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Abstract. Adaptive exergames have been developed to encourage regular
exercise and support rehabilitative motion for improved health outcomes in
today’s ageing population. However, existing approaches often fail to provide
evidence for a direct link between physical performance and gameplay out-
comes, which makes it difficult to accurately adapt gameplay mechanics. The
Stealth-Adaptive Exergame Design (SAED) Framework addresses this limita-
tion by mapping the design of exergame mechanics to performance character-
istics and utilizing real-time learning in a seamless (stealth) manner to adapt the
system to the individual. Two cases of implementation of the SAED framework
from prior work are presented, one modeling the rehabilitative exercise program
of a specific individual and physical trainer in a self-defense arm-swing motion
and the other utilizing the two-leg standing squat motion to reduce risk of
locomotive degeneration in the Japanese elderly population. Design character-
istics of the two cases, including the mapping between spatial and temporal
characteristics of the motion and corresponding game objectives, are presented
along with models for real-time stealth adaptation. Applications of the frame-
work toward a variety of exercise domains are discussed with limitations on
usable game scenarios and designs.
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1 Introduction

As the world’s population continues to age, nearly every country has experienced a
steady growth in the proportion of its population aged 65 or higher [1]. This is par-
ticularly the case in countries such as Japan, wherein the elderly are projected to
account for over a third of the population [2]. Consequently, global demand for
physical therapy and healthcare to combat the physical disabilities caused by muscu-
loskeletal degeneration and other detrimental health effects of aging has seen a sharp
increase, with demand rapidly outweighing availability of therapists and physicians in
many cases [3].

A promising solution in recent research has been the usage of exercise-based serious
games, or exergames, as a tool for self-driven exercise to benefit elderly physical health
and healthy lifespans. A wide variety of exergames have been developed for this pur-
pose, with many recent approaches including adaptation strategies to match the
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difficulty of gameplay with performance and physical limitations of the player. These
exergames are designed to provide an engaging and meaningful method to motivate
regular exercise, and utilize physical motions directly related to those prescribed within
rehabilitation programs and therapy in order to relate gameplay to physical health.
However, the designs of many such exergame systems share a glaring issue: while it is
often shown in resultant data that users of these exergames improve in physical function,
due to the lack of a direct link or mapping between the properties and outcomes of the
exercise task and the corresponding properties and outcomes of game objectives, it can
be very challenging to conclude that the evidence for these improvements in health
outcomes are based within gameplay, and therefore the effectiveness of these solutions
in practice cannot be effectively determined.

To address this issue, it is proposed that the design of these exergames can utilize a
mapping strategy wherein the physical and temporal properties of the motor task, as
well as the individual goals, successes and errors within these domains, are linked
directly to corresponding gameplay objectives and outcomes, in such a way that evi-
dence for successful and erroneous performance within gameplay serves also as evi-
dence for performance in a motion task. Furthermore, adaptation of the gameplay
objectives should utilize a learning backend that learns to link an individual’s per-
formance at the exercise task to officially recognized clinical metrics for health and
physical function.

These are the key principles in the design of a novel framework for exergame
development, the Stealth-Adaptive Exergame Design (SAED) Framework, presented in
this work. Related work on exergames for elderly and rehabilitative users and the
principles for adaptation and exergame design that serve as the basis for the proposed
framework are presented in Sect. 2. Section 3 provides an overview of the SAED
Framework and details of the evidence-centered mapping and adaptation strategies
described above. In Sect. 4, two cases are presented wherein the SAED framework is
utilized in the design of exergames to support rehabilitation, along with details of their
respective strategies for individually focused stealth adaptation. Conclusions and
directions for future work including implementations of the framework across a variety
of domains of exergaming are provided in Sect. 5.

