
Flexible Access Control over
Privacy-Preserving Cloud Data
Processing

Wenxiu Ding, Xinren Qian, Rui Hu, Zheng Yan, and Robert H. Deng

1 Introduction

Cloud computing has been widely adopted in various application domains owing to
its specific advantages, which enables cloud users to store their data and perform
various computations on the data without incurring a high cost. It even becomes the
“lifeline” of many institutes or organizations. With the advent of Internet of Things,
enormous amounts of data are produced and outsourced to the cloud for storage
and analysis. Data analysis helps to gain insights on related entities in a physical
world, which can provide tremendous value for various applications in multifarious
domains, e.g., medical [1], cybersecurity education [2], and business [3]. However,
the cloud may not be fully trusted by cloud users since it may reveal or disclose
the data outsourced by the cloud users or the processed results of these data, which
may seriously undermine user privacy. For example, to train the future generation
or employees with cybersecurity skills, the customized cybersecurity exercises will
be more suitable if more related information are collected and analyzed. But they
may be reluctant to offer too much data (such as work culture, associated threats)
due to privacy concern. Therefore, it has great significance to protect sensitive
data and data processing results from being leaked to any unauthorized parties. A

W. Ding · X. Qian · R. Hu
School of Cyber Engineering, Xidian University, Xi’an, China

Z. Yan (�)
School of Cyber Engineering, Xidian University, Xi’an, China

Department of Communications and Networking, Aalto University, Espoo, Finland
e-mail: zheng.yan@aalto.fi

R. H. Deng
School of Information Systems, Singapore Management University, Singapore, Singapore
e-mail: robertdeng@smu.edu.sg

© Springer Nature Switzerland AG 2020
K. Daimi, G. Francia III (eds.), Innovations in Cybersecurity Education,
https://doi.org/10.1007/978-3-030-50244-7_12

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50244-7_12&domain=pdf
mailto:zheng.yan@aalto.fi
mailto:robertdeng@smu.edu.sg
https://doi.org/10.1007/978-3-030-50244-7_12

232 W. Ding et al.

standard solution is to encrypt the data before uploading. However, data encryption
introduces several challenges as described below.

First, encryption seriously restricts the computations/analysis over the out-
sourced data in the cloud. With traditional encryption algorithms (such as AES),
it is impossible for the cloud to process the encrypted data directly. Some existing
efforts adopted partially homomorphic encryption (PHE) to solve the problem,
but they are limited only to multiplication and addition operations on encrypted
data [4, 5], which are not sufficient to satisfy user demands in many applica-
tions. More operations, such as comparison and equality test, are required in
practical applications [6, 7]. This requests further study on privacy-preserving
computations. The basic operations can be widely applied to realize complex and
useful applications, e.g., privacy-preserving classifications in machine learning [8],
trust evaluation in Internet of Things [9], and medical analysis in e-health [10].
Obviously, the more basic computations available over encrypted data, the more
support on complete and complex functions and algorithms. To realize arbitrary
computations over ciphertext, schemes based on fully homomorphic encryption
(FHE) were designed [11–13]; however, most FHE-based schemes suffer from huge
computation overhead and high storage cost, which make them impractical for real-
world deployment and wide usage.

Second, secure multi-user access control over processed results also needs to
be supported [14]. Both existing PHE and FHE are single-user systems, which
inherently lack support for multi-user access to the processing results of encrypted
data. The scheme based on PHE in [15] supports distribution of addition operation
results through an interactive protocol between two servers, but the protocol must
be executed for each data request, thus is inefficient. Attribute-based encryption
(ABE) is an effective tool to support fine-grained access control and multi-user
access and has been applied in many application scenarios [16–18]. However, to
our knowledge, there is no effort in the literature on fine-grained access control
over the results of encrypted data computation. Previous work [19] aims to solve
this problem by combining homomorphic encryption and proxy re-encryption, but
it only supports one requester access at one time. In case multiple users want to
access the same result, it needs to execute the designed scheme for each requester,
which obviously incurs high communication and computation costs.

In this chapter, we propose a novel system in order to overcome the challenges
as described above. It supports multiple basic computations over encrypted data and
realizes flexible access control over the processing results by employing PHE and
ABE, which can be easily extended and implemented to cybersecurity education.
We present a family of protocols to efficiently realize several basic computations
over encrypted data. Then, we extend the system with maximum, minimum, and
division computations over integers. We propose to combine the ciphertext of ABE
with homomorphism to realize a fine-grained access control of the processing
results.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 233

2 Related Work

With the development of cloud computing, cybersecurity education becomes critical
because the traditional cybersecurity cannot guarantee the security of organizations
due to the sophisticated networks, while it also becomes flexible by taking advantage
of educational testbeds and framework. The cloud users (such as students and
engineers) can be greatly benefited through cybersecurity education and get trained
with enough technical skills. However, the risk of revealing personal data makes it
urgent to enhance data security and user privacy.

Secure Data Processing Based on SMC

Secure multi-party computation (SMC) enables computations over multi-user out-
sourced data without revealing each input. It lays a technical foundation for many
problems, such as database query, intrusion detection, and data mining with privacy
preservation [9]. Several Schemes [20, 21] based on the popular SMC construction
Sharemind [22] were proposed to achieve various secure computations. But the
product of N pieces of data needs about 3N multiplications of 32-bit numbers under
the cooperation of three involved servers in Sharemind, which obviously cannot
adapt to big data processing.

Secure Data Processing Based on Homomorphic Encryption

FHE Schemes [11–13] are designed to realize arbitrary computations over encrypted
data. Due to their high computation overhead, some extended Schemes [23, 24]
are proposed to improve efficiency. However, their computation and storage costs
are still not satisfactory for practical applications [25, 26]. PHE can only support
limited computations, but it is more efficient and practical than FHE and has been
widely used in various applications. Some Schemes [4, 5] can only support addition
and multiplication over a limited number of data inputs. In [4], decryption requires
solving the problem of discrete logarithm, which seriously restricts the length and
the number of data inputs. The multi-party computation framework proposed in [5]
achieves addition and multiplication by following the idea of secret sharing. Similar
to the SMC-based scheme in [21], it is unable to support the multiplication of a large
number of data inputs. Liu et al. [6] proposed a framework for efficient outsourced
data calculations with privacy preservation.

234 W. Ding et al.

Secure Data Access Control

Cloud storage enables cloud users to upload their data to the cloud for storage
and further sharing. However, it leads to a new problem that the cloud users lose
full control over their data. Proxy re-encryption can also be adopted to manage
data sharing in cloud [27, 28]. But it cannot support fine-grained access control on
homomorphic computation result. Role-based access control (RBAC) can provide
partial flexibility based on one level policy, which ensures that only the user with
specified role can access the data. But, these constructions [29, 30] based on RBAC
cannot support flexible access policies with various attribute structures.

ABE [31, 32] has been widely applied in cloud storage management for
achieving fine-grained access control [33–35]. Furthermore, trust-based Schemes
[16–18] simplify the attributes involved in ABE and take into consideration only
trust levels. These schemes highly reduce the computation cost. But, only one entity
is in charge of the access control, which makes this entity obviously knows the
results.

Secure Division Based on Arithmetic Transformations

Katzenbeisser et al. [36] chose a tuple (ρx, σ x, τ x) to represent a value x ∈ Dl, which
belongs to a certain interval Dl = [−l;+l] with l > 0, where ρx = 1, σ x encodes
the sign of the value x and τ x indicates the absolute of the value. The division result
can be computed by basic operations on corresponding element through function

LDIV ([x] , [y]) =
(
[ρx] , [σx] [σx] , [τx]

[
τy

]−1 [
τC2

])
. Though the representation

of numbers can support secure computations on non-integers, its division result is
an approximation with bounded relative error, and encoding increases the overhead
of data preprocessing.

To overcome this issue and get an accurate result, Dahl et al. [37] performed
a Taylor expansion on the reciprocal of a denominator to transform the division
computation over encrypted data into multiplication and addition over encrypted
data. The implementation of several sub-protocols brings high computational
overhead. Also, the frequent interactions bring high communication overhead.

