SMAD: A Configurable and Extensible)
Low-Level System Monitoring e
and Anomaly Detection Framework

Basel Sababa, Karlen Avogian, Ioanna Dionysiou, and Harald Gjermundrod

1 Introduction

The global proliferation of technology has introduced new security challenges
that span the devices themselves, their communication channels, and the systems
that are connected to. Preventing security breaches in such a heterogeneous and
diverse environment is nontrivial, despite the abundance of security products and
technologies in the market, as the attack surface is simply too broad. The frequency
of cyber attacks is increasing dramatically and organizations from both public and
private sectors are struggling to identify and respond to those security breaches.
Over the last few years, several instances of security breaches were brought to light
with at least one thing in common: the response time was too long. According
to the 2019 IBM Cost of a Data Breach report [1], the mean-time-to-identify
(MTTI) a breach in 2019 was 206 days and the mean-time-to-contain (MTTC)
was 73 days, with a notable 4.9% increase over the 2018 breach lifecycle. Taking
into account these facts, one should expect that the security parameter of a system
will be penetrated by an unauthorized party at some point, and the goal must be to
identify the incident as quickly as possible and respond effectively. It is therefore of
paramount importance to provide adequate practical training to the next-generation
security experts, preferably using real data from past security incidents.

The identification of the security attacks relies on technological and human fac-
tors; the former one being the security tools that are integrated in the organization’s
network infrastructure and the latter one being the in-house security and system
administrators who have the ultimate responsibility of all decision-making. Defense

B. Sababa - K. Avogian - I. Dionysiou (P<) - H. Gjermundrod

Department of Computer Science, School of Sciences and Engineering, University of Nicosia,
Nicosia, Cyprus

e-mail: sababa.b@]live.unic.ac.cy; avogian.k @live.unic.ac.cy; dionysiou.i@unic.ac.cy;
gjermundrod.h@unic.ac.cy

© Springer Nature Switzerland AG 2020 19
K. Daimi, G. Francia III (eds.), Innovations in Cybersecurity Education,
https://doi.org/10.1007/978-3-030-50244-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50244-7_2&domain=pdf
mailto:sababa.b@live.unic.ac.cy
mailto:avogian.k@live.unic.ac.cy
mailto:dionysiou.i@unic.ac.cy
mailto:gjermundrod.h@unic.ac.cy
https://doi.org/10.1007/978-3-030-50244-7_2

20 B. Sababa et al.

in depth, a multilayered approach that supports defensive mechanisms on various
layers, is a popular approach to protect the network. However, the vast majority of
the deployed security technologies focus on external attempts of bypassing the front
lines of the system defense plan, without considering internal attacks orchestrated
by individuals who are authorized users abusing their system privileges. As far as the
human factor is concerned, it is generally argued that people are the weakest link in
the information security chain. Rather than scanning and exploiting vulnerabilities
in the deployed technology, it is comparatively easier to surpass the defenses of
the human endpoints in the security chain using low tech but still sophisticated
approaches such as phishing and social engineering.

This chapter proposes SMAD, a configurable and extensible System Monitoring
and Anomaly Detection framework based on Sysdig, which monitors kernel and
system resources data (e.g., system calls, network connections, process info) based
on user-defined configurations that initiate nonintrusive actions when alerts are
triggered. SMAD is envisioned to be used not only by security-enthusiastic students
with some technical skills to track their local Linux server health but also by
university instructors who want to leverage the practical dimension of their security
courses with the introduction of novel low-level system security monitoring tools.
Monitoring raw kernel and system resources data is a tedious and error-prone task,
if done manually. SMAD eases this overwhelming task by allowing users launching
several system monitors via SMAD in a user-intuitive manner, alerting him/her
on any unexpected behavior based on user-defined metrics, including CPU usage,
directories visited, system errors, commands executed, HTTP requests, IP addresses
connected to the system, and files opened. Furthermore, once an alert is triggered,
raw data capturing could be initiated for a specified time period, giving the student
the opportunity to correlate the alert triggering to the actual activities taking place
in the kernel.

The rest of the chapter is organized as follows: Sect. 2 describes related research
efforts on system monitoring. Section 3 presents the SMAD framework, followed
by its experimental evaluation in Sect. 4. Section 5 discusses the value of SMAD in
cybersecurity education. Section 6 concludes with future directions.

2 Related Work

System monitoring typically includes installing a surveillance software on a system,
usually running as a background process monitoring the system’s resources and per-
formance, on the lookout for deviations from normal behavior. It runs concurrently
with and independently from other types of system monitoring, such as operating
system monitoring. In the event of unexpected behavior, alerts or notifications are
sent to the system administrator. It is crucial to support system monitoring in real
time while intrusive activities are in progress to minimize and/or contain the damage
[2] as it leverages the user ability to control and maintain the monitored system [3].