2 Related Work

2.1 Exergames for Elderly and Rehabilitation

The potential for exergames, or exercise-based videogames, to promote the healthy
lifespan, rehabilitative recovery, mobility, and physical fitness among the elderly is
well-documented in research. Zheng et al. demonstrated the ability of these games to
improve multiple health outcomes including strength, balance and other physical
characteristics among the elderly population [4]. Liao et al. have further indicated that
exergames can assist elderly subjects in recovering from effects of frailty [5]. The
primary motivation for utilizing exergames over conventional exercise is also well-
noted in research, and is verified by Huang et al. [6]: exergames can create a positive
effect on an individual’s enthusiasm and perception toward exercise, and may thus
assist in improving compliance with regular physical activity requirements over time.
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Based on these motivations, and the need for individually adaptive rehabilitative
exercise, exergames have been developed and evaluated extensively within this pop-
ulation and have seen a variety of approaches toward adaptation and adjustment to
match skill level. As a notable recent example, Garcia et al. developed an asynchronous
solitaire exergame wherein gameplay elements requiring cognition were separated from
those requiring physical exercise in order to reduce cognitive load in consideration of
the preferences of the population [7]. Earlier approaches [8] recognized the need for
these exergames to respect the physical and cognitive capabilities of their target pop-
ulation, giving rise to adaptive systems. In some cases, adaptation was facilitated
through intervention by a physiotherapist [9]; however, automating the adaptation
process becomes increasingly desirable in modern work as the demand for physical
therapist time and resources begins to exceed availability.

Adaptive exergames often adopt a default approach to design wherein a predefined
game concept or game task is fitted to a motion task and then distributed to a series of
users, treating “the elderly” as a group rather than considering interpersonal and
intrapersonal variation in design. The Person-Centered Multimedia Computing [10]
paradigm argues that even among populations who share common attributes, such as
the geriatric population, individuals can be vastly varied from the perspective of
technology and human-computer interfaces, especially in the case of physical motion
capabilities and limitations. In this regard, adaptation mechanisms such as that of
Paliyawan et al. [11] which utilize AI to learn about the player, gradually improving the
precision of their adaptation to match their knowledge of that player’s attributes, are
preferable to more static implementations. The recently-proposed fuzzy logic model by
Zhang et al. [12] for assessing adaptation of various exergaming environments using
individual characteristics also demonstrates the effectiveness of AI-based dynamic
adaptation.

Individual variation also leads to differences in preferred game types, with indi-
viduals often preferring games with subject matter they are more familiar with, par-
ticularly when these players are elderly users [13]. The choice of subject and mechanics
within exergame design should account for these factors in addition to considering the
motions themselves. Finding the right game abstraction for an exercise is no trivial
task; the chosen game scenario should be the most natural abstraction possible for the
motion task. This concept was suggested early in the development of exergame
research by Sinclair et al. [14] in their separation of effectiveness and attractiveness of
exergames, but was not explored in detail. This places several fundamental constraints
on the exergame implementation, which many existing exergame approaches often fail
to adequately account for.

Furthermore, the requirements of the trainers, therapists and standard assessments
need to be considered and integrated into the AI’s assessment of performance in these
systems, so that they can be more easily integrated into existing training and exercise
programs. Earlier studies relating exercise to physical health in the elderly utilized
evidence in physical performance characteristics to support claims about health out-
comes [15]. Modern exergame studies utilize validated, trainer-approved evidence of
health outcomes to assess the effectiveness of their implementations, but these are often
done outside of gameplay, since these instruments of assessment are not mapped into
the game’s design [16].
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2.2 Evidence-Centered Adaptation

When game mechanics are designed merely to accommodate physical activity, rather
than to embody it precisely, it is difficult to validate the effectiveness of exergame AI at
evaluating and adapting to individual skill level [17, 18]. For example, often it is the
case that performance in one of the three primary categories of motion assessment
(posture, progression, or pacing) [19] is significantly different than the others, and only
the elements of gameplay mapped to that category require adjustment. Recently derived
requirements from the elderly population for the design of exergames reflect these
concerns, prompting the need for a more flexible adaptation strategy [20].

Studies of adaptation in exergames for the elderly have favored more individually
driven and motion-centric design of gameplay. Velazquez et al. [21], for instance, used
an action research study to derive several recommendations for the implementation of
adaptation within exergames supporting the elderly. Among these is the need to
accurately and seamlessly classify motion capabilities of the player concurrently within
gameplay. For this classification to relate directly to game performance, it follows that
gameplay outcomes should serve as verifiable outcomes for performance results at the
motion task. Without this relationship, the claim that adaptation of exergame elements
and game mechanics leads to suitable motor learning, and thus improved health out-
comes, cannot be easily verified.

Hence, the design of exergames should center itself around the characteristics
which serve as evidence for exercise performance, and the physical and temporal
characteristics of these mechanics can be mapped directly to the corresponding char-
acteristics of physical performance such that in order to improve their proficiency, users
can rely directly on game mechanics, rather than focusing on their own body move-
ments, to guide them [22, 23]. This principle of the application of Evidence-Centered
Design [24] toward “stealth” assessment forms the foundation for the “stealth assess-
ment” concept in educational serious games proposed by Shute et al. [25] and is
applied in this framework toward adaptive exergames for the elderly.

