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6.1	 �Introduction

In 1957, Thomas and Burnet proposed the immu-
nosurveillance theory, contending that the 
immune system is continuously patrolling, rec-
ognizing, and eliminating individual or groups of 
transformed cells [1]. This theory together with 
the identification of tumor-associated antigens 
(TAAs) led to much of the work in cancer vac-
cines to date. Based on this theory, it stands to 
reason that if the immune system has failed to 
recognize or mount a sufficient immune response 
to cancer, thus allowing a cancer to grow until it 
is clinically evident, stimulating the immune sys-
tem sufficiently against the cancer could correct 
the immune system’s failings and destroy the 
cancer. While there is considerable data in sup-
port of this theory, a number of discrepancies 
have also been noted. Most notably, athymic 
nude mice, which are T-cell deficient, and immu-
nosuppressed individuals (transplant patients) do 
not develop neoplasms that are not virally linked 
at rates much drastically higher than their immu-
nocompetent counterparts [2, 3]. While better 
models have since confirmed the role of the 
immune system in protecting against cancer 
development, it is clear that the immunosurveil-

lance theory alone is not sufficient to explain the 
role of immune systems in cancer development.

Active immunotherapy for cancer based on 
the immunosurveillance understanding of cancer 
has, for the most part, been characterized by 
promising preclinical and early phase trials with, 
ultimately, disappointing clinical results in later 
phase trials [4]. Vaccination techniques have 
focused on stimulating the immune system by 
exposure to single or multiple tumor-associated 
antigens with immunoadjuvants such as cyto-
kines (GM-CSF, IL-2) or toxins. While a variety 
of different techniques have been tried, with the 
exception of sipuleucel-T, a cancer vaccine 
approved for treatment of metastatic prostate 
cancer, these techniques have largely proven 
insufficient to overcome the local and systemic 
immunosuppression of advanced cancer in order 
to achieve a clinically significant improvement 
[5]. Historically, various types of active immuno-
therapy have shown excellent results in eradicat-
ing or preventing tumors in relevant murine 
models. In early phase clinical trials, active 
immunotherapies have generally had minor, 
well-tolerated toxicity profiles and shown prom-
ising immunologic results; however, these have 
not translated to clinically meaningful endpoints 
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when tested in larger-scale controlled trials. As 
noted above, an exception to this is the sipuleu-
cel-T vaccine, which demonstrated significant 
benefit in overall survival in castrate-resistant 
prostate cancer (CRPC) in two phase III trials 
and has been FDA approved based on these 
results [5, 6].

The immune system-cancer interaction is now 
recognized to be more complex than once imag-
ined. The cumulated results of experimental evi-
dence have led to the “immunoediting theory,” a 
modification of the previous immunosurveillance 
theory that explains how immunocompetent indi-
viduals develop cancer and how the immune sys-
tem can help shape the biologic activity of the 
cancers themselves. The theory proposes that 
cancer proceeds though three phases: elimina-
tion, equilibrium, and escape. The elimination 
phase describes the recognition and elimination 
of nascent cancer cells as in the immunosurveil-
lance theory. The equilibrium phase is a period 
where the cancer cells that avoid immune destruc-
tion are held at bay by the immune system and 
which, through selective pressure (immunoselec-
tion), can change the cancer’s phenotype into a 
less immunogenic and more tolerance-inducing 
tumor. The escape phase describes the setting in 
which cancer cells have evolved to evade immune 
pressure and can replicate to become a clinically 
apparent neoplasm [7].

Cancer avoids immune destruction in the 
equilibrium phase and then is able to enter the 
escape phase through multiple mechanisms that 
have become increasingly well characterized. 
Cancer cells can escape immune detection by 
downregulating production of TAAs or the major 
histocompatability (MHC) complexes that the 
antigens are presented on [8, 9]. Tumor tissue can 
promote lymphocyte anergy, or unresponsiveness, 
by downregulating necessary co-stimulatory sig-
nals, which are necessary for functional lympho-
cyte activation, or upregulating coinhibitory 
signals, which are necessary for preventing auto-
immunity. Tumors, through contact-mediated and 
soluble signals, recruit and cause proliferation of 
inhibitory cell populations such as regulatory T 

lymphocytes (Tregs), tolerogenic dendritic cells, 
and myeloid-derived suppressor cells. 
Additionally, tumors alter the cellular microenvi-
ronment through secretion of inhibitory cyto-
kines and metabolic byproducts, all of which 
hamper effective immune response [10].

Given our increased understanding of how 
tumor cells actively inhibit and escape host 
immunity and the disappointing results of most 
cancer vaccine therapies, it has become increas-
ingly clear that these failures do not stem from 
lack of ability to stimulate an appropriate immune 
response but rather from the inability of the 
immune response to overcome immunosuppres-
sive mechanisms. In other words, regardless of 
how many stimulated, cancer-specific effector 
cells are created with a given vaccine, if the cells 
are rendered ineffective in the “immunoedited” 
tumor microenvironment, ultimately the therapy 
will fail [11]. A large amount of research effort is 
underway to identify, characterize, and target 
cancer escape mechanisms in hope of delivering 
more effective immunotherapeutic treatments.

As mentioned earlier, one major mechanism 
of immune resistance is through multiple costim-
ulatory and inhibitory receptor-ligand combina-
tions (immune checkpoints) that create a context 
for the effector and target cell (or antigen-
presenting cell) interaction. Multiple immune 
checkpoints have now been identified and have 
been found to play an integral role in cancer 
escape (Fig.  6.1). Blockade of two of these 
checkpoint pathways, CLTA-4 and PD-1/PD-L1, 
has led to commercially available therapeutic 
drugs in patients with multiple different types of 
malignancy. Many other immunomodulatory 
checkpoints are being actively investigated and 
will, in all likelihood, lead to further therapeutic 
options for patients with cancer. In addition, the 
potential for combination therapy with multiple 
checkpoints targeted (such as CTLA-4, PD-1, 
PD-L1) or together with standard therapies or 
cancer vaccines remains great. This chapter will 
review the role of therapeutic checkpoint targets 
to overcome tumor-mediated immune suppres-
sion through targeted checkpoint modulation.
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6.2	 �Neoantigens: Targets 
for the Immune System

With the development of multiple commercially 
available checkpoint blockade drugs, consider-
able research has been devoted to determining in 
which tumor types and in which clinical setting 
the drugs are beneficial. With this new focus, fac-
tors that make certain tumors more immunogenic 
are becoming clearer. All malignancies that 
become clinically apparent are able to evade 
immune destruction, but this is often due to 
immunosuppressive factors (rather than lack of 
immunogenicity of the tumor itself) that can be 
countered with checkpoint inhibitors and, poten-
tially, other immunostimulatory drugs in devel-

opment. Neoantigens are unique antigens 
generated from gene mutations during neoplastic 
transformation. Each neoantigen produced repre-
sents a potential target for the host immune sys-
tem to differentiate the tumor from normal tissue. 
However, not all neoantigens are inherently 
immunogenic. It is presumably a matter of chance 
whether the mutations a tumor acquires produce 
neoantigens immune system is capable of recog-
nizing and targeting. As a consequence, in gen-
eral, tumors with a higher mutational load, such 
as melanoma, NSCLC, and microsatellite unsta-
ble tumors, are more likely to respond to check-
point inhibitors [12–17]. However, this is not 
entirely predictive as tumors with relatively lower 
somatic mutations (HCC, clear cell carcinoma) 
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have shown benefit, albeit with lower response 
rates, to checkpoint inhibitor therapy [18]. 
Checkpoint inhibitors allow the ineffective 
immune responses to be more effective (but there 
has to be an immune response to begin with), 
illuminating why checkpoint inhibitors are not 
effective in all patients.

At this time, there are five checkpoint inhibi-
tors approved by the US Food and Drug 
Administration for a variety of cancers, including 
ipilimumab (melanoma), pembrolizumab (mela-
noma, non-small cell lung cancer [NSCLC], head 
and neck squamous cell cancer, classical 
Hodgkin’s lymphoma [cHL], urothelial carci-
noma, microsatellite instability [MSI]-high colon 
cancer, gastric cancer), nivolumab (melanoma, 
NSCLC, renal cell carcinoma [RCC], cHL, MSI-
high colon cancer, hepatocellular carcinoma 
[HCC]), atezolizumab (urothelial carcinoma, 
NSCLC), avelumab (Merkel cell carcinoma 
[MCC], urothelial carcinoma), and durvalumab 
(urothelial carcinoma) [19].

6.3	 �Cytotoxic T-Lymphocyte-
Associated Antigen-4 (CTLA-
4): The First Checkpoint 
Pathway to Demonstrate 
Clinical Benefit

Cytotoxic T-lymphocyte-associated antigen-4 
(CTLA-4, CD152) was the first recognized inhib-
itory immune checkpoint molecule [20, 21]. 
CTLA-4 is the target of the first FDA-approved 
checkpoint-targeting drug, ipilimumab. During 
the development of CTLA-4 blocking monoclo-
nal antibodies (mAb), much has been learned 
about dosing, toxicity, combination therapy, and 
tumor response that are now and will continue to 
be useful as other immune checkpoint therapies 
are developed.

6.3.1	 �CTLA-4 Function

When CTLA-4 (CD152) was first reported in 
1987, it was presumed to play a role in control-
ling T-cell activation given its close sequence 
homology with CD28, its proximity to CD28 on 

chromosome 1, and its expression on cytotoxic T 
lymphocytes (CTLs) coinciding with T-cell acti-
vation [20]. The first CTLA-4−/− knockout mice, 
created in the mid-1990s, confirmed that CTLA-4 
played a key role in T-cell homeostasis as the 
mice quickly succumbed to polyclonal lymphop-
roliferative disease characterized by massive 
expansion of activated T cells [22]. Since then, it 
has become clear that CTLA-4 functions as a 
negative counterpart to CD28, the required 
costimulatory signal for the activation and expan-
sion of T cells.

For T lymphocytes to be activated, an antigen-
specific T-cell receptor (TCR) must bind to an 
MHC complex containing the appropriate pep-
tide in its binding grove. While this is necessary, 
it is not sufficient to complete activation. A num-
ber of additional regulatory pathways have since 
been elucidated that closely control T-cell activa-
tion to ensure appropriate, directed immune 
responses under normal circumstances. Among 
these pathways, co-stimulation with CD28 (on 
the T cell) binding to B7-1 (CD80) or B7-2 
(CD86) on the antigen-presenting cell (APC) is 
perhaps the most important and best known. B7-1 
and B7-2 are expressed on APCs and are typi-
cally upregulated after activation [23, 24].

As a competitively binding counterpart to 
CD28, CTLA-4 is an inhibitory checkpoint mol-
ecule expressed on activated T cells and constitu-
tively expressed on regulatory T cells (Treg) [21]. 
After TCR-antigen-mediated activation of T lym-
phocytes, expression of CTLA-4 on the cell 
membrane increases dramatically. CLTA-4 sup-
presses immune activation through multiple 
pathways, and the relative importance of each in 
overall immune homeostasis and in disease-
related autoimmunity and immune suppression is 
not clear [25].

The CTLA-4 receptor controls effector 
T-lymphocyte activation by competitive binding 
with CD28 as well as through internal and 
external signaling. CTLA-4 binds the same 
ligands as CD28 (B7-1 and B7-2) but with 20 to 
100 times greater avidity and can accommodate 
two ligands, whereas CD28 can only bind one 
[26–28]. CTLA-4 appears to blunt T-cell 
responses by not only competitively binding the 
CD28 ligands, B7-1 and B7-2, but also by recep-
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tor-mediated induction of cell cycle arrest, 
decreasing production of IL-2, limiting T-cell 
dwell time, and enhancing Treg function, among 
other mechanisms [29]. There is evidence that 
competitive binding of B7-1 and B7-2 by 
CTLA-4 remains the most important function in 
counteracting CD28-mediated T-cell stimula-
tion, as treatment of CLTA-4-deficient mouse 
models with CTLA-4-immunoglobulin fusion 
protein (CLTA-4Ig) can abrogate the lymphop-
roliferative autoimmunity which would other-
wise be fatal [30]. Additionally, the singular 
importance of B7-1 and B7-2 in these pathways 
is demonstrated by the fact that mice deficient in 
CTLA-4 as well as B7-1 and B7-2 do not dem-
onstrate lymphoproliferative autoimmunity [31]. 
Unlike CD28, which has some level of constitu-
tive expression on most T cells, CTLA-4 is only 

expressed in significant quantity on effector T 
cells after activation. CTLA-4 reaches a maxi-
mal expression level as long as 48 h after the T 
cell is activated serving as a negative feedback 
loop to turn off or prevent an overly robust 
immune response as well as to prevent autoim-
munity (Fig. 6.2) [27, 32].

In addition to directly and indirectly inhibiting 
effector T-lymphocyte activation and prolifera-
tion, CTLA-4 interacts with Tregs in a manner 
important to its overall function. As previously 
stated, CTLA-4 is expressed at some constitutive 
level on Treg cells, and higher levels of expres-
sion may be rapidly mobilized from an intracel-
lular source [25]. The exact role that 
Treg-mediated immune suppression plays in the 
overall context of CTLA-mediated immune con-
trol is not entirely clear. There is evidence from 
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lymphocytes treated with anti-CTLA-4 monoclo-
nal antibodies (mAbs) in  vitro, which suggests 
that CTLA-4 blockade mediates the immune sys-
tem by both direct activation of effector T lym-
phocytes and Treg depletion, dependent on the 
mAb subtype and its ability to stimulate antibody-
dependent cytotoxicity (ADCC) [33, 34].