Veugen [38] presented three protocols based on a client-server model where the
client has encrypted data [x] and the server has the corresponding decryption key
K. In order to improve the precision of data analysis, Catrina and Saxena [39]
attempted to approximately get a division result over two floating point numbers
by applying the Goldschmidt method [40]. But this scheme cannot support division
computations over encrypted input data. To overcome this issue, Ugwuoke et al.
[41] proposed a division protocol to support encrypted floating point numbers based
on homomorphic encryption. However, both of the above schemes use fixed rounds
of iterative computations to guarantee fixed precise of results, which results in high
computational overhead.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 235

Secure Division Based on Secure Bit Decomposition Protocol
(SBD)

The modulo value operation limits the length of the data in division computation.
In order to protect the confidentiality of both the divisor and the dividend, some
studies use the secure bit decomposition protocol [42] to realize secure division [6,
20]. After data providers upload their encrypted data, the cloud first decomposes
encrypted data as binary string and then executes division to get a quotient and
a remainder by operating secure bit shift. But the bit decomposition protocol is
generally very complicated, thus hard to be deployed.

Cybersecurity Education

With the development of cloud computing, the information system of organizations
or schools becomes large-scale and complicated, which makes it difficult to deploy
defensive mechanisms and suffers from undetected cyber-attacks [43]. Cyberse-
curity education aims to train IT-related employee or the future generation with
technical skills. To customize specified cybersecurity exercises and enhance entities’
security knowledge [44], a lot of data (such as work environment and threats) should
be provided, which may breach privacy.

However, currently most researches [45–47] focus on the design and imple-
mentation of frameworks for cybersecurity exercises and testbeds. The STEAM
framework [46] inserts the Arts into cybersecurity education, while the EDU Range
framework [45] eliminates the dependence on virtual machine or private cloud
replaced by public cloud-based framework. Frank et al. [47] introduced life cycle
into testbed design. Abir et al. [48] pointed out that universities and industries lack
communications about training courses and curriculum, which leads to that students
do not gain adequate knowledges required by the specific workplace. To solve
this issue, the cooperative education was designed to enhance the involvement of
students and industry and enrich their work skills [49]. Rakesh et al. [50] discussed
about the significance of security analytics and shared their educational experiences.
But all work above ignored the privacy issues and do not provide a secure and
privacy-preserving way to share data and customize courses.

3 System Model

Our proposed system mainly comprises five types of entities as shown in Fig. 1:
Data service provider (DSP) is served by the cloud, which stores user data,

provides some computation service, and controls user access.

236 W. Ding et al.

Fig. 1 A system model

Computation party (CP) fulfills partial computations and control access. It can
be any party (a company or a university) who wants to train its employee or students
with cybersecurity skills. There may exist multiple CPs for different applications.
Herein, we simplify our design by considering only one CP in this chapter.

Data providers (DPs) are the data collectors or producers that encrypt data and
store them in the DSP.

Data requesters (DRs) are the data consumers that acquire the result of data
processing in a specific context.

Authority is fully trusted, which is responsible for system parameter generation
and ABE key issue.

4 Preliminaries

For a better understanding of the scheme designs, please refer to previous work
[51–53] for the detailed notation tables.

Additive Homomorphic Encryption

Paillier’s cryptosystem [54] is one of the most important additive homomorphic
encryption. Suppose we have N pieces of encrypted data under same key pk, which

Flexible Access Control over Privacy-Preserving Cloud Data Processing 237

can be presented as [mi]pk (i = 1, 2, . . . ,N). Additive homomorphic encryption

satisfies this equation,Dsk

(∏N
i=1[mi]pk

)
= ∑N

i=1mi , where Dsk() is the homo-

morphic decryption algorithm with secret key sk.

Key-Policy Attribute-Based Encryption (KP-ABE)

In KP-ABE, ciphertexts are generated based on some descriptive attributes, while
decryption keys are associated with policies. For more details about KP-ABE, refer
to [32]. Notably, ciphertext-policy attribute-based encryption (CP-ABE) [31] can
also be applied to implement our scheme.

Homomorphic Re-Encryption Scheme (HRES)

We revise the Scheme [55] (named as EDD) and design the HRES to provide two-
level decryption and achieve secure data processing. The complete version of HRES
is introduced in work [19].

Data Processing Procedure

Step 1 (System Setup @ All Entities): Authority calls the algorithm KeyGen
and SetupABE(λ,U) to complete the setup of HRES and ABE.

Step 2 (Data Upload @ DPs): DPs encrypt their personal data before uploading
it to the DSP. It directly recalls EncTK to encrypt data mi (unless otherwise
specified, |mi | < L(n)/4):

[mi] = (
Ti, T

′
i

) = {
(1 + mi ∗ n) ∗ PKri , gri

}
mod n2

Step 3 (Data Preparation @ DSP): Upon receiving the data from DPs, the DSP
needs to do some analyses over the encrypted data. It provides a data packet and
ABE ciphertext for access control to the CP. In addition, CP chooses a random
partial key ck1 for access control, which will be used in Step 5.

Step 4 (Data Process @ CP): Upon receiving the preprocessing results from
DSP, CP chooses another random partial key ck2 to obtain the preprocessing result[
m̂

]
pkck2

or
[
f̂

]
pkck2

. Regarding access control, CP encrypts ck2 using ABE to get

CK ′
2 = EncABE

(
ck2, γ, PK ′) and forwards it to DSP.

238 W. Ding et al.

Step 5 (Additional Process @ DSP): The DSP needs to remove the mask from

ciphertext
[
m̂

]
pkck2

or
[
f̂

]
ck2

to obtain processed ciphertext [m]pkck
or [f]pkck

where pkck = gck and ck = ck1∗ ck2.
Regarding access control, the DSP encrypts ck1using ABE under the same policy

to get CK ′
1 and further gets CK

′
through the homomorphism of ABE:CK ′ = CK ′

1∗
CK ′

2 = EncABE
(
ck1 ∗ ck2, γ, PK ′). Finally, the DSP keeps [m]pkck

or [f]pkck

and CK
′
for user access.

Step 6 (Data Access @ DR): If the DR satisfies the access policy, Authority
issues a secret key SK

′
to the DR. Hence, the DR can decrypt CK

′
to get ck and

further obtain m or f.

5 Detailed Data Processing

System setup and data collection are the same as those in part 4. Thus, we do not
introduce the details in this part; we mainly focus on the steps from 3 to 6 in each
basic operation.

Addition

This function aims to obtain the sum of all raw data, m = ∑N
i=1mi , which can be

accomplished by multiplying all ciphertexts. Note that the number of the data in
Addition affects the length of the provided data. If we want to get the sum result of
N pieces of data, it should guarantee that mi < n/N.

Step 3 (Data Preparation @ DSP): Due to additive homomorphism, the DSP
can directly multiply encrypted data one by one as follows:[m] = (

T , T ′) =∏N
i=1 [mi] =

(∏N
i=1Ti,

∏N
i=1Ti

′
)
. To realize group access control, it chooses a

random number r1 and the first partial key ck1 and then computes as follows:

1. Compute c1 = ck1−1 mod n2.

2. Mask ciphertext: [c1 (m + r1)] =
(∼

T ,
∼
T ′

)
= {

(T (1 + r1 ∗ n))c1 ,
(
T ′)c1

}
.

3. Call PDec1 to partially decrypt it:[c1 (m + r1)]pkCP
=

(
T̂ , T̂ ′

)
=

{∼
T ,

(∼
T ′

)a}
.

Then DSP sends [c1 (m + r1)]pkCP
to the CP.

Step 4 (Data Process @ CP): The CP calls the algorithm PDec2 with skCP
to decrypt the encrypted data and obtain c1(m + r1). Then the CP chooses
the second partial key ck2 and a random number r to encrypt data as follows,
[c1 (m + r1)]pkck2

= {
(1 + c1 (m + r1) n) gck2∗r , gr

}
,where pkck2

= gck2 . The CP

encrypts ck2 to obtain CK ′
2 and then forwards

[
m̂

]
pkck

and CK ′
2 back to the DSP.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 239

Step 5 (Additional Process @ DSP): The DSP computes to obtain the

final processed data with ck1 and r1, [m]pkck
=

(
T

ck1
(1 − r1n) , T

′) ={
(1 + m ∗ n) gck1∗ck2∗r , gr

}
, where pkck = gck1∗ck2 and ck = ck1∗ ck2. It encrypts

ck1 using ABE and gets CK ′ = CK ′
1 ∗ CK ′

2 = EncABE
(
ck1 ∗ ck2, γ, PK ′).

