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This book’s initial title was “Tumor Microenvironment.” However, due to the 
current great interest in this topic, we were able to assemble more chapters 
than would fit in one book, covering tumor microenvironment biology from 
different perspectives. Therefore, the book was subdivided into several 
volumes.

This book Tumor Microenvironment: Molecular Players – Part B presents 
contributions by expert researchers and clinicians in the multidisciplinary 
areas of medical and biological research. The chapters provide timely detailed 
overviews of recent advances in the field. This book describes the major con-
tributions of different key molecular players within the tumor microenviron-
ment during cancer development. Further insights into the mechanisms will 
have important implications for our understanding of cancer initiation, devel-
opment, and progression. The authors focus on the modern methodologies 
and the leading-edge concepts in the field of cancer biology. In recent years, 
remarkable progress has been made in the identification and characterization 
of different components of the tumor microenvironment in several organs 
using state-of-art techniques. These advantages facilitated identification of 
key targets and definition of the molecular basis of cancer progression within 
different tissues. Thus, the present book is an attempt to describe the most 
recent developments in the area of tumor biology, which is one of the emer-
gent hot topics in the field of molecular and cellular biology today. Here, we 
present a selected collection of detailed chapters on what we know so far 
about different molecular players within the tumor microenvironment in vari-
ous tissues. Ten chapters written by experts in the field summarize the present 
knowledge about distinct characteristics of the tumor microenvironment dur-
ing cancer development.

Jörg H. Leupold and colleagues from the University of Heidelberg discuss 
MicroRNAs in the tumor microenvironment. Laura P. Stabile and colleagues 
from the University of Pittsburgh update us on the impact of estrogen in the 
tumor microenvironment. Peter A van Dam and colleagues from the 
University of Antwerp describe the non-bone related role of RANK/RANKL 
signaling in cancer. Hyo-Jin Yoon and Young-Joon Surh from Seoul National 
University summarize current knowledge on modulation of cancer cell 
growth and progression by Caveolin-1  in the tumor microenvironment. 
Kishore B.  Challagundla and colleagues from the University of Nebraska 
Medical Center address the importance of exosomes, as novel players of ther-
apy resistance in neuroblastoma. Ying-Ting Zhu and colleagues from Tissue 

Preface
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Tech, Inc. compile our understanding of COX-2 signaling in the tumor micro-
environment. Yutaka Kawakami and colleagues from Keio University School 
of Medicine focus on the renin–angiotensin system in the tumor microenvi-
ronment. Juan Antonio Marchal and colleagues from the University of 
Granada give an overview of stem cell secreted factors in the tumor microen-
vironment. Sophie Sibéril and colleagues from Sorbonne University present 
the tight interplay between therapeutic monoclonal antibodies and the tumor 
microenvironment in cancer therapy. Finally, Himanshu Arora and colleagues 
from the University of Miami talk about nitric oxide within the tumor 
microenvironment.

It is hoped that the articles published in this book will become a source of 
reference and inspiration for future research ideas. I would like to express my 
deep gratitude to my wife Veranika Ushakova and Mr. Murugesan Tamilsevan 
from Springer, who helped at every step of the execution of this project.

 Alexander BirbrairBelo Horizonte, MG, Brazil
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MicroRNAs in the Tumor 
Microenvironment

Nitin Patil, Heike Allgayer, and Jörg H. Leupold

Abstract

The tumor microenvironment (TME) is deci-
sive for the eradication or survival of any 
tumor mass. Moreover, it plays a pivotal role 
for metastasis and for providing the metastatic 
niche. The TME offers special physiological 
conditions and is composed of, for example, 
surrounding blood vessels, the extracellular 
matrix (ECM), diverse signaling molecules, 
exosomes and several cell types including, but 
not being limited to, infiltrated immune cells, 
cancer-associated endothelial cells (CAEs), 
and cancer-associated fibroblasts (CAFs). 
These cells can additionally and significantly 
contribute to tumor and metastasis progres-
sion, especially also by acting via their own 
deregulated micro (mi) RNA expression or 
activity. Thus, miRNAs are essential players 

in the crosstalk between cancer cells and the 
TME.  MiRNAs are small non-coding (nc) 
RNAs that typically inhibit translation and 
stability of messenger (m) RNAs, thus being 
able to regulate several cell functions includ-
ing proliferation, migration, differentiation, 
survival, invasion, and several steps of the 
metastatic cascade. The dynamic interplay 
between miRNAs in different cell types or 
organelles such as exosomes, ECM macro-
molecules, and the TME plays critical roles in 
many aspects of cancer development. This 
chapter aims to give an overview on the mul-
tiple contributions of miRNAs as players 
within the TME, to summarize the role of 
miRNAs in the crosstalk between different 
cell populations found within the TME, and to 
illustrate how they act on tumorigenesis and 
the behavior of cells in the TME context. 
Lastly, the potential clinical utility of miRNAs 
for cancer therapy is discussed.
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1.1  Introduction

In the early nineties of the last century, Victor 
Ambros and his colleagues discovered the first 
miRNA in C. elegans, essential for the embry-
onic development of this organism [1]. Their dis-
covery led to the surprising conclusion that the 
expression of a gene, lin-14, was not regulated by 
a protein, but through a short RNA, which 
appeared to bind within the 3′- untranslated 
region (UTR) of lin-14 mRNA, suggesting a new 
posttranscriptional regulation via antisense RNA- 
RNA interaction. In a few years, thousands of 
miRNAs were described and it became clear that 
this novel translational control mediated by ribo-
nucleic acids has impacted virtually every bio-
logical process and changed our thinking about 
gene regulation [2].

Generally, miRNAs belong to the family of 
endogenously expressed ncRNA molecules and 
are defined by their length of approximately 
18–25 nucleotides. They are evolutionarily con-
served and nearly 3000 functionally diverse miR-
NAs have been identified until now [3]. Most of 
miRNA genes are located within the human 
genome in intragenic regions, UTRs, and repeat 
regions of the genome [4]. Here, they are often 
found as clusters from where they are transcribed 
as discrete polycistronic transcripts, or they share 
the promoter of host genes and get spliced from 
their mRNA transcripts during biogenesis [5]. 
MiRNA genes are first transcribed into the pri-
mary miRNA (pri-miRNA) by RNA polymerase 
II (Pol II). Thereafter, these typically 1-kb-long 
primary transcripts, containing the actual miRNA 
sequence, undergo diverse nuclear processing 
steps of maturation with the participation of the 
proteins Drosha and DiGeorge critical region 8 
(DGCR8). The resulting miRNA precursor (pre) 
miRNA is exported into the cytoplasm with the 
help of Exportin 5, together with the guanosine- 
5′-triphosphate ras-related GTP-binding nuclear 
protein (RAN). After release, the pre-miRNA is 
cleaved by the ribonuclease (RNase) III enzyme 
Dicer, leading to the mature miRNA duplex. 
Finally, this duplex is loaded onto an Argonaut 
(ARGO) protein to form the effector complex 
called RNA-induced silencing complex (RISC) 

where it binds seed sequences within 3´-UTRs of 
specific mRNAs to mediate their degradation, 
destabilization, or translational inhibition [6]. 
Interestingly, latest research in this field showed 
that the expression of certain circular (circ) RNAs 
plays an important role in the regulation of 
miRNA, by acting as miRNAs sponges through 
abundant binding sites for microRNAs to modu-
late the activity on their target genes, represent-
ing a new layer of gene control by ncRNAs [7].

Based on the complexity of the above- described 
pathway and numerous auxiliary regulatory fac-
tors found up to date to be involved in successful 
miRNA biogenesis, a tight regulation is needed at 
multiple levels to prevent aberrant miRNA gene 
transcription in the cells. This is even more impor-
tant given the notion that more than 60% of human 
protein-coding genes contain at least one con-
served miRNA seed sequence, and that any dereg-
ulation of miRNAs is most likely associated with 
human disease, particularly cancer [8]. In conse-
quence, miRNAs can exert tumor suppressive or 
oncogenic functions and affect, directly or indi-
rectly, tumor progression and metastasis because 
the misdirected transcription of miRNAs, or muta-
tions within the seed sequences, leads to aberrantly 
expressed proteins [9].

During the last decades, cancer research was 
mainly focused at malignant cells to understand 
the process and driving forces, which transform a 
normal cell a cancer cell and to cancer cells with 
metastatic capacity. However, to understand the 
whole process of how cells get transformed and 
can survive or metastasize into different tissues 
and organs, it is necessary to realize that cancer 
cells are not the only players necessary to manifest 
the disease. Since many years, pioneered by Isaac 
Witz and others [10], it became very clear that 
tumors strongly depend on external signals from 
their microenvironment, leading to the concept of 
the TME as one of the essential factors to promote 
disease progression, local resistance, immune-
escape, and metastasis of tumor cells [11].

