1_7
http://arxiv.org/abs/1802.09596

DroidAutoML 165

52. Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural
network by using hybrid Taguchi-genetic algorithm. Trans. Neural Netw. 17(1),
69–80 (2006)

53. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware clas-
sification using weighted contextual API dependency graphs. In: Conference on
Computer and Communications Security (SIGSAC) (2014)

Distributed Algorithms

A Resource Usage Efficient Distributed
Allocation Algorithm for 5G Service

Function Chains

Guillaume Fraysse1,2(B) , Jonathan Lejeune2 , Julien Sopena2,
and Pierre Sens2

1 Orange, Paris, France
guillaume.fraysse@orange.com

2 Sorbonne Université, CNRS, Inria, LIP6, 75005 Paris, France
{jonathan.lejeune,julien.sopena,pierre.sens}@lip6.fr

Abstract. Recent evolution of networks introduce new challenges for
the allocation of resources. Slicing in 5G networks allows multiple users
to share a common infrastructure and the chaining of Network Function
(NFs) introduces constraints on the order in which NFs are allocated.
We first model the allocation of resources for Chains of NFs in 5G Slices.
Then we introduce a distributed mutual exclusion algorithm to address
the problem of the allocation of resources. We show with selected metrics
that choosing an order of allocation of the resources that differs from the
order in which resources are used can give better performances. We then
show experimental results where we improve the usage rate of resources
by more than 20% compared to the baseline algorithm in some cases.
The experiments run on our own simulator based on SimGrid.

Keywords: Computer network management · Distributed
algorithms · Network slicing · Distributed systems · k-mutex ·
Drinking philosophers · Deadlock

1 Introduction

The flexibility of 5G networks allows the apparition of new services. Complex
services rely on Slices split across multiple Network Service Provider (NSP)s.
The allocation of a service is now not only the allocation of a single Network
Function (NF) but the chaining of multiple NFs. Chains of NFs introduce a
constraint on the order of the allocation.

We argue that in such use cases the system can be modeled as a distributed
system. The various NFs from the different NSPs can be abstracted as resources.
One or more instances of these resources can be available for each of these
resources. We define the allocation of a chain of NFs as a request of a set of
resources with an associated request order. The allocation of a request means
allocating all the resources in the set while respecting this request order.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 169–185, 2020.
https://doi.org/10.1007/978-3-030-50323-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_11&domain=pdf
http://orcid.org/0000-0001-8269-4701
http://orcid.org/0000-0001-6922-2451
http://orcid.org/0000-0002-5156-7715
https://doi.org/10.1007/978-3-030-50323-9_11

170 G. Fraysse et al.

In distributed systems, allocation of resources is seen as a Mutual Exclu-
sion problem. Several variants of the problem have been defined considering a
single resource [14,27] or multiple instances of a single type of resource [25,26].
Very few solutions have been proposed for the problem of Mutual Exclusion for
systems with multiple instances of multiple resources [2,15].

We propose here a distributed algorithm to solve the problem of the allocation
of resources to create chains of NFs in 5G Slices for Multi-Domain use cases.
We address this as a distributed Mutual Exclusion problem. We show that for
systems with multiple instances of resources the selection of the instances to
allocate has an influence on performances. Our algorithm extends the LASS
algorithm [15] for systems with N instances of M resources. We introduce a
subroutine to select the instance of the resource based on the orders of the
requests as the LASS algorithm does not address this constraint. The algorithm
is based on the transmission of a token that contains the permissions to use the
resources. In a Network Functions Virtualization (NFV) network the resources
are the nodes themselves, and they can’t be transferred from one node to another.
In such system each node is the manager of its own resource. We propose an
extension to manage systems where the decisions to allocate the resources are
made locally by each node.

We introduce a broader description of these use cases as well as some related
work and background in Sect. 2. We describe our problem in Sect. 3. In Sect. 4
we introduce our algorithm, and define the allocation order as distinct from the
order in the requests. We then introduce the methodology used to evaluate the
algorithm with the SimGrid [3] simulator and show the experimental results in
Sect. 5. We finally present our conclusions and future works in Sect. 6.

2 Related Work

The architecture of Telecom Networks is rapidly evolving. Operators have
launched the NFV [10] initiative at the European Telecommunications Stan-
dards Institute (ETSI) to move the NFs from dedicated hardware to virtualized
infrastructures based on Cloud and Software-Defined Networking (SDN) tech-
nologies.

Allocation of a single NF is rarely sufficient. More complex services require
multiple NFs to inter-operate while respecting an order. To this end ETSI defined
the VNF Forwarding Graph (VNF FG)s [9] as the analogue to the connec-
tion of physical appliances with cables. Following the description of the VNF FG
use case in 2013, RFC7665 [22] introduced in 2015 Service Function Chaining
(SFC) to allow the allocation of a chain of NFs. In 2017, RFC8402 [23] intro-
duced Segment Routing to allow a node to send a list of instructions to be run
by subsequent nodes. problem of resources allocation for multiple NFs in the
correct order.

5G is the first generation of mobile networks to include NFV as an enabler for
new types of services. 3GPP has introduced Network Slices [28,29] that enables
multiple virtual end-to-end networks to share the same NFV infrastructures.

A Resource Usage Efficient Distributed Allocation Algorithm 171

A service offered by a Slice can rely on the infrastructures of multiple NSPs, it
is then called Multi-Domain. This can be the case when a large operator has
split its network in multiple subdomains (e.g. datacenters) or when a use case
may require the infrastructures of multiple operators. The European 5G Public
Private Partnership (5G PPP) initiative launched projects that defined several
use cases based on Slices and Multi-Domain. The SLICENET project’s eHealth
use case [29] requires multiple NSPs to provide Slices that are chained together
to provide the service.

Multiple centralized solutions exist for the allocation of resources such as Vir-
tual Network Function (VNF) in networks or the placement of Virtual Machines
in Cloud infrastructure [11,20,24,31]. These approaches focus on finding an opti-
mal placement depending on a set of constraints. Some papers focus on finding
heuristics to respect Service Level Agreement (SLA)s [17] or security rules [12].
These problems are mostly addressed with Integer Linear Programming (ILP)
formulations. This centralized method may not be adequate for Multi-Domain
use cases when it is not be possible to have a centralized manager or when the
cost of building a global view of the system has a high cost. A centralized method
also often requires an a priori knowledge of the requests.

We propose to address such systems as distributed systems, and propose a
solution where there is no centralized manager. In such systems resources all
execute the algorithms locally and get (resp. send) information from (resp. to)
other resources by the passing of messages.

The allocation of resources in distributed systems can be handled as a Mutual
Exclusion problem on these resources. The Mutual Exclusion is a fundamental
problem in distributed systems and was first described by E. W. Dijkstra in
1965 [7] for systems where multiple processes try to allocate concurrently a
single shared resource. Allocating this resource allows them to execute a portion
of code known as Critical Section (CS) allowing processes to use the resource
exclusively. Multiple solutions [14,21,27,30] have been proposed.

The mutual exclusion problem was later generalized in two ways:

– for systems with one instance of M resources known as the dining philoso-
phers problem, when the requests are static, and drinking philosophers
problem, when the requests are dynamic. It was defined by K. M. Chandy
and J. Misra in 1984 [4].

– for systems with k instances of a single resource, known as the k-mutex
problem [25]. A variant of this problem is known as the k-out of-M resources
allocation problem [26] when one process tries to allocate multiple instances
of a single type of resource.

Algorithms to solve drinking philosophers problems, need to address potential
conflicts between two requests. A conflict occurs when two requests try to
allocate a common resource. If two requests don’t conflict, they are allowed to
enter their CS simultaneously.

The Dining/Drinking philosophers problem was generalized in 1990 by Awer-
buch and Saks [1] as the Dynamic Job Scheduling problem where processes
require resources that can be used by a single process at a time. A job can

172 G. Fraysse et al.

only be executed when all its required resources are available for exclusive use
by the process. The problem is also related to the job-shop scheduling optimiza-
tion problem, in which n jobs have to be scheduled on m machines with the
shortest-length schedule. This problem is NP-hard [16].

Algorithms addressing the mutual exclusion for systems with M resources can
be divided into two groups: incremental algorithms and simultaneous algo-
rithms. Algorithms in the first group incrementally allocate resources according
to a static total order on the resources. They are using consecutive mutexes on
each of the M resources. E. W. Dijkstra’s algorithm from this group [6] is the
baseline algorithm for our comparison and is detailed in Sect. 5.2. Algorithms in
the second group do not set a predefined total order on the resources but try to
simultaneously allocate resources for multiple requests. To achieve this multiple
mechanisms have been proposed. Some require a knowledge of the conflict graph
[4,8]. Others rely on a broadcast mechanism with high messages complexity [18]
or a global lock that is not efficient when the concurrency of requests is high [2].
All the simultaneous algorithms have in common to build a total order of the
requests to schedule them.

Finally, it is possible to extend drinking philosopher and k-mutex problems
by considering systems with N instances of M types of resources and requests
for k instances of 1 or more types, we call it the k − M − N problem.

In a system with N instances of M resources, it is necessary to decide which
instance to allocate for a given request. Once an instance has been selected, we
have a simplification of the k − M − N problem to the drinking philosophers
problem, where each instance is uniquely identified by its location. To the best
of our knowledge this problem has not been specifically addressed. Some papers
address the drinking philosophers problems and mentioned possible extension
of their algorithms to systems with N instances [2,15] but did not consider the
selection of the instances as a specific constraint.

Algorithms from the state of the art don’t consider the latency of the network
links. They also do not address that the nodes selected for a chain of NFs need
to respect a specific request order. In our model we add a weight to the edges of
the graph to take this latency into consideration and be able to compute a path
that respects the order in which resources are used. They also do not take into
consideration that network links are not First In First Out (FIFO) channels. Our
algorithm makes no assumption on the order in which messages are received.

The LASS algorithm [15] is a simultaneous algorithm that addresses systems
with a single instance of M resources. It has been shown that its performance are
better than those of incremental algorithms. It builds allocation vectors for
all requests. These vectors are then used to compute a total order on requests,
as detailed in Sect. 3. Our algorithm extends it and includes a preemption mech-
anism that is used when messages are received in an order that is different from
the total order of the requests.

A Resource Usage Efficient Distributed Allocation Algorithm 173

3 Problem Statement

The allocation of resources for VNF Forwarding Graph (VNF FG) in Multi-
Domain 5G slices is addressed as a Mutual Exclusion problem for systems with
N instances of M resources. In an example of VNF FG described in [9], packets
need to traverse an Intrusion Detection Systems (IDS), a Firewall (FW) and
a Load-Balancer (LB). The left part of Fig. 1 shows this example with three
NSPs. The figure shows the cases where there are three instances of each resource
distributed across the three NSPs.

NSP1

NSP2

NSP3

IDS IDS

IDS

FW FW

FW

LB LB

LB

1ms

1ms

1ms

1ms9ms

1ms 1ms

7ms

1ms 1ms

1ms

n2 n4

n5

n1 n3

n7

n8 n9

n6

e1
w1 = 1

e2
w2 = 1

e3
w3 = 1

e4
w4 = 1

e5
w5 = 9

e6
w6 = 1

e7
w7 = 1

e8
w8 = 7

e9
w9 = 1

e10
w10 = 1

e11
w11 = 1

c1 c2 c3legend

Fig. 1. A system with 3 types of resources: c1 (IDS), c2 (FW), and c3 (LB)

We model our system as a non-directed connected static graph G = (N , E)
where N is the set of nodes and E the set of edges. A node contains at most
one resource. Edges have positive weights that allow to model the latency of
the links between nodes. A weight of 0 on an edge allows to model a system with
multiple resources on a single node. A node with 2 resources can be modeled in
the graph as two nodes holding one resource each and connected by a zero-weight
edge. We note C the set of types of resources.

Each node in the graph can issue an allocation request. A request is modeled
as a couple Req(n, {c1, . . ., cs})here:

– n is the requesting node,
– {c1, . . . , cs} where cr ∈ C,∀r is an ordered set of types of resources needed.

The request order gives the order of the resources in the request. The order
of resources can be different across requests.