Subtraction

This function aims to obtain the subtraction of some data
(
m=∑W

i=1mi−∑N
i=Wmi

)

with encrypted data [mi] (i = 1, . . . ,N). It can be accomplished by negating the
subtracted terms (by raising to the power of (n − 1)) and then following the
procedure of Addition.

Step 3 (Data Preparation @ DSP): The DSP first computes
[∑W

i=1mi

]
=

∏W
i=1 [mi] and

[∑N
i=W+1mi

]
=∏N

i=W+1 [mi]. It further calculates
[
−∑N

i=W+1mi

]

=
([∑N

i=W+1mi

])n−1
and multiplies them to obtain: [m]=[(∑W

i=1mi−∑N
i=W+1mi

)]
=

[∑W
i=1mi

]
∗

[
−∑N

i=W+1mi

]
. Then the subsequent

process is the same to that in Addition. Due to length and simplicity reasons, we
skip its details.

Multiplication

This function aims to obtain the product of all raw data (m = ∏N
i=1mi

)
. For ease

of presentation, we describe the details with two pieces of data ([m1], [m2]). Note
that if we need to get the product of N pieces of data, it must be guaranteed that
L (mi) < L(n)/(2N).

Step 3 (Data Preparation @ DSP): First, the DSP chooses a random partial key
ck1 and a random number c1 and sets another one as c2 = (ck1∗ c1)−1 mod n.

To conceal each raw data from the CP, the DSP does one exponentiation and one
decryption with its own secret key by calling PDec1:

1. [c1 ∗ m1] = {
T1

c1 ,
(
T ′
1

)c1
}
; [c1 ∗ m1]pkCP

= (
T1

(1), T1′(1)
) = {

T1
c1,

(
T ′
1

)c1∗a}
2. [c2 ∗ m2] = {

T2
c2 , (T2′)c2

}
; [c2 ∗ m2]pkCP

= (
T2

(1), T2′(1)
) = {

T2
c2 , (T2′)c2∗a

}
.

The data packet sent to the CP is {[c1 ∗ m1]pkCP
, [c2 ∗ m2]pkCP

.
Step 4 (Data Process @ CP): Upon receiving the data packet from the DSP,

the CP uses the algorithm PDec2 to decrypt the data:c1 ∗ m1 = T1(1)/(T1′(1))b,
c2 ∗ m2 = T2(1)/(T2′(1))b.

It then chooses ck2 and a random number r and encrypts c1 ∗ m1 ∗ c2 ∗ m2 and
ck2 as follows:

240 W. Ding et al.

[
m̂

]
pkck2

= [c1c2m]pkck2
= {

(1 + c1m1c2m2 ∗ n) gck2∗r , gr
}
; CK ′

2 =
EncABE

(
ck2, γ, PK ′).

Finally, the CP forwards
[
m̂

]
pkck2

and CK ′
2 to the DSP.

Step 5 (Additional Process @ DSP): The DSP further processes the data packet

with ck1 and gets ciphertext as follows:[m]pkck
=

{
T

ck1
, T

′}
;CK ′ = CK ′

2 ∗
EncABE

(
ck1, γ, PK ′).

Sign Acquisition

We assume that L(m) < L(n)/4 and BIG is the largest raw data of m. Then the raw
data is in the scope [−BIG,BIG]. Sign Acquisition can be achieved by masking the
original ciphertext with random numbers of limited length and then checking the
length of the masked data to further determine the real length of original data. Here,
the DR targets to obtain the final sign indicator f from [m1].

Step 3 (Data Preparation @ DSP): The DSP chooses three random numbers R

(L(R) < L(n)/4
)
, c1, and ck1. It first encrypts “1” and then computes as follows:

1. [1] = {(1 + n) ∗ PKr′ , gr
′ };[2 ∗ m1 + 1] = (T,T

′
) = [m1]2 ∗ [1].

2. Then it flips a coin s. If s = − 1, it computes:

(
T1

(1), T1′(1)
)

=
{
T n−R,

(
T ′)a∗(n−R)

}
= [−R ∗ (2 ∗ m1 + 1)]

Otherwise, if (s = 1), it calls PDec1 and computes:

(
T1

(1), T1′(1)
)

=
{
T R, T ′a∗R

}
= [R ∗ (2 ∗ m1 + 1)]

3. The DSP Computes c2 = (ck1)−1 mod n and s
′ = c1 ∗ c2 ∗ s mod n.

The data packet sent to the CP is {(T1(1), T1 ′(1)), s
′ }.

Step 4 (Data Process @ CP): Upon receiving the data packet from
the DSP, the CP decrypts (T1(1),T1′(1)) with PDec2 to obtain raw data
m

′ = R ∗ (2 ∗ m1 + 1) mod n if s = 1 or m
′ = R ∗ (2 ∗ m1 + 1) mod n if

s = − 1. The CP compares L
(
m′) with L(n)/2. If L

(
m′) < L(n)/2, it sets u = 1;

otherwise, u = − 1.
The CP chooses a random number r and a second partial key ck2 and further

computes as follows:
[
f̂

]
pkck2

=
(
T , T

′) = {(
1 + s′u ∗ n

)
gck2∗r , gr

}
. Encrypt

ck2 using ABE: CK ′
2 = EncABE

(
ck2, γ, PK ′).

Finally, the CP forwards
[
f̂

]
pkck2

to DSP.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 241

Step 5 (Additional Process @ DSP): The DSP further processes the data packet
as follows:

Compute c3 = c1−1 mod n;[f]pkck
=

{
T

ck1∗c3
,
(
T

′)c3
}
;CK ′ = EncABE (ck1,

γ, PK ′) ∗ CK ′
2.

Step 6 (Data Access @ DR): The DR satisfying the access policy in ABE can
decrypt CK

′
to obtain ck and further decrypts [f]pkck

to obtain f. Note: if f = 1,
m1 ≥ 0; otherwise, m1 < 0.

Absolute

We assume that L(m) < L(n)/4 and that BIG is the largest raw data of m. Then the
raw data is in the scope [−BIG,BIG]. Here, given ciphertext [m1], DR wants to get
the absolute value �m1�.

Step 3 (Data Preparation @ DSP): The DSP chooses three random numbers
R where L(R) < L(n)/4, c1, and c2 and chooses the first partial key ck1. It first
encrypts “1” and computes as follows:

1. [1] = {(1 + n) ∗ PKr′ , gr
′ };[2 ∗ m1 + 1] = (T,T

′
) = [m1]2 ∗ [1].

2. Then it flips a coin s. If s = − 1, (T1(1), T1′(1)) = [−R ∗ (2 ∗ m1 + 1)].
Otherwise, it calls PDec1 and computes (T1(1),T1′(1)) = [R ∗ (2 ∗ m1 + 1)].

3. Compute [c1m1] = [m1]c1 , and call PDec1 to obtain [c1m1]pkCP
.

4. The DSP sets c3 = (ck1)−1 mod n and s
′ = c2 ∗ c3 ∗ s mod n.

The data packet sent to the CP is {(T1(1), T1
′(1)) , s′, [c1m1]pkCP

}.
Step 4 (Data Process @ CP): Upon receiving the data packet from DSP,

the CP decrypts (T1(1),T1′(1)) and [c1m1]pkCP
with PDec2 to obtain raw data:

m
′ = (−1)s + 1 ∗ R ∗ (2 ∗ m1 + 1) mod n and c1m1, respectively. CP com-

pares L
(
m′) with L(n)/2. If L

(
m′) < L(n)/2, it sets u = 1; otherwise,

u = − 1. Then CP chooses r and the second partial key ck2 and further

computes as follows:
[
c1m1s

′u
]
pkck2

=
(
T , T

′)
. Encrypt ck2with ABE: CK ′

2 =
EncABE

(
ck2, γ, PK ′). Finally, the CP forwards

[
c1m1s

′u
]
pkck2

and CK ′
2 to DSP.