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 21

There exist several academic and open source security-related system monitoring
approaches as well as commercial solutions. Starting with the noncommercial
approaches, Swatchdog [4] (formally known as Swatch [5]) is a log file monitoring
system designed to address the challenges faced by system administrator when
monitoring numerous servers continuously and simultaneously. Linux is configured
to log security information to a central logging host system. In order to keep
the system administrator from being overwhelmed by the size of logged data,
Swatchdog monitors the log files and filters out unwanted and redundant data and
supports an action system where an action is executed after filtering, specified by
the user from a list of possible actions.

Haystack [6], a system designed to detect intrusions in air force computer
systems, analyzes audit trail files daily, searching for user activity and comparing it
against predefined security constraints and normal behavior models. The application
generates a report that summarizes the activities analyzed. These reports can be
analyzed by system administrators in order to locate possible intrusions.

Finally, Graph-based Intrusion Detection System (GrIDS) [7] is a system
designed to monitor and analyze network activity on TCP/IP networks with
thousands of hosts and possibly detect large-scale attacks. The application collects
activities of individual computers and the networks among them, which are then
aggregated into activity graphs. By analyzing various characteristics of these activity
graphs, the application is able to automatically detect and report any network attacks
that are happening in near real time.

There are other system monitoring tools that are not security oriented. For exam-
ple, Benini et al. [8] have designed a system monitoring tool used for supporting
dynamic power management in computers with tight power constraints. This is
accomplished by monitoring and analyzing power consumption and dissipation on
a device. The tool collects data on the use of system resources such as disks, CPU,
keyboard, and mouse and analyzes the power consumption.

Commercial solutions also exist that monitor system activity either locally or on
a cloud infrastructure. Nagios XI log monitoring system [9] integrates Swatchdog in
a commercial enterprise IT infrastructure monitoring solution. Similarly, IBM [10]
provides cloud monitoring using Sysdig [11] to collect monitoring data.

3 SMAD: System Monitoring and Anomaly Detection
Framework

This section presents the design and functionality of SMAD,! an extensible
framework for monitoring the state and various activities of a Linux server in an
intuitive way. The SMAD framework could be perceived as a wrapper to Sysdig,
therefore a brief overview of Sysdig is also given.

IThe source code of the SMAD prototype can be found in Github repository https://github.com/
kosnet2/sad

https://github.com/kosnet2/sad
https://github.com/kosnet2/sad

22 B. Sababa et al.
Sysdig Overview

Sysdig [11] is an open source, command-line utility for capturing all system calls
residing within the Linux kernel. It could be perceived as the Wireshark for the end
system. Every time an installed application performs a privileged operation (e.g.,
open/read file, open network port, read/write to any device), it invokes a system call
that executes the operation on the behalf of the user’s process. Capturing all invoked
system calls could be viewed as passive sniffing of all the operations performed
within the server. A subset of the Linux monitoring and debugging tasks that are
bundled by Sysdig is {strace, tcpdump, netstat, htop, iftop, Isof }. Additional features
of Sysdig include provision of chisels (lightweight Lua scripts) for processing
captured system events, provision of simple filtering of output, support of system
and application tracing, and support of Linux server attack analysis features for
ethical hackers.

The large number of the executed system calls would quickly overwhelm the
system, with respect to both processing time and storage. As a countermeasure,
Sysdig supports the configuration of filters in order to capture specific system calls
or a subset of them. In this way, the filtered events are those of interest to the
user. However, on the downside, it is nontrivial to formulate the appropriate filters
tailored to the deployment, usage, and threat landscape of the specific server. There
are commercial solutions that provide intuitive user interfaces for monitoring large
deployments of servers (as well as container deployment) using Sysdig. An example
is the Sysdig Monitor Dashboard [12] developed by Sysdig, a commercial product
targeted for enterprises deploying applications in cloud infrastructures. Similarly,
IBM offers a front end to Sysdig [10] as part of its BlueMadator product [13].

SMAD in a Nutshell

The System Monitoring and Anomaly Detection (SMAD) framework is a modular
framework that acts as a front end for Sysdig, utilized by a user possessing
the required technical skills to monitor a personal server. SMAD’s user-centric
approach provides an intuitive environment to configure and operate a set of
monitors, including start/stop operations, adding alerts to monitors whenever user-
defined conditions are met, and capturing all system events for a specified time
duration upon an alert trigger (optional action). The inspection and analysis of
the captured log files are nontrivial and could overwhelm the novice system
administrator. One of the goals of SMAD is to introduce the amateur user into low-
level system events, acquiring and/or expanding their knowledge and skill set on the
low-level operation of a system. To this end, a new SMAD component is currently
under development for visualizing and/or graphically representing captured system
activity. More details on SMAD functionality can be found in [14].