The important role of CTLA-4 in Treg homeo-
stasis and immune control has become clear in 
multiple experiments. Treg-mediated CLTA-4 
inhibits B7-1 and B7-2 expression on dendritic 
cells [35]. Murine models with CTLA-4-deficient 
CD4+ FOXP3+ (Treg) lymphocytes developed 
lymphoproliferative disease [35]. Additionally, 
CTLA-4 plays an active role in Treg homeostasis 
as blocking the receptor with anti-CTLA-4 mAbs 
leads to a rapid proliferation in peripheral Treg 
cells [36–38]. This action is thought to be due to 
CTLA-4 counteraction against CD28-stimulated 
proliferation of Tregs as blocking both CTLA-4 
and CD28 leads to a contraction in the periph-
eral Treg population [24, 36]. However, expan-
sion of Tregs with CTLA-4 blockade does not 
appear to lead to increased Treg function [39]. 
Similarly, in murine organ transplant models, 
deficiency of CD28 or both B7-1 and B7-2 leads 
to a significant decrease in the Treg population; 
however, the mice get paradoxical acceleration 
of graft rejection inversely proportional to the 
Treg level [39].

As work progresses in deciphering the mecha-
nisms of the CTLA-4 receptor’s complex interplay 
within broader immune homeostasis, the CTLA-4 
receptor remains an active target of investigation 
for modulating the immune system for therapeutic 
purposes. The identified roles that CTLA-4 plays 
in human disease are substantial and ever-grow-
ing. There is evidence that CTLA-4 polymor-
phisms plays a role in autoimmune conditions 
such as type 1 diabetes, thyroiditis autoimmune 
hypothyroidism, and Graves’ disease [40–43].

6.3.2	 �Tremelimumab

Tremelimumab (formerly CP-675, 206, ticilim-
umab, previously licensed to Pfizer, New York, 
NY, now licensed to AstraZeneca, London, UK) 

is another humanized anti-CTLA-4 mAb that has 
been evaluated in human clinical trials [29, 44]. 
Tremelimumab is an IgG2 antibody that, similar 
to ipilimumab, blocks the binding site of CLTA-4. 
It has a longer half-life of approximately 22 days 
compared to 12–14 days for ipilimumab [44]. In 
vitro testing of tremelimumab revealed enhanced 
T-cell activation, demonstrated by increased 
cytokine production. Based on this, as well as ini-
tial experience with ipilimumab, the drug pro-
ceeded with human trials.

The first dose escalation phase I trial of treme-
limumab enrolled metastatic melanoma (n = 34), 
renal cell carcinoma (n  =  4), and colon cancer 
patients (n = 1). The trial did note dose-limiting 
autoimmune toxicity, but determined that the 
drug was tolerated up to 15  mg/kg in a single 
dose. The trial also noted complete or partial 
response in 4 of the 29 patients with measurable 
melanoma [45]. Ongoing evaluation of tremelim-
umab is occurring in a phase II hepatocellular 
carcinoma study in combination with durvalumab 
(NCT02519348).

A phase I/II trial further evaluated dosing in 
metastatic melanoma patients and recommended 
dosing at 15 mg/kg every 3 months for further 
study given equivalent efficacy and better safety 
to more frequent dosing [46]. A subsequent 
single-arm, phase II trial of tremelimumab was 
conducted in 251 patients with relapsed or 
refractory metastatic melanoma. Patients were 
treated with tremelimumab at 15  mg/kg every 
90 days (as recommended in the previous trial) 
for 4 doses and allowed up to 4 additional doses 
in patients with a tumor response or stable dis-
ease. The trial revealed an objective response 
rate of 6.6%. The trial reported an overall OS of 
10.0  months, which is comparable with what 
was found in the previously described phase III 
trial of ipilimumab in similar patients. Serious 
adverse events (≥grade 3) were seen in 21% of 
patients [47].

The phase III trial of tremelimumab mono-
therapy in treatment-naïve unresectable stage III 
or stage IV melanoma began enrolling in March 
2006. Patients were randomized to receive treme-
limumab at 15 mg/kg every 90 days until symp-
tomatic disease progression or standard-of-care 
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chemotherapy (temozolomide or dacarbazine) 
for 12  weeks or until disease progression. The 
primary end-point was OS. The trial was termi-
nated by the data safety monitoring board at the 
second interim analysis (after two-thirds of 
planned events had occurred) because the test 
statistic crossed the prespecified futility bound-
ary [48]. Survival follow-up continued after the 
trial was stopped. At final analysis, the median 
overall survival was 12.6 months in the tremelim-
umab arm compared to 10.7 months in the che-
motherapy arm (p = 0.127). Objective response 
rates were similar in both arms (10.7% vs. 9.8%, 
respectively). Grade 3 or 4 adverse events 
occurred in 52% of tremelimumab patients com-
pared to 37% of chemotherapy patients [49]. 
More recent work has suggested that the lack of 
tremelimumab efficacy may stem from the fact 
that it is an IgG2 isotype mAb, thus less able to 
produce reduction in intratumoral Tregs than ipi-
limumab, an IgG1 mAb [34]. Despite its lack of 
proven effect in this trial, tremelimumab remains 
under active investigation in other patient popula-
tions (discussed further below).

6.3.3	 �Toxicity

As previously described, CTLA-4 blocking anti-
bodies can lead to unique, immunologic toxici-
ties termed “immune-related adverse events” 
(irAEs) through nonspecific activation of the 
immune system. While the majority of these are 
minor and manageable, they occur relatively fre-
quently, particularly at higher doses and can be 
severe. In the first phase III trial of ipilimumab, 
with treatment at 3  mg/kg, 14 patients (2.1%) 
receiving ipilimumab died from causes deemed 
treatment-related, with 7 of the deaths were from 
irAEs [50]. In a pooled analysis of 325 patients 
treated with ipilimumab at 10  mg/kg every 
3  weeks for 4 doses, 72.3% experienced irAEs 
and 25.2% were ≥grade 3 [51]. In the phase III 
trial combining ipilimumab with dacarbazine for 
treatment naïve melanoma, 56.3% of patients in 
the combination arm experienced grade 3 or 4 
adverse events. The most frequent irAEs are of 
the skin, gastrointestinal tract, liver, and endo-

crine system. These adverse events tend to occur 
at predictable times after receiving CTLA-4 
blocking antibodies [51].

Skin toxicity is the most frequent irAE in 
some series, with roughly half of the patients 
receiving ipilimumab experiencing some form 
of rash. The rashes can typically be managed 
with symptom control and topical medication 
until they become more severe when systemic 
steroids and/or withholding or discontinuing 
treatment may be necessary. There are rare 
reported cases of toxic epidermal necrolysis that 
have been fatal [52].

Diarrhea is another frequent adverse event 
seen in CTLA-4 blockade treatment, occurring in 
between 32.8% and 51% of patients in phase III 
trials of ipilimumab and tremelimumab [49, 50, 
53]. Severe diarrhea, colitis, and perforation are 
less common but can occur. Like skin toxicity, 
initial management is symptomatic. A high 
degree of suspicion for colitis with a low thresh-
old for endoscopic evaluation is necessary for 
more severe (≥grade 2) diarrhea. The diagnosis 
of colitis or grade 3 or higher diarrhea necessi-
tates more aggressive treatment with fluid 
replacement, systemic steroids, and treatment 
cessation. Infliximab treatment has been effective 
for severe colitis. A high index of suspicion for 
perforation with involvement of gastroenterology 
and surgery is also warranted in these cases [52].

Hepatotoxicity is seen less frequently (3–9%) 
with CTLA-4 blocking antibodies but can be 
severe. In general, liver function tests should be 
followed during treatment, and ≥grade 3 hepato-
toxicity requires systemic treatment with sys-
temic steroids and occasionally mycophenolate 
mofetil along with drug cessation [51].

Endocrine toxicities consist of hypophysitis 
and, less frequently, autoimmune thyroid 
dysfunction and adrenal insufficiency. 
Hypophysitis appears to occur in less than 5% of 
cases but typically has permanent sequelae and 
can lead to life-threatening adrenal insufficiency 
if not properly recognized and managed. 
Suspicion for hypophysitis should lead to pitu-
itary MRI and laboratory testing. Treatment con-
sists of systemic steroids and withholding 
CTLA-4 blocking treatment. Monitoring of 
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serum chemistries and thyroid function panels is 
recommended with ipilimumab treatment [54].

Other less frequent irAEs seen with CTLA-4 
blocking therapies include episcleritis, uveitis, 
pancreatitis, neuropathies, and lymphadenopa-
thy. Screening for a history of autoimmune dis-
ease and consideration of risk factors and 
expected benefits are recommended given the 
potential for serious toxicity with CTLA-4 block-
ing antibodies. National Comprehensive Cancer 
Network (NCCN) guidelines recommend partici-
pation in a risk evaluation and mitigation strategy 
(REMS) program when using ipilimumab [55].

Interestingly, multiple phase I and II trials of 
ipilimumab have noted a higher rate of clinical 
response in patients with irAEs and, in particular, 
grade 3 and 4 irAEs [52, 56–62]. A similar cor-
relation was not addressed in the phase III trials 
of CLTA-4 blockade antibodies, and further eval-
uation may help clarify this as well as the under-
lying mechanisms.

6.4	 �Programmed Death 1 (PD-1) 
Pathway

6.4.1	 �Function

Programmed death 1 (PD-1) is a more recently 
discovered immune checkpoint receptor that has 
generated considerable excitement based on 
favorable preclinical profiling and initial clinical 
results. PD-1 was first discovered in 1992 by sub-
tractive mRNA hybridization in an attempt to 
identify genes involved in programmed cell death 
[63]. Its protein structure was deduced based on 
the mRNA sequence obtained; however, its func-
tion remained unclear until PD1−/− knockout 
mice were noted to develop lupus-like autoim-
mune disease [64]. At that time, it was correctly 
suspected that PD-1 played a role in inducing 
peripheral tolerance.

Since its discovery, the function and signifi-
cance of PD-1 has become more clear [65]. Like 
CTLA-4, PD-1 is a transmembrane protein 
expressed on effector immune cells [66]. Also 
like CTLA-4, expression of PD-1 is inducibly 
expressed with lymphocyte activation, although 

it is expressed more broadly than CTLA-4 as it is 
also found on activated B lymphocytes and NK 
cells [67–69]. PD-1 is bound principally by pro-
grammed death ligand 1 (PD-L1, B7-H1) but 
also, to a lesser degree, by programmed death 
ligand 2 (PD-L2, B7-DC) [70]. PD-L1 is consti-
tutively expressed in certain tissues such as lung 
and placental macrophages [71]. Its high level of 
expression in the placenta has been implicated in 
mediating maternofetal tolerance [72, 73]. PD-L1 
expression can also be induced on a broad range 
of hematopoietic, endothelial, and epithelial tis-
sues in response to proinflammatory cytokines, 
such as interferon, GM-CSF, IL-4, and IL-19 [67, 
74–77]. PD-L2 expression is more limited as it is 
inducibly expressed on dendritic cells, macro-
phages, and mast cells [71].

The PD-1 receptor pathway is an important 
negative regulator of the immune system. PD-1 
appears to play a role primarily in dampening 
immune response in the setting of peripheral 
inflammation as opposed to CTLA-4, which 
plays a greater role in regulating T-cell activation 
[71]. As mentioned before, PD-1 knockout mice 
helped initially reveal the function of PD-1. The 
initial B6-PD-1−/−congenic mice developed vary-
ing degrees of autoimmune arthritis and glomer-
ulonephritis by 6 months of age and exaggerated 
inflammatory response to infection, in contrast to 
CTLA-4 knockout mice who die of diffuse lym-
phoproliferative disease shortly after birth [22, 
64, 78]. Remarkably, later PD-1−/− knockout 
mouse models (BALB/c-PD-1−/− and 
MLR-PD-1−/−) developed fatal autoimmune 
dilated cardiomyopathy early in life due to pro-
duction of autoantibodies [79, 80]. In contrast, 
mice deficient in PD-L1 do not manifest autoim-
munity, but can have increased accumulation of 
CD8+ lymphocytes in the liver and increased 
tissue destruction with experimental autoimmune 
hepatitis [81].

Ligation of PD-1, which again is found pri-
marily on immunologic cells, counters CD28-
mediated signaling through multiple mechanisms. 
PD-1 is phosphorylated upon ligand engagement, 
initiating a cascade of intracellular events [82, 
83]. PD-1 signaling decreases the production of 
several proinflammatory cytokines such as IFN-
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γ, TNF-α, and IL-2 [71]. It may also serve to 
retard cell activation mediated via CD28 and 
IL-2. PD-1 ligation has also been implicated in 
inhibiting transcription factors and initiation of 
several cell death pathways [84–86]. Importantly, 
PD-1 and its ligands also appear to play a role in 
shifting lymphocyte response from activation to 
tolerance when exposed to antigens, an attribute 
that is particularly significant for cancer immu-
notherapy [87]. Interestingly, PD-L1 was discov-
ered to function not only as a ligand for PD-1 but 
also as a receptor bound by B7-1 (CD80) capable 
of delivering an inhibitory signal [88]. This find-
ing not only demonstrates the complexity of lym-
phocyte regulation but suggests that blockade of 
these molecules could result in functionally dif-
ferent outcomes [78].

The PD-1 and PD-L pathways have been 
implicated in a variety of human diseases. Higher 
than normal expression levels of PD-1 and single 
nucleotide polymorphisms of PD-1 have been 
implicated in multiple autoimmune diseases such 
as systemic lupus erythematosus, Sjogren’s dis-
ease, type 1 diabetes, and rheumatoid arthritis. As 
such, this pathway remains an active therapeutic 
target in these conditions [65]. In infectious dis-
eases, the PD-1 and PD-L pathways play an 
important role in preventing unnecessary 
immune-mediated tissue destruction and have 
also been implicated in preventing the clearance 
of chronic viral, bacterial, and parasitic infec-
tions [71, 89].