Step 5 (Additional Process @ DSP): The DSP further processes the data packet
as follows:

1. Set c4 = (c1)−1 mod n and c5 = (c2)−1 mod n.

[su ∗ m1]pkck
=

{
T

ck1∗c4∗c5
, T

′c4∗c5
}

;CK ′ = EncABE
(
ck1, γ, PK ′) ∗ CK ′

2

Step 6 (Data Access @ DR): The DR that satisfies the access policy in ABE can
decrypt CK

′
to obtain ck. The DSP sends the data packet [su ∗ m1]pkck

to the DR in
a secure way. Then the DR can decrypt it to obtain su ∗ m1. Note: if m1 ≥ 0, su = 1;
otherwise, su = − 1. Hence, su ∗ m is the absolute of data m.

242 W. Ding et al.

Comparison

Comparison can be simply accomplished by checking the sign of the difference
value of two data by calling Sign Acquisition. For ease of presentation, m1 − m2 is
denoted as m1 − 2.

[m1] =
(
T1, T1

’
)

= {(1 + m1 ∗ n) ∗ PKr1 , gr1} ; [m2] =
(
T2, T2

’
)

=
{(1 + m2 ∗ n) ∗ PKr2 , gr2}

Step 3 (Data Preparation @ DSP): DSP first computes to get the subtraction of
encrypted data:

(
T , T ′) =

{
T1 ∗ (T2)

n−1, T1
′ ∗ (T2′)n−1

}
= [(m1 − m2)] .

The following steps are the same as those in Sign Acquisition, which are skipped
for the reason of chapter length limitation. Through the cooperation of the DSP
and the CP, the DR finally gets the sign of m1 − 2 = m1 − m2. DR can obtain the
comparison result. If m1 − 2 ≥ 0, m1 ≥ m2; otherwise, m1 < m2.

Equality Test

Equality test needs to check the signs of both difference value and negative
difference value of original two data by calling Comparison twice. DR wants to
know whether m1 is equal to m2 or not from encrypted data ([m1], [m2]). The
DSP and CP directly interact with each other in two parallel computations of
Comparison.

They compare m1 and m2 in two forms: 1) m1 − 2 = m1 − m2 and 2)
m2 − 1 = m2 − m1. Through the operations in Comparison, DSP can get two
results [f1]pkck

and [f2]pkck
, respectively. Then the DSP can obtain [f]pkck

=
[f1 + f2]pkck

= [f1]pkck
∗ [f2]pkck

. Finally, DR that satisfies the access policy in

ABE can decrypt CK
′
to obtain ck. DSP sends the data packet [f]pkck

to the DR in
a secure way. Then the DR can further decrypt [f]pkck

to obtain f. Note: if f = 2,
m1 = m2; otherwise, m1 �= m2.

Maximum and Minimum

Two-to-One (T2O)

This scheme aims to obtain the max and min values from two encrypted data for a
data requester.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 243

Step 3 (@ DSP): First, the DSP randomly selects some numbers R1, R2,
and R3where L (R1) < L(n)/4 and then executes the following operations:
here, m _ = m1 − m2 and m+ = m1 + m2.

1. [1] = {(1 + n) ∗ PKr′ , gr
′ };[m−] = [m1 − m2] = [m1] ∗ [m2]n − 1

2. [R2 ∗ m+ + R3] = ([m1 + m2])R2 ∗ [R3];[R2m−] = (
T−, T ′−

) = [m1 − m2]R2

[2 ∗ m− + 1] = (
T , T ′) =

{
(1 + (2 ∗ m− + 1) ∗ n) ∗ PKr ′+2∗r1 , gr ′+2∗r1

}

Then it flips a coin s. If s = − 1, then compute
(
T1

(1), T1′(1)
) ={

T n−R1,
(
T ′)a∗(n−R1)

}
= [−R1 ∗ (2 ∗ m− + 1)]pkCP

and
(
T2, T

′
2

) = [−R2m−]pkCP

=
{
T−n−R1,

(
T ′−

)a∗(n−R1)
}
. Otherwise, if (s = 1), it calls PDec1 and computes(

T1
(1), T1′(1)

) = {
T R1, T ′a∗R1

} = [R1 ∗ (2 ∗ m− + 1)]pkCP
and

(
T2, T

′
2

) =
[R2m−]pkCP

= {
T−,

(
T ′−

)a}. It further calls PDec1 on [R2 ∗ m+ + R3] to get

[R2 ∗ m+ + R3]pkCP
. Finally, it forwards CP the data packet {(T1(1), T1

′(1)) ,

[R2 ∗ m+ + R3]pkCP
,
(
T2, T

′
2

)}.
Step 4 (@ CP): CP further processes the data packet from the DSP.

It first decrypts (T1(1),T1′(1)) and
(
T2, T

′
2

)
with PDec2 to obtain raw data

m̂ = R1 ∗ (2 ∗ m− + 1) mod n,m̂− = (R2m−) mod n if s = 1 or m̂ =
−R1 ∗ (2 ∗ m− + 1)mod n,m̂− = (−R2m−)mod n if s = − 1.

Then CP needs to compare L
(
m̂

)
with L(n)/2. If L

(
m̂

)
< L(n)/2, it sets u = 1;

otherwise, u = − 1. The CP further encrypts the raw data u∗m̂− with the public key

of the targeted DR as
[
u ∗ m̂−

]
pkDR

=
(
T , T

′) = {(
1 + um̂− ∗ n

)
pkDR

r, gr
}
.

Decrypt [R2 ∗ m++R3]pkCP
and then encrypt it with pkDR to get

[R2 ∗ m++R3]pkDR
. Finally, the CP forwards the data packet to DSP:

{[u ∗ m̂−
]
pkDR

, [R2 ∗ m+ + R3]pkDR
}.

Step 5 (@ DSP): The DSP first removes the mask R3 by computing
[R2m+]pkDR

= [R2 ∗ m+ + R3]pkDR
∗ [−R3]pkDR

. Then it can get the max and
min with r = (2R2)−1 mod n:

[max]pkDR
=

([
u ∗ m̂−

]
pkDR

∗ [R2m+]pkDR

)r

;

[min]pkDR
=

([
u ∗ m̂−

]
pkDR

n−1 ∗ [R2m+]pkDR

)r

.

Step 6 (@ DR): The DR with the corresponding secret key can decrypt the
ciphertext ([max]pkDR

and [min]pkDR
) to obtain the maximum and minimum values.

Multiple-to-One (M2O)

Given an example of n pieces of ciphertexts ([m1],[m2],· · · [mi],· · · [mn]), this
scheme can get the maximum and minimum results [max]pkDR

and [min]pkDR

for the targeted data requester DR. Note that the T2O can provide the maximum
and minimum values from ciphertext [m1] and [m2] for DR. If we use the PK to

244 W. Ding et al.

replace the public key of DR (pkDR) in T2O, we can get the ciphertext [max] and
[min] through parallel processing. Herein, we take maximum computation as an
example, which has the same procedure as minimum computation.

In order to get the final maximum from more than two ciphertext, we need to
execute several rounds of the T2O scheme. The computation follows a tree structure.
It divides the data into many groups and each group has two pieces of data. Then
T2O is executed over every group with PK to get the ciphertext [max]. Until the last
two pieces of data in the last layer, DSP and CP execute T2O with pkDR to get the
final ciphertext [max]pkDR

.

Two-to-Multiple (T2M)

Given two ciphertext [m1] and [m2], this scheme can provide the sorting results
[max]pkck

and [min]pkck
, which indicates the ciphertext of max and the min results

under the public key pkck.
Step 3 (@ DSP): DSP randomly selects four numbers, R1, R2, R3, ck1, which

satisfies R1 = R2 ∗ ck1 mod n2 and L (R1) < L(n)/4 and then preprocesses the data
from DPs as follows:

1. [1] = {(1 + n) ∗ PKr′ , gr
′ };[m−] = [m1 − m2] = [m1] ∗ [m2]n − 1

2. [R2m+ + R3] = [m1 + m2]R2 ∗ [R3];[R2m−] = (
T−, T ′−

) = [m1 − m2]R2

[2 ∗ m− + 1] = (
T , T ′) =

{
(1 + (2 ∗ m− + 1) ∗ n) ∗ PKr ′+2∗r1 , gr ′+2∗r1

}

The DSP calls PDec1 to decrypt [R2 ∗ m+ + R3] to get [R2 ∗ m+ + R3]pkCP
.

