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Abstract

Tumor immune escape is now a hallmark of 
cancer development, and therapies targeting 
these pathways have emerged as standard of 
care. Specifically, immune checkpoint signal 
blockade offers durable responses and increased 
overall survival. However, the majority of can-
cer patients still do not respond to checkpoint 
blockade immune therapy leading to an unmet 
need in tumor immunology research. Sex-
based differences have been noted in the use of 
cancer immunotherapy suggesting that sex hor-
mones such as estrogen may play an important 

role in tumor immune regulation. Estrogen sig-
naling already has a known role in autoimmu-
nity, and the estrogen receptor can be expressed 
across multiple immune cell populations and 
effect their regulation. While it has been well 
established that tumor cells such as ovarian car-
cinoma, breast carcinoma, and even lung carci-
noma can be regulated by estrogen, research 
into the role of estrogen in the regulation of 
tumor-associated immune cells is still emerg-
ing. In this chapter, we discuss the role of estro-
gen in the tumor immune microenvironment 
and the possible immunotherapeutic implica-
tions of targeting estrogen in cancer patients.
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2.1	 �Introduction

The tumor microenvironment (TME) is made up 
of multiple cell types beyond only tumor cells 
including immune cells, stromal cells including 
pericytes, and extracellular molecules all regulat-
ing tumor growth. These cells have been well 
established as mechanisms of resistance and have 
been targets for cancer therapy [1–4]. While these 
therapeutic strategies have been promising, de 
novo, and acquired resistance leading to inevita-
ble tumor progression remains an ongoing prob-
lem [5–7]. Therefore, alternative regulatory 
pathways have become necessary to evaluate for 
possible avenues for future therapeutic research. 
Female gender has been suggested in retrospec-
tive meta-analyses to be associated with 
decreased response to checkpoint blockade ther-
apy [8–10]. Given the known role of estrogen and 
other sex hormones effecting immune responses, 
these findings warrant the evaluation of estrogen 
signaling in the TME [11]. Estrogen is a steroid 
hormone that has many physiological functions 
associated with reproduction, metabolism, and 
even immune regulation [12]. The main biologi-
cal endogenous estrogen, 17β-estradiol (E2), is 
synthesized from androgens by aromatase 
(CYP19A1) and binds estrogen receptor α (ERα) 
or estrogen receptor β (ERβ) to exert its effects 
through both genomic and non-genomic mecha-
nisms [12–17]. Estrogen has been long estab-
lished as a driver of malignancy in 
hormone-sensitive carcinomas such as ovarian, 
breast, endometrial, lung, colon, and even pros-
tate [18]. The oncogenic function of ER is due to 
the ability of tumor cells to enable transcriptional 
upregulation of proliferation and cell-survival 
genes via growth factors such as insulin growth 
factor (IGF), fibroblast growth factor (FGF), and 
epidermal growth factor (EGF) [19–23]. Therapy 
targeting these aspects of E2 signaling in cancer 
has been in use clinically for decades. These ther-
apeutics include selective estrogen receptor mod-
ulators or degraders (SERMs or SERDs) and 
aromatase inhibitors (AIs), and are typically uti-
lized in hormone-positive breast cancer, but their 
utility is being evaluated in other relevant solid 
tumors [24]. However, most of the studies have 

focused primarily on the tumoral signaling of E2, 
while the remainder of the TME has gone 
unexplored.

E2 signaling and ER expression are not lim-
ited to tumor cells but also found on immune 
cells where they have distinct functions of 
immune regulation [25–28]. The link between E2 
and autoimmunity has been established since 
findings of sex disparities in patients with sys-
temic lupus erythematosus (SLE), and multiple, 
current reviews outline E2 regulation of immune 
cell function and expansion [29–32]. While the 
link between E2 and immune regulation has been 
well characterized and tumor immunology is 
growing as a field, there is a missing connection 
between E2 pathways and tumor immunology. 
This chapter will discuss the current findings in 
the literature exploring the impact of E2 and 
tumor immunology, as well as the future thera-
peutic implications of targeting the E2 pathway 
in the cancer immunotherapy era.