Generally, the TME is defined as the environ-
ment around a tumor within the tissue in which 
cancer cells are embedded. Together with other 
cells such as stroma and endothelial cells, ECM, 
infiltrating cells such as macrophages and lympho-

N. Patil et al.
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cytes, soluble products, namely growth factors, 
cytokines and antibodies, proteases, as well as 
other types of enzymes it resembles a network 
between a variety of cells with non-cellular com-
ponents [12]. Interestingly, non-neoplastic cells 
can account for more than 50% of the total tumor 
mass and produce and release cytokines, chemo-
kines, growth factors, matrix remodeling enzymes, 
vesicles, and other soluble factors into the tumor 
mass, often supporting tumor growth [13]. 
Moreover, during tumor development, remodeling 
of this tissue occurs through the modification of 
the physical scaffold and structural framework 
provided by the extracellular matrix (ECM). This 
complex network of collagen and fibronectin 
fibrils associated with glycoproteins, proteogly-
cans, and polysaccharides, also provides biochem-
ical signals by hosting growth factors and 
chemokines modulating tumor cell growth, migra-
tion, and metastasis [14].

Due to their responsibility to form the ECM, 
specifically CAFs are found in the TME and play 
a pivotal tumor-promoting role [15]. Besides 
other stromal cell types like pericytes, vascular 
endothelial cells and cancer-associated adipo-
cytes are present [16]. Together with the ECM, 
these stromal cell types and adipocytes are able 
to support tumor growth by providing paracrine 
and juxtacrine signaling molecules like hepato-
cyte growth factor (HGF), fibroblast growth fac-
tor (FGF), the chemokines C-C motif ligand 
(CCL) 5 and CCL2, and the inflammatory fac-
tors interleukin (IL)-6, and tumor necrosis factor 
(TNF)-α, which further promote the prolifera-
tion and invasion of tumor cells and the forma-
tion of neovascularization [17, 18]. Additionally, 
the TME is characterized by the presence of 
diverse tumor-infiltrating immune cells as a con-
sequence of inflammation, including tumor-
associated macrophages (TAMs), 
myeloid-derived suppressor cells (MDSCs), 
regulatory Thymus (T)-cells (Treg), dendritic 
cells (DC), as well as effector immune cells such 
as T-lymphocytes and natural killer (NK) cells 
[19]. Unfortunately, the TME can provide an 
immunosuppressive environment, which blocks 
antitumor immunity to a large extent. Typically, 

NK- and T-cell cytotoxic activities are sup-
pressed, T-cell proliferation is inhibited, and 
expression of major histocompatibility complex 
(MHC) molecules is downregulated, thereby 
precluding long-standing protective immunity 
and allowing tumor cells to escape attacks from 
the immune system [20]. On the sub-cellular 
level, extracellular vesicles, predominantly exo-
somes, are critical vehicles within the TME for 
intercellular communication [21]. These vesicles 
traffic between the different cell types found in 
the TME and specifically cancer- associated exo-
somes containing miRNAs can promote tumor 
survival and growth. Thus, they contribute to 
establishing tumorigenic niches, for example, by 
inducing angiogenesis, remodeling of the ECM, 
and impairing the function of immune cells [22]. 
Finally, due to the rapid growth and abnormal 
structure of the TME, most cells in a solid tumor 
mass suffer from exposure to hypoxia condi-
tions. The generated hypoxic signaling, a discov-
ery recently awarded with the Nobel Prize in 
Physiology or Medicine 2019, is mainly medi-
ated by hypoxia-inducible transcription factors 
(HIFs), which in turn induce expression changes 
of genes involved in angiogenesis, growth, and 
cell survival [12].

Taken together, cellular and sub-cellular com-
ponents of the TME are recognized to play a piv-
otal role to regulate and support cancer 
development and metastasis. The discovery that 
miRNA dysregulation substantially impacts 
TME-associated processes sheds new light on 
understanding cancer proliferation, angiogenesis, 
and metastasis through interactions between 
malignant cells, stromal cells, immune cells, and 
non-cellular components in the TME. Therefore, 
this chapter aims to summarize the versatile 
effects of miRNAs on the complex interplay 
between the different components of the TME 
and to offer a momentary overview of this rapidly 
moving field. Finally, the therapeutic potential of 
miRNAs to overcome the limitations of check-
point blockage is discussed as an example of how 
pre-clinical knowledge on TME-based interac-
tions can be transferred to potentially improve 
future immune therapies.

1 MicroRNAs in the Tumor Microenvironment
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1.2  Hypoxia as Modulator 
for miRNA Expression 
in the TME

Solid cancers and their TME are commonly char-
acterized by hypoxic conditions because exces-
sive cancer cell proliferation, but also growth of 
the complete tumor mass above a critical size, 
results in deprivation of oxygen due to insuffi-
cient blood supply from abnormal tumor micro-
vasculature. Especially in the center of metastatic 
lesions, hypoxic central areas can often be visual-
ized in computed tomography (CT) or magnetic 
resonance imaging (MRI) scans. As a result of 
this condition, a specific hypoxia signaling is 
induced at the cellular level to restore oxygen-
ation and to minimize the negative effects of the 
hypoxic environment [23–25]. This adaptive 
response connected to changes in tissue oxygen-
ation is mediated by a heterodimeric protein that 
consists of two proteins, hypoxia-induced factor 
(HIF)-1α and HIF-1β, which together constitute 
HIF-1. The HIF-1β subunit is constitutively 
expressed, whereas the HIF-1α subunit expres-
sion is tightly regulated, depending on the oxy-
gen status in the cell [24–26]. Once induced, the 
two subunits dimerize and bind to cis-acting 
hypoxia response elements at promoters that con-
tain HIF-1 binding sites. Following this process, 
numerous miRNA genes are induced in response 
to hypoxic stress and HIF stabilization in the 
TME [27]. A diagrammatic representation of 
how hypoxia modulates miRNA expression in 
the TME is shown in Fig. 1.1.

The first study providing the functional link 
between hypoxia and miRNA expression came 
from Kulshreshtha et  al. [28]. In this ground-
breaking work, the authors aimed to characterize 
molecular mechanisms responsible for the 
hypoxic survival of neoplastic cells and, in a 
panel of human cancer cell lines, found a specific 
hypoxia-regulated miRNA profile of 23 mature 
miRNAs. Since the vast majority of these 
hypoxia-regulated miRNAs (hypoxymiRNAs) 
were also found overexpressed in diverse types of 
tumor, these findings strengthen the theory that 
hypoxia displays a key trigger for miRNA altera-
tions in cancer [28]. Subsequently, multiple stud-

ies not only confirmed these signatures but also 
described more miRNAs found to be upregulated 
under hypoxic conditions in various solid cancer 
entities like lung, liver, bladder, gastric, pancre-
atic, or cervical tumors [29–34].

Among them, one of the best-studied 
hypoxymiRNAs is miRNA-210, and various 
groups have demonstrated that miRNA-210 over-
expression is induced by HIF-1 and acts on a 
number of targets regulating carcinogenesis, 
angiogenesis, cell proliferation, and apoptosis 
[35, 36]. Additionally, miRNA-210 directly tar-
gets the myelocytoma (Myc)/Myc-associated 
factor X (Max) transcriptional network, which is 
essential in many cancer pathways and mediates 
the adaptation of cancer cells to hypoxic condi-
tions by favoring growth and survival through 
increasing Myc activity [37]. Hypoxia-induced 
miRNA-210 can also increase proliferation and 
migration via targeting iron-sulfur cluster scaf-
fold homolog 2 (ISCU2) and protein tyrosine 
phosphatase non-receptor types (PTPN) 1 and 2 
[38, 39]. Moreover, miRNA-210 has been 
reported to promote migration and invasion capa-
bility of hepatocellular carcinoma by directly tar-
geting vacuole membrane protein 1 (VMP1) 
[40]. Besides miRNA-210, very similar abundant 
expression under the regulation of HIF-1 was 
quickly demonstrated for miRNA-21 [33]. Most 
obviously, miRNA-21 overexpression induces 
tumor angiogenesis under this condition, through 
targeting PTEN, leading to the activation of ser-
ine/threonine protein kinase B, also known as 
AKT, and extracellular-signal-regulated kinase 
(ERK) 1/2 signaling pathways, thereby enhanc-
ing vascular endothelial growth factor (VEGF) 
expression and also HIF-1α [41]. In this context, 
it was also demonstrated that miRNA-21 expres-
sion is increased in exosomes derived from 
hypoxia-induced cells and can promote chemore-
sistance to normoxic cells [42].