Then, it further flips a coin s. If s = − 1, it computes
(
T1

(1), T1′(1)
) ={

T n−R1,
(
T ′)a∗(n−R1)

}
= [−R1 ∗ (2 ∗ m− + 1)]pkCP

,
(
T2, T

′
2

) = [−R2m−]pkCP
={

T−n−R1,
(
T ′−

)a∗(n−R1)
}
. Otherwise if (s = 1), it directly calls PDec1 to

compute
(
T1

(1), T1′(1)
) = {

T R1, T ′a∗R1
} = [R1 ∗ (2 ∗ m− + 1)]pkCP

,
(
T2, T

′
2

) =
[R2m−]pkCP

= {
T−,

(
T ′−

)a}. Then it sends CP the data packet {(T1(1), T1
′(1)) ,(

T2, T
′
2

)
, [R2 ∗ m+ + R3]pkCP

}.
Step 4 (@ CP): The CP calls PDec2 to decrypt (T1(1),T1′(1)) and

(
T2, T

′
2

)
from

DSP to obtain raw data m
′ = R1 ∗ (2 ∗ m− + 1) mod n,m̂− = (R2m−) mod n if

s = 1 or m
′ = − R1 ∗ (2 ∗ m− + 1) mod n,m̂− = (−R2m−) mod n if s = − 1.

The CP checks the sign of m
′
by comparing L

(
m′) with L(n)/2. If L

(
m′) <

L(n)/2, it sets u = 1; otherwise, u = − 1. And it further encrypts the raw data

u ∗ m̂− with a randomly chosen key pair (ck2, pkck2
= gck2

)
:
[
u ∗ m̂−

]
pkck2

=(
T , T

′) = {(
1 + um̂− ∗ n

)
gck2∗r , gr

}
.

Decrypt [R2 ∗ m+ + R3]pkCP
to get R2 ∗ m+ + R3 and re-encrypt it as

[R2 ∗ m+ + R3]pkck2
. Moreover, it needs to encrypt ck2 with ABE to get

Flexible Access Control over Privacy-Preserving Cloud Data Processing 245

CK ′
1 = EncABE

(
ck2, γ, PK ′). Finally, the CP forwards the data packet to DSP:

{[u ∗ m̂−
]
pkck2

, [R2 ∗ m+ + R3]pkck2
, CK ′

1}.
Step 5 (@ DSP): First, the DSP sets {T, T

′ }=[R2 ∗ m+ + R3]pkck2
and

then computes [R2 ∗ m+]pkck2
= {

T ∗ (1 − R3 ∗ n) , T ′} . The DSP com-

putes r = (2R1)−1 mod n and finally obtains the encrypted max and

min: [max]pkck
=

(([
u ∗ m̂−

]
pkck2

∗ [R2 ∗ m+]pkck2

)1,ck1)r

; [min]pkck
=

((([
u ∗ m̂−

]
pkck2

)n−1 ∗ [R2 ∗ m+]pkck2

)1,ck1
)r

.

The DSP calls HEABE to obtain CK = CK ′
1 ∗ EncABE

(
ck2, γ, PK ′) =

EncABE
(
ck1 ∗ ck2, γ, PK ′).

Step 6 (@ DR): The DR can access the computation results if it satisfies the
access policy.

Multiple-to-Multiple (M2M)

DSP and CP invoke the T2M rather than the T2O to obtain the final result[
max�lb(n)	,1

]
pkck

. Owing to chapter length limitation, we skip the details of above
process.

Division

Scheme 1

Scheme 1 can provide the ciphertext of division result [�m1/m2]pkDR
as shown in

Fig. 2.
Step 3 (Data Preparation @ DSP): DSP first chooses two random numbers r1,

r2, where L(ri) < L(n)/4. Then, it processes data to conceal each raw data from CP,
as described below:

1. [m1r1] = {
T1

r1 ,
(
T ′
1

)r1
} = [m1]r1 , [m2r1] = {

T2
r1 ,

(
T ′
2

)r1
} = [m2]r1 .

2. [m2r1r2] = [m2r1]r2 = [m2]r1r2 = {
T2

r1r2 ,
(
T ′
2

)r1r2
}

; [m1r1 + m2r1r2] = [m1r1] ∗ [m2r1r2].

3. [m2r1]pkCP
=

{
T2

r1 ,
(
T ′
2

)r1∗skDSP
}

= {
(1 + r1 ∗ m2 ∗ n) PKr∗r1 , gr∗a∗r1

}
.

[m1r1 + m2r1r2]pkCP
= {

T1
r1T2

r1r2 ,
(
T ′
2

)r1
(
T ′
2

)r1r2
}a

.

Next, DSP sends the data packet
(
[m2r1]pkCP

, [m1r1 + m2r1r2]pkCP

)
to CP.

246 W. Ding et al.

Fig. 2 The procedure of division computation for a targeted data requester

Step 4 (Data Process @CP): Upon receiving the data packet from DSP, CP calls
PDec2 to decrypt the packet. Then, CP performs division operations on plaintexts
and encrypts the computational result with pkDR.

1. m2r1 = T2
r1/

((
T ′
2

)r1∗a)b
mod n; m1r1 + m2r1r2

= T1
r1T2

r1r2/
((

T ′
2

)r1
(
T ′
2

)r1r2
)a∗b

mod n.

2. (m1r1 + m2r1r2) /m2r1 =
⌊

m1
m2

⌋
+ r2;

[⌊
m1
m2

⌋
+ r2

]
pkDR

=
{(

1 +
(⌊

m1
m2

⌋
+ r2

)
∗ n

)
pkr

DR, gr
}
.

The data sent to DSP is the ciphertext
[⌊

m1
m2

⌋
+ r2

]
pkDR

. We use
⌊

m1
m2

⌋
to

represent the quotient.
Step 5 (Additional Process @ DSP): DSP encrypts the random number r2

as [r2]pkDR
and computes

(
[r2]pkDR

)n−1. Then, DSP removes the mask from the
ciphertext as below.

[⌊
m1

m2

⌋
+ r2

]

pkDR

∗ (
[r2]pkDR

)n−1 =
[⌊

m1

m2

⌋
+ r2

]

pkDR

∗ (
[−r2]pkDR

)

=
[⌊

m1

m2

⌋]

pkDR

.

Step 6 (Data Access @ DR): Upon receiving the final ciphertext from DSP,

the targeted DR can call Dec

([⌊
m1
m2

⌋]
pkDR

, skDR

)
to get the final quotient of the

division.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 247

Fig. 3 The procedure of division computation with flexible access control

Scheme 2

We design Scheme 2 to enable flexible access control over computational results as
shown in Fig. 3.

Step 3 (Data Preparation @ DSP): DSP chooses two random numbers r1 and
r2 where L(ri) < L(n)/4 and preprocesses data to mask raw data as follows, which is
the same as Scheme 1.

1. [m1r1] = {
T1

r1 ,
(
T ′
1

)r1
} = [m1]r1 , [m2r1] = {

T2
r1 ,

(
T ′
2

)r1
} = [m2]r1 .

2. [m2r1r2] = [m2]r1r2 = {
T2

r1r2 ,
(
T ′
2

)r1r2
}
;[m1r1 + m2r1r2] = [m1r1] ∗ [m2r1r2].

3. [m2r1]pkCP
=

{
T2

r1 ,
(
T ′
2

)r1∗skDSP
}

= {
(1 + r1 ∗ m2 ∗ n) PKr∗r1 , gr∗a∗r1

}
.

[m1r1 + m2r1r2]PKCP
= {

T1
r1T2

r1r2 ,
(
T ′
2

)r1
(
T ′
2

)r1r2
}a

.

Similarly, DSP sends the data packet
(
[m2r1]pkCP

, [m1r1 + m2r1r2]pkCP

)
to CP.

Step 4 (Data Process @ CP): CP calls PDec2(∗, skCP) to decrypt received data
from DSP to get m2r1 and m1r1 + m2r1r2, and then performs division operations on
plaintexts with perturbations, as well as encrypts the computational result by calling
Enc(∗, pkCP).