2.2	 �E2 Signaling Pathways 
on Tumor Cells

While ER expression and E2 pathways are 
canonically associated with tumor cells from 
hormone-sensitive tumors such as ovarian, breast, 
and endometrial, there are almost 30 tumor types 
that are also associated with the E2 pathway [33, 
34]. These findings are also associated with 
changes in outcome for the disease further con-
veying the importance of understanding this 
pathway across multiple relevant tumor types. 
For example, nuclear ERα expression in breast 
cancer, ovarian cancer, or endometrial cancer is 
correlated with improved overall survival (OS) 
compared to cancer patients that are ERα-
negative [25, 35–38], while some of the breast 
cancer patients that were ERα-positive also had 
increased disease burden. Conversely, cytoplas-
mic ERα expression in non-small-cell lung can-
cer (NSCLC) cells is correlated with worse OS 
[39–41]. Aromatase and ERβ expression in tumor 
cells are more controversial with studies varying 
on whether they convey a survival benefit [42–
47]. These mixed opinions in the literature are 
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possibly due to the lack of standardized and clini-
cally validated staining ERβ antibody, as well as 
the multitude of ERβ splice variants and post-
translational modifications [26, 48, 49]. While 
these findings are consistent with understanding 
E2 on tumor cells, there is still the need to evalu-
ate the remainder of the TME.

2.3	 �The E2 Pathway in Tumor-
Associated Stromal Cells 
and Immune Cells

Within the TME, ERs and aromatase are in nota-
ble concentrations in stromal and immune cells 
in addition to neoplastic cells (Table 2.1). A myr-
iad of studies in the past decade have detailed key 
interactions between neoplastic cells and their 
recruited stromal cells that are responsible for 
tumorigenic potentiation (reviewed in [4, 47]). 
Cellular architecture complicit in this potentia-
tion is heterogeneous between and within tumor 
cells, but generally includes cancer-associated 
fibroblasts (CAFs), tumor-associated macro-

phages (TAMs), myeloid-derived suppressor 
cells (MDSCs), immune T and B cells, natural 
killer (NK) cells, and endothelial cells [4]. 
Transitively, the association of hormonal protein 
expression in TME stromal and immune cells 
serves to underlie a potential immunomodulatory 
role of ER signaling in cancer biology, demon-
strated by cell types listed in Table 2.1.

2.3.1	 �Tumor-Infiltrating 
Lymphocytes (TIL)

There exists a notable interplay between cancer 
type and lymphocyte composition of the TME. It 
is often opposing immune infiltrates within a 
given primary tumor that promote neoplastic evo-
lution and antitumor immunity [65]. For exam-
ple, CD4+ T-cell polarization has been identified 
as a mediator of tumor immune surveillance. 
Specifically, T helper 1 (Th1) T cell responses are 
associated with tumor suppression while T helper 
2 (Th2) exhibit tumor activation via IFNγ and 
IL-12 upregulation and IL-4 expression, respec-

Table 2.1  Estrogen receptor (ER) and aromatase expression in stromal and immune cells in the tumor 
microenvironment

TME cell type Cancer type Human expression Murine expression Method of evaluation Reference
Stromal Breast Aromatase ERα PCR, IHC [50, 51]

Melanoma ERα IHC [51]

Lung ERα IHC [51]

Endometrial Aromatase IHC [52]
CAF Breast ERα PCR [53]

Prostate ERα, ERβ IHC [54, 55]

Endometrial ERα, ERβ PCR [56]

Ovarian ERα IHC [57]

TAM Ovarian ERα, ERβ IF,IHC [58]

Breast Aromatase IHC, PCR [59]
Lung Aromatase Aromatase IHC [17, 60]

MDSC Ovarian ERα ERα PCR, Western [57]

NK cells Breast ERα, ERβ IHC [61]

Effector CD4+/CD8+ T 
cells

Breast
Nonmalignant

ERα, ERβ IHC [27, 62]

Tregs Cervical ERα IHC [63]

Table adapted from [64]
Studies were identified by PubMed searches using keywords: ERα, ERβ, aromatase, stromal, CAF, TAM, MDSC, 
expression, cancer. CAF cancer-associated fibroblast, TAM tumor-associated macrophage, MDSC myeloid-derived sup-
pressor cell, IHC immunohistochemistry, PCR polymerase chain reaction, IF immunofluorescence, Western: Western 
blotting analysis
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tively [66, 67]. Interestingly, several murine and 
human studies have reported an induction of Th2 
response and IL-4 production in settings of ele-
vated E2 [29, 32]. Further support of ER’s role in 
tumorigenesis was illuminated by a recent in 
silico study showing an increase in Th1 T cells, B 
cells, and cytotoxic T lymphocytes (CTLs) in 
ER-negative breast tumors relative to ER-positive 
breast tumors [68]. This study additionally saw 
an inverse correlation between ER activity and 
immune infiltration of these cell types in breast 
cancer tissues. The inverse correlation observed 
affirmed previous reports that increased TIL, spe-
cifically CD8+ T cells, in ER-negative tumors 
correlated with improved OS [68, 69]. 
Additionally, post hoc analysis in ER-positive 
breast cancer patients treated with letrozole 
showed increased infiltration of B and Th1 cells 
both at the initiation and at the end of treatments 
[68].