The right side of Fig. 1 shows a model of the use case introduced above. We
pose a request Req1 =Req(n1, {c3, c2, c1}) in this system.

n1 is the requesting node, 3 types of resources c1, c2 and c3 are requested.
The request order is c3 ≤ c2 ≤ c1, i.e. first c3, then c2 and finally c1.

174 G. Fraysse et al.

Our algorithm does not require a knowledge of the conflict graph like [4,8].
It requires that each node has knowledge of its neighbors and knows where to
find each type of resource so that each node can send messages to others.

The first subroutine of the algorithm presented in Sect. 4 computes a path
in the graph. A path contains all the nodes from, and including, the requesting
node, to the last resource requested, respecting the request order. The path con-
tains the nodes holding the requested resources as well as the nodes connecting
those, e.g. a valid path for Req1 is the ordered set of nodes (n1, n5, n7, n8, n7, n5).
The originating node is n1, the first type of resource requested is c3 and n8 holds
an instance of it. It is necessary to go through n5 and n7 to reach n8 from n1.
Then n7 and n5 hold the two other requested resources.

A request is satisfied when the path contains nodes that hold all the types
of resources in the correct request order and all the requested resources are
allocated to it, allowing the requesting node to enter its CS.

The algorithm builds an allocation vector for each request. Each entry
of an allocation vector is a pair (n, value), called a counter, where n ∈ N is
the node having the requested resource and value is a positive integer incre-
mented by the node upon reception of the request, as detailed in Sect. 4. It
is not possible for two requests to get the same counter value for a node n
in their allocation vectors. The allocation vector for request Reqr is noted
VReqr = ((nr

1, counter
r
n1

), . . . , (nr
s, counter

r
ns

)) where r is the identifier of the
request and s is the size of request Reqr, e.g. a valid allocation vector for Req1
is VReq1 = ((n8, 3), (n7, 2), (n5, 4)). The allocation vectors allow the algorithm to
compute a total order of the requests.

To sort the requests according to the global order we define the precedence
of a request Req as its rank in the total order. Reqi precedes Reqj if the average of
the counters of the allocation vector VReqi is less than the average of the counters
of the allocation vector VReqj . For instance, if we consider Req2 = Req(n4, {c3,
c2, c1}) and Req3 = Req(n6, {c1, c2, c3}) with VReq2 = ((n6, 3), (n3, 3), (n4, 1))
and VReq3 = ((n4, 2), (n3, 2), (n6, 1)) their respective allocation vectors, Req3 will
be allocated before Req2 since 3+3+1

3 > 2+2+1
3 .

If two allocation vectors have the same average value, it is necessary to add
a way to break the tie. No generic method is proposed here since it can be
implementation-specific, but the method used in our experimental platform is
detailed in Sect. 5.3.

4 Algorithms

Our algorithm consists of two consecutive subroutines:

– the path computation subroutine, in which the algorithm selects the
resources instances to be allocated and computes a routing path between
them that respects the allocation order present in the request,

– the allocation subroutine in which the algorithm allocates the resources
selected during the path computation subroutine.

A Resource Usage Efficient Distributed Allocation Algorithm 175

4.1 Path Computation Subroutine

This subroutine assumes that each node of the system has some local knowledge
on how to reach each type of resource. Each node keeps an up-to-date local
routing table containing the name of the neighbor node that is the closest to
each type of resource as well as the distance to this node. The entry in the
routing table can be the node itself for the type of resource it is holding. How
these routing tables are built is out of scope of this paper. The solution used in
our simulation is described in Sect. 5. Table 1 gives some routing tables for the
system in Fig. 1.

Table 1. Routing tables for n1, n5 and n7. D is for Distance.

(a) n1

Type Node D

c1 n2 1

c2 n1 0

c3 n5 9

(b) n5

Type Node D

c1 n5 0

c2 n1 1

c3 n8 8

(c) n7

Type Node D

c1 n5 7

c2 n7 0

c3 n7 1

In this example, node n1’s shortest path to the type of resource c3 is of length
9 and starts at n5: (n1, n5, n7, n8), and node n5’s shortest path to the type of
resource c3 is of length 8 and starts at n7: (n5, n7, n8).

n1

n5

n7

n8

t

R
O
U
T
IN

G R
O
U
T
IN

G R
O
U
T
IN

G RO
UT

IN
G

{(n
8
, 3

)}

R
O
U
T
IN

G

{(
n
8
,
3)

,
(n
7
,
2)

} A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

A
C
K

E
N
D

C
S

E
N
D

C
S
E
N
D

C
S

Fig. 2. Algorithm execution for Req1

Path computation relies on the ROUTING message. A first ROUTING
message is sent by the requesting node to the node holding the first resource
requested, according to its routing table. This node then sends a ROUTING
message to the next node on the path to the node holding the next resource. The
operation is repeated on each node until a complete path with all the requested
resources in the correct order has been found. Figure 2 shows the messages sent
during the execution of the algorithm in the sample system.

This subroutine computes a valid path with the selected instances of all the
requested resources in the order given in the request. It does not check that
the resources are available nor does it guarantee that the path computed is the
shortest path containing all the resources.

176 G. Fraysse et al.

Once the algorithm has reached the node holding the last resource requested,
the allocation subroutine described below starts from the last node of the path.

Building the Allocation Vector. We compute a total order of the requests
to preserve the liveness property, i.e. it guarantees that all requests are satisfied
in a finite time. We use the method from the LASS algorithm to compute this
order based on vectors build for each request.

The first step is to build the allocation vector for the request. The vector is
built by each of the node on the computed path. Each node has a local counter
that is initialized to 0. This counter acts as a logical clock, but contrary to
Lamport’s logical clocks [14] it is local and only incremented by the node when
it receives a new request. As such it is then not possible for two requests to get the
same counter value for a node in their allocation vector. The first request receives
the value 1, the second receives the value 2, and so on. Upon reception of a request
a node increments its local counter. It then updates the allocation vector with
the value of its counter. The updated allocation vector is inserted in the request
message when it is forwarded to the next node in the path. As a simplification this
has been merged in our implementation with the ROUTING messages. Thus,
the allocation vector is built during the forwarding of the ROUTING messages
as shown in Fig. 2.

4.2 The Allocation Subroutine

The allocation subroutine allocates the instances of resources selected during
the path computation subroutine. Nodes receive allocations messages in an arbi-
trary order, and it can be completely different from the order computed on the
requests. To deal with this situation, the subroutine has a preemption mechanism
to enforce the total order of the requests. Simulations show that the allocation
order within a request has a strong impact on the performance of the algorithm,
we compare here two allocation orders. All this is detailed below.

The Allocation. The core of the allocation subroutine is based on the ALLOC
messages. In a system where all the resources are initially in the IDLE state,
this message is sent to the first node in the allocation order, detailed below. This
node enters the ALLOCATED state and sends an ALLOC message to the next
node. The operation is then repeated until the last node in the allocation order is
reached. Then the last node send anALLOC ACK message to the requesting node
to inform it that the allocation of all resources has been made. It then enters its CS
and starts using the resources. Upon leaving its CS it sends a END CS message
that is forwarded along the path to all the nodes holding the requested resources.
The messages sent for the allocation of Req1 are shown on Fig. 2.

The Allocation Order. Each request has an associated partial request order
for the resources within the request, i.e. the order in which the resources are used,
cf. Sect. 3. We define the allocation order as the order used by the algorithm

A Resource Usage Efficient Distributed Allocation Algorithm 177

to allocate the resources. There is no relation between the request order and
the allocation order and they can be different for a same request. As a mean of
comparison, we introduce two different allocation orders that are then evaluated
in Sect. 5.

(a) ALLOC messages (b) PREEMPT messages

Fig. 3. State diagrams for ALLOC and PREEMPT messages

The by values allocation order sends the ALLOC messages according to
the values of the counters in the allocation vector. The last node of the path
sends a ROUTING ACK message to the requesting node. Upon reception of
this message the requesting node sends an ALLOC message to the node with
the highest counter value in the allocation vector. The allocation then follows
the order of the counters in the allocation vector. As an allocation based on this
order starts by allocating the node with the highest counter value, it reduces the
probability that requests with higher precedence will arrive during the rest of
the allocation of the request.

The reverse order allocation order sends the ALLOC messages in the
reverse order of the routing path. The first subroutine follows the path as it
selects it. With this reverse order, the allocation follows the path backwards to
go back to the requesting node.

For Req1 with the computed path (n1, n5, n7, n8, n7, n5) if the allocation
vector is VReq1 = ((n8, 3), (n7, 2), (n5, 4)), the allocation for reverse order follows
the order n5, n7, n8. For by values the order is n5, n8,n7.

178 G. Fraysse et al.

Preemption of Resources. Since the system is distributed a request can arrive
on a node already in the ALLOCATED state for a request that has a lower
precedence. This can lead to deadlocks. To manage these situations the algorithm
preempts the resources to enforce the global order on the requests. This requires
an additional state for the nodes, PREEMPTING, and two additional mes-
sages: PREEMPTand PREEMPT ACK . The state diagram in Fig. 3a shows
how ALLOC messages are handled, Fig. 3b shows how PREEMPTmessages are
handled. Apart from the case where the node is IDLE described above there
are two other cases to consider. If a node is already PREEMPTING, or if it
is ALLOCATED and the new request has a lower precedence than the request
that currently holds the resource, then the request is stored in a local WAITING
queue. Otherwise, i.e., when the node is ALLOCATED and the new request has
a higher precedence than the request that currently holds the resource, the algo-
rithm performs a preemption of the resource on the request that currently holds
it, named current. To perform a preemption a node sends a PREEMPTmessage
to the node that received its resource, i.e., the node to which it previously sent
an ALLOC message for current. If the node that received the PREEMPT is not
the last node in the path of current, it continues the preemption to put current
on hold. For this it sends a PREEMPTmessage to the next node in the allocation
order of current. current resumes later when it becomes the request with the
highest precedence in the WAITING queue.

n3

n4

n6

t
Req2 Req3 ALLOCATED CSPREEMPTING

A
L
L
O
C

A
L
L
O
C

A
L
L
O
C

P
R
E
E
M
P
T

P
R
E
E
M
P
T

A
C
K

A
LLO

C A
L
L
O
C

A
C
K E

N
D

C
S

E
N
D

C
S

E
N
D

C
S

A
L
L
O
C

A
C
K E

N
D

C
SE

N
D

C
S

E
N
D

C
S

Fig. 4. Allocations for Req2 and Req3, preemption of n6 by Req2

Figure 4 shows how preemption works in the case of Req2 and Req3. When
n3 receives the ALLOC message for Req3, it is already ALLOCATED because
it has previously received the ALLOC message for Req2. It then sends a PRE-
EMPTmessage along the path of Req2 to n6. n6 accepts the preemption, stores
Req2 in its local WAITING queue and sends back a PREEMPT ACK message.
Req3 then sends an ALLOC message for its last required resource to n4. Req3
is now satisfied and enters its CS. When it leaves its CS, n6 resumes Req2.

Further Considerations on Preemptions. When a preemption occurs, the
algorithm ensures that the resource is always released. Either the node that
receives the PREEMPTmessage decides to release it immediately, either it waits
for the current request to leave its CS. As CS have finite durations the algorithm
ensures that the resource is released in finite time.

A Resource Usage Efficient Distributed Allocation Algorithm 179

If multiple requests have a higher precedence than the one currently hold-
ing its resource, a node can receive a PREEMPTmessage when it is already
PREEMPTING. In this case, priority is given to the request with the highest
precedence.

As the communications channels are not FIFO, even if PREEMPTmessages
are sent along the same path than the ALLOC messages, a node may receive
a PREEMPTbefore it has received the corresponding ALLOC . To deal with
such situations, each node maintains an IGNORE list. When it receives a PRE-
EMPT for a request and it has not yet received the corresponding ALLOC , it
stores the request in the IGNORE list. When it finally receives the ALLOC for a
request that is present in the IGNORE list, it ignores the ALLOC and removes
the request from the list.

5 Experimental Results

We present an evaluation of the two allocation orders reverse path and by values
of the algorithm detailed above. We compare their performance through met-
rics that are introduced below to Dijkstra’s Incremental algorithm detailed in
Sect. 5.2 as the baseline.