248 W. Ding et al.

1.
⌊

m1
m2

⌋
+ r2 = (m1r1 + m2r1r2) /m2r1, where

⌊
m1
m2

⌋
is quotient and remainder is

ignored.

2. CP sends the data
[⌊

m1
m2

⌋
+ r2

]
pkCP

=
{(

1 +
(⌊

m1
m2

⌋
+ r2

)
∗ n

)
pkr

CP , gr
}
to

DSP.

Step 5 (Data Reprocess @ DSP): DSP chooses a partial key ck1 and sets a
random number as c1 = (ck1)−1 mod n. DSP removes the mask from the ciphertext
and performs the following computations:[∣∣∣m1

m2

∣∣∣+r2

]
pkCP

∗(
[r2]pkCP

)n−1=
[∣∣∣m1

m2

∣∣∣
]
pkCP

;
[
c1

∣∣∣m1
m2

∣∣∣
]
pkCP

=
([∣∣∣m1

m2

∣∣∣
]
pkCP

)c1

=
{
T̃ , T̃ ’

}

The data sent to CP is
[
c1

⌊
m1
m2

⌋]
pkCP

.

Step 6 (Data Reprocess @ CP): CP first calls PDec2(∗, skCP) to decrypt
the received data. Then, it chooses a partial key ck2 to generate a key pair(
ck2, pkck2

= gck2
)
and calls Enc

(∗, pkck2

)
to encrypt the data:c1

⌊
m1
m2

⌋
=

∼
T /

(∼
T

′)b

mod n;
[
c1

⌊
m1
m2

⌋]
pkck2

=
{(

1 +
(
c1

⌊
m1
m2

⌋)
∗ n

)
pkr

ck2
, gr

}
=

{
T , T

′}
.

In addition, CP calls EncABE to encrypt ck2:CK2 = EncABE
(
ck2, T , PK ′).

Furthermore, the ABE key CK2 is sent to DSP along with the ciphertext[
c1

⌊
m1
m2

⌋]
pkck2

.

Step 7 (Additional Process @ DSP): DSP operates partial modular computation
on received ciphertext with its partial key ck1 and performs ABE algorithms to
obtain encrypted access keys.

[⌊
m1

m2

⌋]

pkck

=
([

c1

⌊
m1

m2

⌋]

pkck2

)1,ck1

=
{
T

ck1
, T

′}

=
{(

1 + ck1 ∗ c1 ∗
⌊

m1

m2

⌋
∗ n

)
gck1∗ck2∗r , gr

}
=

{(
1 +

⌊
m1

m2

⌋
∗ n

)
gck∗r , gr

}
,

where pkck = (
pkck2

)ck1 = (
pkck1

)ck2 .

1. Calling EncABE to encrypt ck1: CK1 = EncABE
(
ck2, T , PK ′).

2. ABE homomorphic computation:CK = CK1∗CK2 = EncABE (ck1 ∗ ck2, T ,

PK ′).
Finally, DSP keeps

[⌊
m1
m2

⌋]
pkck

and CK for user access.

Step 8 (Data Access @ DRs): Upon receiving the computational results and CK
from DSP, the DRs who satisfy the access policy can obtain a secret key SK

′
from

Flexible Access Control over Privacy-Preserving Cloud Data Processing 249

the authority. Thus, the DRs can decrypt CK to get ck by calling DecABE and get the

final quotient by calling Dec

([⌊
m1
m2

⌋]
pkck

, ck

)
.

Division and Rest

Scheme 3

To support accurate division computation, we design Scheme 3 to further calculate
remainder based on Scheme 1. We omit the same first three steps as in Scheme 1
and introduce the additional part as below.

Step 4 (Data Process @ CP): Upon receiving the data packet from DSP, CP
first calls PDec2(∗, skCP) to obtain masked plaintext and performs the following
computations:⌊

m1
m2

⌋
+ r2 = (m1r1 + m2r1r2) /m2r1;Rr1 = (m1r1 + m2r1r2) − m2r1 ∗(⌊

m1
m2

⌋
+ r2

)
.

Then, CP calls Enc(∗, pkDR) to encrypt the above computational result as{[⌊
m1
m2

⌋
+ r2

]
pkDR

, [Rr1]pkDR

}
and sends the data packet to DSP.

Step 5 (Data Additional Process@DSP): DSP removes the mask from received
ciphertext to get encrypted quotient and remainder as follows:[⌊

m1
m2

⌋]
pkDR

=
[⌊

m1
m2

⌋
+ r2

]
pkDR

∗ (
[r2]pkDR

)n−1; [R]pkDR
= (

[Rr1]pkDR

)r1
−1
.

Step 6 (Data Access @ DR): Upon receiving the computational results from

DSP, the targeted DR can decrypt two ciphertext
[⌊

m1
m2

⌋]
pkDR

and [R]pkDR
to get

the final quotient and remainder by calling Dec(∗, skDR).

Scheme 4

Similarly, Scheme 4 is proposed by adding the computations of remainder based on
Scheme 2. We introduce its details below by omitting the same first three steps as in
Scheme 2.

Step 4 (Data Process @ CP): Upon receiving data packet from DSP, CP first
calls PDec2(∗, skCP) to obtain two messages m2r1 and (m1r1 + m2r1r2). Then, it

performs basic computations to get
⌊

m1
m2

⌋
+ r2 and Rr1. Furthermore, CP calls

Enc(∗, pkCP) to encrypt the computational result and sends the encrypted data packet{[⌊
m1
m2

⌋
+ r2

]
pkCP

, [Rr1]pkCP

}
to DSP.

Step 5 (Data Reprocess @ DSP): DSP first chooses a partial key ck1 and sets
a random number as c1 = (ck1)−1 mod n. Then, it removes the mask from received
ciphertext and conceals the data by performing the following computations:

250 W. Ding et al.

1.
[⌊

m1
m2

⌋
+ r2

]
pkCP

∗ (
[r2]pkCP

)n−1 =
[⌊

m1
m2

⌋]
pkCP

;
[
c1

⌊
m1
m2

⌋]
pkCP

=
([⌊

m1
m2

⌋]
pkCP

)c1

.

2.
(
[Rr1]pkCP

)r1
−1 = [R]pkCP

;[c1R]pkCP
= (

[R]pkCP

)c1 =
{
T̂ , T̂ ′

}
.

Next, the data packet {
[
c1

⌊
m1
m2

⌋]
pkCP

, [c1R]pkCP
} is sent to CP.

Step 6 (Data Reprocess @ CP): With received data packet, CP first performs
PDec2(∗, skCP) on encrypted data. Then, it chooses a partial key ck2 to generate a
key pair

(
ck2, pkck2

= gck2
)
and calls Enc

(∗, pkck2

)
to encrypt the masked data.

Detailed processes are described below:

[
c1

⌊
m1

m2

⌋]

pkCP

PDec2(∗,skCP)→ c1

⌊
m1

m2

⌋
Enc

(
∗,pkck2

)

→
[
c1

⌊
m1

m2

⌋]

pkck2

.

[c1R]pkCP

PDec2(∗, skCP)→ c1R
Enc

(
∗,pkck2

)

→ [c1R]pkck2
.

In addition, CP calls ABE encryption algorithm to encrypt ck2:CK2 =
EncABE

(
ck2, T , PK ′).

The data packet {
[
c1

⌊
m1
m2

⌋]
pkck2

, [c1R]pkck2
, CK2} is sent to DSP.

Step 7 (Additional Process @ DSP): Upon receiving the data packet, DSP
performs the following operations:

1.
[⌊

m1
m2

⌋]
pkck

=
([

c1

⌊
m1
m2

⌋]
pkck2

)1,ck1
;[R]pkck

=
(
[c1R]pkck2

)1,ck1
.

2. Using EncABE to encrypt ck1: CK1 = EncABE
(
ck2, T , PK ′).

3. Homomorphism of ABE: CK = CK1 ∗ CK2 = EncABE
(
ck1 ∗ ck2, T , PK ′).

DSP keeps the encrypted data packet

{[⌊
m1
m2

⌋]
pkck

, [R]pkck

}
and ABE key CK

for user access.
Step 8 (Data Access @ DR): The DRs that satisfy the access policy can

obtain a secret key SK
′
from the authority, which can be used to get ck by calling

DecABE(PK
′
, SK

′
,CK). Then DRs decrypt the received ciphertext

[⌊
m1
m2

⌋]
pkck

and

[R]pkck
obtained from DSP to get the quotient and remainder.