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 23

. User adds alert Sensor observes
User starts monitor . .
for monitor monitor output
Y

i Sensor compares

Sensor notifies Sensor detects P

. monitor

the user anomalies

output to metrics

Fig. 1 SMAD components’ workflow

SMAD Components

The SMAD baseline components along with the workflow of the system are
illustrated in Fig. 1. The User interacts with the User Interface to issue commands
(the command set is discussed in detail in the next subsections). The system executes
the actions needed to fulfill the user’s request, rendering the graphical interface
with the execution output. If the stop/start monitor commands are issued, the User
Interface interacts with the Monitoring Sensor that carries out the necessary actions.
In the case where an event capture is attached to an alert trigger, the Monitoring
Sensor starts storing events to Capture Files, based on the user-defined settings. The
logged data is available for further analysis.

SMAD is extensible, supporting the integration of new components to provide
additional functionality to the user. For example, one could develop a module that
transforms the nonintrusive nature of SMAD into an active one by reacting to the
alert trigger using actions other than event capturing, such as kill a process or close a
port. The two baseline components, Monitoring Sensor and User Interface, are now
presented in more detail.

Monitoring Sensor Component

The Monitoring Sensor component is a wrapper for Sysdig, executing Sysdig
commands with the appropriate arguments that are automatically generated based
on the user’s preferences and selections set using the User Interface.

As mentioned earlier, SMAD supports a notification mechanism via alerts. An
alert is assigned to a particular monitor and its configuration profile includes the
metrics to be monitored, the user notification method, and whether or not event
capturing upon triggering is required. The cumbersome task of setting the desired
metrics and their parameters is alleviated by the user-centric approach of SMAD that
allows the specification of metrics to be done in a user-friendly and intuitive manner

24 B. Sababa et al.

/

Monitoring Sensor > Capture Files
save to file \
A
monitor response start/stop monitor analyze files
Y
display results >
User Interface User

i
<

issue command

Fig. 2 Monitoring Sensor component

while converting them to the appropriate Sysdig commands. The Monitoring Sensor
maintains a list of running monitors and automatically detects alerts for its running
monitors and starts observing the monitor output according to the metrics in the
alert configuration profile. Figure 2 illustrates the Monitoring Sensor process.

User Interface Component

The User Interface module was created using PyQtS, a Python-binding of the cross-
platform GUI toolkit Qt [15]. It consists of three primary pages, namely, Monitors,
Alerts, and Notifications, as shown in Fig. 3. These pages are now described in more
detail.

Monitors Page

Monitors is the main SMAD page, responsible for managing monitors. A taxonomy
of monitors is inherent in SMAD as it supports five monitor categories (CPU &
Processes, Performance & Errors, Network, Security, and Application), and each
category is represented in its own tab, as shown in Fig. 3. The monitor taxonomy
was devised by taking into consideration usage scenarios for the target SMAD user.
An easy-to-use technique to specify arguments is supported that allows monitor
customization to meet the user’s needs. Additional monitors could be added to each
category as this taxonomy serves as a starting point to further extend the system.
Within each category, the user selects the monitors he/she would like to start by
clicking on a checkbox. There are two types of monitors, one that requires further
user input and another one that is self-contained. In the former type, no alerts are
required to be configured and attached to the monitor. Clicking the “Start Monitors”

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 25

Monitors | Alerts Notifications

/ CPU & Processes\/Performance & Errors\ / Network\ / Security\/ App[ication\

Setup monitors Running monitors

v Show stdout for given processes cpu_stdout_cat
cpu_top_processes
One process per line (eg. cat)

v| Observe top processes in terms of CPU usage

Start monitors Stop monitor

Fig. 3 Monitors: CPU & Processes tab

button launches Sysdig instances running as background processes. At the same
time, the Running Monitors list is updated to include the newly launched monitors.
The “Stop Monitor” button kills the process running the selected monitor and gets
removed from the list.

As mentioned earlier, there are five monitor categories. Starting with the CPU
& Process monitor category, as shown in Fig. 3, it consists of two monitors. The
first monitor observes the output of a specific process, where the user specifies the
process to be monitored. Once the monitor starts, the specified process is monitored.

The second one keeps track of the top CPU-consuming processes, requiring no
further user input. However, unlike the previous monitor, this monitor will not start
immediately the monitoring, but it rather waits for an alert to be triggered to do so.
The user must specify a metric for the allowed CPU percentage consumption that a
process must exceed in order to trigger the alert (see Fig. 8).