5.1 Metrics and Evaluation

Several metrics are used to compare the results of the algorithms:

– the average usage rate is the average time during which resources are used.
It is the sum of the times during which each resource is used divided by the
overall duration of the experiment for all resources. 100% means that all
resources are used all the time. 50% means that 50% of the resources are
used on average. The objective is to maximize this metric,

– the average waiting time is the average time spent by requests between
the moment at which they are emitted and the moment they are satisfied.
The objective is to minimize this metric,

– The average number of messages per request is the ratio between the
total number of messages sent in the system for the duration of the test and
the number of requests. The objective is to minimize this metric.

5.2 Dijkstra’s Incremental Algorithm

The baseline algorithm for our experiments is Dijkstra’s Incremental algorithm
[6]. It does not require any additional assumption on the system which allows
to evaluate it against the same systems as our algorithm described above. This
algorithm is selected because it gives the best average usage rate among all
the state of the art algorithms evaluated. Other algorithms are not included
here for the sake of space. Our implementation of the algorithm relies on the
same first subroutine described above for the selection of the path, but does
not require the building of the allocation vectors. The second subroutine of the

180 G. Fraysse et al.

Incremental algorithm relies on a static global order of the nodes. For the test
system in Fig. 1, our implementation considers that the global order of nodes is
n1 < n2 < . . . < n9 according to the subscript value.

This algorithm has a drawback we call the domino effect. It is possible
when the number of conflicts is high that nodes wait for each other’s requests to
be finished. Until these resources become available all the resources from nodes
that come after in the order are unavailable. The probability of occurrence of
the domino effect increases with the size of the requests.

5.3 Simulating the System with SimGrid

The algorithms have been tested on topologies from the Internet Topology Zoo
[13], a dataset of topologies provided by Operators. The topologies are enriched
with resources distributed across their nodes. Weights are attributed to the net-
work links between the nodes to simulate the latency. To limit the number of
parameters, all experiments in this paper use the same constant weight for all
the links.

The results presented here are based on theCesnet200706 topology which con-
sists ofN = 44 nodes. This topology was selected because it has a sufficient enough
size to avoid the possible bias in the results from topologies that have few nodes.
Larger topologies lead to longer simulation times to get similar results. In this
topology, the degrees of the nodes vary from 1 to 18, with an average degree of 2.

The simulator is based on SimGrid 3.23 [3]. SimGrid provides multiple Rout-
ing Models for the routing of packets between nodes. The experiments use only
the Full routing model. This model requires all routes to be explicitly described
in the configuration file. It ensures that no routing algorithm is used to connect
two nodes that are not explicitly connected by a Link to each other. It allows
the routing of the packets to be made at the application level and thus allows
to simulate the first subroutine of the algorithm.

The routing tables necessary for the first subroutine are built statically by
the simulator during the initialization using Dijkstra’s Shortest Path algorithm
[5]. Routing tables are based on the Link and Hosts of the configuration.

The system is under maximum load during the tests. To achieve this, the simu-
lation starts as many requests as there are nodes in the system, and a new request
is sent as soon as a request ends. The contents of the requests are generated by
the node following a linear random function. The size of the requests in a single
experiment is constant. As shown by other experimental results not included here
for sake of space, using a constant size does not affect the results significantly.

The duration of all experiments is the same. The time spent in CS by the
requests is also constant. Empirically we settled for a duration of CS of 300, 000
and a duration of experiment of 500, 000, 000 so that time spent in CS is orders
of magnitude longer than the time spent to send a message between nodes. These
durations are in simulator time unit. This approximately simulates CS of 30 s
and a total simulation duration of 14 h. Experiments show that this duration
is long enough to make the impact of randomness negligible and the results
representative.

A Resource Usage Efficient Distributed Allocation Algorithm 181

In this experimental platform, if two allocation vectors have the same average
value, the id of the nodes are used to break the tie. Since requests all have the
same size, we first compare the id of the first nodes in each allocation vector. If
it is the same node for both requests, we compare the id of second nodes and so
on. It this comparison also results in a tie, when both requests are for the same
nodes, then the internal identifiers of the requests are compared.

Figure 5 shows the results of the evaluation of the metrics defined in Sect. 3
for the Incremental and the algorithm detailed in Sect. 4 using two allocation
orders : reverse path and by values in two different system configurations detailed
below. The x-axis show the size of requests for a given simulation. Both axes of
all the figures use a logarithmic scale.

5.4 System with 1 Instance of M Resources

(a) average usage rates

(b) average nb of messages (c) average waiting times

Fig. 5. Evaluation for one instance of 44 types of resources

182 G. Fraysse et al.

This section shows the evaluation on a system with one instance of C = 44 types
of resources.

For requests of size 1, Figs. 5a and 5b show that the algorithm itself has
no influence on the Average Usage Rate or the Average Waiting Time. In such
configuration, no preemption is performed.

For requests of size 2 to 7, we can observe that Average Usage Rate decreases
for all the algorithms. We reach a minimum between 7 and 9 depending on the
algorithms. This can be deduced from Maekawa’s proof of his quorum algorithm
[19], based on Finite Projective Planes properties, that

√
N ≈ 6.63 is the mini-

mum size so that all requests have at least one intersection. Usage rate rises up
again after this lowest point because requests become larger and even if there
are more conflicts between requests, each request leads to the allocation of a
larger number of resources.

If the size of requests is greater than half the size of the system, then it is
not possible to allocate concurrently two requests. In such situations the only
possibility is to allocate the requests sequentially. The Average Usage Rate of
the system then grows linearly with the size of the requests. The figure has been
truncated at size 30 for the sake of readability. It is almost 100% for requests of
size N as each consecutive request allocates all the resources. It is not exactly
100% due to the cost of the algorithm.

Our algorithms show an improvement on the Incremental of the Average
Usage Rate with both allocation orders. The by values allocation order gives the
best results for all metrics. For the Average Usage Rate we can see improvement
of up to 20% from the Incremental. As shown in Fig. 5b, by values does not
generate more messages than the Incremental whereas reverse path shows a
larger number of messages for requests of size 4 and more. This is due to the
high number of preemptions taking place. The by values order limits the number
of preemptions by starting with the node that has the highest counter value. This
node is the most likely to receive requests with a higher precedence. Once its
resource is allocated, the probability that the other nodes are preempted by
requests with higher precedence gets lower. Experimental results show in Fig. 5c
that the by values order does not impact negatively the Average Waiting Time.
The Average Waiting Time for the Incremental algorithm is significantly worse
than for any of the variants. This is due to the domino effect. For the sake of
space a full comparison with a near-optimal allocation is not included here, but
results show that even the best results included here are 10 to 20 points lower
than a near-optimal solution until requests of size 11, after which the difference
starts to decrease.

5.5 System with N Instances of M Resources

Figure 6 shows the Average Usage Rate of the same algorithms on the same
topology but with a different placement of the resources. Instead of a single
instance of each resource, the system holds 4 instances for each of C = 11
different types. The figure includes three additional algorithms. Each of this
additional algorithm is a variant of one of the three presented above: it uses the

A Resource Usage Efficient Distributed Allocation Algorithm 183

same allocation subroutine but a different path computation subroutine. As the
path computation subroutine detailed in Sect. 4.1 uses a static routing table, a
node always selects the same node for a type of resource. The result is that the
load is not well balanced across all the instances, which leads to lower Average
Usage Rate. For requests of size 4, the lowest Average Usage Rate observed, the
algorithm with the best result, the by values, reaches around 17%. This is lower
than the worst result for the configuration with a single instance of M resources
in Fig. 5a where the Incremental reaches 27%.

As shown in the three additional algorithms, the load balancing improves
with a simple round-robin on the different instances of each type of resource
during the path computation subroutine. For example with 4 instances of c1, the
first request selects the first instance, the second request the second one, and so
on. It starts over with the fifth request that selects the first one. The selection
of the route has a significant impact when there are more than one instance of
the resources and improves the Average Usage Rate.

Fig. 6. Evaluation for 4 instances of 11 types of resources

6 Conclusion and Future Works

We introduced in this paper a new algorithm for distributed Mutual Exclusion
for systems with N instances of M resources, known as the k−M −N problem.
This is applicable to the allocation of Multi-Domain Chains of NFs in 5G Slices.
We show an improvement of up to 20% of the Average Usage Rate of resources
from the baseline Incremental algorithm, with an Average Waiting Time that
can be several orders of magnitude lower and no degradation of the number
of messages. The results show the impact of the allocation order in which
allocation is performed. The presented results focus on a few key parameters.

184 G. Fraysse et al.

For the path allocation subroutine of the algorithm, the results showed the
importance of the selection of the instance when N > 1. We plan to study how
the performance can be further improved.

Our approach to the allocation of resources in the allocation subroutine is
pessimistic, i.e., it considers that deadlocks are going to happen. But their proba-
bility of occurrence can be low in some situations. We plan to study an optimistic
approach that let deadlocks occur and fix them a posteriori.

We also plan to implement the algorithm in the scheduler of a NFV platform,
if possible in the live network of an Operator.

References

1. Awerbuch, B., Saks, M.: A dining philosophers algorithm with polynomial response
time. In: Proceedings [1990] 31st Annual Symposium on Foundations of Computer
Science, vol. 1, pp. 65–74 (1990)

2. Bouabdallah, A., Laforest, C.: A Distributed Token-Based Algorithm for the
Dynamic Resource Allocation Problem. SIGOPS Oper. Syst. Rev. 34(3), 60–68
(2000)

3. Casanova, H., et al.: Versatile, scalable, and accurate simulation of distributed
applications and platforms. J. Parallel Distrib. Comput. 74(10), 2899–2917 (2014)

4. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Trans. Pro-
gram. Lang. Syst. 6(4), 632–646 (1984)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

6. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica
1(2), 115–138 (1971)

7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

8. Ginat, D., Shankar, A.U., Agrawala, A.K.: An efficient solution to the drinking
philosophers problem and its extensions. In: Bermond, J.-C., Raynal, M. (eds.)
WDAG 1989. LNCS, vol. 392, pp. 83–93. Springer, Heidelberg (1989). https://doi.
org/10.1007/3-540-51687-5 34

9. ETSI NFV ISG. ETSI GS NFV 001: Network Functions Virtualisation (NFV)
Use Cases (2013). https://www.etsi.org/deliver/etsi gs/NFV/001 099/001/01.01.
01 60/gs NFV001v010101p.pdf

10. ETSI NFV ISG. ETSI GS NFV-MAN 001 V1.1.1 Network Functions Virtualisation
(NFV); Management and Orchestration (2014)

11. Jennings, B., Stadler, R.: Resource management in clouds: survey and research
challenges. J. Netw. Syst. Manage. 23(3), 567–619 (2014). https://doi.org/10.1007/
s10922-014-9307-7

12. Jhawar, R., et al.: Supporting security requirements for resource management in
cloud computing. In: 2012 IEEE 15th International Conference on Computational
Science and Engineering, pp. 170–177 (2012)

13. Knight, S., et al.: The internet topology zoo. IEEE J. Sel. Areas Commun. 29(9),
1765–1775 (2011)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

https://doi.org/10.1007/3-540-51687-5_34
https://doi.org/10.1007/3-540-51687-5_34
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10922-014-9307-7

A Resource Usage Efficient Distributed Allocation Algorithm 185

15. Lejeune, J., et al.: Reducing synchronization cost in distributed multi- resource
allocation problem. In: 2015 44th International Conference on Parallel Processing,
pp. 540–549 (2015)

16. Garey, M.R., et al.: The complexity of flowshop and jobshop scheduling - mathe-
matics of operations research (1976). https://pubsonline.informs.org/doi/abs/10.
1287/moor.1.2.117

17. Machida, F., et al.: Redundant virtual machine placement for fault-tolerant con-
solidated server clusters. In: 2010 IEEE Network Operations and Management
Symposium - NOMS 2010, pp. 32–39 (2010)

18. Maddi, A.: Token based solutions to m resources allocation problem. In: Proceed-
ings of the 1997 ACM Symposium on Applied Computing. SAC 1997, pp. 340–344.
ACM, New York (1997)

19. Maekawa, M.: A N algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst. 3(2), 145–159 (1985)

20. Mills, K., et al.: Comparing VM-placement algorithms for on-demand clouds. In:
2011 IEEE Third International Conference on Cloud Computing Technology and
Science, pp. 91–98 (2011)

21. Naimi, M., et al.: A log (N) distributed mutual exclusion algorithm based on path
reversal. J. Parallel Distrib. Comput. 34(1), 1–13 (1996)

22. Pignataro, C., Halpern, J.: Service Function Chaining (SFC) Architecture (2015).
https://tools.ietf.org/html/rfc7665

23. Previdi, S., et al.: Segment Routing Architecture (2018). https://tools.ietf.org/
html/rfc8402

24. Rai, A., et al.: Generalized resource allocation for the cloud. In: Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC 2012, pp. 15:1–15:12. ACM,
New York (2012)

25. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst. 7(1), 61–77 (1989)

26. Raynal, M.: A distributed solution to the k -out of-M resources allocation problem.
In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp.
599–609. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54029-6 209

27. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24(1), 9–17 (1981)

28. Rost, P., et al.: Network slicing to enable scalability and flexibility in 5G mobile
networks. IEEE Commun. Mag. 55(5), 72–79 (2017)

29. SLICENET. Deliverables - SLICENET (2018). https://slicenet.eu/deliverables/
30. Suzuki, I., Kasami, T.: A distributed mutual exclusion algorithm. ACM Trans.