Beside these most abundant hypoximiRNAs, 
diverse studies during the last years have con-
firmed the signature found by Kulshreshtha et al. 
and additionally identified more miRNAs and 
their potential targets in the hypoxia context. For 
example, for pancreatic cancer, it was shown that 
clinicopathological characteristics and prognosis 
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are closely associated with the expression of 
miRNA-191, whose expression is regulated by 
HIF-1 [43]. Additionally, it soon became obvious 
that HIF-1-induced miRNA-191 expression is sig-
nificantly inducing angiogenesis, proliferation, 
migration, and metastasis in breast cancer, non-
small-cell lung cancer (NSCLC), and transformed 
human bronchial epithelial cells (HBE) [29, 44, 
45]. In this context, miRNA-191 was shown to be 
a critical regulator of transforming growth factor 
(TGF)-β signaling and promotes cell migration by 
inducing TGF-β2 expression under hypoxia. This 
can happen either by direct binding or indirectly 
by regulating levels of a RNA-binding protein, 
human antigen R (HuR). Moreover, the levels of 
several TGF-β pathway genes, like VEGF-A, 
SMAD (an acronym from the fusion of 
Caenorhabditis elegans Sma genes and the 
Drosophila Mad, Mothers against decapentaple-
gic) family member 3 (SMAD3), connective tissue 
growth factor (CTGF), and bone morphogenetic 
protein (BMP) 4, were found to be higher in 

miRNA-191 overexpressing cells, and anti-
miRNA-191 treatment given to breast tumor 
spheroids led to drastic reduction in spheroid 
tumor volume [44]. Similarly, another study had 
identified the transcription factor nuclear factor 1A 
(NFIA) as a direct target of miRNA-191 under 
chronic hypoxic conditions, being responsible for 
promoting proliferation and migration [29]. Other 
examples of aberrant miRNAs expression 
explained by HIF-1 induction are miRNA-224, 
miRNA 421, and miRNA-27a. For example, 
miRNA-224 expression depends on HIF-1 in pan-
creatic ductal adenocarcinoma (PDAC) cells and 
tissue, which is related to migration and prolifera-
tion [46]. Additionally, diverse groups demon-
strated that miRNA-224 and miRNA-421 promote 
gastric cancer cell growth, migration and invasion, 
and identified a Ras association domain tumor 
suppressor protein (RASSF) 8, epithelial 
(E)-Cadherin and caspase- 3 as direct targets under 
hypoxic conditions [30, 47]. The first hint that 
miRNAs in the miRNA23a/27a/24 cluster play a 

Fig. 1.1 Hypoxia as a modulator for miRNA expression 
in the TME. Hypoxic conditions lead to increased dimer-
ization of HIF-1α with HIF-1β and binding to HRE ele-
ments within the promoter region of hypoxia-inducible 
miRNA genes. In turn, HIF-1 α mRNA translation is con-

trolled by diverse miRNAs. This complex regulatory net-
work between miRNAs/HIF-1α plays a critical role in 
tumorigenicity by targeting pathways controlling cell pro-
liferation, the cell cycle, metabolism, angiogenesis, drug 
resistance, or invasion, migration, and metastasis

1 MicroRNAs in the Tumor Microenvironment
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pivotal role in hypoxia came from a study on the 
angiogenic factor with G-patch and FHA domain 
(AGGF) 1  in high-grade urothelial carcinoma. 
Here, Xu et al. were able to prove that the hypoxia-
induced decrease of AGGF1 is directly connected 
to a HIF-1-mediated induction of miRNA-27a 
expression [48]. Subsequently, two independent 
groups investigated pathways responsible for drug 
resistance in gastric cancer and concluded that 
HIF-1 induces chemoresistance, besides miRNA-
181a and miRNA-20b, via miRNA-27a through 
targeting multidrug resistance genes [49, 50]. 
Later, another group found that all three miRNAs 
in the miRNA23a/27a/24 cluster are the most 
abundantly upregulated cluster miRNAs in 
colorectal cancer and that they collectively regu-
late the glucose metabolic network through regu-
lating various metabolic pathways and targeting 
multiple tricarboxylic acid cycle (TCA)-related 
genes [51].

In this context, it became soon obvious that 
the crosstalk between miRNAs and HIF-1α is not 
only characterized by transcriptional upregula-
tion of specific miRNAs. In addition, TME- 
related miRNAs can also modulate the activity of 
HIF-1α, finally exerting not only pro- but also 
anti-tumor effects on tumor cells [52]. One of the 
first studies on translational repression and 
HIF-1α came from Weiwei et al. [53]. Here, the 
authors investigated the co-expression of 
miRNA-199 and HIF-1α in prostate cancer and 
demonstrated a negative correlation between 
these two molecules based on the direct binding 
of miRNA-199 within the 3′-UTR of HIF-1α. 
This finding was further supported by multiple 
studies investigating the role of the miRNA-199 
family in this regard. For example, it was shown 
that enforced expression of miR-199a-5p led to 
down-modulated expression of HIF-1α as well as 
of other pro-angiogenic factors such as VEGF-A, 
IL-8, and fibroblast growth factor (FGF) 2  in 
hypoxic multiple myeloma (MM) cells in  vitro 
[54]. Furthermore, these data were also supported 
by Yang et  al. [55] in melanoma cell lines, 
whereby overexpression of miRNA-199a-5p sup-
pressed cell proliferation and arrested the cell 
cycle in the G1 phase. Moreover, in vivo overex-
pression of miRNA-199a-5p significantly inhib-

ited xenograft growth and downregulated the 
expression of HIF-1α. Increased levels of 
miRNA-138 can significantly inhibit the expres-
sion of HIF-1α in renal cell carcinoma, increase 
apoptosis, and reduce the migratory potential of 
these cancer cells [56]. Besides, miRNA-138 
suppresses cell invasion and metastasis in ovarian 
cancer and malignant melanoma cells by target-
ing HIF-1α together with SRY-related high 
mobility group box 4 (SOX4) [57, 58]. Two 
members of the miRNA-18 family have also been 
found to play a crucial role in the TME by sup-
pressing HIF-1α expression. Several groups 
showed that miRNA-18a regulates apoptosis and 
invasion of gastric cancer via HIF-1 suppression, 
increased radio-sensitivity for lung cancer cells, 
and reduced metastasis of breast cancer [59–61]. 
Similarly, miRNA-18b inhibits the growth of 
MM cells in vitro and in vivo by directly target-
ing the 3´-UTR of HIF-1α [62]. It is worth notic-
ing that besides these miRNAs, HIF-1α was also 
confirmed as a common target gene for multiple 
other miRNAs during the last years. Investigations 
on colon cancer revealed miRNA-526a and 
miRNA-22 to inhibit key steps in cancer develop-
ment by targeting HIF-1α [63, 64]. Similar effects 
were observed in breast and lung cancer for 
miRNA-497, miRNA-622, and miRNA-519c 
[65–67]. In line with the context, other groups 
identified HIF-1α as a target of miRNA-142, 
miRNA-186, miRNA-122, miRNA 145, or 
miRNA-338 in pancreatic and gastric cancers as 
well as hepatocellular carcinoma (HCC) and 
nasopharyngeal carcinoma (NPC) [68–72].

Finally, the hypoxic conditions do not only 
affect HIF-1 induction and upregulation of miRNA 
expression, but can also be one driving force to 
mediate the repression of miRNA biogenesis pro-
teins, like Drosha, Dicer, exportin (XPO) 5, 
DGCR8, TCR gamma alternate reading frame 
(TARP) 2, or AGO [73, 74]. An observation that 
hypoxia represses miRNA biogenesis by affecting 
the expression of specific proteins involved in this 
process came from studies of Bandara et al., where 
it was shown that cancer cells lead to a significant 
reduction of Dicer, Drosha, TARBP2, and DCGR8 
expression [75]. Moreover, other studies demon-
strated that Drosha and Dicer are independent pre-

N. Patil et al.



7

dictors of cancer patient outcome and cancer 
progression, and that the loss of these molecules in 
the cells directly impacts tumor development and 
patient survival [76–78]. Additionally, a compre-
hensive study using reverse transcription quantita-
tive polymerase chain reaction (RT-QPCR) had 
investigated 19 genes specifically involved in 
miRNA biogenesis in several hundred colorectal 
cancer tissues and concluded that, besides Drosha, 
a clear correlation of TARBP2, XPO5, trinucleo-
tide repeat containing adaptor (TNRC) 6A, and 
DEAD-box helicase (DDX) 17 with survival and 
prognosis of these patients was observed [79]. 
Possible mechanisms to regulate the expression of 
these molecules were found by other studies, 
including hypoxia-induced epigenetic regulators 
or hypoxia-mediated binding of specific transcrip-
tion factors to change the promoter activity of 
these genes [80–82]. Additionally, a study has 
shown that epidermal growth factor receptor 
(EGFR) suppresses the maturation of specific 
tumor-suppressor-like miRNAs in response to 
hypoxic stress through phosphorylation of AGO2. 
The association between EGFR and AGO2 is 
enhanced by hypoxia, leading to elevated AGO2 
phosphorylation, which in turn reduces the bind-
ing of Dicer to AGO2 and inhibits miRNA pro-
cessing from precursor miRNAs to mature 
miRNAs [83]. Alternatively, miRNA biogenesis 
proteins are by themselves targeted by the transla-
tional control through diverse hypoxia- induced 
miRNAs. In line with this concept, a study has 
shown that miRNA-630, which is upregulated 
under hypoxic conditions, targets and downregu-
lates Drosha and Dicer [84]. Other studies identi-
fied miRNA-107 and miRNA-122 as direct 
translational regulators of Dicer, thereby promot-
ing metastasis and neovascularization [85, 86].