2.3.1.1	 �Cytotoxic T Cells and Natural 
Killer Cells

Granule-mediated exocytosis of serine proteases, 
such as granzyme B, is a major pathway CTLs 
and NKCs initiate caspase-dependent apoptosis 
to eliminate pathogenic and tumor cells [70, 71]. 
Jiang et al. cultured ERα-expressing human liver 
carcinoma cells with E2 resulting in upregulated 
expression of the granzyme B inhibitor, protein-
ase inhibitor-9 (PI-9). This upregulation pro-
tected the tumor cells against granule-mediated 
exocytosis by these cells per DNA fragmentation 
assays [72]. A similar study illustrated E2-induced 
PI-9 expression was also observed in ERα-
positive MCF7 breast cancer cells with the same 
protection, while PI-9 knockdown blocked E2’s 
protective effect [73]. Cumulatively, these studies 
suggest a component of E2 immunosuppression 
is via inhibition of NK- and CTL-mediated tumor 
cell elimination.

2.3.1.2	 �Regulatory T Cells
T cell activation and effector differentiation are 
integral to the adaptive immune response. FoxP3− 
expressing Tregs subdue neoplastic activity, as 
well as responder T cell expansion, through 
secretion of immunosuppressive cytokines [74]. 

Administration of physiologic doses of E2 to 
immunocompetent, ovariectomized mice has 
been observed to expand CD4+CD25+ Treg con-
centration, as well as Foxp3 expression in various 
tissue types [75]. Furthermore, fluorescence-
activated cell sorting (FACs) assays revealed 
acquisition of CD25  in E2-incubated ERα-
expressing CD4+CD25− cells [75]. These trans-
formed CD4+CD25+ T cells then exhibited an 
immunosuppressive Treg phenotype in vitro that 
significantly downregulated T cell concentration 
[75–78]. Additional studies have reported 
E2-stimulated Foxp3 expression in murine Tregs, 
expression of which is vital to Treg functionality. 
High FoxP3+ Tregs in the TME is a negative 
prognostic indicator in a variety of cancers. For 
example, early-stage NSCLC with nuclear ERα 
expression has a relatively higher risk of both 
recurrence and FoxP3+ lymphocyte infiltrate 
[79]. Furthermore, a recent meta-analysis 
reported FoxP3+ Treg infiltration correlated nega-
tively with OS in ER-positive breast cancer 
patients and positively in ER-negative patients 
[80]. Conversely, studies of ERα-positive breast 
tumors treated with letrozole in  vivo demon-
strated a resulting reduction of FoxP3+ Tregs 
[81].

E2 appears to suppress Treg expression in 
both physiologic and ERα/ERβ knockout mice, 
with the former group having increased expres-
sion of programmed-death 1 (PD-1) and the latter 
having decreased PD-1 expression [82]. E2 treat-
ment of ERα-positive endometrial and breast 
cancer cells also stimulates in vitro expression of 
the PD-1 ligand (PD-L1) via activation of PI3K 
signaling [83]. PD-L1+ tumor cells exhaust PD-1+ 
cytotoxic T lymphocytes (CTLs) through this 
protein interaction, resulting in tumor immune 
evasion [84]. Given E2’s upregulation of both 
PD-1 and PD-L1, the hormone appears to have an 
important influence on the pathway and its role in 
the TME.

2.3.2	 �Stromal Cells

Tumor evolution is heavily dependent on malig-
nant tissue as well as recruited stromal cells that 
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interact between and within the TME.  Via an 
in vivo murine model, ERα expression in stromal 
cells was observed within the context of tumor-
cell-independent ER signaling in the TME.  E2 
interactions with stromal ERα has also been seen 
to accelerate neoplastic growth and blood vessel 
density in ovariectomized, syngeneic mice trans-
planted with ER-negative melanoma, breast, or 
lung cancer cells [51]. The same study found this 
E2-stimulated tumor growth demonstrated a rela-
tive increase in immunocompromised mice, 
reflecting closer association with E2 modulation 
of innate immunity [51]. Aromatase expression 
appears to also modulate the TME in certain neo-
plasms. Perineoplastic endometrial stromal cells’ 
expression of aromatase also correlates with 
more advanced disease and, transitively, worse 
OS [52, 85]. Similarly, perineoplastic breast adi-
pocytes’ expression of aromatase appears to be 
complicit in tumorigenesis in obese patients via 
inflammation and modification of the TME [50, 
86, 87]. Additionally, type 2 pericytes have also 
been associated with tumorigenesis and vascular 
formation for tumors [88]. Pericytes recruited for 
vascular formation have been associated with 
ERα expression and E2-dependent signaling dur-
ing function [89, 90].