Comput. Syst. 3(4), 344–349 (1985)
31. Widjajarto, A., et al.: Cloud computing reference model: the modelling of service

availability based on application profile and resource allocation. In: 2012 Interna-
tional Conference on Cloud Computing and Social Networking (ICCCSN), pp. 1–4
(2012)

https://pubsonline.informs.org/doi/abs/10.1287/moor.1.2.117
https://pubsonline.informs.org/doi/abs/10.1287/moor.1.2.117
https://tools.ietf.org/html/rfc7665
https://tools.ietf.org/html/rfc8402
https://tools.ietf.org/html/rfc8402
https://doi.org/10.1007/3-540-54029-6_209
https://slicenet.eu/deliverables/

A Self-stabilizing One-To-Many Node Disjoint
Paths Routing Algorithm in Star Networks

Rachid Hadid(B) and Vincent Villain(B)

MIS, Université de Picardie Jules Vernes, 33 rue Saint Leu, Cedex 1, 80039 Amiens, France
hadid.rashid@gmail.com, vincent.villain@u-picardie.fr

Abstract. The purpose of the paper is to present the first self-stabilizing algo-
rithm for finding n−1 one-to-many node-disjoint paths inmessage passing
model. Two paths in a network are said to be node disjoint if they do not share any
nodes except for the endpoints. Our proposed algorithm works on n-dimensional
star networks Sn. Given a source node s and a set of D = {d1, d2, ..., dn−1} of
n − 1 destination nodes in the n-dimensional star network, our algorithm con-
structs n − 1 node-disjoints paths P1, P2, ..., Pn−1, where Pi is a path from s to
di, 1 ≤ i ≤ n − 1. Since the proposed solution is self-stabilizing [7], it does not
require initialization and withstands transient faults. The stabilization time of our
algorithm is O(n2) rounds.

Keywords: Fault-tolerance · Self-stabilization · Distributed systems · Star
networks · Node disjoint paths

1 Introduction

The concept of self-stabilization [7] is the most general technique to design a system
to tolerate arbitrary transient (in other words, limited in time) faults. A self-stabilizing
system, regardless of the initial states of the processors and initial messages in the links,
is guaranteed to converge to the intended behaviour in finite time. We view a fault that
perturbs the state of the system but not its program as a transient fault. The problem
of finding disjoint paths in a network has been given much attention in the literature
due to its theoretical as well as practical significance to many applications, such as lay-
out design of integrated circuits [22], communication protocols [10], secure message
transmission [24], survivable design of telecommunication networks [23] and reliable
routing [15]. Node disjoint paths can be used for secure communication by breaking
up data into several shares and sending them along the disjoint paths to make it difficult
for an adversary with bounded eavesdropping capability to intercept a transmission or
tamper with it. Network survivability reflects the ability of a network to maintain ser-
vice continuity during and after failures. In practice, it is important to construct node
disjoint paths in networks, because they can be used to enhance the transmission reli-
ability. Alternatively, the same crucial message can be sent over multiple node disjoint
paths in a network that is prone to message losses to avoid omission failures, or infor-
mation on the re-routing of traffic along non-faulty disjoint paths can be provided in the
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 186–203, 2020.
https://doi.org/10.1007/978-3-030-50323-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_12

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 187

presence of faults in some disjoint paths. Routing is a process of transmitting messages
among nodes, and its efficiency is crucial to the performance of a network. Efficient
routing can be achieved by using internally node disjoint paths, because they can be
used to avoid congestion, accelerate transmission rate, and provide alternative trans-
mission routes. Moreover, node disjoint paths between two processes present additional
benefits such as broadening the network bandwidth and load balancing of the network
by allowing communicating pair of processes to distribute the communication load on
node disjoint paths without congesting communication channels in the network. There
are three paradigms for the study of node disjoint paths in interconnection networks:
the one-to-one, and the one-to-many, and the many-to-many node disjoint paths
[8]. The one-to-one node disjoint paths constructs the maximum number of node dis-
joint paths in the network between two given nodes, and the one-to-many node disjoint
paths constructs node disjoint paths in the network from a given node to each of nodes
in a given set. The one-to-many node disjoint paths problem are fundamental and exten-
sively studied in graph theory. One-to-many node disjoint paths were first presented in
[26] where the Information Dispersal Algorithm (IDA) was proposed on the hyper-
cube. Some algorithms to find one-to-many node disjoint paths in a variety of networks
are proposed in [5,6,8–10,14,17–19,21,25]. Let G = (V,E) be a connected graph,
where V and E represent the node set and edge set of G, respectively. Throughout this
paper, we use network and graph, processor and node, and link and edge, interchange-
ably. The n-dimensional star network (n-star for short) [1–3] is one of most effi-
cient and popular interconnection networks because of its attractive properties, includ-
ing regularity, node symmetric, small diameter, and recursive construction. The n-star
network, denoted as Sn = (V,E), is a bidirected graph consisting of n! nodes, each
node is identified with a distinct permutation of n symbols 1, 2, . . . , n. There is a
link between any two permutations (nodes) iff one can be reached from the other by

Fig. 1. An example 3-star and 4-star.

188 R. Hadid and V. Villain

interchanging its first symbol with any other symbol. More precisely, the node rep-
resenting permutation a1a2 . . . ai−1aiai+1 . . . an have links to n-1 other permutations
(nodes) aia2 . . . ai−1a1ai+1 . . . an, for some 2 ≤ i ≤ n. The node with the permu-
tation 123 . . . n will be called the identity node. Figure 1 illustrates the 3-star and
4-star systems. The construction of the one-to-many node disjoint paths in the n-star
has also been considered by researchers in graph theory [5,8,29]. The disjointness of
these paths is ensured by using different approaches. In a first approach [29], we can
fix a particular symbol j, 1 ≤ j ≤ n, at the last position of all the nodes on the path
noted Pj . So, all the nodes of the path Pj (except for at most one) have a common
symbol j at the last position of their permutations. Hence, each selection of the symbol
j, 1 ≤ j ≤ n, will make the path Pj node disjoint from the others paths. The following
example illustrates the concepts (see example 1).

Example 1. Assume that we have 4-star system and let s = 1234 and D =
{4321, 1342, 4123, 2134}. We construct 4 node disjoint paths P1, P2, P3 and P4 from s
to each destination process d1 = 4321, d2 = 1342, d3 = 4123, and d4 = 2134, respec-
tively, by fixing the symbols 1, 2, 3, and 4 at the last position of all the nodes (except for
at most one) on P1, P2, P3, and P4, respectively. The node disjoint paths P1, P2, P3, and
P4 may look as follows. (i) P1 = (s = 1234 −→, 4231 −→, 3241 −→, 2341 −→, 4321).
(ii) P2 = (s = 1234 −→, 2134 −→, 4132 −→, 3142 −→, 1342). (iii) P3 = (s = 1234 −→,
3214 −→, 4213 −→, 2413 −→, 1423 −→, 4123). (iv) P4 = (s = 1234 −→, 2134). Where
the underlined digit denotes the swapped one.

However, since n-star graphs are node symmetric, the position at which to fix the sym-
bol j does not have to be the last one, as shown in [8]. The position at which we fix our
symbols could be i for 2 ≤ i ≤ n. Therefore, we have n − 1 ways of fixing the symbol
j in the path noted P j

i , where i denotes the position where the symbol j is fixed. So,
for each path P j

i is designed a unique position i, 2 ≤ i ≤ n, and a distinct symbol j,
1 ≤ j ≤ n, such that i is the position of the symbol j in all the permutations (except
for at most one) of the nodes on the path P j

i . We can illustrate this approach by using
the following example (see example 2).

Example 2. Assume that we have 4-star system and let s = 1234 and D =
{4321, 1342, 4123}. We construct 3 node disjoint paths P 1

2 , P 2
3 , and P 3

4 by fixing the
symbols 1, 2, and 3 at the second, third, and fourth position for each node on the path
P 1
2 , P

2
3 , and P 3

4 , respectively. (i) A path P 1
2 from s to d1 = 4321 that keeps the sym-

bol 1 at position 2 may look as follows: P 1
2 = (s = 1234 −→, 2134 −→, 3124 −→,

1324 −→, 4321). (ii) A path P 2
3 from s to d2 = 1342 that keeps the symbol 2 at posi-

tion 3 may look as follows: P 2
3 = (s = 1234 −→, 2134 −→, 3142 −→, 1342). (iii) A

path P 3
4 from s to d3 = 4123 that keeps the symbol 3 at position 4 may look as follows:

P 2
3 = (s = 1234 −→, 3214 −→, 4213 −→, 2413 −→, 1423 −→, 4123).

However, this solution can be simplified as follows [5]. We may choose to fix the same
symbol j, 1 ≤ j ≤ n, over all the node disjoint paths, but in different positions i for
2 ≤ i ≤ n. So, for each path Pi, the same symbol j is fixed at the same position i in all
processes on the path Pi, except for at most one. The following example illustrates the
concepts (see example 3).

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 189

Example 3. Assume that we have 4-star system and let s = 1234 and D =
{4321, 1342, 4123}. We construct 3 node disjoint paths P2, P3, and P4 by fixing the
symbol 1 (j = 1) at the second, third, and fourth position for each node on the path
Pi, 2 ≤ i ≤ 4, respectively, as follows. P2 = (s = 1234 −→, 2134 −→, 3124 −→,
1324 −→, 4321). P3 = (s = 1234 −→, 3214 −→, 2314 −→, 4312 −→, 1342).
P4 = (s = 1234 −→, 4231 −→, 2431 −→, 3421 −→, 1423 −→, 4123).

Self-stabilizing algorithms to find node disjoint paths are proposed in [11,12,16,28].
Self-stabilizing algorithms for finding one-to-one node disjoint paths between two end-
points for hypercube and mesh networks have been proposed in [11,28], respectively. A
new self-stabilizing algorithm for finding two one-to-one node disjoint paths problem in
arbitrary network was proposed in [12]. The basis of the algorithm was outlined in [16]
as a brief announcement. It has been shown that finding the node disjoint paths is NP -
hard in general graphs [13]. For n-dimensional hypercubes Hn (which has diameter
d(Hn) = n), it was proved that n disjoint paths for the one-to-one node disjoint paths
paradigm [27] and n disjoint paths for the one-to-many node disjoint paths paradigm
[26] can be found in O(n2) time. For n-dimensional star graphs, (which has diame-
ter d(Sn) = � 3(n−1)

2 �), it was shown that n − 1 disjoint paths for one-to-one node
disjoint paths paradigm can be found in O(n2) time [20] and n − 1 disjoint paths for
one-to-many node disjoint paths can be found in O(n2) time [8]. The time complexity
of the above self-stabilizing algorithms is as follows: O(d) rounds for algorithm [11]
(working in mesh network), whereas the time complexity of the algorithms [12,16,28]
is O(d2) rounds, where d the diameter of the network.