3 The Stealth-Adaptive Exergame Design (SAED)
Framework

3.1 Overview

The Stealth-Adaptive Exergame Design (SAED) Framework, as shown in Fig. 1, is a
novel framework for exergame selection and AI design which utilizes Evidence-
Centered Design and Stealth Assessment principles [26] to facilitate individually
focused machine learning and assessment of motion task performance. In this frame-
work, a specific individual, trainer requirements (when applicable), and motion task
properties are utilized as filters to select the best-matching game concept on a case-by-
case basis.

Once the exergame implementation is selected, an evidence mapping approach
similar to [26] is adopted to map the spatial and temporal attributes of a motor task
repetition to a repeating gameplay element, including a relationship between positive
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and negative task performance and in-game outcomes. Finally, an instrument for
performance assessment is chosen from expert standards and a model for AI-based
learning is chosen based on the relationships between the chosen assessment instrument
and the exercise task properties. This model is used to adapt the game to the player’s
performance by directly modifying game objectives at a chosen interval and tolerance
range for error, resulting in seamless stealth adaptation.

3.2 Exergame Selection

The first task posed by the SAED framework is the selection of an appropriate exer-
game by beginning with the motion task. This motion task is provided by a therapist,
trainer or physician, and is often tuned to the needs, capabilities and limitations of an
individual; however, some common properties exist among rehabilitative or health-
improving exercises. Generally, these exercises can be decomposed into three char-
acteristics [19]: posture, which represents the requirements of the subject’s body
configuration while performing the exercise, pacing, which represents the rhythm and
rate of motion requirements, and progression, which represents the degree or precision
of motion required to successfully complete the exercise. Furthermore, the exercises
themselves are typically repetitive and rhythmic in nature, with each attempt com-
prising one repetition of the task and multiple repetitions forming a set.

As discussed in Sect. 2.1, not all game concepts are effective as choices of
abstraction for these exercises. When considering the above requirement, the chosen
exergame implementation must utilize an interactive game element which is comprised
of a uniformly repeating task (for example, a racing track being comprised of a series of
turns or curves), with continuously adjustable parameters, and clear, immediate evi-
dence for performance [27]. The game task must also match the motion task in com-
plexity by sharing similar spatial characteristics (posture, progression) and temporal
characteristics (pacing) for adaptation to be effective.

In alignment with the requirements of person-centered design, and in respect of the
interpersonal and intrapersonal variation within the population, the chosen game
objective must match any additional requirements or constraints placed by the trainer or

Fig. 1. Overview of the stealth-adaptive exergame design framework.

Stealth-Adaptive Exergame Design Framework for Elderly and Rehabilitative Users 423



therapist involved in assigning the motion task (such as the use or lack of exercise
equipment, and duration of a single session), should respect preferences of the indi-
vidual toward certain game contexts or subject matter, and should choose a game task
which serves as the most natural abstraction for the motion task under assignment. It
would be difficult, for example, to associate the game task of flipping a coin to a knee
flexion/extension task as input, as coins are typically flipped using the hand.

3.3 Evidence Mapping

Once an exergame implementation has been selected, a single repetition of the game
task corresponds to a single attempt or repetition of the exercise task. At this point, it is
necessary to determine the factors which serve as evidence for successful performance
of this game task and relate one such factor to each of the three requirement domains
for performance of the motor task. This task is greatly alleviated in difficulty when the
game context is a natural abstraction of the motion task as previously stated. For
posture, the game’s design should consider what consequences could arise from poor or
proper posture during completion of the game task. In the racing track example
mentioned earlier, poor posture when driving a vehicle can result in a loss of control at
critical moments, as one illustrative example.

Once factors for evidence of game performance are mapped with related factors of
exercise performance, a dependency relationship is created wherein the degree of
success or failure in each of these mechanics of gameplay is also directly related to the
degree of success or failure in performance of a particular attribute. This mapping
allows the player to focus entirely on learning how to play the game as effectively as
possible, since doing so requires improvement in performance at the motor task. The
distinction between these three characteristics of exercise task performance also allows
performance in each attribute to be distinguished from the others during gameplay,
allowing an individual to learn which areas require improvement more effectively. This
matches the type of guidance provided in rehabilitation or exercise with trainers, who
utilize their observation and expert knowledge of the individual to give targeted advice
for improvement. If the individual’s posture is correct, but the pacing is slow, a trainer
can point out this distinction so that the individual knows to maintain posture while
modifying pacing. Evidence mapping allows an exergame to intuitively embed this
guidance into gameplay outcomes, allowing for more effective self-assessment with an
external focus [22].