6.4.2	 �PD-1 Pathway in Cancer

Just as the PD-1 pathway plays a central role in 
tolerance of chronic infections, it also appears to 
have a primary role in cancer tolerance and 
immune escape. PD-1 ligand expression, particu-
larly of PD-L1 expression, has been demon-
strated at various levels on a large variety of 
human cancer tissues. Higher expression of 
PD-L1 on tumor cells is associated with worse 
prognosis, more aggressive features, and/or resis-
tance to immunotherapy in the large majority of 
cancers in which it has been characterized [90–
101]. However, in some cases higher expression 

appears to have little influence on prognosis, as 
was found in NSCLC, and has even been associ-
ated with a more favorable prognosis, as found in 
colorectal cancer without mismatch repair 
(MMR) deficiency [102, 103]. CD8+ tumor-
infiltrating lymphocytes (CD8+ TILs) have been 
noted to have high levels of PD-1 expression in 
many cases; nonetheless, correlation between 
PD-L expression and prognosis is mixed [97, 
102, 104, 105]. Circulating NK cells in cancer 
patients have been noted to express PD-1, while 
healthy control NK cells do not [106]. 
Furthermore, preclinical data demonstrates that 
increasing tumor expression of PD-L1 makes it 
less susceptible to immunotherapy, while block-
ing it increases its vulnerability to immune-
mediated destruction [107–110].

Some of the differences observed in tumor 
PD-L1 expression and correlation with cancer 
prognosis may be due to tumor-host interaction. 
Two recent studies examining human melano-
cytic lesions and colorectal cancer found a strong 
positive correlation between tumor PD-L1 
expression and patient survival, in contrast to the 
majority of tissue types previously examined. 
However, in addition to this, higher PD-L1 
expression was associated with both increased 
tumor infiltrating lymphocytes and interferon 
gamma (INF-γ) levels or gene expression in the 
tumor microenvironment [103, 111]. In these 
cases, the higher levels of PD-L1 expression 
may be in response to INF-γ signaling, as 
observed in normal human tissue [112, 113]. 
Thus, upregulation of PD-L1 expression may 
represent an adaptive tumor response to tumor-
specific immunity, termed “adaptive resistance.” 
[111, 114] The effective host immune response 
may explain the more favorable outcomes 
observed in these patients. Other evidence impli-
cates different transcriptionally related onco-
genic pathways in the upregulation of PD-1, 
which may or may not be related to external 
inflammatory signaling [92]. The adaptive resis-
tance hypothesis may help further explain how 
tumors are able to escape immune stimulation 
from active immunotherapy and lead to blockade 
of the PD-1 pathway of particular therapeutic 
interest.
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6.4.3	 �PD-1 Blockade

In preclinical studies with murine cancer models, 
anti-PD-1 and anti-PD-L1 blockade demon-
strated antitumor effect as monotherapy and aug-
mented the effects when given comitant with 
cancer vaccination [115–120]. Similarly, ex vivo 
blockade of PD-1 or PD-L1 improved the ability 
of human lymphocytic function against tumor 
tissue in multiple studies [107, 121–123]. Based 
on the functional importance of PD-1 in cancer as 
well as promising preclinical therapeutic results, 
several blocking mAbs have proceeded to human 
clinical trials.

6.4.4	 �Nivolumab

Nivolumab (MDX-1106, BMS-936558, Bristol-
Myers Squibb, New York, NY) is a fully human-
ized IgG4 mAb that binds to PD-1, blocking its 
binding site. It was initially tested in a phase I, 
dose escalation trial on 296 patients with heavily 
pretreated advanced melanoma (n  =  104), 
colorectal cancer (n  =  19), CRPC (n  =  17), 
NSCLC (n  =  122), and renal cell carcinoma 
(n  =  34). Nivolumab was given at 0.3, 1, 3, or 
10  mg/kg in six patient cohorts followed by 
expansion cohorts at 10 mg/kg. Patients were ini-
tially given a single dose and allowed additional 
doses if they demonstrated clinical benefit; how-
ever, the trial transitioned into a phase Ib where 
patients were dosed every 2 weeks and reassessed 
every 8 weeks. Treatment was continued for up to 
96  weeks or until disease progression or com-
plete response. Overall, treatment with nivolumab 
was better tolerated than treatment with CTLA-4 
blocking antibodies with no maximum tolerated 
dose achieved. Only 14% experienced serious 
(≥grade 3) drug toxicity, leading to the discon-
tinuation of therapy in only 5%. There were drug-
related adverse events in 41% and serious 
drug-related adverse events in 6% of patients that 
were likely irAEs, including pneumonitis, diar-
rhea, colitis, hepatitis, hypophysitis, and vitiligo. 
Pneumonitis, which occurred in 3% of patients, 
is of special interest, since it was not typically 
seen with CTLA-4 blocking mAbs and led to 

only three treatment-related deaths [124]. This 
toxicity may be secondary to constitutive expres-
sion of PD-L1 in alveolar macrophages.

Nivolumab treatment demonstrated substan-
tial antitumor effect, with partial or complete 
responses (by RECIST criteria) observed in 
patients with melanoma, NSCLC, and renal cell 
carcinoma but not colorectal cancer or 
CRPC. Responses were observed across various 
doses at rates of 19–41% in melanoma, 6–32% in 
NSCLC, and 24–31% in renal cell carcinoma. 
One patient with melanoma and one with renal 
cell carcinoma had complete response to treat-
ment. Responses tended to be durable with over 
half of melanoma and renal cell responses lasting 
for greater than 1 year. In addition, disease stabil-
ity and mixed response (as described in irRC) 
were observed in a substantial portion of patients. 
Further analysis of PD-L1 expression from 61 
patients who had pretreatment specimens avail-
able demonstrated an objective response in 36% 
of tumors expressing PD-L1 and none in PD-L1-
negative tumors [124].

This data raises the possibility that PD-L1 
could serve as a biomarker for response to ther-
apy, an idea that is being actively investigated. 
PD-L1 has been shown to be a prognostic bio-
marker in the tumor cells of head and neck squa-
mous cell cancer [125]; however, a recent review 
indicates that PD-L1 expression alone is insuffi-
cient for patient selection for most malignancies, 
both as monotherapy and combination therapy 
[126]. Another group showed the association 
between the mutational load of >100 non-
synonymous somatic mutations or neoantigens 
and ipilimumab or tremelimumab therapy with 
long-term clinical benefit in patients with 
advanced melanoma [127]. Another study in 
melanoma patients showed an association 
between that same mutational load and clinical 
benefit (complete or partial response or stable 
disease with overall survival longer than 1 year). 
Interestingly, only 0.04% of the identified anti-
gens were present in more than one patient who 
showed clinical benefit, suggesting that most 
neoantigens associated with immunotherapy suc-
cess are patient specific. Most recently, however, 
a systematic review and meta-analysis of 6664 
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patients found that PD-L1 expression was predic-
tive of favorable response across tumor types 
including non-small cell lung cancer, melanoma, 
bladder cancer, renal cell carcinoma, gastro-
esophageal cancer, head and neck cancer, merkel 
cell carcinoma, and small cell lung cancer (OR 
2.26, 95% CI, 1.85–2.75, p  <  0.001), with the 
greatest effect observed in non-small cell lung 
cancer, where quantitative PD-L1 testing is now 
recommended prior to treatment (OR 2.51, 95% 
CI 1.99–3.17, p < 0.001) [12, 127].

Nivolumab has now been approved by the US 
Food and Drug Administration for use in humans 
in multiple cancer types. It was first approved in 
2014 for patients with unresectable or metastatic 
melanoma and disease progression following ipi-
limumab and a BRAF inhibitor if applicable. 
Approximately 1  year later, nivolumab was 
approved for metastatic squamous and nonsqua-
mous NSCLC with progression on or after 
platinum-based chemotherapy, unresectable or 
metastatic melanoma in combination with ipilim-
umab in BRAF V600 wild-type patients, and 
renal cell carcinoma in patients who received 
prior antiangiogenic therapy. In 2016, approval 
was granted for classical Hodgkin lymphoma 
(cHL) that progressed after hematopoietic stem 
cell transplantation and recurrent or metastatic 
head and neck squamous cell carcinoma that pro-
gressed on or after platinum-based chemother-
apy. To date, additional approvals have been 
granted in locally advanced or metastatic urothe-
lial carcinoma on or following platinum-based 
chemotherapy, adult and pediatric microsatellite 
high (MSI-H) or mismatch repair-deficient meta-
static colon cancer that has progressed following 
chemotherapy, and HCC in patients previously 
treated with sorafenib [17, 19, 128–134].

6.4.5	 �Pembrolizumab

Pembrolizumab (Keytruda, Merck, Whitehouse 
Station, NJ) is a humanized monoclonal antibody 
that binds to PD-1 and blocks interaction with 
PD-L1 and PD-L2. At this time, it is FDA 
approved in patients with unresectable or meta-
static melanoma, select NSCLC, recurrent head 

and neck squamous cancer, refractory cHL, 
locally advanced or metastatic urothelial carci-
noma, and select gastric cancers. Most notably, 
pembrolizumab has received a broad indication 
for all adults and pediatric MSI-H or mismatch 
repair deficient solid tumors who have progressed 
following prior treatment, and colorectal cancer 
that has progressed following chemotherapy.

Deserving special mention is the first-of-its-
kind MSI-H, and mismatch repair deficient 
(dMMR) indication was obtained in five uncon-
trolled, open-label, multi-cohort, multicenter, 
single-arm trials45, known respectively as 
KEYNOTE-016, −164, −012, −028, −158. A 
total of 149 MSI-H or dMMR patients met inclu-
sion criteria, and 98% had metastatic disease. 
Most had received two or more prior therapies. 
Patients received either 200 mg every 3 weeks or 
10 mg/kg every 2 weeks. The majority (60%) of 
patients had colorectal cancer, and the remainder 
consisted of multiple solid tumors most com-
monly endometrial, biliary, and gastric/GE junc-
tion tumors. The overall response rate was 39.6% 
(95% CI 31.7–47.9), with 78% of patients dem-
onstrating a durable response at 6  months [19, 
135–140].

6.4.6	 �PD-L1 Blockade

Initial results of the PD-1 pathway blockade are 
very encouraging. The findings of objective clini-
cal responses of up to 41% of subgroups of patients 
with nivolumab and relatively high response rates 
in NSCLC, a disease historically resistant to 
immunotherapy, are unprecedented in cancer 
immunotherapy. Additionally, lower rates of toxic-
ity, in particular, serious irAEs, compared to 
CTLA-4 blockade have given hope that this path-
way will yield more widely applicable and better-
tolerated therapies. Much work remains and is 
currently in progress to bring these therapies into 
general clinical use. Determination of optimal 
dosing, duration of treatment, and the subsets of 
patients who benefit from treatment are all under-
way. As with CLTA-4 blockade, preclinical data 
supports a possible synergistic effect when PD-1 
pathway blockade is combined with other cancer 
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treatments such as chemotherapy, radiation, and 
immunotherapy; this deserves and is receiving fur-
ther investigation [107, 119, 121, 141]. As these 
investigations move forward, one area of particu-
lar interest will be whether PD-L1 expression on 
tumors continues to serve as a reliable biomarker 
for predicted therapeutic benefit, thus increasing 
the ever-growing trend of more personalized, tai-
lored treatment for individual tumors.

6.4.7	 �Atezolizumab

Atezolizumab is an Fc-engineered, humanized, 
monoclonal antibody that binds to PD-L1, block-
ing its interaction with PD-1 and B7-1 receptors. 
It is now FDA approved in patients with unresect-
able or metastatic urothelial carcinoma who are 
not eligible for platinum-based chemotherapy or 
who progressed on such therapy and metastatic 
NSCLC with progression on or after platinum-
based chemotherapy. The urothelial carcinoma 
indication was granted accelerated approval in 
2015 based on early-phase results in 310 patients 
who had disease progression after platinum-
based therapy. Compared to historical controls 
with a 10% overall response rate, an objective 
response rate of 15% with a median follow-up of 
11.7 months was achieved. In addition, increased 
levels of PD-L1 expression on immune cells were 
associated with increased response [142–145].

NSCLC approval was based on two random-
ized, open-label clinical trials (POPLAR and 
OAK) where atezolizumab 1200  mg IV every 
3  weeks was compared with docetaxel and an 
overall survival benefit of 2.9 months in POPLAR 
at a median survival of 12.6  months and 
4.2  months in OAK at a median survival of 
13.8 months [144, 146].

6.4.8	 �Durvalumab

Durvalumab (MEDI-4736) was recently approved 
for locally advanced or metastatic urothelial car-
cinoma who progressed after platinum-based che-
motherapy. It was approved under accelerated 
approval based on a phase I/II open-label study in 

182 patients who had disease progression on or 
after platinum-based chemotherapy and received 
durvalumab 10  mg/kg IV every 2  weeks for 
12 weeks. 31 patients (17%) demonstrated clini-
cal responses, with 5 complete responses at a 
median follow-up of 5.6 months [147].

Additional approval has been granted for 
patients with unresectable stage III NSCLC with-
out disease progression following platinum-
based chemotherapy and radiation. This approval 
was granted based on the PACIFIC study, a mul-
ticenter, randomized, double-blind, placebo-
controlled study enrolling 713 patients who had 
completed at least two cycles of platinum-based 
chemotherapy and definitive radiation. Patients 
who received durvalumab demonstrated a statis-
tically significant overall response rate of 28.4% 
compared to 16% in the placebo group 
(p  <  0.001), with a longer median duration of 
response in the durvalumab group (72.8% vs. 
46.8% had an ongoing response at 18  months 
post-randomization). Median progression-free 
survival was 16.8 months for durvalumab versus 
5.6 months for placebo (95% CI 4.7–7.8) [148].

6.4.9	 �Avelumab

Avelumab is another PD-L1 blocking antibody 
that received accelerated FDA approval in 2017 
for metastatic Merkel cell carcinoma in adults 
and children age 12 and older. This approval was 
granted based on a prospective, open-label, phase 
II trial in patients with stage IV, chemotherapy-
refractive Merkel cell carcinoma who were given 
avelumab 10 mg/kg every 2 weeks. 88 patients 
received at least one dose, and 28 (32%) patients 
achieved an objective response (20 partial, 8 
complete) at a median follow-up of 10.4 months 
[149, 150].