1.1 Contributions

In this paper, we present the first self-stabilizing distributed algorithm for finding n − 1
node-disjoint paths between the source process s and n − 1 other destination processes
{d1, d2, ..., dn−1} in the n-star network. While it takes the same polynomiale O(n2)
rounds to solve the same problem by the result in [5,8,29]. We propose a method based
on message-passing techniques to process global information, which is more approach
to reality. We adapt the approach used in [5] to ensure the disjointness of these n − 1
paths. Unlike previous solutions, our algorithm does not utilize the cycle presentation
of the permutations, making it easy to understand. Our approach is different from the
previous one [5] in that the disjoint paths are constructed from the source s to the
n − 1 processes in the n-star. This makes our solution more suitable to implement. In
addition, it reveals interesting functions to implement the disjointness of the paths in a
self-stabilizing distributed environment.

The rest of the paper is organised as follows. In Sect. 2, we describe the distributed
system model used in this paper. Then, we present the one to many node disjoint paths
algorithm in Sect. 3 and its correctness proof in Sect. 4. Finally, we make some con-
cluding remarks in Sect. 5.

2 Distributed System and Programs

Our algorithm is designed to operate on an asynchronous distributed system
modelled as an n-star network. A transposition π[1, i] on a permutation p,

190 R. Hadid and V. Villain

noted π[1, i](p), is to exchange the positions of the first and the ith symbol in the
permutation p. For example, if p = a1a2...ai−1aiai+1... an, then π[1, i](p) =
aia2...ai−1a1ai+1...an. There is a link between any two processes p and q if and only
if π[1, i](p) = q, for some 2 ≤ i ≤ n. We will use a process identity (process name) in
a star network to refer also to the permutation that labels the process. We consider the
message-passing model where communication between neighboring processes is car-
ried out by messages exchanged through bidirectional links, i.e., each link can be seen
as two channels in opposite directions. A distributed protocol for such a message
passing system consists of a collection of n local programs, one for each processor in
the system. This local program provides the ability to the processor either to perform
local computations, or to send and receive messages from each of its neighbours in the
n-star network. More precisely, the program consists of a collection of actions. Overall,
an action is of the form: <guard>::<statements>. A <guard> is mainly triggered
when an input message is received. In addition, tools like timer or randomly and
spontaneous are used in the <guard>. <statements>, executed when a <guard>
is activated, is a sequence of assignments/computations, invoking functions/procedures,
and/or message sending. Note that an action can be executed only if its guard is acti-
vated. A message is of the following form: (type, value). A message may also contain
more than one value. We define the state of each process to be the state of its local
memory and the contents of its incoming channels. The global state of the system,
referred to as a configuration, is defined as the product of the states of processes. We
denote by C the set of all possible configuration. An execution of a protocol P in a sys-
tem S is an infinite sequence of configurations γ0, γ1, ..., γi... such that in any transition
γi �→ γi+1 either a process take a step. We assume that the message delivery time is
finite but unbounded. We also consider a message in transit until it is processed by the
receiving processor. Moreover, each link is assumed to be of bounded capacity, FIFO,
and reliable (the messages are not lost and delivered UN-corrupted) during and after the
stabilization phase.

3 Self-stabilizing Algorithm

In this section, we first present the basis description of the proposed solution. Given
a process s and n − 1 other distinct processes D = {d1, d2, . . . , dn−1} in the n-star
system, the proposed algorithm constructs n − 1 node-disjoint paths P1, P2, . . . , Pn−1,
where Ph is the path from s to dh, for h = 1, 2, . . . , n−1. Note that the algorithm works
also for D = {d1, d2, . . . , dm} such that m < n. Our solution works in two phases
referred to as labeling phase (Algorithm 2) andOne-T o-Many node-disjoint paths
construction phase (Algorithm 4). TheOne-T o-Many node-disjoint paths construc-
tion phase is based on the labeling process phase, i.e., the progress of this phase is
ensured only after the labeling process terminates successfully. During the labeling
phase, each destination process dh, 1 ≤ h ≤ n − 1, in D should be labeled by a unique
label j, 2 ≤ j ≤ n, such that the index j is the reserved position for the symbol 1 for
the processes on Pj connecting process s to process dh. So, after this phase the set D =
{d1, d2, . . . , dn−1} is mapped to the set DL = {(d1, j1), (d2, j2), . . . , (dn−1, jn−1)}
where jh, 2 ≤ jh ≤ n, is the label assigned to the process dh, 1 ≤ h ≤ n − 1.

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 191

During the One-T o-Many node-disjoint paths construction phase, we construct n− 1
node-disjoint paths P2, P3, . . . , Pn from the source process s to the new labeled desti-
nation processes (d1, j1), (d2, j2), . . . , (dn−1, jn−1) such that each path Pj , 2 ≤ j ≤ n,
connects the source process s to a destination process (dh, j) ∈ DL. For each path Pj ,
2 ≤ j ≤ n, we reserve a unique position j for the path, such that, for all processes on
Pj (except for maximum two processes) the symbol 1 is at jth position in the permuta-
tions. In other words, we construct each path Pj , 2 ≤ j ≤ n, from the source process
s to the destination process (dh, j) ∈ DL and keeps the symbol 1 in a fixed position j
along all the processes on Pj , except for maximum two processes.

Prior to the presentation of these two phases in details, we first present Algorithm 1
which computes the shortest distance between the source s and a destination d (Func-
tion Dist(s, d)). This metric is needed during the labeling phase. A shortest path P
from a process s in the n-star system Sn to a destination process d is given by the fol-
lowing two rules [3]. Assuming that the shortest path P is built up to the process p �= d
(initially, p = s), then the successor of p on P is identified as follows (See Function
NextNeigh() in Algorithm 1). Let x be the first symbol in the permutation of p, then
(r1) If there exists a symbol y in the kth position, 2 ≤ k ≤ n, such that d[k] = x (i.e.,
Direct(p) is true), then exchange x with y (d[k] denotes the symbol at the position k
on a permutation d). In other words, x directly reaches its correct position in d.

(r2) Otherwise, exchange x with the symbol y in the kth position such that y is
not in a correct position in d, y �= d[k], if exists (i.e., ByPassp �= ∅). If multiple
such symbols exist, then choose the symbol y with the smallest position in the permu-
tation d. In other words, y, which is in incorrect position, is temporarily placed in the
first position. Thereafter, it is moved to its correct position by applying rule (r1). The
Function Dist(s, d) computes in dist (using Function NextNeigh()) the number of
steps needed to built a shortest path from the source s to the destination d. The follow-
ing example illustrates the distance computing between s and d in 5-star system (see
example 4).

Example 4. (i) The distance computing, using the path P created by the rules (r1) and
(r2), from s to d = 51243 looks as follows: P = (s = 12345 [dist = 0] (r1−→),
21345 [dist = 1] (r1−→), 31245 [dist = 2] (r1−→), 51243 = d) [dist = 3]. (ii) The dis-
tance computing between s and d = 14523 looks as follows. P = (s = 12345 [dist =
0] (r2−→), 21345 [dist = 1] (r1−→), 41325 [dist = 2] (r1−→), 14325 [dist = 3] (r2−→),
34125 [dist = 4] (r1−→), 54123 [dist = 5] (r1−→), 14523 = d) [dist = 6]. Where the

192 R. Hadid and V. Villain

value in brackets indicate the value of dist at a process, and the rule used to swap to the
next process is indicated between parentheses on the arrow.

It is shown in [3] that this algorithm will always find the shortest path from s to d
in Sn. It has been also shown in [3] that the diameter of Sn is equal to
3(n − 1)/2�.

3.1 Labeling Process

The labeling phase is handled by the source process s (Algorithm 2 and Function
Labeling()). Let D = {d1, d2...., dn−1} be a set of n − 1 distinct processes in the
n-star network Sn. During this phase, each destination process dh, 1 ≤ h ≤ n − 1, in
the set D is labeled by a unique label j, 2 ≤ j ≤ n. Thereafter, we denote by DL the
set of the new labeled processes (dh, j), 2 ≤ j ≤ n. The index j, 2 ≤ j ≤ n, asso-
ciated to each destination dh, refers to the unique fixed position of the symbol 1 along
all the processes on the path Pj (except for maximum two processes) connecting s and
dh. Process p in the n-star network Sn is a (1)-process if 1 is the first symbol in the
permutation p. Process p in Sn is a (i 1)-process, where 2 ≤ i ≤ n, if 1 is the ith sym-
bol in the permutation p. The set DL is implemented using an array of structure where
each element of the array in the position pos, 1 ≤ pos ≤ n − 1, contains the couple
(id, lab) where id and lab represent the permutation (dh) and the label (j) associated
to the processs dh, respectively. The labeling process is implemented by repeating the
following three simple rules (L1), (L2), and (L3). Note that the index pos is initiated to
1 and is increased each time a new element is added to DL.

(L1) LetDi ⊆ D be the subset of all (i 1)-processes, 2 ≤ i ≤ n, such thatDi �= ∅;
then, pick a process dh ∈ Di, 1 ≤ h ≤ n−1 such thatDist(s, dh) is the smallest among
all the processes in Di, label dh by i and call (dh, i) the representative process of
the set Di (see Function Representative(Di)). If multiple processes have the same
smallest distance, then choose the process with the smallest id number among them
as representative process. Thus, for each Di �= ∅, the representative process (dh, i)
gets the position i. The process dh is deleted from D and (dh, i) is inserted into DL.
So, DL[pos].id and DL[pos].lab are seted to dh and i, respectively (See Procedure
Affect-label(Representative(Di), i, pos).

(L2) Then, for each process dh in the set D such that dh is a (i 1)-process, but not
a representative process for a subset Di, reserve a position j for dh with 2 ≤ j ≤ n,
that is not already assigned to any process in D, then dh is labeled by j. Similarly to
(L1), the process dh is deleted from D and (dh, j) is inserted into DL.

(L3) Finally, for each dh in the set D such that dh is a (1)-process reserve a position
j for dh with 2 ≤ j ≤ n, that is not already assigned to any process in D, then dh is
labeled by j. Similarly to (L1), the process dh is deleted from D and (dh, j) inserted
into DL. Note that all (i 1)-processes are labeled before (1)-processes. In order to
illustrate the above concepts, we provide the following example (see example 5)

Example 5. Assume that we have 5-star system and the set D = {d1, d2, d3, d4} such
that d1 = 52143, d2 = 43152, d3 = 32541, and d4 = 23451. During this phase,
each destination process dh, 1 ≤ h ≤ 4, in the set D will be labeled by a unique
label j, 2 ≤ j ≤ 5. So, by applying the Rule (L1), we have D3 = {d1, d2} and

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 193

D5 = {d3, d4}. The distances from s to d1 and d2 can be computed using Algorithm
1 and Dist(s, d1) = 2 and Dist(s, d2) = 4. So, the representative process of D3 is
d1, and hence, the label 3 is assigned to the process d1. Similarly, the distances from s
to d3 and d4 are Dist(s, d3) = 2 and Dist(s, d4) = 4. So, the representative process
of D5 is d3, and hence labeled by 5. Thus, after applying the rule (L1), we have D =
{d2, d4} and DL = [(d1, 3), (d3, 5)]. Then, from the rule (L2), the processes d2 and d4
are labeled by 2 and 4, respectively. Thus, after the labeling phase, the array structure
DL = [(d1, 3), (d3, 5), (d2, 2), (d4, 4)].

From the above, it is clear that all representative processes appear before all other pro-
cesses in the array DL. In addition, the (i 1)-processes appear after the representative
processes and before other remainder processes, i.e., (1)-processes . In the sequel, we
assume that all the processes in DL are identified based on their positions in the array
DL. Thus, the process in the position one is denoted by d1 and the process in the second
position is denoted by d2 and so on. For the sake of simplicity, each element (dh, j) in
DL is denoted by dh.j, where dh refers to the process at the position h, 1 ≤ h ≤ n−1,
and j, 2 ≤ j ≤ n, is the label assigned to dh. Moreover, we use the notation d.j, when
the rank h of the process d in DL is omitted, to refer simply to a process d in DL
indexed by a label j.

3.2 One-T o-Many Node-Disjoint Paths Construction

Upon completion of the labeling phase, each process d.j in DL is assigned a unique
label j, 2 ≤ j ≤ n, such that j is the position of the symbol 1 in all the permutations
(except for at most two) of the processes on the path Pj connecting s to d.j. During
this second phase, n − 1 node-disjoint paths, noted by P2, P3, . . . , Pn, are constructed
from the source s to the destination processes in DL such that each path Pj , 2 ≤ j ≤
n, connects the source process s to the destination process d.j. In order to carry out
this task, we need to solve the following two problems: (i) We need a procedure that

194 R. Hadid and V. Villain

constructs a path from the process s to a destination process d.j, 2 ≤ j ≤ n, and keeps
the symbol 1 in a fixed position j along all the processes on the path Pj , except for at
most one process. (ii) All these paths P2, P3, ..., Pn must be node-disjoint.