1.3  Exosomal miRNAs, 
Dysregulated miRNAs, 
and CAFs

Among all the stromal cells present in the TME, 
CAFs are one of the most abundant and critical 
components of the tumor mesenchyme, which 
not only provide physical support for tumor cells 

but also play a key role in promoting and retard-
ing tumorigenesis [87]. Normally, the primary 
role of activated fibroblasts is to remodel and 
regenerate tissues in a highly regulated manner. 
In consequence, these normal fibroblasts only 
transiently acquire activity; otherwise, pathologi-
cal conditions such as tissue fibrosis and chroni-
cal inflammation can arise [88]. During tumor 
development, this indispensable ability can be 
hijacked, leading to chronic tissue repair by the 
generation of distinct, misregulated, tumor- 
promoting fibroblasts, termed CAFs [89]. After 
transformation, CAFs have been shown to exert 
multiple effects on cancer progression, including 
the regulation of cancer growth, angiogenesis, 
metastasis, metabolism changes, or remodeling 
of the tumor microenvironment [90]. During this 
process, CAFs and cancer cells typically regulate 
each other by secreting exosomes containing a 
variety of bioactive molecules, including miR-
NAs, DNAs, RNAs, and proteins. Not surpris-
ingly, a growing number of publications during 
the past years have shed light on this specific 
interaction between exosomal miRNAs, miRNA 
dysregulation, CAF formation, and activation in 
the TME [87]. Another crucial aspect of CAF- 
related miRNAs in the TME is their support in 
the development of tumor cell drug resistance. 
Anti-cancer drugs, regardless of their administra-
tion route, must diffuse from the bloodstream to 
individual tumor cells. Generally, the efficacy of 
these drugs to reach the cancer cells depends on 
the vascular density of the tumors and the cellular 
uptake and efflux [91]. However, also the devel-
opment of chemotherapeutic resistance in tumor 
cells can be traced to CAF-derived exosomes 
through a variety of dysregulated miRNAs [92].

One study, investigating whether miRNAs are 
involved in the reprogramming of normal fibro-
blasts in breast cancer, identified a signature of 
miRNA-155, miRNA-31, and miRNA-214, being 
responsible for the transformation from normal 
cells to CAFs [93]. Further analysis by this group 
revealed chemokines as the most highly regu-
lated genes during this process and identified 
CCL5 as a direct target for the most significantly 
downregulated miRNA-214. Similar data were 
found for pancreatic cancer, where Pang et  al. 
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showed that these cancer cells reprogram normal 
adjacent fibroblasts into CAFs by means of 
secreted exosomes containing miRNA-155, with 
the conclusion that the tumor protein p53- 
inducible nuclear protein (TP53INP) 1 is a target 
of miRNA-155  in fibroblasts and that a down-
regulation of TP53INP1 protein could contribute 
to the fibroblasts’ activation [94]. Further investi-
gations by other groups found miRNA-21 to 
induce CAF formation via SMAD7. Specifically, 
miRNA-21 binds to the 3′-UTR of SMAD7 
mRNA and inhibits its translation. Normally, 
SMAD 7 is bound to SMAD 2 and 3, which com-
petitively bind to TGFBR1, and prevents their 
activation upon TGF-β1 stimulation. Therefore, 
an overexpression of miRNA-21 or the depletion 
of SMAD 7 can be critical regulators during the 
induction of CAF formation [95]. Another study 
showed that exposure of primary normal human 
fibroblasts to TGF-β1 resulted in the acquisition 
of a CAF-like phenotype. This was associated 
with increased expression of miRNA-145, a 
miRNA predicted in silico to target multiple 
components of the TGF-β signaling pathway. 
Vice versa, overexpression of miRNA-145 
blocked TGF-β1-induced myofibroblastic differ-
entiation and reverted CAF toward a normal 
fibroblast phenotype. Thus, miRNA-145 is a key 
regulator of the CAF phenotype, acting in a nega-
tive feedback loop to reverse acquisition of myo-
fibroblastic traits. This is a key feature of CAFs 
being associated with poor disease outcome [96]. 
In prostate cancer, hypoxia-induced miRNA-210 
was able to increase the senescence-associated 
features of normal fibroblasts and converted them 
into CAF-like cells, able to promote cancer cell 
EMT, to support angiogenesis, and to recruit 
endothelial precursor cells and monocytes/mac-
rophages [97]. Another study investigating the 
impact of cisplatin treatment in esophageal 
 cancer found miRNA-27a/b to contribute to 
resistance to chemotherapy through miRNA-27a/
b-induced transformation of normal fibroblasts 
into CAFs [98]. Similarly, miRNA-21 as an 
important activator of CAFs was found to regu-
late matrix metalloprotease (MMP)-3, MMP-9, 
platelet-derived growth factor (PDGF), and 
CCL-6 secretion by these cells, which in turn 

increased not only the migratory and invasive 
abilities of pancreatic ductal adenocarcinoma 
cells (PDAC), but also their drug resistance 
against gemcitabine [99]. Finally, investigations 
on gastric cancer revealed that the loss of miRNA-
 141 induced normal fibroblast to obtain a CAF- 
like phenotype via an upregulation of signal 
transducer and activator of transcription (STAT) 
4, a direct target of miRNA-141 [100].

The importance of exosomal miRNA transfer 
from CAFs to cancer cells for tumor growth 
became obvious by a study investigating the 
communicative paths between HCC and CAFs 
[101]. These authors found a significant reduc-
tion of miRNA-320 amounts in CAF-derived 
exosomes. Normally, this miRNA exerts anti- 
tumor effects by targeting PBX homeobox (PBX) 
3 to suppress cancer cell proliferation, migration, 
and metastasis by suppressing the activation of 
the mitogen-activated protein kinase (MAPK) 
pathway, which can induce EMT and upregulate 
cyclin-dependent kinase 2 (CDK2) and MMP2 
expression [101]. In breast cancer cells, three 
miRNAs (miRNAs -21, -378e, and -143) were 
increased in exosomes from CAFs as compared 
with normal fibroblasts, thereby promoting the 
stemness and EMT phenotype of breast cancer 
cells via exosomal transfer [102]. Another exam-
ple is miRNA-148b, which seems to be decreased 
in CAF-derived exosomes of endometrial cancer. 
This is an important observation because in vitro 
and in  vivo studies revealed that miRNA-148b 
normally functions as a tumor suppressor by 
directly binding to its downstream target gene 
DNA methyl transferase (DNMT) 1 to suppress 
EMT and metastasis [103]. Therefore, it was sug-
gested that CAF-mediated endometrial cancer 
progression is partially related to the loss of 
miRNA-148b in the exosomes of CAFs [104]. 
Wang et al. found that miRNA-1228 is increased 
in CAFs and their secreted exosomes. While 
investigating osteosarcoma cells, this study dem-
onstrated that CAF-derived exosomal miRNA-
 1228 is able to promote osteosarcoma invasion 
and migration by targeting suppressor of cancer 
cell invasion (SCAI) in the recipient cells [105]. 
Finally, it was shown that CAF-derived exosomal 
miRNAs-34a-5p and -3188 play an important 
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role for proliferation and metastasis in oral squa-
mous cell carcinoma (OSCC) and head and neck 
cancer (HNC) [106, 107]. Both miRNAs were 
found to be significantly reduced in CAFs and 
their exosomes, leading to increased cancer pro-
gression. MiRNA-34a-5p leads to an increased 
expression of its direct target AXL receptor tyro-
sine kinase (AXL) and the activation of the AKT/
glycogen synthase kinase 3 (GSK)-3β/β-catenin 
signaling pathway, which can induce EMT to 
promote cancer cells metastasis [106]. 
MiRNA- 3188 can regulate the proliferation and 
apoptosis of HNC cells by directly targeting 
B-cell lymphoma 2 (BCL2) in vitro and in vivo 
[107]. Exosomal transfer was also shown from 
tumor cells to fibroblasts. One example is the 
exosome-mediated delivery of miRNA-9 to nor-
mal breast fibroblasts. Tumor-secreted miRNA-9 
can be transferred via exosomes to recipient nor-
mal fibroblasts and this uptake results in enhanced 
cell motility. Moreover, this miRNA is also 
secreted by fibroblasts and in turn able to alter 
tumor cell behavior by modulating the expression 
of its direct target E-cadherin [108].

Finally, emerging evidence has suggested that 
deregulated miRNAs play a crucial role in chang-
ing the metabolism in CAFs and their surround-
ing cancer cells. A first study investigating the 
role of miRNA-186 during CAF formation came 
to the conclusion that, besides its implication in 
cell cycle progression, the downregulation of this 
miRNA led to an increased expression of its 
direct target glucose transporter (Glut) 1, which 
is responsible for glucose uptake and lactate pro-
duction in cells [109]. Another study claiming 
that CAFs provide metabolites for tumor growth 
and undergo metabolic reprogramming to sup-
port glycolysis came from Zhang et al. [110]. By 
investigating the TGF-ß1 or PDGF-induced 
switch of these cells from oxidative 
 phosphorylation to aerobic glycolysis, they iden-
tified miRNA- 424 as being responsible for the 
downregulation of isocitrate dehydrogenase 
(IDH) 3α. Thus, the downregulation of IDH3α 
results in hypoxia- inducible factor prolyl hydrox-
ylase (PHD) 2 inhibition and HIF-1α protein sta-
bilization, which in turn promotes glycolysis by 
increasing the uptake of glucose [110]. 