Figure 4 shows the Performance & Errors monitor category, supporting six
monitors, as listed below:

1. Monitor to show all failed open file operations by given processes (this monitor
requires user input but not an alert specification)

2. Monitor to observe system calls returning the most errors

. Monitor to show files with the most input/output errors

4. Monitor to observe processes with the most input/output errors

(O8]

26 B. Sababa et al.

Fig. 4 Monitors:

Performance & Errors tab Monitors | Alerts | MNotifications

/ CPU & Processes \ / Performance & ErrorsVNetwork\; Sec
Setup monitors

Show all failed file opens by given processes

One process per line (eg. cat)

Observe top system calls returning errors
Observe top Files with I/O errors
V| Observe top processes with I/O errors
V! Observe files where most time has been spent
v Observe system calls where most time has been spent

Start monitors

5. Monitor to observe files where the system has spent the most time
6. Monitor to observe system calls where the system has spent the most time

These monitors could be used to detect system misbehavior or sluggish perfor-
mance, allowing to narrow down the root of the problem. Additionally, they could
be used to assess whether or not current applications running on the system generate
an abnormally high number of faults, probing the user to investigate alternative
applications to execute the specific task.

Proceeding with the Network category, shown in Fig. 5, the monitors comprising
it are the following:

1. Monitor for network data exchanged for given IP addresses
2. Monitor for the network connections that consume the most bandwidth
3. Monitor for the processes that consume the most bandwidth

The last two monitors require an alert configuration with regards to bandwidth
(see Fig. 10), triggering an alert when a threshold is reached.

The Security category is arguably the most important one (shown in Fig. 6). It
contains three monitors that do not require alerts:

1. Monitor to show all the commands that are being executed by a user logged into
the system

2. Monitor to show all the directories that a user is visiting

3. Monitor to display all file open operations that occur inside the mentioned
directories

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 27

Fig. 5 Monitors: Network - -
tab Monitors _ Alerts = Notifications

/ CPU & Processes \ / Performance & Errors\/ Network\/sacuril
Setup monitors
V! Show network data exchanged for given host IPs

192.168.0.1

V| Observe top network connections in terms of bandwidth
Observe top processes in terms of bandwidth

Start monitors

Fig. 6 Monitors: Security tab ; |
Monitors | Alerts = Notifications |

/ CPU & ProcessesVPerFormance & ErrarsVNetwork\/Security \ [/ appl

Setup monitors

Show all the commands executed by the login shell with given ID

One ID per line (eg. 5459)

¥ Show the directories that a user visits

basel

¥ Show every file open that happens in a directory

fetc

Start monitors

28 B. Sababa et al.

Fig. 7 Monitors: Application
tab

Monitors | alerts | Motifications

/CPU & Processes\/PerFormance & Errors\/Network\/Security\, / Appl

Setup monitors Runnir

¥ Show all HTTP requests of specified type by the machine

GET
POST

Show all SQL queries of specified type by the machine

One type per line (eg. SELECT, UPDATE)

Start monitors

The launch of the security monitors allows a user to monitor the actual operations
executed by a running application/service and detect misuse of resources, for
example perform read/copy operations on files that it shouldn’t need to access or
open the file that will access a camera or microphone (if present).

Figure 7 shows the two monitors of the Application category. The first monitor
shows all HTTP requests made to the system depending on the type of request that
the user wants. The second one displays all SQL queries made to the system of
the specified type that the user chooses. The Application monitors complement the
Security monitors as they also monitor the activity of an application, but they can
also be used to debug and evaluate what and how a specific application is performing
its functionality.

Alerts Page

The Alerts page is responsible for the alert configuration. An alert is a set of
parameters attached to a specific monitor already running. Some monitors will not
start monitoring events until at least one alert is attached to it since they require the
metric from the alert specification profile. A metric violation yields an automatic
notification posted on the Notifications page as well as initiating the capturing of
events, if capturing is enabled for this alert. The alert parameters are as follows:

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 29

Monitors | Alerts | Notifications

Alert details Alert list
Trigger >50%
Alert name >50%
Choose monitor | cpu_top_processes =
Set metric Metric |> * | 50 7 % o
Action

V| Set up capture
Capture for (seconds) 10 =

>50%
Filename

Save alert Edit Delete

Fig. 8 Alerts: Number metric

1. Monitor it is assigned to
2. Metric to be monitored (number, time, size)

Figure 8 shows the alert configuration to be attached to the cpu_top_processes
monitor. This alert utilizes a number metric representing a percentage. It triggers
the specific monitor to start observing processes that exceed 50% CPU usage.
Additionally, once triggered, it initiates capturing of all events for the duration
of 10 s (user-customized setting) and save them to the user-specified file. The file
contents could be analyzed at a later time to derive useful information. SMAD only
allows the configuration of error-prone alerts as it supplies the metrics along with
the permitted operations (e.g. <, >, =) on them as well as checking that the value is
within a valid range.

Figure 9 presents an alert that uses the time metric, where time could be specified
in four time units. The user specifies the desired time using his/her preferred time
unit and the application handles any unit conversion, if needed. The alert is attached
to the errors_files_most_time_spent monitor and gets triggered when a file has been
used for more than 4 ps. The alert also triggers a 20-s capture session saved to the
file time_spent.