The basic construction (property (i)) is referred to as elementary construction
and is implemented basically using FunctionNextNeighFix1() (see Algorithm 3, namely
the One-T o-One Fix-1 path construction algorithm) and the message (d, j) con-
taining two parameters, the destination d and the position j of the symbol 1 in all the
processes on the path Pj (see Actions a21 and a3, Algorithm 4). Observe that, under cer-
tain circumstances (i.e., a non-elementary construction), where the destination d is said
to be marked (Function Marked()), Algorithm One-T o-Many disjoint paths uses
another message containing three parameters (see Actions a22 and a4, Algorithm 4).
Now, we describe the elementary construction and the purpose of the second one (non-
elementary construction) is discussed later. The processes in this construction exchange
one type of message containing two parameters: destination d and the fixed position j,
2 ≤ j ≤ n, of the symbol 1 along the processes on Pj . Once the elementary construc-
tion is started, the source process s initiates the construction of the path Pj from s to d.j
by sending the message (d, j) to its successor on Pj (Action a21). Subsequently, each
process p (p �= d), upon receipt of this message, transmits the message to its successor
process on the path Pj (Action a3). Each process uses the function NextNeighFix1() to
identify the successor process on the path Pj that kept the symbol 1 in the same fixed
position j. The function NextNeighF ix1(d, j) contains also two parameters, the des-
tination d and the position j of the symbol 1 in its successor process on the path Pj .
This function is implemented by executing one of the following six rules: (r0), (r1),. . . ,
and (r5) (see Algorithm 3 and Function NextNeighF ix1()). The rules are executed
in the order they are written. So, if the first rule is not applicable, then we try the next
rule and so on. Assuming that the shortest path from s to d is built up to the process
p �= d (initially, p = s), then the successor of p is identified as follows. Let x be the
first symbol in the permutation of p, then (r0) This rule is executed one time and only
by the source process s, during the initialization phase. So, p is the identity process s
(Predicate Source(p)), exchange the first symbol 1 with the jth symbol in s. In this
rule, the symbol 1 is moved to the desired position j in the destination d.

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 195

(r1) If there exists a symbol y, y �= 1, in the kth position, 2 ≤ k ≤ n, such that x
occupies a correct position in d, i.e., d[k] = x (Predicate DirectP (p)), then exchange
x with y. In this rule, x directly reaches its correct position k in the destination d.
However, in order to keep the symbol 1 in a fixed position, y should not be equal to 1,
if possible.

(r2) Otherwise, exchange x with the symbol y, y /∈ {1, d[1], d[j]}, in the kth
position such that y does not occupy a correct position in d, i.e., d[k] �= y, if exists
(Predicate ByPass1(p)). In this rule, we move x to a position k not occupied by a cor-
rect symbol, i.e., p[k](= y) �= d[k]. If multiple positions are not occupied by a correct
symbol, then choose the symbol with the smallest position. Similarly to the case (r1),
to maintain the symbol 1 in a fixed position, y should not be equal to 1. In addition, to
maintain the path Pj as shortest as possible, y should be different than d[1] and d[j].

(r3) If all the symbols are in correct positions except the first symbol x and the
symbol y in the j-th or i-th position (in this case the destination d is an (i 1)-process
and the i-th position is the position of the symbol 1 in d) such that y = d[1] (Predicate
ByPass2(p)), then exchange x with the symbol y. In this situation, we consider two
cases. (a) First, x = d[j], in this case d is a (1)-process. Then, exchange x with the
symbol y, y = 1, in the jth position. (b) Second, x = 1, in this case d is an (i 1)-
process. Then, exchange x with the symbol y, y = d[1], in the ith position. In both
cases, the successor process of p on Pj is the destination process di.

(r4) If all the symbols are in correct positions except the ith symbol p[i] (= d[j])
and the jth symbol p[j](= d[i] = 1) (Predicate ByPass3(p)), then exchange x, the
first symbol in p, with the symbol y in the ith position.

(r5) If all the symbols are in correct positions except the first symbol x (x = d[j]),
the ith symbol p[i] (= d[1]), and the jth symbol p[j] (= d[i] = 1) (Predicate
ByPass4(p)), then exchange x with the symbol y, y = 1, in the jth position. In order
to illustrate the elementary construction concept, we provide the following example
with 8-star system and a destination d.5 (example 6).

Example 6. We consider the three following possible cases of the destination process
d.5: d.5 (= 53241876) is a representative process, d.5 (= 13245876) is a (1)-process ,
and d.5 (= 23145876) is a (i 1)-process (in our case i = 3). A path from s to d.5
that keeps the symbol 1 at position 5 created by the elementary construction may look
as follows. (a) Let d.5 = 53241876, P5 = (s = 12345678(r0−→), 52341678(r2−→),
25341678(r1−→), 35241678(r1−→), 53241678(r2−→), 63241578(r1−→), 83241576(r1−→),
53241876). (b) Let d.5 = 13245876, P5 = (s = 12345678(r0−→), 52341678(r2−→),
25341678(r1−→), 35241678(r1−→), 53241678(r2−→), 63241578(r1−→), 83241576(r1−→),
53241876(r3−→), 13245876). (c) Let d.5 = 23145876, P5 = (s = 12345678 (r0−→),
52341678(r2−→), 32541678(r1−→), 23541678(r2−→), 63541278(r1−→), 83541276(r1−→),
23541876(r4−→),53241876(r5−→), 13245876(r3−→), 23145876).

A (1)-process associated with the process d.j, 2 ≤ j ≤ n, such that d.j is an (i 1)-
process, is the process obtained from d.j by swapping its first symbol with the symbol
1 located at position i (i.e., π[1, i](d.j)).

Remark 1. From the above elementary construction we deduce the following remarks.
(i) If d.j is a representative process of a set Dj , then all the processes of the path Pj

196 R. Hadid and V. Villain

constructed from s to d.j are (j 1)-processes, except s (see example 6 case (a)).
(ii) If d.j is a (1)-process, then all the processes of the path Pj are (j 1)-processes,
except the endpoints s and d.j (see example 6 case (b)).
(iii) If d.j is a (i 1)-process (i �= j), then all the processes of the path Pj are (j 1)-
processes, except the (1)-process associated with the process d.j and its endpoints
s and d.j (see example 6 case (c)).

Now, we are ready to present the remainder of the One-T o-Many node-disjoint
paths algorithm (i.e., the non-elementary construction). Observe that from Remark 1,
if all the processes in DL are representative processes (j 1)-processes and/or
(1)-processes, then the One-T o-Many node-disjoint paths algorithm is obviously
obtained by applying the elementary construction from the source s to each destination
process d.j, 2 ≤ j ≤ n in DL. Since for each destination process d.j, 2 ≤ j ≤ n, there
exists a distinct position j which is reserved for the symbol 1 for all the processes on
the path Pj . So, each path Pj , 2 ≤ j ≤ n, connecting s to d.j is node disjoint from the
other paths. This is illustrated in the following example (see example 7).

Example 7. Let us consider the set DL = [(d1 = 43152, 3), (d2 = 23451, 5), (d3 =
14352, 2), (d4 = 15432, 4)], where d1.3 and d2.5 are representative processes, d3.2 and
d4.4 are (1)-processes. The node disjoint paths are built using the elementary construc-
tion as follows. (i) P3 = (s = 12345 (r0−→), 32145 (r1−→), 23145 (r1−→), 53142 (r1−→),
43152). (ii) P5 = (s = 12345 (r0−→), 52341 (r1−→), 42351 (r1−→), 32451 (r1−→),
23451). (iii) P2 = (s = 12345 (r0−→), 21345 (r1−→), 51342 (r1−→), 41352 (r1−→),
14352). (iv) P4 = (s = 12345 (r0−→), 42315 (r1−→), 32415 (r2−→), 23415 (r1−→),
53412 (r1−→), 35412 (r1−→), 15432).

A (1)-process associated with the (i 1)-process dh ∈ DL, 2 < h ≤ n, (that is not
a representative process) is said marked process (Function Marked(), Algorithm 4)
if it is equal to the (1)-process associated with another (i 1)-process dh′ such that
1 ≤ h′ < h, i.e., the path to the destination dh′ is constructed before the path to the
destination dh. A critical step in applying only the elementary construction to construct
the n−1One-T o-Many node-disjoint paths is the case 5 (rule (r5))where for a given
(i 1)-process dh ∈ DL, 2 < h ≤ n, that is not a representative process of the set Di,
the (1)-process associated with dh is marked. So, in this case, there already exists a
destination process dh′ ∈ DL, 1 ≤ h′ < h, such that its (1)-process is identical to the
(1)-process associated with dh. In this situation, the (1)-process associated with dh
already belongs to a previously constructed path, say Pj′ , initiated by s to process dh′

before s initiates the construction of the path, say Pj , to dh. Therefore, the two paths Pj

and Pj′ are not node-disjoint, since they intersect at the (1)-process associated with the
two processes dh and dh′ . We can illustrate this situation by using again the example 3
presented in Sect. 3.1 (example 8).

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 197

Example 8. Assume that we have 5-star system and let DL = [(d1 = 52143, 3), (d3 =
32541, 5), (d2 = 43152, 2), (d4 = 23451, 4)]. By Algorithm 4 and the elementary con-
struction, the source s initiates the construction of the paths following this order, P3,
P5, P2, and P4 (see example 3). (i) A path P3 from s to d1 = 52143 that keeps the

symbol 1 at position 3 may look as follows. P3 = (s = 12345 (r0−→), 32145 (r1−→),
52143). (ii) A path P5 from s to d3 = 32541 that keeps the symbol 1 at posi-

tion 5 may look as follows. P5 = (s = 12345 (r0−→), 52341 (r1−→), 32541). (iii) A
path P2 from s to d2 = 43152 that keeps the symbol 1 at position 2 may look as

follows. P2 = (s = 12345(r0−→), 21345(r1−→), 51342(r1−→), 41352(r4−→), 31452(r5−→),
13452(r3−→), 43152). (iv) A path P4 from s to d4 = 23451 that keeps the symbol 1

at position 4 may look as follows. P4 = (s = 12345(r0−→), 42315(r1−→), 32415(r1−→),
23415(r3−→), 53412(r5−→), 13452 (r3−→), 23451).

Observe that, in the above example, the (1)-process 13452 associated with d4 is
marked, since it is equal to the (1)-process associated with d2. So, the paths P2 and
P4 are not node-disjoint paths. To alleviate such a problem, the following scheme is
introduced in the One-T o-Many disjoint algorithm. During the construction of node-
disjoint paths P2, . . . , Pn (such that each path Pj , 2 ≤ j ≤ n, connects the source s to
the destination process dh.j, 1 ≤ h ≤ n − 1), each time a marked process associated
with a (i 1)-process dh.j is identified (Function Marked(d, h)), the path Pj from s
to dh is constructed as follows (i.e., the non-elementary construction). First, we need
to identify a neighbour d′.j of the process dh such that the process d′.j is not in DL
and the (1)-process associated with d′.j is not marked. Note that each marked process
is a (1)-process contained in a previously constructed paths. Then, the node-disjoint
path Pj from s to dh.j is constructed in the following two steps. First, the path Pj is
constructed from s to d′.j. Then, the construction continues from d′.j to dh.j. This is

198 R. Hadid and V. Villain

implemented by the introduction of the message (d′, d, j) containing three parameters
d′, d, and j. Hence, the (1)-process associated with dh.j is not included in the path Pj ,
whereas it includes the not marked (1)-process associated with d′.j. We can illustrate
this approach by using again the example 8 (see example 9).