6.5	 �Immune-Related Response 
Criteria

Initial WHO response criteria and later RECIST 
criteria, which have undergone many revisions 
over the years, were developed to identify and 
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standardize definitions of tumors responsive to 
cytotoxic therapy and not as a surrogate for sur-
vival [151]. They have been used in early phase 
clinical trials as a surrogate for response to ther-
apy. The use of these criteria assumes that 
tumors will shrink or stabilize at the outset of 
therapy. Tumor growth or the appearance of new 
metastases constitutes progressive disease and, 
therefore, lack of response. In immunotherapy 
trials, including those evaluating ipilimumab, it 
has been shown that tumors often progress or 
remain stable before responding, therefore mak-
ing RECIST criteria less helpful in predicting 
treatment response. Based on these observa-
tions, new immune-related response criteria 
(irRC) were proposed (Table 6.1). The new cri-
teria do not necessarily consider the appearance 
of new lesions or growth of isolated lesions as 
progressive disease but, instead, consider over-
all tumor burden. Based on retrospective obser-
vations of 487 metastatic melanoma patients in 
three phase II trials of ipilimumab at 10 mg/kg 
dosing, 9.7% of treated patients initially classi-
fied as progressive disease under WHO criteria 
later had evidence of response to therapy. In ret-
rospective reclassification by irRC, response to 
therapy appears to correlate better with overall 
survival than WHO criteria [152]. Immune-
related response criteria have been used along-
side WHO criteria in multiple ipilimumab trials 
since it was first introduced [153, 154]. Further 
prospective validation will be needed to deter-

mine to what degree it correlates with overall 
survival.

6.6	 �CTLA-4 Blockade 
Monotherapy

Two mAbs, ipilimumab and tremelimumab, were 
developed in parallel. The therapies underwent 
phase III trials that ultimately led to approval for 
ipilimumab for treating metastatic melanoma and 
showed disappointing results for tremelimumab.

6.6.1	 �Ipilimumab

Based on the work in murine models, fully 
humanized IgG1 CTLA-4 mAbs were created by 
Medarex Inc. (Princeton, NJ; purchased by 
Bristol-Myers Squibb, New York, NY, in 2009) 
using a transgenic hybridoma HuMAb mouse 
model. The proprietary mouse model has multi-
ple genetic modifications designed to facilitate 
production of high-avidity human IgG mAbs 
[155]. The mAb used for initial in  vivo testing 
was selected based on affinity and specificity for 
CTLA-4 as well as ability to block the binding 
site. The antibody, called 10D1 (later designated 
MDX-010 and ipilimumab), also had cross-
reactivity with macaques monkey CTLA-4. It 
was initially tested in this setting where it was 
shown to increase antibody response to hepatitis 

Table 6.1  Comparison of World Health Organization (WHO) and immune-related response criteria (irRC) for tumor 
response

Word Health Organization (WHO) Immune-related response criteria (irRC)
CR Disappearance of all lesions in two observations at 

least 4 weeks apart
Disappearance of all lesions in two 
observations at least 4 weeks apart

PR ≥50% decrease in SPD of all index lesions in the 
absence of progression of nonindex lesions or new 
lesions in two observations at least 2 weeks apart

≥50% decrease in total tumor burden in two 
observations at least 4 weeks apart

SD <50% decrease compared to baseline and <25% 
increase compared to nadir measurements of the SPD 
of index lesions, in the absence of progression of 
nonindex lesions or new lesions

<50 decrease compared to baseline and 
<25% increase compared to nadir

PD ≥25% increase in SPD compared with nadir or 
progressions of nonindex lesions or appearance of 
new lesions

≥25% increase in tumor burden compared to 
nadir in two observations at least 4 weeks 
apart

CR complete response, PR partial response, SD stable disease, PD progressive disease, SPD sum of the products of the 
largest dimensions of lesions
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surface antigen as well as a human melanoma 
cell vaccine. Additionally, the macaques did not 
demonstrate polycolonal T-cell activation or 
autoimmunity [156]. Based on this work, ipilim-
umab proceeded with human trials.

6.6.1.1	 �Ipilimumab in Uveal  
Melanoma

Uveal melanoma is a rare cancer that, like cuta-
neous melanoma, shares melanocyes as the cell 
of origin but has different pathogenesis and clini-
cal behavior. Similar to melanoma, it has a very 
poor prognosis when it has metastasized (typi-
cally to the liver) and is resistant to systemic che-
motherapy [156, 157]. Three open-label, 
multicenter, single arm phase II trials have been 
conducted using ipilimumab in uveal melanoma. 
The GEM-1 trial enrolled 32 patients treated 
with 10 mg/kg ipilimumab. At a median follow-
up of 5.5  months, 13 patients had evaluable 
responses, with 1 having a partial response 
(7.7%) and 6 having stable disease (46.2%) 
[158].

The DeCOG treated 53 pretreated and 
treatment-naïve patients with metastatic uveal 
melanoma with ipilimumab at a dose of 3 mg/
kg. Overall, they reported a relatively disap-
pointing median progression-free survival 
(2.8 months) and overall survival (6.8 months) 
[159].(NCT01585194). The GEM-1402 trial is a 
phase I/II trial looking at ipilimumab in combi-
nation with nivolumab in the adjuvant setting 
for high-risk uveal melanoma after completion 
of standard treatment. In an interim analysis, it 
showed progression-free survival of 4.99 months 
at a median follow-up of 4.6  months 
(NCT02626962).

6.6.2	 �Phase III Trials of Checkpoint 
Inhibitors in Melanoma

The first phase III study of ipilimumab, spon-
sored by Bristol-Meyers Squibb, began enrolling 
patients in September 2004. The trial enrolled 
676 HLA-A*0201+ patients with pretreated, 
unresectable stage III or IV melanoma. The 
patients were randomized 3:1:1 to receive either 

ipilimumab with gp100 peptide vaccine, ipilim-
umab alone, or gp100 alone. The gp100 peptide 
had demonstrated effectiveness in previous phase 
II trials in melanoma, particularly when com-
bined with ipilimumab [56–58, 160]. Ipilimumab 
was dosed at 3  mg/kg every 3  weeks for four 
doses. Patients were not routinely offered main-
tenance therapy; however, those who progressed 
after responding to therapy or who had stable dis-
ease after 12 weeks were allowed “reinduction” 
therapy. The primary endpoint of the trial was 
OS. The trial demonstrated an OS benefit in all 
patients who received ipilimumab (median OS: 
10.0  months for ipilimumab with gp100, 
10.0  months for ipilimumab alone, and 
6.4  months for gp100 alone; p  <  0.003). There 
was no difference in survival in patients who 
received ipilimumab with gp100 and those who 
received ipilimumab alone. There were four 
cases of complete responses and multiple cases 
of long-term disease control in patients who 
received ipilimumab. Approximately, 60% of 
patients treated with ipilimumab experienced 
some irAE, with the rates of serious irAEs 
(≥grade 3) of 10–15% in the ipilimumab groups 
[50]. Of the 31 patients who met criteria for and 
received “reinduction” therapy (progression after 
complete or partial response or stable disease), 
19% achieved a complete or partial response and 
68% achieved disease control with similar toxic-
ity to the original induction therapy [161]. Based 
on this study, ipilimumab achieved FDA approval 
at a dose of 3.0 mg/kg to treat unresectable stage 
III and stage IV melanoma.

When ipilimumab was approved for therapy, 
it generated considerable interest because it rep-
resented a therapeutic success for nonspecific 
immunostimulation, a new modality in cancer 
treatment. In addition to this, it raised hope for 
future successes for cancer immunotherapy, par-
ticularly coming on the heels of the FDA 
approval of another cancer immunotherapy, sip-
uleucel T (Provenge; Dendreon, Seattle, WA), 
the first therapeutic cellular immunotherapy to 
prove effective in phase III trials [5, 6]. It gave 
hope to clinicians treating and patients with met-
astatic melanoma, as this was the first therapy to 
show an overall survival benefit in a randomized, 
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phase III trial for metastatic melanoma [162]. 
Significant questions remain and are currently 
under evaluation regarding the treatment of 
melanoma with ipilimumab. As discussed previ-
ously, a randomized, double-blind phase II trial 
comparing the dosing of ipilimumab demon-
strated the superiority of 10 mg/kg dosing over 
3 mg/kg dosing (used in the phase III trial and 
currently approved) in pretreated patients [163]. 
This data was not available at the initiation of the 
phase III trial.

The randomized, double-blind, multicenter 
phase III trial comparing 10 mg/kg versus 3 mg/
kg ipilimumab in 727 patients with previously 
untreated or previously treated unresectable stage 
III/IV melanoma without previous treatment with 
BRAF inhibitors or immune checkpoint inhibi-
tors showed a significant overall survival advan-
tage with 10 mg/kg therapy over 3 mg/kg therapy 
(15.7 vs. 11.5 months, p = 0.04). The 10 mg/kg 
group did demonstrate a higher frequency of 
treatment-related adverse events and adverse 
events leading to discontinuation [164].

An additional question raised by the previous 
trials is the duration of treatment. Many of the 
previous phase II trials included maintenance 
dosing every 3  months after completion of the 
“induction” phase [52, 153, 163, 165]. The phase 
III trial of ipilimumab monotherapy applied a 
somewhat different approach, using “reinduc-
tion” therapy, in which the patients were redosed 
every 3 weeks for four doses if they had evidence 
of progression after initial response to treatment. 
Both long-term dosing schedules appear to be 
well tolerated. It remains to be seen if one is 
clearly superior. Ipilimumab monotherapy in 
metastatic melanoma has largely been replaced 
by combination therapy of ipilimumab with PD-1 
inhibitors pembrolizumab and nivolumab. Phase 
III data for pembrolizumab was obtained in the 
KEYNOTE-006 study, in which 834 ipilimumab-
naïve patients with advanced melanoma were 
randomized 1:1:1 to receive pembrolizumab 
10 mg/kg every 2 weeks or 3 weeks or four doses 
of ipilimumab 3  mg/kg every 3  weeks. In the 
final analysis, pembrolizumab in both dosages 
provided a superior overall survival to ipilim-
umab at a median follow-up of 22.9  months. 

Median overall survival was not reached in either 
pembrolizumab group and was 16 months in the 
ipilimumab group. Twenty-four month overall 
survival was 55% in both the 2 and 3 weeks pem-
brolizumab dosing group and 43% in the ipilim-
umab group [138, 166]. In addition, 
patient-reported health-related quality-of-life 
scores were superior for patients who received 
pembrolizumab [167].

Nivolumab was evaluated in a phase III trial in 
ipilimumab-refractory melanoma patients who 
had unresectable or metastatic disease, compar-
ing nivolumab to the investigator’s choice of che-
motherapy. In an analysis after 120 patients were 
enrolled in the nivolumab arm, there was an 
objective response rate of 31.7% (95% CI 23.5–
40.8%) in the nivolumab arm versus 10.6% (95% 
CI 3.5–23.1%) in the chemotherapy arm. 
Additionally, nivolumab was associated with 
fewer toxic effects than chemotherapy [132].
Another study, known as CheckMate-066, exam-
ined untreated patients in a phase III study in pre-
viously untreated melanoma patients without a 
BRAF mutation and compared nivolumab with 
dacarbazine. Nivolumab was associated with 
improved overall survival at 1  year (72.9% vs. 
42.1% respectively, p < 0.001) and progression-
free survival (median 5.1 vs. 2.2 months, respec-
tively, p < 0.001) [134].

6.6.3	 �Adjuvant Checkpoint 
Inhibitors

Ipilimumab was first approved as adjuvant ther-
apy for melanoma due to results from a double-
blind, phase III trial in patients with stage III 
cutaneous melanoma after resection, who 
received 10 mg/kg ipilimumab or placebo every 
3 weeks for four doses and then every 3 months 
for up to 3 years.

951 patients were randomized, and median 
recurrence-free survival was 26.1 months (95% CI 
19.3–39.3) in the ipilimumab group vs. 17.1 months 
(95% CI 13.4–21.6) in the placebo group. In 
patients who received ipilimumab, 52% discontin-
ued therapy due to adverse events, most commonly 
gastrointestinal, hepatic, and endocrine [168].
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Ipilimumab (10  mg/kg) was compared to 
nivolumab (3 mg/kg) in resected stage IIIB/IIIC/
IV melanoma patients. 12-month recurrence-free 
survival was 70.5% (95% CI 66.1–74.5%) in the 
nivolumab group versus 60.8% (95% CI 56.0–
65.2%) in the ipilimumab group. Grades 3 and 4 
treatment-related adverse events were signifi-
cantly worse in the ipilimumab group (45.9% vs. 
14.4% in the nivolumab group), with two deaths 
in the ipilimumab group. The hazard ratio for 
death or recurrence favored nivolumab over ipili-
mumab (HR 0.65, 0.51–0.83, P < 0.001) [169].

Pembrolizumab was evaluated in a phase III 
double-blind trial in patients with completely 
resected stage III melanoma. Patients were ran-
domized to receive either 200 mg pembrolizumab 
IV every 3  weeks for 18 doses or placebo. 
Pembrolizumab was associated with significantly 
longer recurrence-free survival at 1 year, 75.4% 
(95% CI 71.3–78.9) versus 61.0% (56.5–65.1) 
for placebo. Grades 3–5 trial-related adverse 
events were reported in 14.7% that received pem-
brolizumab compared to 3.4% in the placebo 
group [170].

Combination therapy involving checkpoint 
inhibitors is an active area of study. Recently, 
improved survival was observed using ipilim-
umab in combination with nivolumab in late-
stage melanoma [129]. This will be covered in 
more detail in a later section.

6.7	 �Checkpoint Inhibitors 
as Combination Therapy

While CTLA-4 blockade, specifically ipilim-
umab, has found success as monotherapy in met-
astatic melanoma, and more trials are underway 
to test its effectiveness in a variety of malignan-
cies and different clinical scenarios, its greatest 
potential may lie in combining it with other anti-
neoplastic agents. The hope is that by combining 
CTLA-4 blocking therapy with other antineo-
plastic therapies that carry different toxicity pro-
files, a synergistic effect of the agents will be 
achieved. Recognizing these issues, researchers 
have been actively pursuing combination therapy 
with CTLA-4 blockade since its inception. The 

primary areas of research focus on combining 
CTLA-4 blockade with chemotherapy, radiation, 
surgery, and other immunotherapy.