The third and final type of metric is size, in terms of data. There are four
units available, namely, byte, kilobyte, megabyte, and gigabyte. Similar to the
time metric, the user is free to use any size unit and the application will handle

B. Sababa et al.

30
Fig. 9 Alerts: Time metric
Monitors | Alerts | Notifications
Alert details
Trigger
Alert name alert_x
T I
Choose monitor | errors_files_most_time_spent | = '[
) | ms |
Set metric Metric [> ~ |[a - _
[m |
Action
v Set up capture
Capture for (seconds) | 20 [z
time_spent
Filename
Fig. 10 Alerts: Size metric = e
Monitors | Alerts | Notifications
Alert details
Trigger
Alert name alert_y

Choose monitor | network_top_processes_bandwidth
SEtindUic Metric 20 Bl
| =<
Action =
v Set up capture
Capture for (seconds) | 80
more_than_20MB

Filename

the conversions. In the example shown in Fig. 10 an alert is attached to the
network_top_processes_bandwidth monitor and gets triggered when the bandwidth
exceeds 20 MB. It also starts capturing events for 80 s after the metric violation.

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 31

Monitors Alerts Notifications

Datetime __Alert name File name Details =

1 | 2020-07-10 22:08:39.001938 =50 62 Errors from syscall futex

2 | 2020-07-10 22:08:39.001829 =>50 104 Errors from syscall recvmsg
3 .2020-0?—10 22:08:39.001742 =50 205 Errors from syscall poll

4 | 2020-07-10 22:08:39.001649 =>50 220 Errors from syscall mkdir

5 2020-07-10 22:08:39.001543 >50 442 Errors from syscall connect
6 2020-07-10 22:08:39.001425 >50 1103 Errors from syscall stat

7 2020-07-10 22:08:39.001126 =50 6405 Errors from syscall access
8 .2020-0?-10 22:08:38.003903 =50 51 Errors from syscall read

9 .2020-0?—10 22:08:38.003742 =50 54 Errors from syscall futex

10 .2020-0?—10 22:08:38.003610 =50 181 Errors from syscall poll

Fig. 11 Notifications tab

Notifications Page

The Notifications page displays events that have violated an alert’s metric.
The information shown is the alert responsible for the anomaly event, the date
and time of the alert triggering, other information relevant to the event, and the
name of the capture file if capturing was enabled for that alert.

In Fig. 11, one monitor is currently running that observes errors resulting from
system calls. This monitor has only one alert attached with a metric to alert the user
when the number of errors exceeds 50. In this case, the details provided are the
number of errors and the system call where the errors originated from. The File
name field is empty because capturing was not enabled by the user.

4 SMAD Experimental Evaluation

Three different evaluation tests were conducted to assess the SMAD system: stress
testing, functionality testing, and vulnerability assessment.

Stress Testing

The stress testing was performed to assess the overhead of SMAD on the machine
it runs. SMAD was tested under heavy workload with multiple monitors running,
each with multiple configured alerts. The stress testing experiment was performed

32 B. Sababa et al.

Table 1 SMAD stress

) Number of monitors | CPU usage (%)
testing results

1 1

2 5
3 12
5 25
10 59
15 91
20 100

on an Ubuntu 18.04 operating system running on a VirtualBox virtual machine.
The machine running the virtual machine had an x64-based processor Intel Core i5-
9300H with 2.40 GHz frequency and 8 GB RAM. The virtual machine was restricted
to only 2 GB RAM and 4 out of 8§ cores.

Table 1 shows the findings of the experiment and the impact on the machine’s
CPU usage. Two alerts were attached per running monitor. Based on the findings,
at 15 monitors, the application was heavily slowed down but was still functional.
At 20 monitors, the application ultimately consumed the full capacity of the CPU.
Therefore, it is not recommended to exceed 10 monitors running simultaneously.

Functionality Testing

A test was designed to detect server misuse by an authorized user with limited
privileges. The default settings on a Linux server assigns the user group read access
(but not write access) to various system files like the etc/passwd file in order to
perform their assigned tasks. However, if a user manually browses contents of
specific files, it may be considered a suspicious activity and could be part of an
insider attack.

Monitors were configured to observe high-risk locations and resources for
potential misuse by insider attackers, who had already authorized accounts on the
server. The following monitors were launched:

1. Observe files where most time has been spent
2. Show network data exchanged with server with a 10-s capturing
3. Show all directories visited by users with a 30-s capturing

At the beginning of the experiment, there were no notable captured events
that required further analysis. After some time, an alert was triggered and a post
notification shown on the Notifications list indicated that a user accessed the /etc
directory that contains system configuration files that a normal user should not need
to access directly. This incident on its own does not indicate malicious activity but
prompted a further investigation of the captured events after the alert was triggered.
It was discovered that the user read the contents of the etc/passwd file using the cat

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 33

command and this activity could be part of the reconnaissance phase of an attack.
Figure 12 shows a snapshot of the captured file that logged the user activity.