Example 9. From example 8, the paths P2 and P4 are not node-disjoint paths, since
the 1-process associated with d.2 and d.4 are identical and equal to 13452. Let
d′.4 = 43251 be the selected neighbour of the process d.4 and the (1)-process asso-
ciated with d′.4 is 13254. Observe that d′.4 = 43251 is not in DL and the (1)-
process = 13254 associated with d′.4 is not marked. A path from s to d.4 = 23451
that keeps the symbol 1 at position 4 created by the above approach may look as fol-
lows. First we create the path from s to d′.4 = 43251 as follows: s = 12345 r0−→
42315 r2−→ 24315 r1−→ 34215 r1−→ 43215 r4−→ 53214 r4−→ 13254 r5−→ 43251. Then,
the construction continues from d′.4 to d.4 as follows: 43251 r3−→ 23451

The One-T o-Many node disjoint paths algorithm works as follows. After the label-
ing phase (Action a1), each process in DL is assigned a unique label j, 2 ≤ j ≤
n. The source process s initiates the construction of the n − 1 node-disjoint paths
P2, P3, . . . , Pn such that each path Pj , 2 ≤ j ≤ n, connects the source process s
to the destination dh.j ∈ DL, 1 ≤ h ≤ n − 1 (Action a2). Then, we need to consider
two cases.
(a) In the simplest case, when the destination process dh.j is in one of the three fol-
lowing situations (i.e., the (1)-process associated to dh is not marked): either it is a
representative process of a set Di or, a (1)-process, an (i 1)-process and its associated
(1)-process is not marked. In this case, the construction is elementary and is handled by
the message (dh, j) containing two parameters, dh and j. So, once the source process
s initiates this construction, it transmits the (dh, j) message to its successor on the path
Pj using function NextNeighFix1(). Analogously, when a process p (p �= dh) receives
this message, it transmits the message to its successor on the path Pj . This is repeated
until the destination dh is reached. This is implemented using Actions (a21) and (a3).
(b) However, when dh.j is an (i 1)-process and the (1)-process associated with the
process dh.j is marked, then, as explained before (non elementary construction), we
first identify a neighbour d′.j of the process dh.j such that d′.j is not in DL and the
(1)-process associated with d′.j is not marked. This is implemented using Function
UMNeigh(). In this case, the construction is handled by using the message (d′, dh, j)
containing three parameters: the first and the second destinations d′.j and dh.j to reach,
respectively, and the position j of the symbol 1 along all the processes on the path Pj .
So, the source process s initiates the construction of the path Pj from s to d′ by sending
the message (d′, d, j) to its successor on Pj (Action (a22). Then, subsequently, upon a
process p receives this message, we need to consider two cases (Action a4). (i) If the
process p is the first destination d′, meaning that the first destination d′ is reached, then
p sends the message (dh, j) with the second destination dh to reach to its successor;
(ii) Otherwise, the first destination d′ is still not reached, then p transmits the message
to its successor. Each process, upon receipt of a message, uses the function NextNeigh-
Fix1() to identify the successor process on a path Pj that kept the symbol 1 in the same
position j.

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 199

4 Proof of Correctness

We will show that Algorithm 4 constructs n−1 one-to-many node-disjoint paths. From
Algorithm 4, each destination process d.j inDL such that d.j is a representative process
of a set Dj , (1)-process, or a (i 1)-process and its associated 1-process is not marked
(Function ¬Marked()), the elementary construction is sufficient to construct a path Pj

from s to d.j (Actions a21 and a3). However, if d.j is a (i 1)-process and its associated
(1)-process is marked, then we need to identify a neighbour process of d.j (say d′.j)
such that d′.j is not in DL and its associated (1)-process is not marked (Function
UMNeigh()). Then, the path Pj is constructed in two steps: first a path is constructed
from s to d′.j, then from d′.j to d.j (Action a22 and a4). From Algorithm 4, we can
claim the following lemma.

Lemma 1. Let d.j ∈ DL a destination process, then Algorithm 4 constructs a path Pj

from s to d.j with the following properties.
(i) If d.j is a representative process, then all the processes on Pj keeps the symbol 1
at position j, except s.
(ii) If d.j is a (1)-process, then all the processes on Pj keeps the symbol 1 at position
j, except its endpoints s and d.j.
(iii) If d.j is a (i 1)-process (i �= j), then all the processes on Pj keeps the symbol 1 at
position j, except the (1)-process associated with d.j, and at most two (i 1)-processes
(i.e, d.j and one of its neighbour d′.j in Nj), and s.

In the sequel, we need the following definition. We say that a process sequence
(u1, u2, ..., us) in the n-star Sn is a simple cycle if all processes are distinct and (us, u1),
(ui, ui+1), 1 ≤ i ≤ s − 1, are all edges in Sn. From [4], we can claim the following
result.

Lemma 2. There is no simple cycle of the length less than six in the n-star Sn.

Let PrevPj denote the set of all the paths built before the path Pj . We introduce the
definition of the sets Nj and (1)-Nj associated with each destination process d.j ∈ DL
to facilitate the proof. Observe that each process d.j has n − 1 neighbours, one is a
(1)-process and the others are (i 1)-processes. Let the n − 1 neighbours of d.j be
d2 = π[1, 2](d.j), d3 = π[1, 3](d.j), d4 = π[1, 4](d.j), ..., dn = π[1, n](d.j) where
di = π[1, i](d.j) is the (1)-process associated with d.j and π[1, k](d.j), 2 ≤ k ≤ n
and k �= i, are the (i 1)-processes neighbours of d.j. Let Nj = {dk, 2 ≤ k ≤ n and
k �= i} be the set of all the (i 1)-processes neighbours of d.j. Let (1)-Nj = {(1)-
dk, 2 ≤ k ≤ n} be the set of all (1)-processes associated with processes in {d.j}∪Nj

such that (1)-dk is the (1)-process associated with dk.

Lemma 3. Let d.j ∈ DL be a (i 1)-process, but not the representative process, of set
Di and let the sets Nj and (1)-Nj be defined as above. Then, each path Pt of the paths
PrevPj contains, at most, one process in Nj and, at most, one process in (1)-Nj .

Proof. Let Pt ∈ PrevPj be the path that connects the source process s to the destina-
tion process d.t such that t is the position reserved for the symbol 1 for all the processes
on Pt (except for maximum one).

200 R. Hadid and V. Villain

1. If d.t (t �= j) is a (1)-process, then by Lemma 1 case (ii), all internal processes
of Pt are (t 1)-processes and t �= j. Similarly, by Lemmas 1 case (iii), the path Pj

contains only (j 1)-processes, one (1)-process, and at most two (i 1)-processes and
t �= i, since the position i is reserved for the representative process of the set Di. Thus,
the path Pt contains no process in the set Nj and contains at most one process, i.e., the
process d.t, in (1)-Nj .

2. If d.t is a (k 1)-process for k �= t and k �= i, then by Lemmas 1 case (iii),
the path Pt contains only (t 1)-processes, one (1)-process, and at most two (k 1)-
processes and t �= i. Since k �= j (because there exists a representative process for
each subset Dk and Dj) and t �= j (from the labeling process), the path Pt contains no
process in the set Nj and contains at most one process in (1)-Nj , i.e., the (1)-process
associated with d.t.

3. Assume that the process d.t is the representative process of the set Di. Then,
by Lemma 1 case (i), all processes except the first process s on the path Pt are (i 1)-
processes. Thus, the path Pt contains no process in the set (1)-Nj . To prove that the
path Pt contains, at most, one process in Nj , assume the contrary, that Pt contains
two (i 1)-processes in the set Nj (i.e., d.t and a neighbour of d.t). But, the path Pt

cannot contain the process d.t, otherwise, Dist(s, d.j) < Dist(s, d.t), contradicts the
selection of the representative process node d.t in the set Di. Thus, Pt contains, at most,
one process in Nj , the neighbour of d.t.

4. Finally, suppose that the process d.t is a (i 1)-process, but not the representative
process, of the set Di. We need to consider two cases.

a. The path Pt contains only one (i 1)-process that is the process d.t and one (1)-
process that is the (1)-process associated with d.t, and the rest of the processes on
Pt are all (t 1)-processes, t �= j. So, the path Pt contains at most one process in the
set Nj (i.e., the process d.t) and contains, at most, one process in (1)-Nj (i.e., the
(1)-process associated with d.t).

b. The path Pt contains two adjacent (i 1)-processes that is the process d.t and a
not marked neighbour dk ∈ Nt of d.t, and one (1)-process that is the (1)-process asso-
ciated with dk (i.e., (1)-dk), and the rest of the processes on Pt are all (t 1)-processes,
t �= j. In this case, not both of d.t and dk can be in the set Nj ; otherwise, the star
system Sn would have a simple cycle (d.t, dk, d.j), a contradiction with Lemma 2. So,
the path Pt contains at most one process in the set Nj (i.e., the process d.t or dk) and
contains, at most, one process in (1)-Nj (i.e., the (1)-process associated with dk).

Lemma 4. Let d.j be a (i 1)-process, but not the representative process, of set Di and
let the sets Nj and (1)-Nj be defined as above. Then, for each path Pt of the paths
PrevPj , if the path Pt contains a process dk in the set Nj and a (1)-process (1)-dl
in the set (1)-Nj , then the (1)-dl process must be the (1)-process associated with the
process dk.

Proof. From Lemma 3, the path Pt contains a process in Nj and a process in (1)-Nj

only in the case 4.b. The process d.t is a (i 1)-process, but not the representative pro-
cess, of the set Di. The path Pt contains two adjacent (i 1)-processes that is the pro-
cess d.t and a not marked neighbour dk ∈ Nt of d.t, and one (1)-process that is the
(1)-process associated with dk (i.e.,(1)-dk), and the rest of the processes on Pt are all

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 201

(t 1)-processes, t �= j. The path Pt contains at most one process in the set Nj (i.e., the
process d.t or dk) and contains, at most, one process in (1)-Nj (i.e., the (1)-process
associated with dk). If the (1)-process (1)-dk is in the set (1)-Nj , then the process d.t
cannot be in the set Nj–otherwise, the process dk is not in the set Nj and the process
sequence (dt, dk, (1)-dk, d′.j, d.j) would form a simple cycle of length 5 in the n-star
(d′.j is is a neighbour d.j on Pj).

Lemma 5. Let d.j be a (i 1)-process, but not the representative process, of set Di. If
the (1)-process associated with the process d.j is marked, then there is a neighbour dk
of d.j such that the process dk and the (1)-process associated with dk are not marked.

Proof. By Lemmas 3 and 4, each previously constructed path Pt ∈ PrevPj contains,
at most, one process in Nj (say, dk), and, at most, one (1)-process in (1)-Nj , the (1)-
process associated with dk. Let |PrevPj |= x ≤ n − 2. So, there exists x marked
processes Nj and x (1)-processes marked processes in the set (1)-Nj . Thus, there
exists (n − x − 1) ≥ 1 unmarked processes in the set Nj along with their (n − x − 1)
unmarked in the set (1)-Nj , hence the result.

By Algorithms 2, 4 and Lemmas 1, 5, we can show this result by induction on the
number of the node-disjoint paths previously constructed, i.e., |PrevPj |, such that 0 ≤
|PrevPj | ≤ n − 2.

Lemma 6. Let Pj (2 ≤ j ≤ n) be the path constructed from s to d.j by Algorithms 4,
then the path Pj is node-disjoint with all paths PrevPj previously constructed by the
algorithm.

Theorem 1. Given a source s and a set D={d1, d2, ..., dn−1} of n − 1 distinct pro-
cesses in the n-star, Algorithm 4 is a self-stabilizing one-to-many node-disjoint paths
algorithm and construct n−1 one-to-many node-disjoint paths in at mostO(n2) rounds,
such that each path connects s to a process in D.

Proof. From Algorithm 4 and Action (a1), the source process s initiates the label-
ing process infinitely often. The labeling process of the set D = {d1, d2, ..., dn−1}
uses the distance computing algorithm (Algorithm 2). In the worst situation, we have
D2,D3, ...,D�n/2� ⊆ D subsets such that each subset Di (i ∈ 2, 3, ...,
n/2�) con-
tains two (i 1)-processes. So, in order to find the representative process of each subset
Di (see rule (L1), Algorithm 2), we need to compute the distance from s to each pro-
cess in Di, i.e., 2(
n/2� − 1) processes. Since, each distance computing needs at most

3(n−1)/2� rounds, where
3(n−1)/2� is the diameter of the Sn, so the labling phases
requieres 2(
n/2�− 1)(
3(n− 1)/2�) rounds (O(n2) rounds). Then, from action (a2),
the source s also initiates the construction of the n − 1 node disjoint paths infinitely
often. Then, from actions a3 and a4 each process participates in the construction of the
paths infinitely often. From Lemma 4, the n − 1 node-disjoint paths are constructed in
at most
3(n − 1)/2� rounds. Thus, the stabilization time is O(n2) rounds.