2.3.3	 �Cancer-Associated Fibroblasts

CAFs are one of the most integral stromal cell 
types in the TME for tumor survival and metasta-
sis via paracrine-induced signaling pathways via 
chemokines and soluble growth factors [91, 92]. 
ERα expression in breast CAFs have been 
observed in vivo through nuclear receptor arrays 
comparing gene expression between CAFs and 
normal human breast adipose fibroblasts [53]. 
Interestingly, similar levels of ERα expression 
are seen in both malignant and physiologic fibro-
blasts, but with downstream upregulation of the 
direct transcriptional activator liver receptor 
homolog-1 (LRH-1) in the former [53]. The 
regulator serves to increase expression of the 
aromatase-encoding gene CYP19A1 [93–95]. 
Co-expression of aromatase and LRH-1  in the 
breast TME suggests CAF-induced paracrine for-

mation of E2 and subsequent ER-mediated onco-
genesis [96]. Coculturing of endometrial CAFs 
with endometrial neoplastic cells have been seen 
to contribute to tumor progression, possibly 
attributed to CAFs’ expression of ERα and ERβ 
[56]. This tumor progression mechanism is sup-
ported through in vitro upregulation of phospha-
tidylinositide 3-kinase (PI3K) and 
mitogen-activated protein kinase (MAPK) sig-
naling networks, which are both well-known 
ER-mediated pathways in breast and lung cancer 
[56, 97–99].

Contrastingly, ER expression in prostate 
CAFs has contradicting evidence, with reports of 
ERα/ERβ expression portending advanced dis-
ease [54] and others suggesting ERα expression 
is a protective factor again neoplastic invasion 
macrophage infiltration [100, 101]. These latter 
in vitro studies conveyed that CAF ERα expres-
sion reduced murine and human prostate cancer 
cell invasion, as well as lymph node metastasis of 
orthotopically implanted human prostate cancer 
cells in mice [101]. These ERα-positive CAFs 
appeared to halt invasion and metastasis of 
human prostate cancer cells through downstream 
downregulation of the C-C motif chemokine 
ligand 5 (CCL5) and IL-6 chemokines, whose 
roles are involved in growth factor signaling, 
inflammation, and tumor recruitment [102, 103].

2.3.4	 �Tumor-Associated 
Macrophages

In a physiologic setting, macrophages regulate 
tissue-specific innate immune responses to fight 
foreign invaders through polarization by varied 
cytokines. However, TAMs have been complicit 
in tumor proliferation and migration, as well as 
inflammation in the TME [104, 105]. 
Physiologically, polarized M1 macrophages 
secrete the proinflammatory cytokines IFNγ, 
interleukin 12 (IL-12), and tumor necrosis factor 
(TNF)-α for tumor rejection and antigen presen-
tation [106]. Alternatively, M2 macrophages pro-
duce interleukins 4, 5, 6, and 10 [106], which are 
known promoters of tumor cell growth and 
immune evasion [107]. TAMs within the TME 
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are often M2, with denser concentration demon-
strating worse OS, thus offering a therapeutic 
opportunity for a variety of malignancies [108].

TAMs are an independent poor prognostic 
predictor for ovarian adenocarcinoma [109]. 
Relatedly, co-localized expression of both ERα/
ERβ is reported in human high-grade serous 
ovarian cystadenocarcinoma (HGSOC) TAMs. 
Interestingly, HGSOC in premenopausal women 
demonstrates elevated TAM infiltration relative 
to that of postmenopausal women. The highest 
concentration of TAMs in this TME can be found 
in ERα-positive tumors [58]. The mechanism of 
this was elucidated by an IHC analysis revealing 
aromatase expression in the TME of breast 
TAMs, which was observed to increase E2 pro-
duction and breast cell proliferation [59]. TAM 
proliferation, however, is relatively more preva-
lent in ER-negative breast malignancies [110, 
111]. It is important to note, however, that quan-
tification of TAM polarization was not analyzed 
in these studies. Interestingly, aromatase and 
ERβ expression in NSCLC TAMs have also been 
observed, specifically in infiltrating macrophages 
of preneoplastic, tobacco carcinogen-induced 
murine lung lesions [17, 60].