Flexible Access Control over Privacy-Preserving Cloud Data Processing 251

6 Applications in Cybersecurity Education

Privacy-preserving data processing with ABE guarantees data security and user
privacy. In the field of cybersecurity education, privacy-sensitive data are generated
and issued, e.g., course feedback, survey inputs, security-related data for intru-
sion/malware detection provided by different parties for course exercises, multi-
party sensitive data processing, etc. By analyzing these data in a privacy-preserving
way, we can judge teaching performance, support further course improvement,
offer essential course practice to allow students to deeply understand cybersecurity
theories and technologies, etc. Herein, our schemes offer an efficient and privacy-
preserving measure to conduct data analysis, which provides a good practice
for students to understand homophonic encryption and its usage. Some concrete
examples are listed below:

Privacy-Preserving Data Analysis

The feedbacks and opinions of all students and faculties are essential to improve
course quality. Our schemes can be adopted for data collection and dispel privacy
concerns. It can be used in the following two scenarios:

Teaching Performance Evaluation: Our schemes can collect, process, and
analyze the student ratings in a privacy-preserving way, especially in online courses.
With our schemes, students are encouraged to provide their feedback or survey
inputs honestly. Furthermore, the students can select preferred courses by comparing
different course evaluation results and personal study expectation.

Preparing and Rating Examination Questions: The design goal of flexible
data sharing and access control in our schemes would be a key point for remote
cooperation among experts or teachers.

Teachers can prepare examination questions cooperatively in a privacy-
preserving and flexible way. Our schemes can protect the content of examination
papers and enable the teachers to get the feedback of other teachers to assess the
rationality of papers. Moreover, they can also be applied to exchange the statistics of
examination results from students and complete remote rating through cooperation.
This kind of online cooperation can greatly improve education efficiency.

Cybersecurity Experimental Platform

Apart from the above, our schemes can be integrated to build up an experimental
platform for cybersecurity education. It will help students gain a deep insight into
privacy and security of outsourced data processing.

252 W. Ding et al.

Cybersecurity Course Exercises: Our schemes offer a good experimental
platform to conduct cybersecurity experiments with regard to secure data analytics
for flexible and fine-grained access control over the processing results. For example,
a number of students can collect sensitive security-related data from different
sources and perform secure processing on those data at an untrusted party, and
then different students get the processing results without knowing other inputs. For
another example, students can provide their own mobile phone apps’ usage data to
process in a secure way with our schemes in order to know the trust and popularity
of the apps without disclosing their personal app usage information. Through
these experimental exercises, the students can get deep insight on encrypted data
processing and flexible access control over processing results.

7 Conclusion

With the development and widely deployment of information systems, cybersecurity
education becomes popular and significant. In order to gain customized courses,
some private information are offered but may erode their privacy. In this chapter,
we proposed an efficient and secure system to achieve privacy-preserving data
processing with ABE-based flexible access control. It can support several operations
and achieve fine-grained access control without the need of fully trusted cloud
servers, which can be deployed in cybersecurity education framework. We also
illustrate a number of applications of our system for the purpose of cybersecurity
education.

Acknowledgment The work is supported in part by the National Natural Science Foundation of
China under Grants 61672410 and 61802293, the National Postdoctoral Program for Innovative
Talents under grant BX20180238, the Project funded by China Postdoctoral Science Foundation
under grant 2018M633461, the Academy of Finland under Grants 308087, 314203, and 335262,
the Shaanxi Innovation Team project under grant 2018TD-007, and the 111 project under grant
B16037.

References

1. A. Belle, R. Thiagarajan, S. Soroushmehr, F. Navidi, D.A. Beard, K. Najarian, Big data
analytics in healthcare. Biomed. Res. Int. 2015, 1–16 (2015)

2. G. Javidi, E. Sheybani, K-12 Cybersecurity education, research, and outreach, in 2018 IEEE
Frontiers in Education Conference (FIE), (San Jose, CA, USA, 2018), pp. 1–5

3. J.J. Stephen, S. Savvides, R. Seidel, P. Eugster, Practical confidentiality preserving big data
analysis, in 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14),
(Philadelphia, PA, USA, 2014)

4. B. Wang, M. Li, S.S. Chow, H. Li, A tale of two clouds: Computing on data encrypted under
multiple keys, in 2014 IEEE Conference on Communications and Network Security (CNS),
(San Francisco, CA, USA, 2014), pp. 337–345

Flexible Access Control over Privacy-Preserving Cloud Data Processing 253

5. A. Peter, E. Tews, S. Katzenbeisser, Efficiently outsourcing multiparty computation under
multiple keys. IEEE Transactions on Information Forensics and Security (TIFS) 8, 2046–2058
(2013)

6. X. Liu, R. Choo, R. Deng, R. Lu, J. Weng, Efficient and privacy-preserving outsourced
calculation of rational numbers. IEEE Transactions on Dependable and Secure Computing
(TDSC) 15, 27–39 (2016)

7. X. Liu, R. Deng, W. Ding, R. Lu, B. Qin, Privacy-preserving outsourced calculation on floating
point numbers. IEEE Transactions on Information Forensics and Security 11, 2513–2527
(2016)

8. R. Bost, R.A. Popa, S. Tu, S. Goldwasser, Machine learning classification over encrypted data,
in NDSS, (San Diego, California, USA, 2015)

9. Z. Yan, P. Zhang, A.V. Vasilakos, A survey on trust management for internet of things. J. Netw.
Comput. Appl. 42, 120–134 (2014)

10. A. Khedr, G. Gulak, SecureMed: Secure medical computation using GPU-accelerated Homo-
morphic encryption scheme. IEEE Journal of Biomedical & Health Informatics 22, 597–606
(2017)

11. Z. Brakerski, C. Gentry, V. Vaikuntanathan, (leveled) fully homomorphic encryption without
bootstrapping, in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, (Cambridge, MA, USA, 2012), pp. 309–325

12. C. Gentry, Computing arbitrary functions of encrypted data. Commun. ACM 53, 97–105
(2010)

13. M. Van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomorphic encryption over the
integers, in Annual International Conference on the Theory and Applications of Cryptographic
Techniques, (Riviera, French, 2010), pp. 24–43

14. V.C. Hu, T. Grance, D.F. Ferraiolo, D.R. Kuhn, An access control scheme for big data
processing, in 10th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, (Chicago, Illinois, USA, 2014), pp. 1–7

15. Z. Yan,W. Ding, V. Niemi, A.V. Vasilakos, Two schemes of privacy-preserving trust evaluation.
Future Generation Computer Systems (FGCS) 62, 175–189 (2015)

16. C. Huang, Z. Yan, N. Li, M. Wang, Secure pervasive social communications based on Trust in
a Distributed way. IEEE Access 4, 9225–9238 (2016)

17. Z. Yan, X. Li, M.Wang, A. Vasilakos, Flexible data access control based on trust and reputation
in cloud computing. IEEE Transactions on Cloud Computing 5, 485–498 (2015)

18. Z. Yan, X. Li, R. Kantola, Controlling cloud data access based on reputation. Mobile Networks
and Applications 20, 828–839 (2015)

19. W. Ding, Z. Yan, R.H. Deng, Encrypted data processing with Homomorphic re-encryption. Inf.
Sci. 409, 35–55 (2017)

20. J. Feng, L.T. Yang, Q. Zhu, K.-K.R. Choo, Privacy-preserving tensor decomposition over
encrypted data in a federated cloud environment. IEEE Transactions on Dependable and Secure
Computing (2018). https://doi.org/10.1109/TDSC.2018.2881452

21. L. Kamm, J. Willemson, Secure floating point arithmetic and private satellite collision analysis.
Int. J. Inf. Secur. 14, 531–548 (2015)

22. D. Bogdanov. Sharemind: Programmable Secure Computations With Practical Applications
(Tartu University, 2013), PhD Thesis