5 Conclusion and Future Work

In this paper, we presented the first distributed self-stabilizing algorithm for finding
one-to-many node-disjoint paths algorithm in message passing model. Two paths in

202 R. Hadid and V. Villain

a network are said to be node disjoint if they do not share any nodes except for the
endpoints. Our algorithm works on n-star networks Sn. Due to being self-stabilizing,
it tolerates transient faults, and does not require initial configuration. The stabilization
time of our algorithm is O(n2) rounds. In this work, we merely provided an algorithm
to find one-to-many disjoint paths in n-star networks. Devising distributed and self-
stabilizing algorithms for hypecube is open problem that we consider as future work.

References

1. Akers, S.B., Krishnamurthy, B.: Group graphs as interconnection networks. In: 14th Interna-
tional Conference on Fault Tolerant Computing, Trans. pp. 422–427 (1984)

2. Akers, S.B., Krishnamurthy, B.: A group theoretic model for symmetric interconnection net-
works. IEEE Trans. Comput. 4(38), 555–565 (1989)

3. Akers, S.B., Harel, D., Krishnamurthy, B.: The star graph: an attractive alternative to the n-
cube. In: Proceedings International Conference on Parallel Processing, St. Charles, Illinois,
pp. 393–400 (1987)

4. Chen, C.C.: Combinatorial and algebraic methods in star and bruijn networks. Department
of Computer Science, Texas A and M university, Ph.D. dissertion (1995)

5. Chen, C.C., Chen, J.: Nearly optimal one-to-many parallel routing in star networks. IEEE
Trans. Parallel Distributed Syst. 8(12), 1196–1202 (1997)

6. Cheng, E., Gao, S., Qiu, K., Shen, Z.: On disjoint shortest paths routing on the hypercube.
In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 375–383.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02026-1 35

7. Dijkstra, E.W.: Self-stabilizing in spite of distributed control. Commun. Assoc. Comput.
Mach. 17(11), 643–644 (1974)

8. Dietzfelbinger, M., Madhavapeddy, S., Sudborough, I.H.: Three disjoint path paradigms in
star networks. In: Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pp. 400–406 (1991)

9. Gao, S., Hsu, D.F.: Short containers in Cayley graphs. Discrete Appl. Math. 157, 1354–1363
(2009)

10. Gu, Q.P., Peng, S.: Node-to-set and set-to-set cluster fault tolerant routing in hypercubes.
Parallel Comput. 24, 1245–1261 (1998)

11. Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint paths in
anonymous mesh networks. Comput. Commun. 32(5), 858–866 (2009)

12. Hadid, R., Karaata, M.H., Villain, V.: A stabilizing algorithm for finding two node-disjoint
paths in arbitrary networks. Int. J. Found. Comput. Sci. 28(4), 411–435 (2017)

13. Hsu, D.F.: A graph theoretical study of transmission delay and fault tolerance. In: Proceed-
ings 4th International Conference on Parallel and Distributed Computing and Systems, pp.
20–24 (1991)

14. Hsu, D.F.: On container width and length in graphs, groups, and networks. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E77-A(4), 668–680 (1994)

15. Hsu, C.C.: A genetic algorithm for maximum edge-disjoint paths problem and its extension
to routing and wavelength assignment problem. Ph.D. thesis, NC State University (2013)

16. Karaata, M.H., Hadid, R.: Briefannouncement: a stabilizing algorithm for finding two dis-
joint paths in arbitrary networks. In: Stabilization, Safety, and Security of Distributed Sys-
tems, pp. 789–790 (2009)

17. Lai, C.N.: One-to-Many disjoint paths in the hypercube and folded hypercube. Ph.D. thesis,
Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan (2001)

https://doi.org/10.1007/978-3-642-02026-1_35

Self-stabilizing One-To-Many Node Disjoint Paths Algorithm 203

18. Lai, C.N.: Two conditions for reducing the maximal length of node-disjoint paths in hyper-
cubes. Theoret. Comput. Sci. 418, 82–91 (2012)

19. Lai, C.N.: Optimal construction of all shortest node-disjoint paths in hypercubes with appli-
cations. IEEE Trans. Parallel Distrib. Syst. 23(6), 1129–1134 (2012)

20. Latifi, S.: On the fault-diameter of the star graph. Inf. Process. Lett. 46, 143–150 (1993)
21. Latifi, S., Ko, H., Srimani, P.K.: Node-to-set vertex disjoint paths in hypercube networks.

Technical report CS-98-107, Colorado State University (1998)
22. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York

(1990)
23. Ma, C., et al.: p-MDP structure against multi-failures in high-degree node based optical

networks. In: Communications and Networking in China, pp. 756–760 (2013)
24. Murthy, S., Souzaand, R.J.D., Varaprasad, G.: Digital signature-based secure node disjoint

multipath routing protocol for wireless sensor networks. IEEE Sensors J. 12(10), 2941–2949
(2012)

25. Qiu, K.: An efficient disjoint shortest paths routing algorithm for the the hypercube. In:
Proceedings of the 14th IEEE International Conference on Parallel and Distributed Systems
(ICPADS 2008), IEEE Computer Society Press, Vol. 4, pp. 371–384 (1999)

26. Rabin, M.A.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. J. ACM 36, 335–348 (1989)

27. Saad, Y., Shultz, M.H.: Topological properties of hypercubes. IEEE Trans. Comput. 37, 867–
872 (1988)

28. Sinanoglu, O., Karaata, M.H., AlBdaiwi, B.: An inherently stabilizing algorithm for node-
to-node routing over all shortest node-disjoint paths in hypercube networks. IEEE Trans.
Comput. 59(7), 995–999 (2010)

29. Sur, S., Srimani, P.K.: Topological properties of star grahs. Comput. Math. Applic. 25(12),
87–98 (1993)

Author Index

Abreu, João 95
Alonso, Ana 104

Ben Mokhtar, Sonia 73
Bromberg, Yérom-David 148

Carvalho, Hugo 3
Chrisment, Isabelle 21
Coelho, Fábio 131
Cruz, Daniel 3

Ferreira, Luís 131
Fraysse, Guillaume 169

Gitzinger, Louison 148

Hadid, Rachid 186

Jaiman, Vikas 73

Kalogeraki, Vana 55

Lejeune, Jonathan 169

Matos, Miguel 121
Meftah, Lakhdar 21

Nunes Alonso, Ana 95
Nunes, David 95

Oliveira, Rui 3, 104

Paulo, João 3
Pereira, José 95, 104, 131
Pontes, Rogério 3

Reiser, Hans P. 41
Rivière, Etienne 73
Rouvoy, Romain 21

Santos, Luiz 95
Sens, Pierre 169
Silva, Fábio 104
Soares, Tércio 95
Sopena, Julien 169

Taubmann, Benjamin 41
Tzouros, Giannis 55

Vieira, André 95
Villain, Vincent 186

	Foreword
	Preface
	Organization
	Contents
	Privacy and Security
	On the Trade-Offs of Combining Multiple Secure Processing Primitives for Data Analytics
	1 Introduction
	2 Background
	2.1 Cryptographic Schemes
	2.2 Intel SGX
	2.3 Threat Model

	3 Related Work
	4 Architecture
	4.1 Apache Spark
	4.2 SafeSpark
	4.3 Flow of Operations

	5 Implementation
	5.1 Data Storage
	5.2 Data Processing

	6 Experimental Evaluation
	6.1 Experimental Setup and Methodology
	6.2 SafeSpark Setups
	6.3 Results
	6.4 Discussion

	7 Conclusion
	References

	Capturing Privacy-Preserving User Contexts with IndoorHash
	1 Introduction
	2 Related Work
	2.1 WiFi Indoor Positioning Systems
	2.2 WiFi Fingerprinting Systems

	3 Introducing IndoorHash
	3.1 Computing an IndoorHash
	3.2 Comparing an IndoorHash
	3.3 Indexing an IndoorHash
	3.4 Classifying an IndoorHash
	3.5 Sharing an IndoorHash

	4 Empirical Evaluation
	4.1 Privacy Analysis
	4.2 DayKeeper Android App
	4.3 Deployment Statistics
	4.4 IndoorHash Evaluation

	5 Towards Privacy-Preserving Location-Based Services
	6 Conclusion
	References

	Cloud and Systems
	Towards Hypervisor Support for Enhancing the Performance of Virtual Machine Introspection
	1 Introduction
	2 Virtual Machine Introspection
	2.1 Hardware Requirements
	2.2 Hypervisor Support
	2.3 VMI Applications
	2.4 Basic Synchronous VMI Methods
	2.5 System Call Tracing

	3 Improving the Performance
	4 Prototype
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Fed-DIC: Diagonally Interleaved Coding in a Federated Cloud Environment
	1 Introduction
	2 Background
	2.1 Federated Storage Systems
	2.2 Erasure Codes
	2.3 Diagonally Interleaved Coding

	3 Challenges
	4 Design of the Fed-DIC Framework
	4.1 Framework Architecture
	4.2 Read Access Latency
	4.3 Data Loss Percentage
	4.4 Framework API
	4.5 Uploading and Downloading Algorithms

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	TailX: Scheduling Heterogeneous Multiget Queries to Improve Tail Latencies in Key-Value Stores
	1 Introduction
	2 Multiget Requests in Key-Value Stores
	3 TailX Design and Implementation
	3.1 Load Estimation and Replica Selection
	3.2 Request Splitting
	3.3 Delay Allowance Policies

	4 Evaluation
	4.1 Experimental Setup
	4.2 TailX on Variable Configurations of the Synthetic Dataset

	5 Related Work
	6 Conclusion
	References

	Fault-Tolerance and Reproducibility
	Building a Polyglot Data Access Layer for a Low-Code Application Development Platform
	1 Introduction
	2 Architecture
	2.1 Implementation

	3 Lessons Learned
	References

	A Comparison of Message Exchange Patterns in BFT Protocols
	1 Introduction
	2 Background
	3 Model
	4 Results
	5 Discussion
	6 Lessons Learned and Future Work
	References

	Kollaps/Thunderstorm: Reproducible Evaluation of Distributed Systems
	1 Introduction
	2 Kollaps
	3 Thunderstorm
	4 Experiments
	5 Discussion
	References

	Machine Learning for Systems
	Self-tunable DBMS Replication with Reinforcement Learning
	1 Introduction
	2 Motivation
	3 System Design
	3.1 Overview
	3.2 Components
	3.3 Reinforcement Learning Agent
	3.4 Reinforcement Learning Mechanism
	3.5 Preliminary Evaluation

	4 Related Work
	5 Conclusion
	References

	DroidAutoML: A Microservice Architecture to Automate the Evaluation of Android Machine Learning Detection Systems
	1 Introduction
	2 Background
	2.1 Emergence of Machine Learning Algorithms to Detect Android Malware
	2.2 Importance of Features in ML Malware Classification Problem
	2.3 Choosing and Training the Classification Algorithm

	3 A Microservice Architecture for ML
	4 Evaluation
	4.1 Implementation
	4.2 Evaluation of Two State of the Art Scanners

	5 Related Work
	6 Conclusion
	References

	Distributed Algorithms
	A Resource Usage Efficient Distributed Allocation Algorithm for 5G Service Function Chains
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Algorithms
	4.1 Path Computation Subroutine
	4.2 The Allocation Subroutine

	5 Experimental Results
	5.1 Metrics and Evaluation
	5.2 Dijkstra's Incremental Algorithm
	5.3 Simulating the System with SimGrid
	5.4 System with 1 Instance of M Resources
	5.5 System with N Instances of M Resources

	6 Conclusion and Future Works
	References

	A Self-stabilizing One-To-Many Node Disjoint Paths Routing Algorithm in Star Networks
	1 Introduction
	1.1 Contributions

	2 Distributed System and Programs
	3 Self-stabilizing Algorithm
	3.1 Labeling Process
	3.2 One-To-Many Node-Disjoint Paths Construction

	4 Proof of Correctness
	5 Conclusion and Future Work
	References

	Author Index