6.7.1	 �Checkpoint Inhibitors 
and Chemotherapy

Given the known immunosuppressive effects of 
most chemotherapeutic agents, it has been 
thought that combining chemotherapy with 
immunotherapy would be unsuccessful. However, 
there is increasing evidence for a possible syner-
gistic role between the two modalities. The 
immune system appears to play an important role 
in antitumor activity of chemotherapy, an effect 
which may be further augmented by immune 
checkpoint blockade [171, 172]. In murine mod-
els of mesothelioma, CTLA-4 blockade given 
between cycles of chemotherapy has been dem-
onstrated to increase tumor-infiltrating lympho-
cytes and inflammatory cytokines and inhibit 
cancer cell repopulation [173]. Additionally, che-
motherapy, when given appropriately, may 
enhance the effect of specific immunotherapy 
[174]. Evidence from clinical trials reveals that 
combining chemotherapy with cancer vaccina-
tion can be more effective than either therapy 
alone [175–177]. The mechanisms by which che-
motherapy may increase anticancer immunity 
include reduction of immunosuppressive influ-
ences by decreasing tumor mass, inducing the 
expression of TAAs on the cell surface, exposing 
the immune system to TAAs through cell death, 
and “resetting” the immune posture through 
depletion of inhibitory cell populations (i.e., 
Tregs and myeloid-derived suppressor cells) 
[171]. Indeed, there is growing evidence that the 
success of certain chemotherapy regimens is 
dependent on the drug’s ability to cause immuno-
genic cell death of tumors, where TAAs are pre-
sented in the appropriate context to elicit a 
broader immune response [178]. While this is a 
promising area for future development, 
clearly the timing of drug administration, 
chemotherapeutic regimen used, and dosing are 
integrally important to successful application. 
Highly dosed cytotoxic treatment has the 
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potential to quash a developing therapeutic 
immune response. Optimizing these factors will 
be necessary in future trials of combining check-
point blockade with chemotherapy.

Clinical trials have been performed combining 
chemotherapy with CTLA-4 blockade. A ran-
domized phase II trial testing the combination of 
chemotherapy with ipilimumab was conducted in 
patients with treatment-naïve metastatic mela-
noma. Seventy-two patients with unresectable, 
metastatic melanoma were randomized to receive 
ipilimumab at 3  mg/kg every 4  weeks for four 
doses with dacarbazine compared to ipilimumab 
monotherapy. The trial demonstrated an increased 
objective response rate (14.3% vs. 5.4%, by 
RECIST criteria) and increased median OS (14.3 
vs. 11.4  months) for the combination therapy 
group, although neither reached statistical signif-
icance due to the smaller number of patients. 
Toxicity was higher in the combination group, 
including 17.1% ≥  grade 3 irAEs compared to 
7.7% in the monotherapy arm [179].

Based on these results, the concept was tested 
in a randomized phase III trial evaluating ipilim-
umab with dacarbazine versus dacarbazine alone 
[163]. Additionally, based on the results of the 
phase II ipilimumab monotherapy trial that 
showed a benefit of higher dosing, 10 mg/kg of 
ipilimumab was used in combination with dacar-
bazine. Five hundred two patients were enrolled 
and randomized 1:1 to receive ipilimumab plus 
dacarbazine every 3  weeks for four doses fol-
lowed by dacarbazine every 3 weeks until week 
22 or placebo plus dacarbazine at the same sched-
ule. Patients with stable disease or RECIST crite-
ria objective responses were able to receive 
maintenance ipilimumab or placebo every 
12 weeks. Of note, based on emerging consensus 
from previous work with CTLA-4 blockade and 
other immunotherapy, the primary endpoint was 
changed, with FDA approval, from progression-
free survival to OS prior to unblinding of the 
treatment groups or data analysis [152, 180]. 
Ultimately, the trial showed that patients who 
received the combination of ipilimumab with 
dacarbazine survived longer (11.2 months) com-
pared to dacarbazine alone (9.2  months, 
p  <  0.001). The difference became more 

pronounced with time, as the combination arm 
had 20.8% of patients alive at 3 years compared 
to 12.2% in the chemotherapy only arm. 
Toxicities were greater in the combination arm 
and also greater than in many of the previous ipi-
limumab studies (56% ≥ grade 3), likely second-
ary to the higher dose (10 mg/kg) of ipilimumab 
used as well as the addition of chemotherapy. 
Interestingly, the toxicity profile was different. 
There were lower rates of gastrointestinal toxici-
ties, such as diarrhea and colitis, and endocrine 
toxicity but a higher rate of hepatic toxicity com-
pared with previous ipilimumab trials. No 
treatment-related death was reported [53]. 
Differences may reflect the effect of the combi-
nation therapy; however, clinician’s experience 
managing the drug may have affected the out-
come as well. Based on the results of this study, 
the combination of ipilimumab and dacarbazine 
is approved as the first-line therapy for unresect-
able melanoma.

However, the potential for unanticipated tox-
icity exists with combining CTLA-4 blockade, 
particularly with other targeted therapies. Initial 
results from a phase I study of combination ther-
apy with both ipilimumab (dosed at 3  mg/kg) 
and vemurafenib, a BRAF inhibitor approved for 
treatment of BRAF-V600E-mutated melanoma, 
demonstrated an unacceptably high level of hep-
atotoxicity, leading to early termination of the 
trial [181].

Additional trials of combination chemother-
apy and ipilimumab were conducted in patients 
with advanced non-small cell lung cancer 
(NSCLC) and small cell lung cancer (SCLC). 
Advanced-stage NSCLC carries a poor progno-
sis with a median survival of 8–12  months 
despite first-line chemotherapy [172, 182]. In a 
phase II trial, 204 patients with stage IIIB or IV 
NSCLC were enrolled in a randomized, double-
blind trial of ipilimumab plus chemotherapy 
(paclitaxel and carboplatin) given concurrently, 
ipilimumab plus chemotherapy given phased 
with two doses of chemotherapy given prior to 
starting ipilimumab and chemotherapy given 
together, or placebo plus chemotherapy. 
Ipilimumab was dosed at 10  mg/kg every 
3 weeks for up to 18 weeks with the option for 
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maintenance therapy (or maintenance placebo) 
every 12  weeks. The primary endpoint was 
immune-related progression-free survival 
(irPFS). The concept of immune-response crite-
ria for immunotherapy in cancer (different from 
classic World Health Organization RECIST cri-
teria) came from observations with ipilimumab 
and other immunotherapies (discussed further 
below) [152]. The trial showed improved irPFS 
with phased ipilimumab and chemotherapy 
(median: 5.7 months, HR: 0.72, p = 0.05), while 
concurrent ipilimumab and chemotherapy did 
not reach statistical significance (median: 
5.5 months, HR: 081, p = 0.13) compared to the 
control regimen (median 4.6  months). 
Improvement was also noted in PFS by WHO 
criteria (p = 0.02), and an improvement in OS by 
3.9 months (p = 0.23) was observed for phased 
ipilimumab over chemotherapy alone. Overall 
toxicity was similar across the treatment arms; 
however, there was more severe toxicity 
(grade ≥ 3) in the combination arms. A phase III 
trial was conducted using phased ipilimumab 
and chemotherapy in patients with squamous 
NSCLC, the group that derived the greatest ben-
efit in subset analyses [154]; however, the addi-
tion of ipilimumab to first-line chemotherapy 
consisting of paclitaxel and carboplatin did not 
prolong OS [183].

A similar phase II trial was conducted in 
patients with extensive disease-small cell lung 
cancer (ED-SCLC). Chemotherapy remains the 
first-line and only effective therapy in this dis-
ease process with a median overall survival of 
8–11 months [184]. Eligible patients (n = 130) 
were randomized to receive concurrent therapy 
with ipilimumab and chemotherapy (paclitaxel 
and carboplatin), the phased combination, or 
placebo with chemotherapy. In this trial, again 
the phased combination of ipilimumab and 
chemotherapy was superior with an improve-
ment in irPFS (median: 6.4 months, p = 0.03), 
while concurrent therapy did not improve 
irPFS (median: 5.7  months, p  =  0.11), com-
pared to the control arm (median: 5.3 months). 
There was no significant difference in mWHO 
PFS or OS.  The combination of ipilimumab 
plus etoposide and platinum chemotherapy 

versus etoposide and platinum alone has been 
evaluated in a phase III trial. 954 patients were 
randomized with no significant OS benefit 
(11.0 vs. 10.9 months), with increased rates of 
diarrhea, colitis, and rash in the ipilimumab 
group [185].

The combination of ipilimumab has been fur-
ther studied in a phase II trial in prostate cancer. 
Forty-three patients with CRPC were random-
ized to receive either ipilimumab monotherapy at 
3 mg/kg every 4 weeks for four doses or ipilim-
umab (dosed the same) with a single dose of 
docetaxel at the start of therapy. The number of 
responses to therapy were small with three 
patients having a decrease of >50% in each arm 
[186]. However, this study may be limited by 
underdosing of both the ipilimumab and 
docetaxel, concurrent (instead of phased) admin-
istration of the two drugs, as well as the small 
number of patients tested.

The combination of tremelimumab and suni-
tinib, an oral small-molecule tyrosine kinase 
inhibitor, was tested in a phase I dose escalation 
trial in patients with metastatic renal cell carci-
noma. Unexpectedly, the trial demonstrated a 
high (4/28 patients) rate of sudden onset grade 3 
renal failure in addition to other toxicity associ-
ated with CTLA-4 blockade. Further testing of 
this combination at doses of tremelimumab 
>6 mg/kg with sunitinib was not recommended 
by the study authors [187].

6.7.1.1	 �PD-1/PD-L1 Inhibitors 
and Chemotherapy

Pembrolizumab in combination with chemother-
apy recently received FDA approved based on 
results of a double-blind phase III trial in which 
616 patients with metastatic NSCLC without 
sensitizing EGFT or ALK mutations with no pre-
vious treatment were randomized to receive 
pemetrexed and a platinum-based drug plus 
either 200 mg pembrolizumab or placebo every 
3 weeks for 4  cycles, followed by maintenance 
pemetrexed and pembrolizumab or placebo for 
35 cycles. At a median follow-up of 10.5 months, 
estimated overall survival at 12  months was 
69.2% (95% CI, 64.1–73.8) in the pembroli-
zumab group versus 49.4% (95% CI, 42.1–56.2) 
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in the placebo group, corresponding to a hazard 
ratio for death of 0.49 (95% CI, 0.38–0.64, 
p < 0.001). In addition, progression-free survival 
was significantly greater in the pembrolizumab 
arm: 8.8 versus 4.9  months. Adverse events of 
grade 3 or higher were comparable between arms 
(67.2% for pembrolizumab vs. 65.8% for pla-
cebo) [188].

There are no current FDA indications for 
nivolumab in combination with chemotherapy; 
however, multiple clinical trials are evaluating 
this (NCT02477826, NCT03101566).

6.7.2	 �Checkpoint Inhibitors 
and Radiation

Much like chemotherapy, there is evidence that 
the local and systemic effects of radiation therapy 
can increase the effectiveness of immunotherapy, 
in general, and CTLA-4 blockade, specifically. 
Radiation therapy damages tumor cells that are in 
the path of the focused energy, which, like che-
motherapy, can result in cell death and antigen 
cross-presentation, leading to an effective, tar-
geted immune response toward remaining tumor 
cells [189]. Radiation-induced cell damage may 
lead to several cellular changes that promote 
effective presentation of TAAs such as the release 
of high mobility box group 1 (HMBG1), which 
signals migration of immune cells to the tumor 
microenvironment, and upregulation of MHC I 
complexes, Fas, and ICAM-1, all of which 
increase susceptibility to T-cell-mediated death 
[189–192]. Additionally, localized radiation does 
not typically produce the same level of lym-
phodepletion and immunosuppression associated 
with high-dose chemotherapy. As with chemo-
therapy, reduction in the mass of a viable tumor 
may help decrease cancer-related immunosup-
pression. All of these factors make the combina-
tion of radiation with immunotherapy appealing 
[193]. The concept of combining radiation with 
immune checkpoint blockade is particularly 
attractive. Unlike more specific, directed immu-
notherapy (cancer vaccines), CTLA-4 blockade 
helps overcome cancer immunosuppression, but 
ultimately relies on the body’s preexisting immu-

nity toward a neoplasm. Radiation, by damaging 
cancer cells and releasing a wide array of TAAs 
in an inflammatory context, especially with 
immunosuppression checked, may allow the 
immune system to mount a response that is 
appropriate both for the individual and the tumor.

There is considerable preclinical data that 
supports the combination of CTLA-4 blockade 
and radiation. In one study, a mouse model of 
poorly immunogenic mammary carcinoma, 4T1, 
was treated with control IgG, CLTA-4 blocking 
IgG (9H10), radiation therapy, or a combination 
of 9H10 IgG and radiation. CTLA-4 blockade 
alone did not affect tumor growth or mouse sur-
vival. Radiation therapy slowed tumor growth but 
did not affect survival. The combination of 
CTLA-4 blockade and radiation therapy inhib-
ited metastases and increased survival compared 
to the control [193]. Subsequent studies in this 
model revealed that treatment with the combina-
tion in mice deficient in invariant natural killer 
(NK) T-cell lymphocytes led to an even more 
effective response with some mice becoming 
disease-free and resistant to tumor rechallenge, 
highlighting the important role for this cell type 
in regulation of cancer immune responses [194]. 
Finally, an additional study in TSA mouse mam-
mary carcinoma and MCA38 mouse colon carci-
noma models again demonstrated the 
effectiveness of combining radiation and CTLA-4 
blocking antibody; moreover, they showed that 
the use of a fractionated radiation schedule (but 
not single dose radiation) along with CTLA-4 
blockade could significantly inhibit tumor foci 
out of the radiation field, a phenomenon known 
as the abscopal effect [195].