Representative miRNAs involved in the transfor-
mation and activation of CAFs, known to be key 
regulators of cancer cells, are demonstrated in 
Fig. 1.2.

1.4  Role of miRNAs on Pericyte 
Function in the TME

Vascularization is a key process in the pathophys-
iology of cancer and strongly mediated by vari-
ous components of the TME.  Vasculature 
development and maintenance are based on non- 
transformed cell, essentially endothelial cells and 
pericytes. Both cell types represent the major cel-
lular components of tumor blood vessels within 
the TME, and angiogenesis during tumor devel-
opment is inseparably connected to the function 
of these cells. Pericytes are specialized mesen-
chymal cells present at intervals along the wall of 
capillaries in juxtaposition to endothelial cells, 
where they share and co-produce a basement 
membrane with them [111–113]. This close 
proximity enables pericytes to directly stimulate 
endothelial cell proliferation by the secretion of 
growth factors and to modulate the surrounding 
ECM to guide endothelial cell migration [114, 
115]. In consequence, several soluble mediators 
and surface receptors are found to facilitate 
remodeling through this endothelial–pericyte 
interaction. Among them, TGF-β, platelet- 
derived growth factor (PDGF-B), platelet-derived 
growth factor receptor (PDGFR)-β, angiopoietin 
1, angiopoietin 2, angiopoietin receptor-2, and 
VEGF are the best-studied factors [111]. 
Moreover, pericellular proteases, for example, 
membrane-type (MT-) MMPs, serine proteases, 
cysteine cathepsins, and membrane-bound ami-
nopeptidases, play an important role to support 
neovascularization by activating or modifying 
angiogenetic growth factors, and by degrading 
the endothelial and interstitial matrix [116]. 
Additionally, cancer stem cells derived from 
solid tumors can give rise to vascular endothelial 
cells and were found to function as pericyte pro-
genitors activated through EMT-promoting tran-
scription factors like Twist, Snail, and Zinc finger 
E-box-binding homeobox (Zeb), activating Wnt, 
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NOTCH, TGF-β and nuclear factor-kappa B 
(NF-κB) pathways, or hypoxia [112, 117].

First reports of a pericyte-specific expression 
of miRNAs came from a study by Larson et al. 
[118]. Here, the authors identified miRNA-145 as 
being selectively expressed in microvessel peri-
cytes, and validated the E26 transformation- 
specific (ETS) transcription factor Friend 
leukemia virus integration 1 (Fli1) as a direct tar-
get for this miRNA.  Moreover, the expression 
was correlated with increased migration of 
microvascular cells in response to growth factors 
[118]. Interesting results for a potential role of 
miRNAs expressed by pericytes in the TME 
under hypoxia came from experiments on cul-
tured primary central nervous system pericytes. 
After exposure to hypoxic stress, several miR-

NAs such as miRNA-322, miRNA-345, miRNA- 
345- 5p, miRNA-145, miRNA-150, miRNA-140, 
miRNA-126, miRNA-376-3p, and miRNA-222 
were induced by this treatment, suggesting a sim-
ilar expression pattern of TME-associated peri-
cytes under this condition [119]. Among those 
investigated miRNAs, miRNA-345-5p showed 
the most prominent increased expression, leading 
to the possible regulation of cell cycle progres-
sion through targeting cyclin-dependent kinase 
inhibitor 1 (CKI1) or the downregulation of an 
anti-apoptotic protein target BcL12-associated 
athanogene 3 (BAG3), a protein involved in the 
suppression of cancer cell proliferation and inva-
siveness in  vitro [120, 121]. Similarly, pericyte 
expression of Let-7d in response to low oxygen 
conditions was observed during cell differentia-

Fig. 1.2 MiRNAs involved in the transformation and 
activation of CAFs. Tumor-promoting CAFs and miRNAs 
are key regulators of cancer cells through the regulation of 

cancer-promoting events, transformation of normal fibro-
blast into CAFs, and a direct crosstalk through exosomal 
transfer
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tion, leading to angiogenesis [122]. In a more 
comprehensive approach, a systematic study 
investigated the effect of hypoxia on the expres-
sion of pericyte-derived miRNAs and identified 
miRNA-532-5p to be one of the most differen-
tially modulated among 379 investigated miR-
NAs. Further investigations revealed the leucine 
zipper transcription BTB domain and CNC 
homolog 1 (BACH1) as a direct target, leading to 
transcriptional regulation of angiopoietin-1 pro-
moter activity and protein expression, as well as 
enhanced microvascular maturation [123].

Emerging lines of evidence for extracellular 
vesicle-mediated miRNA exchange between 
endothelial cells and pericytes came from a study 
revealing that inflammatory signals are exchanged 
between these cell populations, leading to 
increased VEGF-B expression at both the tran-
scriptional and protein levels [124]. Combined 
investigations on differentially expressed mRNA 
profiles between samples from glioblastoma 
microvasculature and glioblastoma tumor cells 
and corresponding miRNA analysis identified 
various miRNAs targeting PDGFRB and EGFR 
during microvascular proliferation [125]. 
Specifically, miRNA-193b-3p, miRNA-518b, 
miRNA-520f-3p, and miRNA-506-5p targeting 
PDGFRB were downregulated in microvascular 
proliferation, whereas increased expression of 
miRNA-133b, miRNA-30b-3p, miRNA-145-5p, 
and miRNA-146a-5p targeting EGFR was 
observed [125].

1.5  MiRNAs as Modulators 
Between Infiltrated Immune 
Cells and Tumor Cells

1.5.1  Cluster of Differentiation 
(CD)4+, CD8+, and T-reg

As mentioned initially, different types of infil-
trated immune cells are pivotal components of 
the heterogeneous cell population constituting 
the TME.  Depending on the tumor type, these 
types of cells can be found in variable propor-
tions and represent different phenotypes with 
either pro- or anti-inflammatory properties [9]. 

Among them, regulatory T-regs are known to be 
a subset of immunosuppressive infiltrated lym-
phocytes involved in the immune escape. 
Together with TAMs, they produce a favorable 
environment for cancer cells. On the other hand, 
T-helper cells (Th), together with CD8+ T cells, 
NK and DCs, are crucial for tumor suppression 
[126]. Th cells can be further phenotypically 
characterized into Th1, Th2, and other Th sub-
populations based on distinct profiles of cyto-
kines, transcription factor, and homing receptor 
expression [127]. Among them, Th1 cells are the 
main CD4+ T-cell population involved in the 
response against tumors. In contrast to them, 
T-regs avoid autoimmune reactions and stop the 
effector response against exogenous antigens if 
required [127].

First hints for miRNAs and their biogenesis 
as regulators in the regulation of T-cell func-
tions came from Dicer-deficient CD4+ T cells. 
Here, the authors conclusively demonstrate that 
Dicer regulates diverse aspects of T-cell biol-
ogy, including basic cellular processes such as 
proliferation and survival, as well as cell lin-
eage decisions and cytokine production during 
Th differentiation [128]. Another study found 
that the loss of Drosha is responsible for spon-
taneous T-cell activation, inflammatory disease, 
and premature lethality. Moreover, both Drosha 
and Dicer were shown to be critical for the 
induction of forkhead box P3 (FOXP3) and 
related functions of the T-reg lineage, since the 
transcription factor FOXP3 is essential for the 
differentiation and function of regulatory 
T-regs. Additionally, the transcription factor 
GATA-3 is induced in T-reg cells under inflam-
matory conditions and stabilizes FOXP3 to 
avoid the differentiation of T-reg cells into 
inflammatory-like T cells [129]. Another study 
found that the GATA-binding protein (GATA) 
3-inducible miRNA-125a-5p can reverse the 
suppressive effect of T-regs by targeting IL-6R 
and STAT3, as direct inducers of Foxp3 [130]. 
Similarly, Yang et al. found that T-reg cell acti-
vation after IL-6 stimulation is additionally 
controlled by miRNA-17 through its direct tar-
get eosinophilia (Eos), a pivotal co- regulator of 
FOXP3 [131].
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Other reports indicated that expression of 
miRNA-155 and miRNA-146 is induced by pro- 
inflammatory stimuli such as IL-1, TNF-α, and 
Toll-like receptors (TLRs) [132]. Moreover, 
interferon-γ receptor α-chain (IFN- γ Rα) was 
discovered as a second miRNA-155 target in T 
cells, suggesting that miRNA-155 contributes to 
Th1 differentiation in CD4+ T cells by inhibiting 
IFN- γ signaling [133]. Similarly, it was shown 
that besides miRNA-155, also miRNA-147, 
miRNA-146a, and miRNA-132 can be activated 
by paclitaxel treatment, leading to the expression 
of the Th1-specific cytokines IFN- γ and IL-12 
[134]. Interestingly, another study conclusively 
demonstrated that miRNA-146a, as one of the 
miRNAs prevalently expressed in T-reg cells, is 
critical for their suppressor function due to aug-
mented expression and activation of STAT1, a 
direct target of this miRNA [135]. Moreover, it 
became obvious that the TME induces a down-
regulation of miRNA-17-92 cluster expressing T 
cells, thereby preferentially diminishing the per-
sistence of tumor-infiltrated Th1 cells [136]. 
Further investigations revealed that miRNA-17 
and miRNA-19b are the key players controlling 
Th1 responses by targeting PTEN as well as 
cAMP-responsive element binding protein 
(CREB) 1, and that the loss of the miRNA-17-92 
cluster in CD4+ T cells results in tumor evasion 
[137]. Using miRNA arrays, another group 
found that overexpression of miRNA-568 can 
inhibit the activation and function of both CD4+ 
T cells and T-reg cells by targeting nuclear factor 
of activated T cells (NFAT) 5, and that this pro-
hibition of T-reg-cell differentiation can inhibit 
the  suppressive effect of these cells on effector 
cells [138].