Although direct observation of ER expression 
in TAMs has been limited, E2 induction of M2 
polarization and subsequent tumor spread has 
been studied. A polyomavirus middle T (PyMT), 
ER-positive breast cancer murine model demon-
strated direct E2 stimulation of tumoral M2 TAM 
infiltration and vascular endothelial growth factor 
(VEGF) [112, 113]. Alternatively, untreated con-
trols exhibited M1 TAM infiltration instead [112]. 
In a HGSOC, ovariectomized murine model, E2 
induced growth of both ER-negative xenografts 
and M2 TAM infiltration [58]. In tobacco carcin-
ogen-exposed mice, administration of E2 
increased pulmonary TAM infiltration while mice 
receiving the aromatase inhibitor anastrozole had 
a significant reduction in pulmonary TAMs [114]. 
Further, E2-induced VEGF expression was also 
observed in this model [114]. Of note, E2-mediated 
TAM infiltration has been observed in vitro to be 
fed forward via M2 TAM-induced epigenetic 
ERα upregulation via interleukin 17A (IL-17A) in 
endometrial malignancy [115]. This positive feed-

back mechanism between E2 and M2 TAMs pro-
vides a potential therapeutic target, a concept 
recently addressed via effects of the phytoestro-
gen SERM resveratrol in a lung cancer xenograft 
model [116]. Resveratrol treatment appeared to 
suppress tumor proliferation through decreased 
signal transducer and activator of transcription 3 
(STAT3) signaling and M2 polarization [116].

2.3.5	 �Myeloid-Derived Suppressor 
Cells

MDSCs are another myeloid cell present in the 
TME known to interfere immune surveillance 
and facilitate tumor growth [117]. ERα expres-
sion in human ovarian adenocarcinoma MDSCs 
has been identified by IHC and confirmed through 
PCR and immunoblotting [57]. In an 
E2-insensitive syngeneic ovarian cancer model, 
ovariectomized mice exhibited improved survival 
compared to non-ovariectomized mice following 
tumor challenge. Contrastingly, E2 supplementa-
tion in these mice accelerated tumor progression 
and reversed the protective effect found in 
estrogen-depleted mice [57]. Of note, this study 
found that T-cell-deficient mice lost survival ben-
efit of estrogen depletion, suggesting adaptive 
immunocompetence to be mechanistically inte-
gral [57]. Estrogen’s effect on the two legs of 
immunity was also observed in E2-treated mice, 
which were found to have notably decreased con-
centrations of helper and cytotoxic T cells, and 
significantly increased concentrations of granu-
locytic MDSCs in spleen and tumor beds [57]. 
ER-dependence of MDSC expansion was further 
studied with in vitro administration of the ERα 
antagonist methylpiperidino pyrazole (MPP) to 
inhibit MDSC proliferation [57]. Ovarian tumor-
bearing mice treated with E2 had measurable 
JAK2 and SRC upregulation with downstream 
STAT3 signaling, a regulator of myeloid differen-
tiation and development [118]. In syngeneic lung 
and breast cancer murine models, E2-stimulated 
tumor growth was mitigated by MDSC depletion 
after treatment with anti-Gr1 antibodies [57, 119, 
120]. Patients with cervical cancer that were 
pregnant with high E2 had increased expansion 
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of MDSCs and shorter PFS. These findings were 
further evaluated in mouse models [120].

2.3.6	 �Inflammatory Cytokines 
and Eicosanoids

Chronic inflammation has been accepted as a 
common factor in tumorigenesis and spread. 
TME facilitates neoplastic progression primarily 
through cytokine-induced oncogenic pathway 
activation, leading to cell proliferation, immune 
evasion, and infiltration [121]. IL-6 from TAFs 
has been observed to assist ERα-positive breast 
cancer proliferation and immune evasion [122] 
via STAT3 activation in vitro and in vivo [123]. 
TNFα in ERα-positive breast cancer cells has 
been observed to regulate gene expression for 
metastasis [124]. This cytokine has also been 
shown to upregulate aromatase expression in cul-
tured human adipose stromal cells [125]. 
Neoplastic implication of these inflammatory 
markers is evidenced by data showing TNFα and 
IL-6 correlate closely with aromatase expression 
in human breast cancer tissue and not in adjacent 
noncancerous tissue [126]. Aromatase has simi-
lar transcriptional correlation with cyclooxygen-
ase-2 (COX-2) [126]. COX-2 mediates the 
inflammatory response by producing eicosanoids 
such as prostaglandin E2 (PGE2) [127], which 
upregulates aromatase expression through cyclic 
adenosine monophosphate (cAMP) in breast 
malignancy [128]. Despite conflicting reports, a 
case–control study demonstrated regular admin-
istration of the nonsteroidal anti-inflammatory 
drug (NSAID) aspirin reduced the risk of devel-
oping ERα-positive breast cancers (hazard ratio 
(HR) = 0.74; 95% CI, 0.60–0.93), but not ERα-
negative cancers (HR = 0.97; 95% CI, 0.67–1.40) 
[129].