The abscopal effect refers to the regression of 
tumors in remote areas following localized radia-
tion of tumors. This phenomenon has been docu-
mented in melanoma, renal cell carcinoma, and 
lymphoma [196–198]. Several cases of this 
occurrence have been documented in patients 
receiving ipilimumab. In one notable case, a 
patient with recurrent melanoma with paraspinal, 
right hilar lymphadenopathy, and splenic 
metastases was enrolled in an ipilimumab mono-
therapy trial in September 2009. She received 
treatment at 10 mg/kg dosing per protocol with 
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slow progression of her disease over the subse-
quent 15 months. In December 2010, she received 
directed, external beam radiation to her symp-
tomatic paraspinal lesion followed by an addi-
tional dose of ipilimumab in February 2011. 
Surprisingly, follow-up imaging revealed signifi-
cant regression of metastatic lesions outside the 
radiation field, which remained stable at minimal 
disease for at least 10 months after her radiation 
treatment. Along with this clinical effect, the 
patient was noted to have a marked increase in 
peripheral antibodies to the tumor antigen 
NY-ESO-1, an increase in ICOShigh T cells, and a 
decrease in myeloid derived suppressor cells 
[199]. Similar cases of abscopal regression of 
metastatic melanoma in patients on ipilimumab 
have since been reported [200].

A phase I/II study examined the effects of ipi-
limumab with radiation therapy (RT) in patients 
with metastatic CRPC. Patients were treated with 
dose escalation ipilimumab monotherapy (3, 5, 
or 10 mg/kg) or ipilimumab (3 mg/kg or 10 mg/
kg) with external beam RT, although the trials 
were not designed to directly compare the two 
arms. Ipilimumab was given every 3 weeks for a 
total of 4 weeks [201]. An overall of 71 patients 
were treated; 33 patients were treated in the dose 
escalation phase, and the 10  mg/kg arm was 
expanded to a total of 50 patients. At the 10 mg/
kg dosing level, 16 were given ipilimumab mono-
therapy and 34 received ipilimumab with radia-
tion. In the 10 mg/kg dosing group, there were 
four (25%) PSA declines >50% in the ipilim-
umab monotherapy arm and four (12%) PSA 
declines >50% in the ipilimumab with radiation 
group; however, a higher proportion of patients in 
the monotherapy group were chemotherapy 
naïve. A phase III trial examining radiation with 
ipilimumab compared to radiation alone in 
advanced CRPC has not shown a difference in 
overall survival [202].

A retrospective study was performed analyz-
ing patients treated with pembrolizumab for 
NSCLC on the phase I KEYNOTE-001 study to 
determine the effect of previous radiotherapy on 
clinical outcomes. Of 98 patients that received 
pembrolizumab, 43% received previous radio-
therapy. At a median follow-up of 32.5 months 

for surviving patients, progression-free survival 
was significantly increased in patients that 
received previous radiotherapy (4.4  months; 
95% CI, 2.1–8.6) versus no radiotherapy 
(2.1 months; 95% CI, 1.6–2.3), corresponding to 
a hazard ratio of 0.56 (95% CI 0.34–0.91), 
p = 0.019. Median overall survival was increased 
in patients who received any radiotherapy 
(10.7  months; 95% CI, 6.5–18.9) versus no 
radiotherapy (5.3  months; 95% CI, 2.7–7.7), 
corresponding to a hazard ratio of HR 0.58 (95% 
CI 0.36–0.94), p = 0.026 [203].

There are no current FDA indications for 
PD-1/PD-L1 inhibitors in combination with 
radiation; however, multiple clinical trials 
are attempting to answer this question 
(NCT02830594 in pembrolizumab, 
NCT03148327 in durvalumab).

6.8	 �Combination 
Immunotherapy

Results from trials of CTLA-4 and PD-1 pathway 
blocking mAbs as monotherapy or in combina-
tion with conventional therapies are encouraging. 
Immune checkpoint blockade has delivered clini-
cal responses in patients with limited or no thera-
peutic options remaining. However, in all of the 
immune checkpoint blockade trials covered, only 
a minority of patients have responded which is 
usually transient. It is true that the vast majority 
of the patients treated in these trials have 
advanced disease, are immunosuppressed, and 
have limited time and options remaining. 
Targeting earlier stage disease and combining 
immune checkpoint blockade with other thera-
pies will undoubtedly yield more impressive 
results. However, it is naïve to think that targeting 
any one checkpoint will be a “silver bullet” ther-
apy. Just as cancer, under immunologic pressure, 
learns to evade the immune system to become a 
clinically evident disease initially, as we modu-
late coinhibitory and costimulatory receptors, 
some cancers will adapt to escape through alter-
native pathways. Combining active immunization 
(cancer vaccines) with checkpoint blockade may 
ultimately prove effective; nonetheless, initial 
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results have not been convincing. Other tech-
niques under investigation, targeting multiple 
checkpoints simultaneously or in sequence, may 
limit the escape routes.

6.8.1	 �CTLA-4 Blockade 
and Vaccination

Early on in the development of CTLA-4 blocking 
therapy, anti-CTLA-4 antibodies were combined 
with cancer vaccines in preclinical models [204]. In 
multiple cancer animal models, tumors, which were 
poorly responsive to CTLA-4 blocking therapy 
alone or active immunotherapy alone, responded 
significantly better to the combination of the two 
[37, 204–216]. These studies have helped elucidate 
the function and significance of the CTLA-4 recep-
tor and have led to clinical trials in patients.

Some of the first human trials of ipilimumab 
used a combination of peptide vaccines from 
gp100, a tumor-associated antigen expressed by 
the majority of malignant melanomas [217]. 
Gp100 peptides have been shown to be immuno-
genic and elicit an antigen-specific T-cell 
response in the majority of melanoma patients 
[160]. One peptide, gp100:209–217(210M), 
when combined with IL-2 therapy, has also been 
shown in a randomized phase III trial to signifi-
cantly increase clinical response and PFS com-
pared to IL-2 alone in HLA*A0201+ metastatic 
melanoma patients [218]. Three phase I and II 
trials were conducted using ipilimumab com-
bined with gp100  in unresectable melanoma 
patients. While these trials did not directly com-
pare the efficacy of the addition of the peptide 
vaccines to ipilimumab monotherapy, they did 
show impressive response rates and manageable 
toxicity [56–58]. Based on these (and other) 
results, ipilimumab proceeded to the phase III 
trial comparing ipilimumab monotherapy, ipilim-
umab plus two gp100 peptides (gp100:209–217 
and gp100:280–288), or the gp100 peptides 
alone. As previously detailed, the trial demon-
strated a survival advantage for ipilimumab ther-
apy but also showed that the addition of the 
peptide vaccine to ipilimumab offered no 
improvement over ipilimumab monotherapy 

[50]. It is not clear why the peptide vaccine did 
not prove efficacious in this setting, particularly 
given its proven efficacy when given with IL-2 
therapy in a similar patient population. There is 
speculation that CTLA-4 blockade may augment 
CD4+ lymphocyte activity more, while gp100 
peptides preferentially generate a CD8+ lympho-
cyte response, a hypothesis that has mixed pre-
clinical data to support it. Another proposed 
possibility is that the antitumor effect of ipilim-
umab may stem largely from its ability to deplete 
intratumoral Tregs, a mechanism which may not 
function synergistically with MHC class I pep-
tide vaccination [34]. Certainly, there are other 
possibilities to explain the results; further studies 
will be necessary to clarify.

Additional trials on combining CTLA-4 block-
ing antibodies with cancer vaccines have been 
conducted in melanoma and prostate cancer. In 
melanoma, the combination of multiple tumor-
associated antigen peptides (gp100, MART-1, 
tyrosinase) emulsified with immunoadjuvant 
(Montanide ISA 51) has been combined with ipi-
limumab in a dose escalation trial [62]. 
Additionally, in prostate cancer, ipilimumab has 
been given in phase I trials in combination with 
Tricom-PSA (PROSTVAC; Bavarian Nordic 
Immunotherapeutics, Mountain View, CA), a 
poxvirus-based vaccine that expresses transgenes 
for PSA and costimulatory molecules, and GVAX 
(Aduro Biotech; Berkeley, CA, USA), a GM-CSF-
transduced allogenic prostate cancer vaccine [59, 
219]. In all of these phase I trials, ipilimumab 
combined with cancer vaccination was found to 
elicit a cancer-specific immune response, a low 
rate of clinical response, and toxicity compared 
with ipilimumab monotherapy. Further trials will 
be necessary to prove the efficacy of these combi-
nations and multiple other combinations, which 
are currently under investigation (NCT01810016, 
NCT01302496, NCT01838200).

6.8.2	 �PD-1/PD-L1 and Vaccination

Nivolumab has been tested in combination with 
ISA 101, a synthetic long-peptide vaccine 
directed against human papilloma virus (HPV) 
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16 in patients with incurable oropharyngeal can-
cer. The phase II trial accrued 22 patients who 
received 100mcg/peptide ISA 101 on days 1, 22, 
and 50, plus nivolumab 3 mg/kg IV every 2 weeks 
for up to 1  year. Eight patients demonstrated a 
clinical response, with two complete responses 
and eight partial responses, corresponding to an 
overall response rate of 36%, greater than the his-
torical nivolumab monotherapy rate of 16% 
[220]. At a median follow-up of 8.6  months, 
median progression-free survival was 2.7 months 
(95% CI, 2.3–8.0). Median overall survival was 
not reached [221].

Nivolumab has also been tested with or with-
out a peptide vaccine in a phase I study in 90 
patients with ipilimumab-naive or refractory 
unresectable stage III or IV melanoma. 
Nivolumab was dosed at 1  mg/kg, 3  mg/kg, or 
10 mg/kg and was well tolerated at all doses. The 
median duration of response was 8.1 months, and 
the overall response rate was 25% [222].

Ongoing studies include PD-1/PD-L1 and vac-
cination in melanoma (NCT03047928), non-
squamous non-small cell lung cancer 
(NCT03380871), and multiple solid tumors 
(NCT02897765, NCT02432963).

6.8.3	 �CTLA-4 Blockade 
and Cytokine Therapy

Another area of combined immunotherapy 
undergoing active investigation is combining 
CTLA-4 blockade with cytokine therapy. IL-2 
therapy has been used as adjuvant treatment for 
melanoma and renal cell carcinoma with benefit 
in a small subset of patients [223]. IL-2 stimu-
lates T-cell activation, as does CTLA-4 blockade, 
but through different mechanisms. A phase I/II 
dose escalation/expansion trial combining ipili-
mumab with IL-2 was conducted in metastatic 
melanoma patients. The trial demonstrated a 22% 
(5/36) tumor response rate and toxicity similar to 
prior ipilimumab studies [61]. There are multiple 
ongoing trials examining the combination of ipi-
limumab and high-dose interferon alpha, the 
cytokine therapy used most frequently as adju-
vant therapy in melanoma (NCT01274338 ongo-

ing, NCT01708941 ongoing). GM-CSF has been 
used in combination with ipilimumab in a phase I 
dose escalation trial in CRPC demonstrating an 
immunologic response to treatment as well as a 
favorable PSA response in the highest dosing 
cohort (ipilimumab 3  mg/kg and GM-CSF 
250 mg every 4 weeks) with expected toxicities. 
A recent randomized trial pairing ipilimumab 
with GM-CSF versus ipilimumab alone in 
patients with unresectable stage III/IV melanoma 
demonstrated longer overall survival (17.5 vs. 
12.7  months), with no different in progression-
free survival [47]. Additional trials of ipilimumab 
and GM-CSF in CRPC and melanoma are cur-
rently underway, NCT01530984).

A recent phase II trial compared talimogene 
laherparepvec (a genetically modified herpes-
simplex virus that expresses GM-CSF) with and 
without ipilimumab in patients with unresectable 
stage IIIb and IV melanoma. One hundred ninety-
eight patients were randomized, with a 39% 
objective response rate (ORR) in the combination 
arm compared to 18% ORR in the ipilimumab 
monotherapy arm (OR 2.9, 95% CI 1.5–55, 
p  =  0.002). Additionally, more patients in the 
combination arm demonstrated regression of vis-
ceral lesions (52% vs. 23%), with severe toxicity 
comparable between arms (45% vs. 35%) [46].

6.8.4	 �Combination Checkpoint 
Blockade

There is ample preclinical data supporting dual 
checkpoint blockade in murine cancer models 
[215, 224–228]. Based on these principles, inves-
tigators have initiated trials of dual checkpoint 
blockade in humans.

Preliminary phase I results of combination of 
nivolumab (PD-1 blocking mAb) and ipilimumab 
(CLTA-4 blocking mAb) in patients with 
advanced melanoma demonstrated the potential 
of this combination [229]. This led to a 
multicenter randomized controlled phase III trial, 
the CheckMate 067 study. This trial enrolled 
patients with previously untreated stage III (unre-
sectable) or stage IV melanoma and randomized 
them (1:1:1) to ipilimumab (3  mg/kg every 
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3 weeks for four doses) and nivolumab (1 mg/kg 
every 3 weeks for four doses followed by 3 mg/
kg every 2  weeks), nivolumab (3  mg/kg every 
2 weeks), or ipilimumab (3 mg/kg every 3 weeks 
for four doses). The overall survival rate at 
36 months was 58% in the nivolumab-ipilimumab 
combination group, 52% in the nivolumab group, 
and 34% in the ipilimumab alone group. At 
36 months follow-up, the median overall survival 
had not been reached in the combination group 
and was 37.6 months in the nivolumab group and 
19.9  months in the ipilimumab group, corre-
sponding to a hazard ratio for death with 
nivolumab plus ipilimumab versus ipilimumab of 
0.55 (p < 0.001) and 0.65 (p < 0.001) for death 
with nivolumab versus ipilimumab. Treatment-
related adverse effects of grades 3 and 4 occurred 
in 59% of the combination group, 21% receiving 
nivolumab, and 28% receiving ipilimumab [129].

6.9	 �Other Checkpoint Pathways 
Under Development

6.9.1	 �Lymphocyte Activation 
Gene-3 (LAG-3)

Lymphocyte activation gene-3 (LAG-3, CD223) 
is an additional immune coinhibitory checkpoint 
molecule under investigation for therapeutic pur-
poses in cancer. LAG-3 was first discovered in 
the 1990s on activated T lymphocytes and NK 
cells [230]. LAG-3 is structurally similar to CD4, 
and, like CD4, binds to MHC II complexes on 
antigen-presenting cells (APCs), but with greater 
affinity. While some early functional data from 
experiments is mixed, it appears that LAG-3 
plays a predominantly inhibitory role in T-cell 
activation, while promoting APC activation at the 
same time [114, 231–235].