The observation that tumor-derived exosomal 
miRNAs modulate T-cell function came from 
investigations on NPC. For example, NPC cell- 
derived exosomes impaired T-cell function by 
inhibiting T-cell proliferation, Th1 differentia-
tion, and by promoting T-reg induction in vitro. 
Moreover, those exosomes increased the proin-
flammatory cytokines IL-1β, IL-6, and IL-10, but 
decreased IFNγ, IL-2, and IL-17 release from 
CD4+ cells. Further investigations identified 
miRNA-24-3p, miRNA-891a, miRNA-106a-5p, 

miRNA-20a-5p, and miRNA-1908  in the exo-
somes, which were found responsible for a down-
regulation of the MARK1 signaling pathway to 
alter cell proliferation and differentiation [139]. 
Later, more detailed mechanistic studies revealed 
FGF11 as a direct target of miRNA-24-3p, this 
being involved in tumor pathogenesis of NPC by 
mediating T-cell suppression [140]. Another 
miRNA mediating immunosuppression in the 
TME is miRNA-124, which it typically absent in 
all forms of gliomas. MiRNA-124 targets the 
STAT3 pathway and reverses the existing glioma 
cancer stem cell-mediated immunosuppression 
of T-cell proliferation and induction of Foxp3 
expressing T-regs. Moreover, under normal con-
ditions, this mRNA induces effector cell response 
through upregulation of interleukin 2, IFN-γ, and 
TNF-α [141].

T-regs in the TME are also found to be recipi-
ents for miRNA-214, delivered by cancer cell- 
secreted exosomes. Such induced T-reg cells are 
characterized by a reduced expression of PTEN 
as a direct target of miRNA-214, and secrete 
higher levels of IL-10 to promote tumor growth 
[142]. Tumor cells with decreased expression of 
miRNA-141 have been found in the specific 
tumor microenvironment that facilitates NSCLC 
progression. This lack of expression leads to an 
increased production of CXCL1 and the activa-
tion of CXCR2, which in turn recruits T-regs to 
infiltrate this TME. Since CXCR2 has been dem-
onstrated to be a potent pro-tumorigenic chemo-
kine receptor that directs recruitment of 
tumor-promoting leukocytes into tissues, the 
immune escape of tumor cells is supported under 
these conditions [143]. Finally, it was shown that 
the downregulation of miRNA-545 promotes 
T-reg infiltration into the TME of lung cancer, by 
targeting the chemokine CCL-22 responsible for 
facilitated T-reg migration and proliferation in 
lung cancer [144].

MiRNAs can also interfere with the develop-
ment of cytotoxic T-lymphocytes (CTLs) from 
activated CD8+ T cells to target the antitumor 
effect of these cells in the TME. Under normal 
conditions, these cells are characterized by the 
upregulation of lytic molecules, such as perforin 
or granzyme, to perform their response on cancer 
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cells [145]. Using a genome-wide approach to 
assess miRNA expression during CTL differen-
tiation, Trifari and colleagues identified miRNA-
 139, miRNA-342, and miRNA-150 to be involved 
in this process. They showed that miRNA-139, 
and to a lesser extent miRNA-342, regulates per-
forin, whereas miRNA-150 regulates the expres-
sion of IL-2 receptor α chain (CD 25). Moreover, 
IL-2 receptor and inflammatory signals down-
regulate Dicer expression through a posttran-
scriptional mechanism, which potentially 
involves the miRNA lethal (let)-7a-1 [146]. 
Another study investigated the expression of 
miRNA-23a in tumor-infiltrating CTLs from 
lung cancer tissue. Here, the authors found that 
tumor-derived TGF-ß directly suppresses CTL 
immune function by elevating miRNA-23a 
expression, leading to downregulation of gran-
zyme B [147]. Moreover, tumor-derived TGF-β 
was shown by Yu and colleagues to induce 
miRNA-491 expression, a negative regulator of 
CD8+ cells in the TME [148]. Representative 
illustrations of networks of miRNAs as modula-
tors of tumor infiltrating immune cells, especially 
via exosomes, are shown in Fig. 1.3.

1.5.2  TAMs

Macrophages are another type of well- 
characterized tumor-infiltrating immune cells 
involved in the regulation of TME functions. 
These myeloid cells belong to the mononuclear 
phagocytic system (MPS) together with mono-
cytes and DCs. Macrophages ingest and digest 
degraded dead cells, debris, or foreign material, 
and are known to be multifunctional antigen- 
presenting cells. Depending on the ability of 
such a stimulus to induce inflammatory responses 
or to antagonize inflammatory responses, macro-
phages are defined as macrophage type 1 (M1) 
or M2 polarized cells [149]. Interestingly, tumors 
are abundantly populated by macrophages. 
Remarkably, those macrophages during cancer- 
initiating conditions are indeed immune- 
activated, while this status is reversed during 
establishment of the tumor, where they can 
become even pro-tumoral [150]. Over time, it 

became obvious, that a specific subpopulation of 
macrophages carries a pivotal role within the 
TME.  They are part of the host antitumor 
response and called TAMs, but several studies 
have shown that many of these TAMs do not pro-
tect against the malignant tissue, but rather pro-
mote tumor initiation, progression, and 
metastasis [151]. One reason is the release of 
inflammatory cytokines leading to a chronic 
inflammatory environment which is permissive 
for tumor initiation and progression. Moreover, 
TAMs can switch from an immune-active state 
to an immune-suppressive phenotype over time 
and can polarize into both, M1 and M2, pheno-
types depending on the stage of carcinogenesis. 
Therefore, one of the hallmarks of malignancy is 
the polarization of TAMs from a pro-immune 
(M1-like) phenotype to an immune-suppressive 
(M2-like) phenotype [152]. To make things 
worse, TAMs critically contribute to the remod-
eling of the TME through the expression of vari-
ous proteases and are recruited by hypoxic 
conditions (see also Sect. 1.2) to induce the 
angiogenic switch and vascularization of the 
growing tumor [153].

An initial report that TAM-derived miRNAs 
can be players in the regulation of cancer inva-
siveness came from Yang et al. [154]. In the exo-
somes of Il-4-activated macrophages, the authors 
identified miRNA-223 as being able to increase 
invasion of breast cancer cells. In parallel, another 
study aimed to investigate the role of miRNA- 
501- 3p containing exosomes derived from TAMs 
in the progression of PDAC. While assessing the 
function of M2-like TAM recruitment in PDAC 
tissues, this work found that exosomal- transferred 
miRNA-501 via TGF-β signaling was associated 
with promotion of metastasis by targeting 
TGFBR3 [155]. Moreover, Zhong and Yi found 
that miRNA-720 downregulated in TAMs from 
breast carcinomas and M2-polarized macro-
phages and suggested this miRNA to modulate 
their function by targeting GATA3, a transcrip-
tional factor that plays an important role in M2 
macrophage polarization [156]. Furthermore, 
miRNA-19a-3p is capable of downregulating the 
M2 phenotype in M2 macrophages and has an 
important role in the upregulation of Fra-1 
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expression and induction of M2 macrophage 
polarization [157].