Vulnerability Assessment

The goal of the vulnerability assessment was to uncover ways that SMAD could
be exploited. It was discovered that SMAD was vulnerable to command injection,
giving a malicious user access to the system. In particular, a number of text fields
used for monitor configuration are subject to this attack. However, a user must be
permitted to enter data into these fields, otherwise the capabilities of SMAD would
be limited. For example, a user would not be able to specify a specific process, user,
or IP address to monitor.

The countermeasure against command injection is the filtering of special char-
acters from the user input, whose presence could indicate a command injection. If
those characters are present, the input is discarded, as shown in the regex below:

if re.search(’ [&|;#S$]’, line):
return False

217036 bash (1254 > rt_sigaction
217285 bash (
8921787 bash (
21827¢ bash (12
bash (

(F_OK)
2 (ENOENT) name=/etc/1d.so.nohwcap
(R_OK)
(ENOENT) name=/etc/1d.so.preload

.50.cache) dirfd=-100(AT_FDCWD) na
97(0_RDONLY | C d 1
at (12548) > o.cache)
cat (12548
cat (12548)
>fetc/1d.so.cache) of
cat (12548
cat (12548
cat (12548
cat (F_OK)
(ENOENT) name=/etc/1d.so.nohwcap

5. 68945640
89457

Fig. 12 Snapshot of captured data

34 B. Sababa et al.
5 SMAD Role in Cybersecurity Education

SMAD could play a vital role in formal education with its subject-oriented
structured curricula, while at the same time SMAD educational benefits could also
be perceived in a nonformal education setting via flexible adult self-learning.

SMAD in Formal Education

Technology integration in course curricula could extend learning in powerful ways,
demonstrating the application of theoretical concepts in practice. There is a plethora
of cybersecurity tools and technologies that could be embedded in university
courses, envisioning to develop multiskilled competent security practitioners. The
SMAD framework could be an integral part of any security-oriented undergradu-
ate/graduate course that aims in providing students with the sought-after technical
knowledge and skills in cybersecurity system monitoring.

If one of the learning objectives of a security program were to also train the
students to defend against zero-day vulnerabilities and novel attack techniques,
then it would be imperative to comprehend the internal functionality of the security
tools, moving aside the black-box practice of using tools and instead delve into
the technical specifications of the tool modules. Educators often find it challenging
to demonstrate low-level attack vectors and interactions that allow an attacker to
circumvent the defense lines of a system to accomplish his/her mission (password
cracking, file exfiltration, privilege escalation, backdoor installation, process manip-
ulation, to just name a few). The current practice usually involves demonstration
of point-and-click tools (usually GUI-based tools), low-level command-line com-
mands/scripts (potential shell scripts in hex), rules files (for tools that support this),
and log files. SMAD bridges the gap of black-box and white-box paradigms by
using a point-and-click approach while at the same time uncovering what takes
place underneath the hood (in the SMAD case, the kernel). Educators who use
SMAD allow their students to gradually move from the point-and-click approach
toward script environments, grasping the full technical profile of numerous attack
scenarios.

Four SMAD-based scenarios, appropriate for the current laboratory part of a
security course, are presented next. Each scenario is assigned a tentative level
of difficulty based on the authors’ experience teaching security courses, ranging
from introductory courses (e.g., computer security, network security) to advanced
graduate courses (ethical hacking, cyber warfare). It is strongly recommended
that the course instructor prepares virtual machines (depending on the scenario)
with known vulnerabilities to allow the students experiment in a secure testing
environment, providing protection of operating within a sandbox environment to
avoid accidental security incidents originating from the testing environment to an
outside host.

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 35

Scenario 1: Capture the Intruder (Level of Difficulty—Easy)

One of the learning objectives of security courses covering topics related to system
defenses and countermeasures against internal and external attacks is to expose the
student in various attack methodologies. Ideally, the theoretical aspects of these
methodologies should be demonstrated in practice in order for the student to acquire
the practical dimension of the aforementioned methodologies.

The course instructor is taking an active role in this scenario and prepares a set
of exercises following the capture-the-intruder style, where each exercise clearly
states the service/resource/account the student is supposed to monitor using SMAD.
The student is responsible for configuring the appropriate SMAD monitors, setting
the event capture option on whenever an alert is triggered, and to monitor the
assigned service/resource/account. The instructor decides when to launch the attack
and executes the attack. Unlike other intrusion detection tools, SMAD logs all
system calls once an intrusion is detected, giving the opportunity to the student
to investigate the various system interactions once a threat is realized into an attack.
The analysis of the captured system call set could yield an attack profile that the
student could map into the various phases of an attack methodology.