LAG-3 is expressed on a subset of Treg cells 
that secrete immunosuppressive cytokines and 
are more potent than other LAG-3 negative cells 
of the Treg phenotype (CD4+, CD25highFoxP3+). 
They are preferentially expanded in patients with 
cancer. LAG-3 ligation on CD8+ lymphocytes 
inhibits lymphocyte function and proliferation, 
independent of Tregs [18]. Notably, high expres-

sion levels of LAG-3 are seen on tumor infiltrat-
ing lymphocytes and, like PD-1, appear to 
represent an anergic phenotype. In contrast to its 
coinhibitory function on T cells, when soluble 
LAG-3 binds MHC II complexes on dendritic 
cells, it promotes activation and maturation 
[235–238].

Just as with CTLA-4 and PD-1 pathways, 
tumor cells are able to utilize the LAG-3 pathway 
to escape host immunity. MHC class II molecule 
(LAG-3 ligand) expression is sometimes upregu-
lated to varying degrees in a variety of cancers 
and can be associated with a worse prognosis. 
Increased expression of LAG-3 on TILs, corre-
sponding with increased CD8+ T-cell anergy, has 
been noted in Hodgkins lymphoma, melanoma, 
and ovarian cancer [239, 240]. Additionally, 
MHC class II expressing melanoma cells (but not 
MHC class II negative cells) were resistant to 
FAS-mediated apoptosis when exposed to LAG-3 
transfected cells or soluble LAG-3, indicating a 
bidirectional signaling in the LAG-3 pathway 
that effects both lymphocytes and tumor cells 
[114, 239–241].

Removing or blocking the LAG-3 pathway 
improves immune-mediated antitumor effects. 
Blocking LAG-3 with mAbs has been shown to 
increase CTL expansion and improve CD4+ lym-
phocyte cytokine production. In melanoma, anti-
LAG-3 mAb blockade improved the antitumor 
function of tolerized CD8+ lymphocytes when 
coupled with a viral cancer vaccine [242]. In 
murine cancer models, PD-1−/− LAG-3−/− knock-
out mice were capable of rejecting tumors that 
PD-1 or LAG-3 alone knockout mice could not. 
It is worth noting that LAG-3−/− knockout mice 
display a very mild phenotype, similar to PD-1−/− 
knockout mice, while PD-1−/− LAG-3−/− knock-
out mice develop lethal autoimmunity at about 
10 weeks of age, underscoring the potential tox-
icity of dual blockade therapy [225, 227, 243]. 
Similar to the knockout mice, dual mAb block-
ade of PD-1 and LAG-3 was able to cause 
complete regression in several established tumor 
models in mice, while blockade of the individual 
receptors was not [227, 243].

Since LAG-3 binding of MHC II complexes on 
APC promotes activation and maturation of the 
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APC, soluble LAG-3 protein has been tested as an 
immunoadjuvant in cancer. Theoretically, the 
unbound LAG-3 can promote APC activity while, 
at the same time, can prevent LAG-3-mediated 
T-cell inhibition through competitive binding. 
Supporting this, soluble LAG-3  in the serum of 
breast cancer patients was associated with 
improved survival. Based on these findings, a 
fusion protein of the extracellular portion of 
LAG-3 and the Fc portion of IgG1 were recog-
nized as IMP321. IMP321 has been tested as a 
vaccine immunoadjuvant where it was well toler-
ated and produced encouraging immunologic 
results. IMP321 has also undergone testing as 
monotherapy in a phase I dose escalation trial in 
21 patients with advanced renal cell carcinoma. 
The drug produced no significant adverse events 
and was associated with significantly more dis-
ease stability at higher dosing. More recently, 
IMP321 was tested at two different doses in a 
phase I trial together with gemcitabine in 12 
patients with advanced pancreatic cancer. IMP321 
again did not produce significant adverse events 
but also failed to show any change in immuno-
logic markers after therapy was given [244–248].

LAG-3 has been shown to be synergistic with 
PD-1/PD-L1. In a murine model, dual anti-
LAG-3/anti-PD-1 antibody treatment cured most 
mice of established tumors that were resistant to 
single antibody treatment [48] and demonstrated 
that LAG-3 is required for long-term peripheral 
CD8 but not CD4 immune tolerance [49]. High 
level dual LAG-3/PD-1 expression is largely 
restricted to tumor-infiltrating lymphocytes 
which are likely advantageous due to focused 
“attack” instead of nonspecific or self-antigen-
specific immune responses.

Ongoing studies of LAG-3/IMP321 are being 
performed in glioblastoma (NCT02658981), 
metastatic breast cancer (NCT02614833), and 
hematologic neoplasms (NCT02061761).

6.9.2	 �4-1BB

4-1BB (CD137), unlike the inhibitory molecules 
CTLA-4, PD-1, and LAG-3, is a co-stimulatory 
molecule. It is a member of the tumor necrosis fac-

tor receptor (TNFR) superfamily that is inducibly 
expressed on activated CD8+ and CD4+ lympho-
cytes (including Tregs), NK cells, dendritic cells, 
macrophages, neutrophils, and eosinophils, as 
well as in some tumor tissue. The 4-1BB receptor 
is bound by the 4-1BB ligand (4-1BBL) expressed 
on antigen-presenting cells. 4-1BB functions as a 
costimulatory signal after a T-cell receptor is 
bound by an antigen-MHC ligand along with 
CD28 costimulation to promote CD4+ and CD8+ 
lymphocyte proliferation, activation, and protec-
tion against activation induced cell death. 4-1BB 
ligation is able to costimulate CD8+ lymphocytes 
to activation even in the absence of CD28-B7-1/
B7-1 signaling and prevent or reverse established 
anergy in lymphocytes. Additionally, 4-1BB 
appears to function across both the innate and 
adaptive immune system as it is able to increase 
the activity of NK cells which, once activated, are 
further able to stimulate lymphocyte function. 
4-1BB also appears to be functionally important in 
inhibiting Treg function and promoting antigen 
priming by dendritic cells. Interestingly, 4-1BB 
activation via agonistic mAbs is able to prevent or 
treat antibody-mediated autoimmunity in mouse 
and primate models by increasing CD4+ (but not 
CD8+) lymphocyte anergy, a process that is not 
completely understood [249–258].

Preclinical data with agonistic 4-1BB mAbs 
has demonstrated a robust antitumor effect. In 
multiple mouse models, mAb treatment has led 
to increased tumor-specific CD8+ lymphocyte 
response and substantial tumor regression. 
Additionally, melanoma cells transfected to 
express 4-1BB agonist single chain Fv fragments 
and given to mice as an autologous tumor cell 
vaccine led to rejection of poorly immunogenic 
tumors. Treatments were well tolerated in animal 
models, although polyclonal T lymphocyte accu-
mulation in the liver was noted. Combination of 
agonist 4-1BB mAb treatment with immunother-
apy appears to function synergistically with 
immunotherapy and chemotherapy. To further 
test its efficacy and safety, one 4-1BB mAb, BMS 
663513, was tested in primates along with a 
prostate-specific antigen DNA vaccine where it 
demonstrated encouraging immunologic results 
[228, 249, 252, 254, 259–266].
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Two mAbs have moved into clinical testing in 
humans. Urelumab (BMS-663513;Bristol Myers-
Squibb, New York, NY) is a fully human agonist 
4-1BB mAb that was given to advanced cancer 
patients in a dose escalation trial. Initial results 
from 83 patients with melanoma (54 patients), 
renal cell carcinoma (15 patients), ovarian cancer 
(13 patients), and prostate cancer (1 patient) who 
were given 0.3–15 mg/kg of the mAb with expan-
sion cohorts at the 1, 3, or 10 mg/kg level of dosing 
have been reported. Results revealed that there 
were significant toxicities including grade 3 or 4 
transaminitis in 11% and grade 3 or 4 neutropenia 
in 5% of patients. There were three objective par-
tial responses in melanoma patients and several 
other patients with stable disease along with 
increased levels of peripheral activated T lympho-
cytes and interferon in posttreatment biopsies 
[267]. A phase II trial in advanced melanoma was 
conducted; however, as the incidence of grade IV 
hepatitis was higher than expected, the trial was 
terminated. Several other trials were terminated at 
that time. Phase I trials have been performed in 
which urelumab was given as monotherapy in 
advanced solid malignancies or non-Hodgkins 
lymphoma (NCT01775631, completed, results not 
reported) and in combination with rituximab in 
non-Hodgkins lymphoma or chronic lymphocytic 
leukemia (NCT0177563, study withdrawn). A sec-
ond drug, PF-05082566 (Pfizer, New York, NY), is 
currently recruiting for a phase I trial as monother-
apy in solid tumors or in combination with ritux-
imab in non-Hodgkins lymphoma (NCT01307267).

Multiple studies are in progress evaluating 
combination therapy with urelumab and nivolumab 
including urothelial carcinoma (NCT02845323), 
metastatic melanoma (NCT02652455), and mul-
tiple advanced tumor types (NCT02534506). 
Hepatotoxicity appears to be the limiting factor 
with 4-1BB monotherapy, but combination ther-
apy is promising.

6.9.3	 �OX-40

OX-40 (CD134, TNFRSF4) is another member 
of the TNFR superfamily which is a costimula-
tory receptor of particular interest in cancer. Like 

many of the previously described immune check-
point pathways, OX-40 functions to modulate 
T-cell activation and proliferation in the setting of 
inflammation to ensure an adequate immune 
response, but prevent autoimmunity or unneces-
sary tissue damage. OX-40 is predominantly 
expressed on activated CD4+ lymphocytes; how-
ever lesser degrees of expression is observed on 
other cells such as activated CD8+ lymphocytes, 
Tregs, NK cells, and neutrophils. The only known 
ligand to OX-40 is the OX-40 ligand (OX-40L), 
which is primarily expressed on activated APCs. 
OX-40 stimulates CD4+ lymphocyte clonal 
expansion, survival, and cytokine production, 
particularly in late phases of activation. OX-40 is 
also important in the generation of functional 
memory T-cell pools. Signaling through the 
OX-40 pathway does expand Treg populations, 
but the expanded cells are functionally impaired 
with an exhausted phenotype. The function of 
OX-40 was further shown in transgenic mice 
engineered to have constitutive T-cell expression 
of OX-40L. These mice developed expansion of 
CD4+ T-cell (but not CD8+ T cell) pools and an 
autoimmune phenotype. This is in contrast to 
OX-40L−/− knockout mice or mice treated with 
OX-40L blocking mAbs, which demonstrate 
impaired lymphocyte priming but normal lym-
phocyte localization and humoral immune 
responses. While OX-40 appears to function pri-
marily through CD4+ lymphocytes, there is evi-
dence that this ultimately leads to augmented 
CD8+ lymphocyte function as well [268–283].

In cancer, agonistic therapies to the OX-40 
pathway have proved successful in overcoming 
cancer immune tolerance. In mouse models, ago-
nist OX-40 mAbs have led to complete regres-
sion of established tumors and protective 
immunity against repeat inoculation. The antitu-
mor effect was dependent on both CD4+ and 
CD8+ lymphocytes. Treatment with agonistic 
OX-40 mAbs was more effective than blocking 
CTLA-4 mAbs in generating antigen-specific 
memory T-cell pools after antigen inoculation. 
Finally, OX-40 mAbs have been shown to func-
tion synergistically with other cancer immuno-
therapies, surgery, and radiation in murine 
models. These findings along with observations 
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that OX-40 has been noted to be relatively over-
expressed in tumor-infiltrating lymphocytes and 
lymphocytes from draining lymph nodes from 
human melanoma, head and neck, and breast 
cancers led to trials in primates and then humans 
[273, 284–291].

A mouse agonist OX-40 mAb was used to 
treat 30 patients with advanced solid tumors in a 
dose escalation phase I trial that completed 
enrollment in 2009. The mAb was given as three 
doses over 5 days along with tetanus toxin and 
keyhole limpet hemocyanin. Initial results indi-
cate that the treatment was well tolerated with 
evidence of clinical response in heavily pre-
treated patients. A humanized agonist OX-40 
mAb has been developed and is currently under-
going trials combined with stereotactic radiation 
therapy in metastatic breast cancer 
(NCT01642290  in progress), combined with 
low-dose cyclophosphamide and radiation in 
metastatic CRPC (NCT01303705, in progress) 
renal cell carcinoma (NCT03092856), metastatic 
colorectal cancer (NCT02559024), and head and 
neck SCC or melanoma (NCT03336606) [54].

A recent study investigating combination ther-
apy of OX-40 agonist alone or in combination 
with ipilimumab, durvalumab (anti-PD-L1), and 
rituximab was terminated at the sponsor’s discre-
tion (NCT02205333); however, ongoing studies 
of combination therapy include OX-40 agonists 
and atezolizumab (NCT02410512) and dur-
valumab (NCT02221960) in solid tumors [55].

6.9.4	 �Glucocorticoid-Induced 
TNFR-Related Protein (GITR)

Glucocorticoid-induced TNFR-related protein 
(GITR) is a third member of the TNFR superfam-
ily with costimulatory properties. Like OX40 and 
4-1BB, it has a low basal expression level on 
naïve T-lymphocytes, but is significantly upregu-
lated upon activation. It is also expressed consti-
tutively on Tregs and to a lesser degree on NK 
cells and mast cells, but expression is increased 
with activation in all cases. Also like OX40 and 
4-1BB, GITR is instrumental in modulation of 
T-cell responses to infection and cancer; how-

ever, it operates through non-redundant path-
ways. GITR is bound by GITR ligand (GITR-L), 
which is expressed predominantly on APCs after 
activation, but also at lower levels on endothelial 
tissue and activated T cells. GITR ligation 
enhances T-lymphocyte activation, proliferation, 
resistance to activation-induced cell death, and 
resistance to Treg-mediated suppression. 
However, the in  vivo effect in immunomodula-
tion may be subtle as GITR−/− knockout mice 
demonstrate a mild phenotype with differences in 
response to certain infection and severe inflam-
matory conditions [292–304].