3.4 Stealth Adaptation Using AI

Finally, requirements for the degree of error allowed in each parameter or motion (also
referred to as “tolerance range of error”), frequency of adaptation, and other factors
such as physiological or affective data, are combined with the real-time performance
measures of gameplay as features into the AI component, which can then learn to
accurately relate them to motion performance for a specific individual over time using
either standard performance measures or trainer-specific measures. This results in real-
time adaptation that is argued to more closely reflect the individually variant nature of
individuals within the elderly population, as well as the exercise programs and reha-
bilitative programs most relevant to each.
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To achieve this type of adaptation, it is first necessary to select an appropriate
metric for performance assessment. Generally, experts such as therapists, trainers,
physicians or medical associations provide the instruments of assessment that relate
performance at a particular task to predicted health outcomes or functional ability.
A range of standard metrics exist for motor function assessment in rehabilitation, for
example, such as the Wolf Motor Function Test [28], Barthel Index [29], Fugl-Meyer
Assessment [30], and others. However, it is often the case that customized or trainer-
specific instruments of assessment are adopted for a particular exercise program. It may
also be the case that the relationship between the task performance characteristics and
health outcome assessments is not entirely known, in which case it is also possible to
learn and characterize automatically using AI. The selected performance assessment
metric is used as a calibration or pre-assessment tool to characterize the “actual per-
formance” of the subject in practice (this, of course, can also be provided directly by a
trainer or therapist who performs the assessment with the individual externally). This is
then used as training data for the AI model to “learn” about the subject by identifying
the errors in its prediction of the subject’s performance.

Once the metric of assessment is in place, the appropriate learning model can then
be selected. The model should account not only for the assessment method and the
relationship between that method and the performance parameters of the task, but also
for the range of error tolerance for performance of the task, as well as the frequency of
adaptation or learning and any other factors present in the implementation, such as the
processing power of the exergame platform. When implemented, the model learns
about the subject by using the assessment instrument and motion characteristics to
predict performance, determining where performance is above or below expectation,
and then referring to the mapping to determine what gameplay parameters need to be
adjusted to reduce or increase difficulty, and to what degree they should be adjusted
based on the severity of error.

4 SAED Case Examples

To illustrate the utilization of the SAED framework, two cases of its implementation
are presented in this work. Following the procedure outlined in the framework, each
implementation begins by identifying a motion task for improvement of health out-
comes, followed by the selection of an exergame implementation accounting for both
the task and other influencing factors of the individual, trainer or population. The
decomposition of each task into their postural, progression and pacing components is
performed, and then evidence mapping with corresponding game mechanics is deter-
mined. Finally, instruments for assessment in each case are used to select a learning
model for real-time stealth adaptation, and the characteristics of this adaptation are
discussed.
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4.1 The Autonomous Training Assistant: Fruit Slicing Exergame

The first case of SAED implementation is a fruit slicing exergame from [31], shown in
Fig. 2. In this case, the role of the exergame was to autonomously monitor, assess and
improve function of the paretic arm in a hemiparetic individual whose trainer’s reha-
bilitative exercise program involved the use of martial arts stick techniques. The
assigned motion task by the trainer was an arc swing motion of the stick. The exergame
environment for this program, entitled the Autonomous Training Assistant, included a
customized training stick device (the Intelligent Stick) equipped with motion sensing
and haptic feedback capabilities, a Kinect depth camera for subject body and joint
tracking and the exergame interface played on a television screen at the subject’s home
(without presence of the trainer). The subject was assigned to swing this device in a
horizontal arc at a specific pace while holding it with both hands, in such a way that the
functioning arm guided the paretic arm during motion.

The design process for the exergame is detailed in Fig. 3. The trainer’s recom-
mendation that the subject swing at targets with a sword or stick-like object in
gameplay, along with the individual’s interest in fruit slicing games such as the
commercially-available Fruit Ninja by Halfbrick Studios [32] resulted in the selection
of a game task wherein the subject must slice fruit objects along a horizontal path as
they fall from the sky. These fruit objects fall together repeatedly in groups; a single
repetition of the swing motion thus results in a single swing of the sword at a group of
fruit, the objective being to slice as many of the fruit in a single swing as possible.