23. J.H. Cheon, J.-S. Coron, J. Kim, M.S. Lee, T. Lepoint, M. Tibouchi, A. Yun, Batch fully
homomorphic encryption over the integers, in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, (Athens, 2013), pp. 315–335

24. W. Wang, Y. Hu, L. Chen, X. Huang, B. Sunar, Exploring the feasibility of fully homomorphic
encryption. IEEE Trans. Comput. 64, 698–706 (2015)

25. L. Morris, Analysis of partially and fully homomorphic encryption. Rochester Institute of
Technology, 1–5 (2013)

26. X. Liu, R.H. Deng, Y. Yang, H.N. Tran, S. Zhong, Hybrid privacy-preserving clinical decision
support system in fog–cloud computing. Futur. Gener. Comput. Syst. 78, 825–837 (2017)

http://dx.doi.org/10.1109/TDSC.2018.2881452

254 W. Ding et al.

27. Z. Yan, W. Ding, H. Zhu, A scheme to manage encrypted data storage with deduplication in
cloud, in International Conference on Algorithms and Architectures for Parallel Processing,
(Zhangjiajie, China, 2015), pp. 547–561

28. C. Dong, G. Russello, N. Dulay, Shared and searchable encrypted data for untrusted servers, in
IFIP Annual Conference on Data and Applications Security and Privacy, (London, 2008), pp.
127–143

29. W.C. Garrison III, A. Shull, S. Myers, A.J. Lee, On the practicality of cryptographically
enforcing dynamic access control policies in the cloud, in 2016 IEEE Symposium on Security
and Privacy, (San Jose, 2016), pp. 819–838

30. Z. Tianyi, L. Weidong, S. Jiaxing, An efficient role based access control system for cloud
computing, in IEEE 11th International Conference on Computer and Information Technology
(CIT), (Paphos, Cyprus, 2011), pp. 97–102

31. J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, in 2007
IEEE Symposium on Security and Privacy (SP’07), (Oakland, 2007), pp. 321–334

32. V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access
control of encrypted data, in 13th ACM Conference on Computer and Communications
Security, (Alexandria, 2006), pp. 89–98

33. S. Yu, C. Wang, K. Ren, W. Lou, Achieving secure, scalable, and fine-grained data access
control in cloud computing, in 2010 Proceedings IEEE INFOCOM, (San Diego, 2010), pp.
1–9

34. M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou, Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel
and Distributed Systems 24, 131–143 (2013)

35. Z. Wan, J.E. Liu, R.H. Deng, HASBE: A hierarchical attribute-based solution for flexible and
scalable access control in cloud computing. IEEE Transactions on Information Forensics and
Security (TIFS) 7, 743–754 (2012)

36. M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, H. Schröder, Secure compu-
tations on non-integer values, in 2010 IEEE International Workshop on Information Forensics
and Security, (Seattle, Washington, USA, 2010), pp. 1–6

37. M. Dahl, C. Ning, T. Toft, On secure two-party integer division, in International Conference
on Financial Cryptography and Data Security, (Bonaire, 2012), pp. 164–178

38. T. Veugen, Encrypted integer division and secure comparison. International Journal of Applied
Cryptography 3, 166–180 (2014)

39. O. Catrina, A. Saxena, Secure computation with fixed-point numbers, in International Confer-
ence on Financial Cryptography and Data Security, (Canary Islands, Spain, 2010), pp. 35–50

40. R. Bhoyar, P. Palsodkar, S. Kakde, Design and implementation of goldschmidts algorithm
for floating point division and square root, in International Conference on Communications,
(London, 2015), pp. 1588–1592

41. C. Ugwuoke, Z. Erkin, R.L. Lagendijk, Secure fixed-point division for Homomorphically
encrypted operands, in Proceedings of the 13th International Conference on Availability,
Reliability and Security, (Hamburg, Germany, 2018), pp. 1–10

42. B.K. Samanthula, H. Chun, W. Jiang, An efficient and probabilistic secure bit-decomposition,
in Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communi-
cations Security, (Hangzhou, 2013), pp. 541–546

43. R. Gurnani, K. Pandey, S.K. Rai, A scalable model for implementing cyber security exercises,
in 2014 International Conference on Computing for Sustainable Global Development (INDIA-
Com), (New Delhi, 2014), pp. 680–684

44. E. Amankwa, M. Loock, E. Kritzinger, Enhancing information security education and
awareness: Proposed characteristics for a model, in 2015 Second International Conference
on Information Security and Cyber Forensics (InfoSec), (Cape Town, 2015), pp. 72–77

45. R. Weiss, F. Turbak, J. Mache, M.E. Locasto, Cybersecurity education and assessment in
EDURange. IEEE Security & Privacy 15(3), 90–95 (2017)

Flexible Access Control over Privacy-Preserving Cloud Data Processing 255

46. J. LeClair, K.M. Hollis, D.M. Pheils, Cybersecurity education and training and its reliance on
STEAM, in 2014 IEEE Integrated STEM Education Conference, (Princeton, NJ, 2014), pp.
1–5

47. M. Frank, M. Leitner, T. Pahi, Design considerations for cyber security Testbeds: A case
study on a cyber security Testbed for education, in 2017 IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing,
3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), (Orlando, FL, 2017), pp. 38–46

48. A. M’Baya, J. Laval, N. Moalla, Y. Ouzrout, A. Bouras, Ontology based system to guide
internship assignment process, in 2016 12th International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS), (Naples, 2016), pp. 589–596

49. F. Ghemri, A. Bouras, Innovative education in cyber security field through collaborative educa-
tion, in 2018 3rd Technology Innovation Management and Engineering Science International
Conference (TIMES-iCON), (Bangkok, Thailand, 2018), pp. 1–5

50. R. Verma, M. Kantarcioglu, D. Marchette, E. Leiss, T. Solorio, Security analytics: Essential
data analytics knowledge for Cybersecurity professionals and students. IEEE Security &
Privacy 13(6), 60–65 (2015)

51. W.X. Ding, R. Hu, Z. Yan, X.R. Qian, R.H. Deng, L.T. Yang, M.X. Dong, An extended
framework of privacy-preserving computation with flexible access control. IEEE Trans. Netw.
Serv. Manag., 1 (2019). https://doi.org/10.1109/TNSM.2019.2952462

52. W. Ding, Z. Yan, R. Deng, Privacy-preserving data processing with flexible access control.
IEEE Transactions on Dependable & Secure Computing 17, 363–376 (2017)

53. W.X. Ding, Z. Yan, X.R. Qian, R.H. Deng, Computing maximum and minimum with privacy
preservation and flexible access control, in IEEE GLOBECOM 2019, (Hawaii, USA, 2019),
pp. 1–7

54. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, (Berlin,
Germany, 1999), pp. 223–238

55. E. Bresson, D. Catalano, D. Pointcheval, A simple public-key cryptosystem with a double
trapdoor decryption mechanism and its applications, in International Conference on the Theory
and Application of Cryptology and Information Security, (Berlin, Germany, 2003), pp. 37–54

http://dx.doi.org/10.1109/TNSM.2019.2952462

	Flexible Access Control over Privacy-Preserving CloudData Processing
	1 Introduction
	2 Related Work
	Secure Data Processing Based on SMC
	Secure Data Processing Based on Homomorphic Encryption
	Secure Data Access Control
	Secure Division Based on Arithmetic Transformations
	Secure Division Based on Secure Bit Decomposition Protocol (SBD)
	Cybersecurity Education

	3 System Model
	4 Preliminaries
	Additive Homomorphic Encryption
	Key-Policy Attribute-Based Encryption (KP-ABE)
	Homomorphic Re-Encryption Scheme (HRES)
	Data Processing Procedure

	5 Detailed Data Processing
	Addition
	Subtraction
	Multiplication
	Sign Acquisition
	Absolute
	Comparison
	Equality Test
	Maximum and Minimum
	Two-to-One (T2O)
	Multiple-to-One (M2O)
	Two-to-Multiple (T2M)
	Multiple-to-Multiple (M2M)

	Division
	Scheme 2

	Division and Rest
	Scheme 3
	Scheme 4

	6 Applications in Cybersecurity Education
	Privacy-Preserving Data Analysis
	Cybersecurity Experimental Platform

	7 Conclusion
	References