Scenario 2: Red/Blue Team Exercise (Level of Difficulty—Medium)

This scenario is similar to the first one, with the main difference being that the course
instructor has an observer/monitor role, who clearly sets the boundaries before
the attack exercises commence. Students form red and blue teams, with the red
team preparing an attack using penetration testing tools and/or attack frameworks
whereas the blue team prepares the lines of defense using SMAD. It is recommended
to hold two different exercises, allowing students to assume both red and blue team
roles.

Scenario 3: Dissection of Malware (Level of Difficulty—High)

The postmortem analysis of an attack offers a useful insight into the attack pathway,
allowing the formulation of an attack profile that could be utilized to detect (and
perhaps prevent) future attacks based on the same or similar profile. The dissection
of malicious code is challenging and nontrivial, going beyond the scope of most
security courses. SMAD could be used to introduce the concept of the anatomy of
an attack by running a malware in the sandbox test environment and studying the
sequence of system calls (including their arguments) that were executed while the
malware was running. The student should be able not only to form a timeline of the
malware-related system calls but also determine what vulnerability was exploited,
and how and when was it exploited. Depending on the level of the course and
its learning objectives, the instructor could provide a set of malware, spanning
relatively benign ones to more sophisticated ones.

36 B. Sababa et al.

Scenario 4: Extending SMAD (Level of Difficulty—High)

In general, graduate-level security courses focus on current trends and new research
developments. Students interested in low-level security monitoring could extend
SMAD and contribute their modules to the SMAD community. It is up to the
instructor’s discretion to decide what module could be developed. The instructor
could also contact the authors, who could provide a list of potential modules.

SMAD in Nonformal Education

A nonformal education learner discovers and acquires skills and knowledge from
nonformal activities, outside the educational institution, usually while being part
of the workforce. It is not uncommon for nonstudents with technical skills to
experiment at home on their personal Linux servers, trying to synthesize theory
and practice on their own. There are several sources of learning cybersecurity in
an environment that diminishes the contact of instructor and student, including the
massive open online courses offered by online learning platforms such as Udemy,
Coursera, and Lynda and the tutorial-style video clips posted on online platforms
such as YouTube. Users pursuing nonformal education are interested in obtaining
knowledge or enhancing their current knowledge on a specific topic, without being
concerned about accreditation and/or certificates of any sort. Below are ways that
SMAD could contribute toward nonformal learning in cybersecurity.

SMAD-Based Security Monitoring Tutorials

SMAD is an ideal tool to use for developing short tutorials that demonstrate the
attack methodology followed to exploit a known vulnerability, while at the same
time present the actual technical details throughout the lifetime of the attack. It is
challenging to deliver interesting and user-intuitive tutorials using the command-line
interface. SMAD’s graphical-based configuration of the command-line interface
commands creates a learning environment that is more intuitive to the aver-
age learner. It is recommended in the tutorial to follow the sequence of steps as
shown below:

1. Configure SMAD monitors that are triggered accordingly once the exploit is
launched on the SMAD host, making sure to activate the event-capturing option.

2. Run the exploit and observe how/when SMAD alerts are triggered.

3. Use the terminal-style interaction to view the captured log files and determine
from the system call sequence when and how the vulnerability was exploited.

SMAD: A Configurable and Extensible Low-Level System Monitoring. . . 37

SMAD Interest Communities

Open source software greatly benefits through the community, an ad hoc group
of contributors that inspect, modify, and enhance the software. It is environed that
SMAD will attract the creation of two different communities to

1. Enhance its source code: Contributors belonging to this community advance the
SMAD framework via submission of new modules or improved ones. This is
a well-established activity in the open source community, with the source code
hosted in a repository and contributions get accepted as long as they comply with
the project’s guidelines.

2. Enhance its use: Contributors in this community develop/configure VMs with
different vulnerabilities or interesting misconfigurations along with guidelines
of how an instructor or self-taught learner could use the specific VM in an
educational/training session. This community is as equally important as the
first one, but unfortunately it is underrepresented and not streamlined as the
source-code contribution community. Lecturers/trainers/tutors spend a signifi-
cant amount of time developing training material, including getting the systems
configured/customized in order to demonstrate a particular topic. This work is
mostly not shared back with the community. This practice could change, espe-
cially now with the rapid uptake of using virtualized environments (including
droplets). Freemium models may also be appropriate alternatives for this sharing
in order to motivate the contributions.

6 Conclusion

This chapter presented SMAD, a novel framework that monitors kernel and system
resources data (e.g., system calls, network connections, process info) based on user-
defined configurations that initiate nonintrusive actions when alerts are triggered.
The user-centric SMAD environment allows the specifications of monitors and
alerts to be done in a free-of-errors manner. A prototype system based on the
framework was evaluated and its performance was assessed, yielding promising
results. The only drawback of the system is that the amount of information that
is captured might be overwhelming, making it tedious to browse and analyze the
captured data. For example, the average capture file size generated after running a
60-s capture is 9 MB. A new SMAD component is currently under development for
visualizing and/or graphically representing captured system activity and integrate
this output with the Falco security system [16].