Postural characteristics of the motion required that both arms should remain on the
stick when swinging. This was directly mapped to the requirement that the subject hold
the virtual sword with both hands to swing it properly. If the paretic arm loses contact

Fig. 2. Screenshot of the Fruit Slicing exergame from the Autonomous Training Assistant.
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with the stick, the control of the sword is lost and it cannot be swung. The difficulty of
this parameter related to the percentage of time during a swing that two-handed contact
was maintained.

Pacing requirements included that the subject must match a specific pace of motion
determined by the trainer and adjusted on a regular basis. Since the objective is to slice
all of the falling fruit objects, their speed of motion directly corresponds to this pacing
requirement. The more rapidly the fruit fall, the less tolerance for error when attempting
to slice them, and the faster the motion required to slice all of the fruit in one group.

To maintain optimum progression, the trainer recommended that the subject contact
critical points along an arc trajectory when swinging the stick. In the exergame
implementation, the fruit objects were selected as the mechanic which represents the
critical point concept. In other words, the timing of the fruit’s descent is configured in
such a way that the subject must contact each object at various points along a horizontal
arc trajectory to slice them. Furthermore, the size of the fruit or type of fruit represent
the difficulty or tolerance for error in progression, with smaller fruit requiring more
precise trajectories.

Having performed the evidence mapping required to directly relate game perfor-
mance to task performance, the instrument for assessment was then chosen. In this
case, the trainer did not utilize a single, combined “mastery” score or assessment but
instead assessed each category independently by observation during in-person training
sessions with the subject. Thus, the trainer recorded a “correct” template for execution
of the motion, and the critical points of this template along with its pacing and postural
details were used as the basis for evaluating the subject’s task performance. As the
three categories needed to be assessed independently, and the relationship between
exercise parameters and successful health outcomes was already known and provided
by the trainer, a Bayes Net implementation, as illustrated in Fig. 4, was used to learn

Fig. 3. SAED framework applied in the design of the Fruit Slicing exergame.
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about the individual and adapt the game difficulty parameters. When the error in a
particular category was above a certain trainer-provided-and-adjusted threshold, the
gameplay mechanics mapped to that category were automatically adjusted in real-time.
The system learned by being supplied information about actual performance in relation
to its predictions by regularly provided training session data from the subject and
trainer.

The system begins by assuming equal probability that the subject is below, above,
and at expectation for performance in each category. For example, it assumes in the
case of posture that the subject is equally likely to hold the stick device with both hands
for 90%, greater than 90%, and less than 90% of the swing’s duration, until data on
each swing attempt is used to update the model. As these probabilistic predictions are
maintained independently for the three categories, the system makes a decision
between each swing attempt (or slice) to adjust difficulty separately for the game
mechanics relating to each category. If postural performance is above expectation but
pacing and progression are less than predicted, the subsequent slice attempt will require
a longer period of time holding the stick with both hands, while using larger fruit that
fall more slowly to allow for greater deviations in the motion’s pace and trajectory.
Facial expression data was used to estimate the subject’s emotional response to
gameplay, for the system to self-evaluate based on how long the subject maintained the
state of optimal engagement, or flow state [31].

4.2 Ski Exergame

The second case of SAED implementation is a ski squat exergame [33] as shown in
Fig. 5. This implementation was designed for elderly users to maintain healthy loco-
motion, mobility, and consequently, improved healthy lifespan by regularly performing
the two-leg standing squat in an interactive virtual environment. In this case, the
Japanese Orthopaedic Association (JOA) was selected as the expert source for

Fig. 4. Bayes Net diagram guiding real-time stealth adaptation of the Fruit Slicing exergame.
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assessment of health outcomes, as they have published extensive work on the char-
acteristics and prevention of Locomotive Syndrome [34]. The exergame environment
consists of a RealSense depth camera for tracking motion, and a virtual reality interface
for presentation of the ski exergame. In future work, this implementation will be
converted to a non-VR format in consideration of the safety of elderly subjects when
playing.