Similarly, various miRNA are known to mod-
ulate macrophage activation and function within 
the TME, and a vast majority of them is upregu-
lated via TLR ligands. Examples are miRNA-
 155, miRNA-125a/b, miRNA-146, miRNA-21 
and let-7b, miRNA-187, miRNA-378-3p, and 
miRNA-511-3p, among others [30, 158–162]. 
Specifically, Merline and colleagues found that 
the extracellular matrix proteoglycan decorin 
controls inflammation and tumor growth through 
programmed cell death 4 (PDCD4) and miRNA-

 21 [160]. Decorin not only acts as an exogenous 
ligand of TLR 2 and 4 to stimulate the production 
of pro-inflammatory molecules but also prevents 
the translational repression of PDCD 4 by 
decreasing the activity of TGF-β1 and the abun-
dance of oncogenic miRNA-21, a translational 
inhibitor of PDCD4 [163]. Finally, increased 
PDCD4 leads to a decreased release of the anti- 
inflammatory cytokine IL-10, rendering the cyto-
kine profile of theses TAMs more 
pro-inflammatory [160]. Other studies have 
shown that miRNA-155 regulates inflammatory 
cytokine production in TAMs via targeting 

Fig. 1.3 MiRNAs as modulators of tumor-infiltrating 
immune cells in the TME. MiRNAs expressed in different 
types of tumor-infiltrated immune and cancer cells regu-
late immune responses, leading to tumor progression or 
repression. This network is based, at least in part, on the 
communication of cancer cells with other tumor- infiltrated 

cells present in the TME. Among other mechanisms, this 
can happen via the secretion and transfer of exosomal 
miRNAs (black arrows indicate an enhancing effect; 
black arrows with bars indicate an inhibitory effect)
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CCAAT enhancer binding protein (C/EBP)-β, is 
a critical translational regulator of macrophage 
programming and activation, and promotes M1 
polarization [159, 161, 164]. Another example is 
the intronic miRNA-511-3p, encoded by the 
human mannose receptor C-type (MRC) 1 gene. 
Activation of this gene during the polarization of 
pro-tumoral TAM triggers a negative-feedback 
response initiated by miRNA-155 expression, 
with the consequence to attenuate this behavior 
and to inhibit tumor growth [162].

MiRNAs shown experimentally to transfer 
from macrophages to cancer cells are miRNA-
 223 and miRNA-142-3p [165, 166]. Zhu et  al. 
observed that hypoxic epithelial ovarian cancer 
(EOC) cells triggered macrophage recruitment 
and induced macrophages into a TAM-like phe-
notype. Moreover, in the context of hypoxic 
TME, those macrophages contribute to the malig-
nant phenotype of EOC, by secreting exosomal 
miRNA-223 to promote drug resistance via the 
PTEN/phosphatidylinositol-4, 5-bisphosphate 
3-kinase (PI3K)/AKT pathway [165]. 
Interestingly, an earlier report from Aucher and 
colleagues showed that the transfer of miRNAs- 
223 and 142-3p by direct cell contact through gap 
junctions from macrophage to HCC cells inhibits 
proliferation and tumor growth, demonstrating 
the versatile effects of those miRNAs in cancer 
development [166]. Another report concluded 
that let-7b expression is responsible for the polar-
ization of prostatic TAMs because downregula-
tion of this miRNA in these cells led to expression 
changes of inflammatory cytokines, such as 
IL-12, IL23, IL10, and TNF-α [167].

On the other hand, an enormous amount of 
work was done to understand the impact of 
tumor-derived miRNAs in the communication 
between tumor cells and macrophages. In this 
context, it became obvious that the activation of 
macrophages, such as the influence of let-7b on 
the polarization of TAMs, can be triggered sig-
nificantly by the tumor cell itself. Thus, it was 
shown that TLR4 signaling is able to trigger the 
release of microvesicles by HCC cells, which 
transfer miRNA let-7b to macrophages in the 
TME, resulting in the downregulation of IL-6 
[168]. Similarly, the delivery of let-7b in a breast 

cancer mouse model was able to reactivate TAMs 
by acting as a TLR-7 agonist and suppressing 
IL-10 production and reversed the suppressive 
tumor microenvironment to inhibit tumor growth 
[169]. Furthermore, it was demonstrated that 
tumor-secreted miRNA-29 and miRNA-21 are 
able to trigger pro-metastatic and inflammatory 
responses in macrophages through TLR-8 signal-
ing [170]. In line with these data, cancer-secreted 
miRNA-222-3p was able to induce polarization 
of macrophages into the M2 phenotype of TAMs. 
This was brought about by a direct targeting of 
suppressor of cytokine signaling (SOCS) 3, 
which in turn increased the expression and acti-
vation of STAT3 to facilitate cancer progression 
[171]. The immunosuppressive function of 
miRNA-451, together with miRNA-21, delivered 
in microvesicles from primary human glioblas-
toma (GBM) to macrophages was shown by a 
study from van der Vos and colleagues [172]. 
Here, the authors demonstrated that exposure of 
macrophages to these microvesicles decreased 
c-Myc, a transcription factor driving the expres-
sion of many genes connected to various biologi-
cal processes, like proliferation or apoptosis 
[172]. Another example is miRNA-16, since 
investigations on epigallocatechin gallate 
(EGCG)-treated murine breast cancer cells 
revealed that they upregulate miRNA-16, which 
can be transferred to TAMs via exosomes to 
inhibit TAM infiltration and M2 polarization 
[173]. Apoptotic tumor cell-derived exosomal 
miRNA-375 uptake by macrophages via the 
TGF-β receptor in the TME of breast cancer was 
shown to be required for their infiltration. Here, 
miRNA-375 directly targets tensin (TNS) 3 and 
paxilin (PXN) to enhance the migration capacity 
of macrophages [174].

Moreover, multiple cytokines expressed in the 
TME, such as IL-4, IL-6, IFN-β, or CCL2, are 
known to modulate miRNA expression and activ-
ity of macrophages via paracrine signaling [175]. 
For example, an investigation on the function of 
the miRNA-23a/27a/24-2 cluster in breast cancer 
revealed that these miRNAs are positive regula-
tors of pro-inflammatory responses induced by 
M1 stimulation in macrophages via IL-4, and a 
negative regulator of M2 polarization. Further 
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analysis showed that miRNA-23a is responsible 
for promoting M1 polarization by targeting zinc 
finger protein A20 (A20), a TNFAIP3 protein that 
negatively regulates NF-κB-dependent gene 
expression, which acts as an important negative 
regulator of immune responses. Additionally, 
miRNA-23a and miRNA-27a were identified to 
inhibit M2 polarization by targeting JAK1/
STAT6 and IRF4/PPAR-gamma [176]. Another 
study identified miRNA-195-5p to be deregu-
lated in primary tumors of colorectal cancer 
(CRC) patients. This miRNA, by targeting notch 
receptor (NOTCH) 2, is able to suppress GATA3- 
mediated IL-4 secretion in CRC cells, leading to 
the inhibition of M2-like TAM polarization 
[177]. Similarly, Huang and colleagues found 
that miRNA-146a is responsible to suppress the 
pro-inflammatory M1 macrophage switch. 
Additionally, this mRNA is able to promote M2 
macrophage polarization through targeting 
NOTCH1 and to increase the expression of poly 
(ADP-ribose) polymerase (PARP) γ, which pro-
motes M2 macrophage activation after IL-4 stim-
ulation [178]. Another miRNA involved in 
TME-associated macrophage polarization is 
miRNA-148a. In prostate cancer, long non- 
coding (lnc) RNA colon cancer-associated tran-
script 1 (CCAT1) expression was found to 
promote IL-4-stimulated macrophages polariza-
tion to M2 and tumor invasion, which was accom-
panied by the upregulation of miRNA-148a and 
translational repression of protein kinase C 
(PKC) ζ [179]. For glioblastoma, TAMs with a 
phenotype resembling M2-macrophages were 
associated with tumor progression and the 
 suppression of tumor-specific immunity [180]. In 
this regard, Taenaka and colleagues have discov-
ered an aryl hydrocarbon receptor (AHR)-
dependent transcriptional program to modulate 
TAM recruitment. Using tumor-conditioned 
media from glioblastoma cells on glioblastoma- 
infiltrating TAMs, they identified IFN-β and IL6 
to be responsible for the induction of aryl hydro-
carbon receptor (AHR) expression in these mac-
rophages. These cytokines are known activators 
of STAT1 and STAT3 signaling, increasing AHR 
expression and migration of TAMs toward a 
CCL2 gradient in  vitro. Moreover, decreased 

miRNA-29b was found to regulate AHR expres-
sion under these conditions [181]. In this context, 
another study evaluating the influence of IL-6 on 
the signaling between TAMs and CRC cells iden-
tified this cytokine to be required for TAM- 
induced EMT of CRC cells. TAMs enhance CRC 
cell migration, invasion, and metastasis by regu-
lating the Janus kinase (JAK) 2/STAT3/miRNA- 
506- 3p/FOXQ1 axis, which in turn leads to the 
production of CCL2 which promotes macro-
phage recruitment [182]. A representative illus-
tration of the network of miRNAs as modulators 
of TAMs and tumor cells, especially via exo-
somes, is shown in Fig. 1.3.