In preclinical studies, agonistic GITR mAbs 
were shown to stimulate T lymphocytes and 
overcome Treg-mediated tolerance. This finding 
led to a series of experiments in mice that demon-
strated agonist GITR mAbs enhance antitumor 
immunity [107, 290, 305–307]. Agonistic GITR 
mAbs have also shown to improve the effective-
ness of cancer vaccines in animal models. Based 
on these results, a humanized agonist GITR mAb, 
TRX518, is being tested in phase I trials in meta-
static melanoma and other advanced solid tumors 
(NCT01239134, still recruiting). Multiple other 
studies using GITR agonists are in progress in 
solid tumors (NCT02628574), in combination 
with checkpoint inhibitors (NCT02553499, 
NCT02132754, NCT02598960), and using 
GITRL proteins (NCT02583165).

6.9.5	 �CD40

CD40 is another costimulatory molecule of inter-
est in cancer immunotherapy. Like OX-40, it is a 
member of the TNFR superfamily. CD40 is 
expressed and functionally important on APCs, 
but it is also found on a broad range of normal and 
tumor tissue. On cells such as monocytes and den-
dritic cells, ligation of the CD40 receptor acts to 
license the cells into mature, active APCs. For 
example, ligation of CD40 on monocytes and den-
dritic cells leads to increased survival, increased 
expression of MHC complexes and costimulatory 
molecules, and increased cytokine production. In 
other tissues, CD40 appears to primarily play a 
role in modulating local inflammation. It is bound 
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primarily by CD40 ligand (CD40L); however, 
binding by mycobacterial heat shock protein 70 
and C4b binding protein has also been identified. 
CD40L is expressed primarily on active (but not 
resting) T lymphocytes, in particular, CD4+ lym-
phocytes, although some level of expression has 
been identified on other cell types. By playing a 
role in APC maturation, CD40 is also integrally 
important to lymphocyte priming and activation. 
Activated CD4+ lymphocytes express CD40L 
which bind to CD40 on APCs, allowing the APCs 
to mature and effectively cross prime CD8+ lym-
phocytes. The central role of the CD40 pathway in 
immunity is revealed by X-linked hyper IgM syn-
drome, a severe immune deficiency characterized 
by neutropenia, susceptibility to opportunistic 
infection, and autoimmunity, which is due to 
genetic mutations in the CD40L gene [308–318].

Interest in the CD40 pathway in cancer has 
come from observations that CD40 ligation is 
necessary for immune-mediated destruction of 
cancer cells and that CD40 is expressed on a vari-
ety of malignant tissues and from preclinical tri-
als with CD40 mAbs. Treatment of established 
tumors in mice with agonistic CD40 mAbs has 
resulted in impressive immune-mediated tumor 
regression and protective immunity, while treat-
ment with CD40L blocking mAbs results in 
abrogation of the antitumor immune response. 
The mechanism of action for agonistic CD40 
mAbs is likely twofold and dependent on tumor 
CD40 expression level and antibody subtype 
used. In CD40 expressing tumors, anti-CD-40 
IgG1 mAbs are able to bind and induce antibody-
dependent cytotoxicity (ADCC) of the tumor 
cells. There is also evidence that high level of 
ligation of CD40 in certain cancers, particularly 
multiple myeloma and high-grade B-cell lym-
phoma, can inhibit cancer growth. The second 
mechanism of tumor inhibition, which is inde-
pendent of CD40 expression on tumor cells, is 
through the immunostimulatory effects of CD40 
ligation [319–329].

Multiple strategies have been investigated to 
therapeutically target CD40  in human malig-
nancy. The first human trials involved treating 
advanced solid tumors and non-Hodgkins lym-
phoma with recombinant human CD40L (Avrend; 

Immunex Corp, Seattle, WA). Treatment was 
given to 32 patients with dose-limiting toxicity of 
grade 3 and 4 transaminitis seen with higher dos-
ing. There was evidence of clinical activity with 
partial responses seen in patients with laryngeal 
carcinoma and non-Hodgkins lymphoma [330]. 
More recent efforts have focused on targeted 
mAb blockade of CD40, with multiple drugs cur-
rently under investigation in clinical trials.

CP870,893 (now RO7009789, Selicrelumab) 
(Pfizer, New York, NY is a fully humanized anti-
CD40 IgG2 mAb with strong agonistic properties 
that has been tested in several clinical trials. 
Interestingly, CP870,893 with its IgG2 Fc domain 
has a relatively low binding affinity to human 
FcgRs when compared to second generation 
drugs, and may function by binding to a unique 
epitope on human CD40. It was first given as a 
single dose, dose escalation phase I trial to 29 
patients with advanced malignancy where partial 
objective responses were noted in 27% (4/15) of 
melanoma patients but not in other tumor types. 
A second phase I trial evaluated weekly dosing of 
CP870,893 in 27 patients with advanced malig-
nancies. Less evidence of clinical benefit was 
seen with no objective responses observed. 
CP870,893 was tested in combination with che-
motherapy in two trials; in combination with 
gemcitabine in pancreatic carcinoma and in com-
bination with carboplatin and paclitaxel in a vari-
ety of advanced malignancies. In these trials 
partial objective responses were seen in 19% 
(4/21) and 20% (6/30) of patients, respectively. 
[327, 331–334].

In all trials, the immunomodulatory properties 
of the mAb were evident with transient elevation in 
IL-6 and TNF-α, as well as depletion and stimula-
tion of B lymphocytes. The most common toxici-
ties were cytokine release syndrome (typically 
grade 1 and 2) and transient elevation of transami-
nases. Ongoing studies with CP870,893 include 
additional trials in combination with gemcitabine 
in advanced pancreatic cancer, and combination 
trials with peptide vaccines and CTLA-4 blocking 
tremelimumab in metastatic melanoma 
(NCT01456585 completed without reported 
results, NCT01008527 completed without reported 
results, NCT01103635 ongoing). Current studies 
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investigating CD40 combinations include combin-
ing anti-PD-L1  in solid tumors (NCT02304393), 
anti-Ang2/VEGF in solid tumors (NCT02665416), 
anti-CSF1 R in solid tumors (NCT02760797), and 
gemcitabine/nab-Paclitaxel in pancreatic carci-
noma (NCT02588443).

APX005M is a humanized rabbit IgG1 CD40 
agonist being tested in multiple trials, in combi-
nation with anti-PD-1 (NCT02706353, 
NCT03123783) and CD40 alone 
(NCT02482168).

ADC-1013 is a fully human IgG1 CD40 ago-
nist being studied as monotherapy in multiple 
studies (NCT02379741, completed without 
reported results, NCT02829099).

SEA-CD40: non-fucosylated humanized IgG1 
agonist, CD40 alone (NCT02376699, recruiting).

Dacetuzumab is a humanized anti-CD40 IgG2 
mAb that has been tested in B-cell hematologic 
malignancies, which have high constitutive 
expression of CD40. Dacetuzumab was first given 
as a phase I dose escalation trial in 44 multiple 
myeloma patients where the addition of steroid 
premedication was found to increase the tolerated 
dose; however, it demonstrated no objective clini-
cal response. Similarly, it was tested in a phase I 
dose escalation trial in 12 patients with chronic 
lymphocytic leukemia, and again, no objective 
responses were seen. Based on preclinical data 
suggesting synergy with rituximab (anti-CD20 
mAb), dacetuzumab was tested along with ritux-
imab (and gemcitabine) in 33 patients with refrac-
tory diffuse large B-cell lymphoma (DLBCL). In 
this trial, the combination generated six (20%) 
complete responses and eight (27%) partial 
responses. However, a randomized phase II trial 
comparing this combination with chemotherapy 
alone in DLBCL was terminated early based on 
perceived futility. In these trials, dacetuzumab 
therapy also caused cytokine release syndrome in 
a minority of patients, but was generally well tol-
erated. There are no ongoing trials registered for 
dacetuzumab [326, 335–338].

A third agonistic anti-CD40 mAb being tested 
is Chi Lob 7/4. This chimeric IgG1 mAb has 
undergone phase I testing in patients with CD40+ 
advanced solid malignancies or DLBCL. 15/29 
treatments were accompanied by disease stabiliza-

tion for a median of 6 months with acceptable tox-
icities when single-dose corticosteroids were 
administered [339]. No further studies are 
registered.

The fourth anti-CD40 mAb under investiga-
tion is lucatumumab, a fully humanized 
IgG1mAb, which, unlike the previously described 
CD40-targeted therapies, is antagonistic. As pre-
viously discussed, there is evidence that CD40 
ligation can promote proliferation and cell growth 
in low grade B-cell malignancies as in normal B 
lymphocytes, although the data is mixed. Thus, 
the proposed mechanisms of action for lucatu-
mumab include blocking of CD40 ligation on 
malignant cells and ADCC, but not immunostim-
ulation. Lucatumumab has been tested in two 
dose escalation phase I trials in chronic lympho-
cytic leukemia and in multiple myeloma with 
minimal toxicity but only modest clinical 
responses. No further studies are currently regis-
tered [328, 329, 340–342].
There is currently one actively recruiting study 
evaluating CDX-1140, a fully human monoclo-
nal anti-CD40 antibody (NCT03329950). No 
results have been reported.

6.9.6	 �TIM-3

The function of T-cell immunoglobulin and 
mucin domain 3 (TIM-3) is becoming better 
understood. TIM-3 is expressed on multiple cell 
types including IFN-gamma secreting CD8+ 
T-cells, Treg cells, and cells of the innate immune 
system (macrophages, dendritic cells), affecting 
both adaptive and innate immune responses. 
TIM-3 is expressed on Th1 cells and generates an 
inhibitory signal-inducing apoptosis of Th1 cells. 
It is also expressed on some dendritic cells 
leading to apoptotic cell phagocytosis and dis-
ruption of cross-antigen presentation. TIM-3 is 
upregulated in tumor-specific CD8+ T cells and 
CD8+ TILs, while administration of TIM-3 
increases proliferation and activity of antigen-
specific T cells. In multiple cancers, TIM-3 
expression has been associated with tumor pro-
gression and shorter survival. Preclinical data 
suggests that TIM-3 blockade may be most 
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effective when given in combination with PD-1 
mAbs. In addition, since TIM-3 is expressed on 
non-T cells, a possible mechanism for penetra-
tion of the tumor microenvironment is theorized. 
In general, TIM-3 is seen as a negative regulator 
of antitumor immunity. Its selective expression 
on intratumoral T cells may reduce nonspecific 
toxicity and even offers theoretical synergy with 
checkpoint inhibitors [343–349].

There are two TIM-3 monoclonal antibodies in 
development. MBG 453 (Novartis, Basel, 
Switzerland) is being studied in a phase Ib/II open-
label trial comparing single-agent therapy to com-
bination therapy with PD-1 antibodies in adults 
with advanced malignancies (NCT02608268 
recruiting, NCT03066648 recruiting).
TSR-022 (TESARO, Waltham, USA) is being 
evaluated in a phase 1 study (NCT02817633, 
recruiting) as a single agent in adults with 
advanced solid malignancies. Some select 
patients will receive combination therapy with 
anti-PD-1 antibodies.

6.9.7	 �TGN1421: A Cautionary Tale

A word of caution is warranted about trying new 
individual or combination immune checkpoint 
therapies. While some immunomodulatory thera-
pies have been well tolerated, it is clear that they 
have the potential for severe, lasting, and some-
times fatal toxicities. Just as animal models have 
proven inadequate for reliable prediction of human 
cancer responses to therapy, they are also inconsis-
tent predictors of treatment toxicity. The most nota-
ble example of this is experience with TGN1412 
(TeGenero). TGN1412 is a novel agonist anti-
CD28 mAb, which was under development for 
treatment of chronic lymphocytic leukemia. In ani-
mal models, the drugs showed encouraging immu-
nologic results without detectable toxicities. Thus, 
the drug was given as a single infusion to six 
healthy volunteers. Within 90  min, all displayed 
signs of cytokine release syndrome, and within 
16 h all were critically ill. All patients suffered from 
multisystem organ failure including acute lung 
injury, renal failure, and disseminated intravascular 
coagulation. Fortunately, all six survived and 

recovered [350]. This example underscores the care 
that is necessary when designing and conducting 
clinical trials in order to maximize patient safety.

6.10	 �Conclusion

If decades of cancer research and, in particular, 
cancer immunotherapy research have taught us 
anything, it is that cancer is a resilient and adapt-
able foe. For now, checkpoint inhibition has 
added another weapon to our arsenal in the battle 
against cancer. As its current indications are 
expanding, it serves as proof of principle that 
immune checkpoint blockade can overcome can-
cer immune tolerance and escape in a clinically 
meaningful way. It has also reinvigorated research 
in cancer immunology and spurred the search for 
new immune coinhibitory and costimulatory 
checkpoints to target. While the initial work in 
new targets is encouraging, many large trials, at 
the cost of millions of dollars, are needed before 
its full potential is established. As we further elu-
cidate the mechanisms by which cancer evades 
immune detection and destruction and learn to 
counter them, more effective and better-tolerated 
therapies are sure to emerge. Additionally, further 
characterization of the interactions between can-
cer and host immune system and how this changes 
with checkpoint blockade may help us under-
stand and discover biomarkers for predicting 
which patients will respond, allowing treatment 
to be tailored and toxicity to be minimized.

Perhaps the greatest potential for improving 
outcomes and achieving broader applicability 
lies in using immune checkpoint blockade as 
combination therapy, by using blocking 
antibodies on coinhibitory receptors and agonist 
antibodies on costimulatory receptors. By com-
bining checkpoint blockade therapy with conven-
tional therapies such as chemotherapy and 
radiation, the destructive power of these therapies 
can be parlayed into a purposeful, long-lasting, 
cancer-specific immune response. Similarly, 
checkpoint blockade may help break down the 
barriers that have prevented most cancer vaccines 
from working and thus fulfill the long sought-
after promise of active immunotherapy—a 
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stimulated, long-lasting, cancer-specific immune 
response that eliminates established tumors or 
prevents their recurrence.
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