The SAED design process for the ski squat exergame is shown in Fig. 6. The squat
motion was selected due to its popularity in Japan as a daily exercise to improve lower
extremity strength and balance and to prevent locomotive degeneration. Furthermore,
popularity of skiing in Japan and the natural fit of the Ski squat motion, a standard
exercise to improve skiing performance, provided the means to select a skiing game
which utilizes squats as an obstacle avoidance strategy. In this case, the player is asked
to ski through a straight course wherein no turns are required (or they are performed
automatically without player intervention). A series of gates appear which can only be
cleared by squatting down below a certain height, where each gate along the course
requires a single squat motion. The requirements for the postural, progression and
pacing aspects of the motion were derived in consultation with an expert health/sports
science researcher.

Postural requirements included that the subject maintain stability during the squat
(that is, the knees remain firm with as little shakiness as possible) and that the subject’s
center of mass (CoM) moves in a consistent and smooth motion. Within the exergame
implementation, these are naturally fit to the requirement that the subject maintain an
average horizontal knee deviation and CoM deviation less than a certain (adjustable)
threshold to maintain control during the ski task. The spacing between gates represents
this requirement within gameplay.

Pacing of the squat task was simply represented as the number of squats expected
over a fixed time interval (such as 30 s or one minute). This time interval was used to
determine the length of the ski course, and the number of gates generated in the course
represented the number of expected squats to perform. The higher the number of gates
over the same length of course, and the shorter the spacing between these gates, the
more rapidly the subject is expected to squat to clear all of them.

Fig. 5. Screenshot of the Ski Squat exergame.
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Progression in this case related to the degree of bending performed during the squat
task. A more difficult squat requires the subject to move lower (up to a limit for safe
squat completion, beyond which the exercise is considered harmful). This relates
directly to the height of each gate obstacle, the lower the gate, the lower the subject is
required to squat to clear it when passing through. While an error in progression would
normally be considered as a collision with a gate, this collision is not represented
realistically in gameplay, as it would be disruptive to the steady pacing requirement of
the game. Instead, the subject simply receives points for gates that are successfully
cleared, and no points when colliding with a gate obstacle, which the subject simply
passes through.

The JOA has derived a standard assessment strategy for determining locomotive
risk in elderly subjects, entitled the short test battery for locomotive syndrome (STBLS)
[35]. It consists of three assessments: one in which the subject stands up from a seated
position at various heights and receives a score based on the lowest height from which
he or she could stand without losing balance (sit-stand test), another in which the
subject takes two strides as far as possible without falling, and measures the length of
the two strides normalized by his or her height (two-stride test), and a third assessment
in which the subject answers 25 questions about pain or difficulty with mobility over a
time period (25-question assessment). These three tests result in three scores for a
subject, which are then combined into a single locomotive risk score (0, 1 or 2) using
clinical decision boundaries derived by the JOA and presented in [35]. However, the
exact relationship between the above attributes of squat performance and performance
in the STBLS is unknown, and needs to be characterized over time by the learning
model.

Fig. 6. SAED framework applied in the design of the Ski Squat exergame.
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As such, a neural network was deemed appropriate in this case, as it could learn the
association between squat input parameters and STBLS scores through training and
backpropagation. The structure of this network is shown in Fig. 7. It is initially con-
figured through a set of training data to perform moderately accurate estimations for
individuals within the target population (pre-training). The structure of the network is
then tuned in real-time according to the error generated between the network’s output
and the actual STBLS performance of the subject in a pre-assessment. The difficulty of
the game is adjusted on a course-by-course basis using the risk value generated by this
network as a combination of its outputs.

5 Conclusions and Future Work

Initial prototypes of the above case examples in [18] and [33] indicated high accuracy
of adaptive capabilities as expressed by real exercise performance and subjective
feedback. Quite importantly, these results serve as validation of the effectiveness of
adaptation in each case as it relates to physical performance. The Autonomous Training
Assistant was adopted for long-term use by the subject and trainer as well, further
validating the approach. This serves as a proof of concept that the SAED framework
can facilitative effective and verifiable adaptive exergame design centered in evidence
and standards of performance and health outcome assessment. Future work should
further validate the generalizability of the SAED approach by include game outcome
evaluations across a variety of cases and validation through comparison with health

Fig. 7. Diagram of feedforward Neural Network for stealth adaptation in the Ski Squat
exergame.
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outcome measures. One particularly useful effort would be the creation of an exergame
concept matching table which provides the most naturally fitting exergame imple-
mentation strategies and context across the gamut of rehabilitative motions, individual
capabilities and interests.
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