ERα, TNFα, and NF-κB protein expression 
correlate closely in breast cancer tissues [130]. 
NF-κB signaling, a proinflammatory cytokine 
associated with IL-6 and TNFα, is often constitu-
tively activated in many tumor types [131]. High 
levels of the cytokine are also implicated in 
SERM resistance in ERα-expressing human 
breast cancer cells [132, 133]. E2 also enhanced 

pulmonary inflammation through increased 
NF-κB, VEGF, and IL-17A in a murine model 
evaluating tobacco carcinogen-induced lung can-
cer [114]. E2 inhibition with combined AI/
NSAID treatment served to noticeably decrease 
pulmonary malignancy in these mice. Notable 
pathways affected included IL-17A expression, 
IL-6 concentration, as well as STAT3 and MAPK 
[114]. Cumulatively, there appears to be a poten-
tial target for the E2 pathway as it interacts with 
tumorigenesis via inflammation.

2.3.7	 �The Impact 
of Supraphysiologic Estrogen

Esterified estrogen, specifically estrone, is sig-
nificantly increased in the setting of obesity. 
Aromatase in adipocytes serves to increase 
estrone secretion in the setting of hypertrophy. 
The effect this supraphysiologic estrogen has on 
tumorigenesis has been controversial [134, 135]. 
Recent findings suggest that while immune dys-
function and tumor progression are associated 
with obesity, improved response to immunother-
apy may also be associated with obesity, support-
ing the immune-mediated link between obesity 
and cancer [136]. Chronic inflammation from 
obesity is integral to carcinogenesis and tumor 
evolution, as observed in postmenopausal, ER- 
and progesterone receptor (PR)-expressing breast 
malignancy [137]. It is important to note that 
studies suggesting protumor effects of estrogen 
in estrogen-depleted mammals have been per-
formed primarily in the setting of hormone 
replacement therapy (HRT).

Tumorigenesis, progression, and infiltration in 
the setting of HRT in estrogen-depleted mam-
mals remain controversial. There is a paucity of 
studies demonstrating proinflammatory changes 
with hormone replacement therapy in murine 
models. In contrast, there are many studies con-
veying a protective effect of exogenous estrogen. 
Specifically, ERβ-expression has been observed 
to prevent progression of human colorectal carci-
noma (CRC) [134, 138]. Mechanistic protection 
against carcinogenesis with exogenous estrogen 
in postmenopausal patients appears to primarily 
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be through a decrease in the natural postmeno-
pausal increase in Th1/Th2 ratio [139, 140]. 
Specifically, Th2 cytokines are quantifiably sta-
ble until late postmenopausal stage, while pro-
duction of Th1 cytokines is progressively 
increased in women after menopause. HRT pre-
vents this increased Th1/Th2 ratio, thereby 
improving the aberration of Th1/Th2 balance that 
is implicated in an inadequate immune response 
and neoplastic conditions [140]. Substantiation 
of this antitumoral concept was provided through 
an in  vivo, placebo-controlled study regarding 
postmenopausal human breast cancer cell dem-
onstrating estrogen’s notable decrease in IL-6 
production [141].

2.4	 �Clinical Implications 
of Targeting the Estrogen 
Pathway in the Tumor 
Microenvironment

Immunotherapy is a developing and effective 
treatment avenue in the world of cancer; yet the 
TME and its immunosuppressive mechanisms is 
a deterrent for large-scale success. As it stands, 
the immune checkpoint modulators of cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA4) and 
PD-1/PD-L1 are the most studied immunothera-
pies [142]. These revolutionary options have had 
dramatic impacts on OS relative to standard-of-
care chemotherapies [143–146]. Even so, 
response rates are limited to 20–35% of cases, 
closely dependent on tumor type, stage, and 
PD-L1 expression [147]. Moreover, 25–33% of 
melanoma patients often demonstrate delayed 
relapse during treatments attributed to tumor cell 
adaptation [5, 6].

There appears to be a balance of tumoral 
mutations and immunoediting that facilitate 
immune evasion, and subsequently, failure of 
checkpoint therapy. On the one hand, damaged 
DNA repair mechanisms, increased 
non-synonymous somatic mutational load, and 
neoantigen presentation cripple immune evasion 
and improve OS [2, 3, 148]. On the other hand, 
damage to antigen-presenting mechanisms, as 
well as recurrence of nonantigenic mutations, 

appears to facilitate immune evasion [149, 150]. 
Studies identifying these mechanisms provide 
insight into measurable biomarkers to assess 
tumor responsiveness to current and, inevitably 
necessary, novel immunotherapies. A potential 
investigative therapy is endocrinological agents 
that modulate E2 and its protumoral pathway to 
abrogate tumor immune evasion. Specifically, 
anti-estrogen therapy may reduce TME immuno-
suppression while increasing E2-sensitive tumor 
responsiveness.