SMAD is also a security educational tool and its intended usage is by educators
who want to leverage the practical aspect of their security courses as well as by
students who wish to monitor the health of Linux servers. As technology integration
in course curricula could extend learning in powerful ways, demonstrating the
application of theoretical concepts in practice, SMAD could be part of any

38

B. Sababa et al.

security-related undergraduate and graduate course. The easy-to-configure nature

of

SMAD makes it an ideal introductory tool to low-level security monitoring,

allowing students to experiment with alert configuration based on low-level system
commands and properties, view and analyze system activity upon alert triggering,
and add new functionality by extending SMAD with new modules.

References

10.

11.
12.

13.

14.

15.

16.

. IBM Security and Ponemon Institute LLC, Cost of a Data Breach Report 2019. https://

www.ibm.com/. Accessed Jan 2020

. N. Ye, S. Vilbert, Q. Chen, Computer intrusion detection through EWMA for autocorrelated

and uncorrelated data. IEEE Trans. Reliab. 52(1), 75-82 (2003)

. J.R. Harrow, F.P. Messinger, System Monitoring Method and Device Including a Graphical

User Interface to View and Manipulate System Information. US Patent 5,375,199, 20 Dec 1994

. Swatchdog, Simple Log Watcher. https://sourceforge.net/projects/swatch/les/swatchdog/.

Accessed Jan 2020

. S.E. Hansen, E.T. Atkins, Automated system monitoring and notification with swatch, in

Proceedings of the 7th USENIX Conference on System Administration, USENIX Association,
Monterey, CA, USA, 1993, pp. 145-152

. S.E. Smaha, Haystack: an intrusion detection system, in Proceeding of Fourth Aerospace

Computer Security Applications, Orlando, FL, USA, 1988, pp. 37-44

. S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, C.

Wee, R. Yip, D. Zerkle, Grids—a graph based intrusion detection system for large networks,
in Proceedings of the 19th National Information Systems Security Conference, Baltimore, MD,
USA, 1996, pp. 361-370

. L. Benini, A. Bogliolo, S. Cavallucci, B. Ricco, Monitoring system activity for OS-directed

dynamic power management, in Proceedings of the 1998 International Symposium on Low
Power Electronics and Design (IEEE Cat. No. 9§TH8379), Monterey, CA, USA, 1998, pp.
185-190

. Nagios, Nagios Enterprises Log Monitoring with Swatchdog. https://assets.nagios.com/

downloads/nagiosxi/docs/Log-Monitoring-With-Swatch.pdf. Accessed Jan 2020

IBM, IBM Cloud Monitoring with Sysdig. https://www.ibm.com/cloud/sysdig. Accessed Jan
2020

Sysdig, Sysdig Open Source. https://github.com/draios/sysdig. Accessed Jan 2020

Sysdig, Sysdig Monitor Dashboards. https://sysdig.com/products/monitor/dashboarding/.
Accessed Jan 2020

BlueMatador, Alert Automation for your Cloud Infrastructure. https://www.bluematador.com.
Accessed Jan 2020

B. Sababa, System monitoring and anomaly detection application. Final Year Project Report,
Department of Computer Science, University of Nicosia, 2020

Qt, Qt Open Source Widget Toolkit for GUI and Cross-platform Applications. https://
www.qt.io. Accessed Jan 2020

Sysdig, Sysdig Falco. https://sysdig.com/opensource/falco/. Accessed Jan 2020

https://www.ibm.com/
https://sourceforge.net/projects/swatch/les/swatchdog/
https://assets.nagios.com/downloads/nagiosxi/docs/Log-Monitoring-With-Swatch.pdf
https://www.ibm.com/cloud/sysdig
https://github.com/draios/sysdig
https://sysdig.com/products/monitor/dashboarding/
https://www.bluematador.com
https://www.qt.io
https://sysdig.com/opensource/falco/

	SMAD: A Configurable and Extensible Low-Level System Monitoring and Anomaly Detection Framework
	1 Introduction
	2 Related Work
	3 SMAD: System Monitoring and Anomaly Detection Framework
	Sysdig Overview
	SMAD in a Nutshell
	SMAD Components
	Monitoring Sensor Component
	User Interface Component

	4 SMAD Experimental Evaluation
	Stress Testing
	Functionality Testing
	Vulnerability Assessment

	5 SMAD Role in Cybersecurity Education
	SMAD in Formal Education
	Scenario 1: Capture the Intruder (Level of Difficulty—Easy)
	Scenario 2: Red/Blue Team Exercise (Level of Difficulty—Medium)
	Scenario 3: Dissection of Malware (Level of Difficulty—High)
	Scenario 4: Extending SMAD (Level of Difficulty—High)

	SMAD in Nonformal Education
	SMAD-Based Security Monitoring Tutorials
	SMAD Interest Communities

	6 Conclusion
	References