Recently, a high-throughput screening assay 
in human lung cancer cells demonstrated fulves-
trant, an anti-estrogen agent, as the most effica-
cious compound in increasing tumor sensitivity 
to immune-mediated lysis [151]. Fulvestrant 
additionally has few interactions and overlapping 
toxicities with anti-PD-1/PD-L1 agents. Thus, 
anti-E2 therapies to target the immunosuppres-
sive TME could increase efficacy and duration of 
response of current immune checkpoint inhibi-
tors (ICI) [119, 152] (Fig. 2.1).

Based on the well-established evidence of 
sex-driven dimorphism in immune function and 
response, patient sex has been postulated to have 
an influence on the efficacy of ICIs [9]. This sex-
ual dimorphism plays an important role in the 
disparity of cancer immunoediting in females 
and males and could not only explain differences 
in progression and mortality observed between 
male and female cancer patients but also sex dif-
ferences in response rates, toxicity patterns, and 
outcomes to treatment with ICIs. In support of 
this concept, the PD-1/PD-L1 pathway is modu-
lated by multiple X-linked microRNAs (miR-
NAs), which crosstalk with the estrogen-ERα 
axis, suggesting an important role of the estrogen 
pathway and response to ICIs [153, 154]. Further 
since estrogen modulation of the PD-1/PD-L1 
pathway has been demonstrated in animal mod-
els [82, 155], it is reasonable to expect that immu-
notherapy efficacy may vary according to patient 
sex.

In an effort to identify patient characteristics 
linked to ICI effectiveness, several meta-analyses 
have been conducted to evaluate sex-differential 
effects in efficacy of ICIs. Conforti et al. evalu-
ated the effect of patient’s sex on the efficacy of 
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ICIs measured in terms of OS on different tumor 
types [156]. This study included 11,351 patients 
(67% men and 33% women) enrolled in 20 Phase 
II and III randomized controlled trials that evalu-
ated CTLA4 inhibitors, as well as PD-1/PD-L1 
inhibitors in patients with different tumor types, 
mostly melanoma and NSCLC. Results showed 
that male patients who received ICIs alone had a 
reduced risk of death compared to men in the 
control arms (HR  =  0.72, 95% CI 0.65–0.79). 
Similar findings were observed in female patients, 
but the difference in risk reduction was smaller 
between the treatment and the control arm 
(HR = 0.86, 95% CI 0.79–0.93). Although there 
was a significant difference in the efficacy of ICIs 
between male and female patients, the heteroge-
neity test for this sex-related interaction was not 
quite significant.

A subsequent meta-analysis evaluated the 
differences in outcomes based on sex in lung 
cancer patients who received targeted therapy 
or immunotherapy [10]. This study included a 
total of 12 Phase III clinical trials evaluating 
EGFR, ALK, and PD-1 inhibitors versus che-
motherapy. Of the 12 trials included in this 
meta-analysis, five compared PD-1 inhibitors 

versus chemotherapy, two of which compared 
pembrolizumab versus chemotherapy 
(KEYNOTE 010 and KEYNOTE 024), and 
three compared nivolumab versus chemother-
apy (CheckMate 017, CheckMate 026, 
CheckMate 057) [144, 157–159]. The studies 
that compared ICIs versus chemotherapy 
included 1028 female and 1435 male lung can-
cer patients. While there was significant hetero-
geneity between studies, OS was favorable in 
male patients treated with ICIs compared to 
chemotherapy (HR = 0.76; 95% CI 0.068–0.86; 
p < 0.00001). There was no significant differ-
ence in survival in female lung cancer patients 
receiving chemotherapy compared to ICIs 
(HR = 1.03; 95%CI 0.89 to 1.03; p = 0.69). In a 
separate study focused on metastatic NSCLC, 
El-Ostra et al. evaluated results from eight ran-
domized clinical trials for predictors of benefit 
to single agent ICIs over chemotherapy [8]. 
NSCLC patients treated with ICIs had signifi-
cant progression-free survival (PFS) superior-
ity in ever-smokers, male patients, and patients 
with PD-L1-positive tumors. In contrast, female 
NSCLC patients had comparable PFS between 
ICIs and chemotherapy.

Fig. 2.1  Increasing 
estrogen promotes a 
pro-tumor TME via 
increased Th2 responses, 
increased production of 
tumor-promoting 
cytokines (IL-4, IL-6, 
TNFα, and IL-17A), M2 
TAM infiltration, 
decreased Th1 cytokines 
(IL-12 and IFNγ), and 
M1 TAM infiltration. E2 
has also been associated 
with increased Treg and 
MDSC proliferation, 
increased PD-L1 
expression on tumor 
cells, and decreased 
CD8+ T cell and NK cell 
proliferation. CAFs and 
adipocytes may also 
serve as pro-tumor as 
they can supply E2 and 
IL-6. (Adapted from 
[64])
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Wallis et  al. also conducted a meta-analysis 
that included 23 randomized clinical trials 
(67.9% men and 32.1% women) that compared 
ICIs (both ICI alone and ICI plus chemotherapy 
trials) to standard-of-care treatment in advanced 
solid tumors (including NSCLC, SCLC, urothe-
lial carcinoma, head and neck squamous carci-
noma, melanoma, mesothelioma, clear cell renal 
carcinoma, and gastric or gastroesophageal carci-
noma). In this study, no difference in OS between 
men and women who received immunotherapy 
was observed (I2 = 38%; p = 0.6) [160]. The con-
flicting results and limitations in these meta-
analyses suggest that further investigation of the 
efficacy of ICIs and patients’ sex is warranted in 
future studies. While the majority of the trials 
included in these studies were underpowered to 
detect clinically relevant sex differences in out-
come, these results indicate that the hormonal 
milieu may have some effect on treatment 
response (Table 2.2).

The current best predictive markers of thera-
peutic response to ICIs are high PD-L1 expres-
sion and high tumor mutational burden (TMB). 
The difference between PD-L1 expression 
between men and women has been evaluated in 
some cancer patient cohort with a reported 
increased PD-L1 expression in male patients 
[161–163]. TMB has also been shown to be lower 
in women compared to men (p = 0.0349), across 
multiple studies [164, 165]. TMB is predictive of 
response to ICI in lung cancer and is lower in 
female lung cancer patients compared to male 
lung cancer patients [165]. Similarly, sex differ-
ences in immune-related adverse events (irAEs) 
have also been noted in ICI trials [166, 167]. The 

gut microbiome and obesity are emerging areas 
of interest that may predict response to ICIs 
[168]. Whether or not these factors interact with 
sex hormones in the context of anti-cancer immu-
nity is yet to be determined.

2.5	 �Conclusions and Perspective

The E2 pathway is an identified promoter of 
tumorigenesis in several cancers, largely for its 
genomic, epigenomic, and transcriptional effects 
on tumor cells and the TME. The reciprocal inter-
actions of the peritumoral and tumoral environ-
ment are becoming more evident, with E2 playing 
a major role in modulation of primarily protu-
moral pathways. With immunoediting being a 
culprit in E2-mediated protumoral activity, it 
appears to be an important deterrent for check-
point blockade immunotherapy success. Thus, 
inhibition of the E2 pathway may augment cur-
rent immunotherapy response rates.

Carcinogenesis from obesity and its related 
illnesses are thought to be primarily driven 
through proinflammatory cytokine secretion. 
Supraphysiologic estrogen from adipocyte aro-
matase expression may also play a role, but as 
of now, it is difficult to distinguish. However, 
estrogen replacement therapy in postmeno-
pausal women appears to have a relatively pro-
tective effect via immune modulation. 
Stabilization of immunologic aberrancies, 
notably in the adaptive immune system, is pro-
tective against age-related malignancies such as 
colorectal carcinoma and breast cancers. Based 
on the above discussion, future studies are war-

Table 2.2  Selected trials evaluating the combination of Estrogen pathway targeting agents with ICIs

Malignancy Selected study drugs n = Clinical trial number
ER+/Her2- Breast cancer Exemestane and durvalumab/tremelimumab 240 NCT02997995
ER+/Her2- Breast cancer Pembrolizumab, letrozole, and palbociclib 22 NCT02778685
ER+/Her2- Breast cancer Atezolizumab and fulvestrant 126 NCT03280563
ER+/Her2- Breast cancer Pembrolizumab and exemestane 25 NCT02990845
ER+/Her2- Breast cancer Pembrolizumab and AI 37 NCT02971748
ER+/Her2- Breast cancer Pembrolizumab and letrozole, exemestane anastrozole 56 NCT02648477
AR+/ER- Breast cancer Pembrolizumab and enobosarm 29 NCT02971761

Selected ongoing trials evaluating ICI in combination with therapeutic agents targeting the E2 pathway. Disease type, 
selected study agents, predicted accrual size, and clinical trial number are provided
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ranted to assess responsiveness to current ICIs 
across sex, menopausal status, and BMI in 
order to isolate E2 pathway contribution to 
immune evasion.
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