1.5.3  MDSCs

MDSCs were first characterized in tumor-bearing 
mice or in patients with cancer and represent a 
heterogeneous population of cells that share their 
myeloid origin, immature state, and ability to 
potently suppress T-cell responses [183]. These 
bone marrow-derived cells are directly involved 
in the suppression of the immune system during 
cancer development, and became the objective of 
numerous studies to explain the potential link 
between inflammation and tumor progression in 
the TME [184]. The development of MDSCs is 
driven by a complex network of signals leading 
either to accumulation of immature myeloid cells 
or to their pathological activation [185]. These 
factors are either produced by tumor cells and 
promote the expansion of MDSCs through stimu-
lation of myelopoiesis, while inhibiting their dif-
ferentiation in mature myeloid cells, or by 
activated T cells and the tumor stroma leading to 
a direct activation of MDSCs. Common chemo-
kines involved in the migration of MDSCs to 
tumors are CCL2, CCL5, CCL7, C-X-C motif 
chemokine (CXCL) 8, and CXCL12 [186, 187]. 
Factors that induce expansion and activation of 
these cells can include cytochrome c oxidase sub-
unit (COX) 2, prostaglandins, supercoiling factor 
(SCF), macrophage-colony-stimulating factor 
(M-CSF), IL-6, IL-4, IL-13, TGF-γ, IFN-γ, or 
VEGF activating several signaling pathways in 
MDSCs that involve STATs and NF-κB [188].
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A study aiming to investigate the molecular 
network regulating the accumulation and func-
tion of tumor-expanded MDSCs found that 
miRNA-494 is a key factor in regulating these 
processes by targeting PTEN and the activation 
of the AKT pathway. Moreover, TGF-β was iden-
tified to be the main tumor-derived factor respon-
sible for the upregulation of miRNA-494  in 
MDSCs [189]. Rong et al. demonstrated that the 
secretion of prostaglandin (PG) E2 can stimulate 
an expansion of MDSCs by increasing the expres-
sion of miRNA-10a. Moreover, AMP-activated 
protein kinase (AMPK) was identified as a down-
stream factor in response to miRNA-10 upregula-
tion, and those activated MDSCs were able to 
inhibit CD4+ T-cell activity [190]. Another group 
investigated the role of miRNA-6991-3p in the 
function of MDSCs and identified this miRNA as 
a suppressor during activation and expansion 
through translational repression of galectin 
(LGAL) S9, a β-galactoside-binding protein 
implicated in modulating cell–cell and cell–
matrix interactions, leading to diminished STAT3 
activation [191]. Similarly, Xu and colleagues 
found miRNA-30 expression to be elevated in 
bursa of Fabricius (B)-cell lymphoma-derived 
MDSCs and identified SOCS3 as a direct target. 
They further were able to show that miRNA-30 
facilitates tumor growth by increasing differenti-
ation and the immunosuppressive capacity of 
those cells [192]. Furthermore, it was found that 
miRNA-9 is able to promote the differentiation 
of MDSCs by targeting the myeloid differentia-
tion protein runt-related transcription factor 
(RUNX) 1 [193]. A negative regulation on the 
differentiation and activity of TME-associated 
MDSCs was reported by Fontana et  al., who 
investigated the miRNA-17-5p-92 cluster. They 
found that, during growth and differentiation of 
monocytic precursors, RUNX1 gets upregulated 
and activates the expression of the CSFR, this 
being due to the 3´-UTR of RUNX1 being a 
direct target for miRNAs 17-5p, 20a, and 106a 
[194]. As mentioned above, increased concentra-
tions of chemokines in the local microenviron-
ment may promote the infiltration of MDSCs into 
the tumors, and the infiltrated MDSCs them-
selves are an important source of these chemo-

kines. In this context, miRNA-155 was identified 
as a regulator of CXCL1, CXCL2, and CXCL8 
expression in MDSCs, contributing to the 
enhanced recruitment of other MDSCs into the 
TME by targeting HIF-1α as a potent inducer of 
these chemokine families [195].

A direct influence of tumor cells on the 
development of myeloid precursor cells into 
MDSCs was shown by a study investigating the 
interplay between Twist and miRNA-34a during 
this process. The authors found that tumor-
derived IL-10 and TGF-β are responsible for the 
differentiation of MDSCs and conclusively 
demonstrated that reduced miRNA-34a expres-
sion in the tumor cells is responsible for this 
effect [196]. Conclusive data on gastric-cancer 
secreted exosomes which are able to deliver 
miRNA-107 to host MDSCs came from a study 
by Ren et al. [197]. In this work, they demon-
strated that, after miRNA-107, the uptake of the 
expansion and activity of MDSCs are promoted 
by the miRNA targeting Dicer1 and 
PTEN. Moreover, miRNA- 34 has been described 
to act as a critical negative regulator of MDSC 
expansion, this being brought about by the 
release of membrane-bound extracellular vesi-
cles from tumor cells [198]. MiRNA- 34a 
expression was also found to alter the expres-
sion of the N-Myc proto-oncogene, inhibiting 
MDSC apoptosis [199]. MiRNA also seems to 
be involved in the apoptosis of MDSCs. For 
example, purinergic receptor p2x, ligand-gated 
ion channel (p2rx) 7, T-cell-restricted intracel-
lular antigen-1 (Tia1), and pleckstrin homology 
domain-containing protein, family F, member 
(plekhf) 1 were predicted as potential targets of 
miRNA-34a [200]. This is an interesting obser-
vation since it was shown that adenosine tri- 
phosphate (ATP) release into the TME by cancer 
cells or by infiltrating inflammatory cells in 
response to cell damage, hypoxia, mechanical 
stress, or stimulation by cytokines leads to the 
activation of P2X receptors [201]. Those extra-
cellular ATP-gated ion channels trigger the 
inflammatory cascade and their downregulation 
leads to reduced immune and inflammatory 
responses of tumor-infiltrated immune cells 
[202]. Another example for the notion that the 
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specific conditions of the TME directly affect 
MDSCs came from a study which investigated 
the hypoxia-inducible expression of miRNA-
10a and miRNA-21 [203]. Here, an upregula-
tion of these miRNAs led to an increase of 
MDSC expansion and activation by targeting 
retinoic acid-related orphan receptor α (RORA) 
and PTEN.  RORA differentially regulates 
inflammatory cytokine production in both innate 
and adaptive immune responses, for example, as 
a negative regulator of IFN-γ [204].

The important regulatory roles of miRNAs 
in tumor MDSCs becomes obvious also in sev-
eral studies focusing on their direct effects on 
signaling pathways crucial for the regulation of 
these in TME-associated cells. In this context, 
it was found that miRNA-200c expressed in 
myeloid cells can regulate the suppressive func-
tion and differentiation of MDSCs by targeting 
PTEN and ZFPM2 zinc finger protein (FOG2), 
and that this miRNA expression can be upregu-
lated by the tumor-associated factor granulo-
cyte-macrophage (GM)-CSF [205]. After 
induction of miRNA- 200c in TME-associated 
MDSCs, the downregulation of FOG2 and 
PTEN promotes the activation of PI3K/AKT 
and mediates the phosphorylation of STAT3. 
Another interesting observation is the down-
regulation of miRNA-142-3p in tumor- 
associated MDSCs during tumor-induced 
myelopoesis [206]. In order to define the 
molecular mechanisms, by which miRNA-
142-3p controls this differentiation, the gene 
for the transmembrane chain common to all the 
receptors for the IL-6 cytokine family was 
identified as a direct target regulated by this 
miRNA.  Beside this alteration of IL-6 signal-
ing, miRNA-142-3p directly targets gp130 and 
modulates downstream STAT3 signaling medi-
ated by C7/EBP-β [206]. Moreover, miRNA-
155 and miRNA-21 have been demonstrated to 
have a synergistic effect on STAT3 activity and 
MDSC expansion by targeting Src homology 
2-containing inositol-5′-phosphatase 1 (SHIP) 
1 and PTEN [207]. A representative illustration 
of the network of miRNAs as modulators of 
MDSCs and tumor cells, inclusively via exo-
somes, is shown in Fig. 1.3.

1.6  Tumor-Infiltrating Dendritic 
Cells (TIDCs) and NK Cells

TIDCs are important components in the TME 
that orchestrate tumor immunosuppression and 
mediate cancer development. They express a 
broad range of TLRs and cytokines and process 
antigen material for presentation on the cell sur-
face through MHC II to CD4+ and CD8+ T cells 
[208]. Besides that, TIDCs can also interact with 
NK cells and B cells to bridge the innate and the 
adaptive immune system [209, 210]. NK cells 
comprise up to 15% of all circulating lympho-
cytes and are capable of infiltrating most cancer 
tissues following activation by cytokines. Similar 
to other tumor-infiltrating immune cells, they are 
susceptible for IL-12, IL-15, IL-2 or IFN-α, and 
β [211]. NK cells can rapidly respond to the pres-
ence of tumor cells and initiate an antitumor 
immune response by producing effector mole-
cules, such as IFN-gamma, perforin and gran-
zyme. These effector molecules synergize to 
mediate apoptosis of target cells through a mech-
anism where granzymes diffuse through perforin 
pores on the plasma membrane of the target cell 
[212]. Even though a significant correlation 
between high intratumoral levels of NK cells or 
DCs and increased patient survival has been 
shown in several types of cancer, the specific 
conditions of the TME and tumor-derived factors 
can activate different mechanisms to impair this 
anti-tumor immunity [213–215].

One characteristic of tumor-derived soluble 
factors in the TME is their role to disrupt DC dif-
ferentiation and their ability to activate immune 
responses. These factors, like cytokines and 
growth factors, interfere with the regular function 
of DCs by activating several intracellular path-
ways, such as MAPK, JAK/STAT, and NF-κB 
signaling [216]. In this context, Liang and col-
leagues found that miRNA-22 inhibits the trans-
lation of p38 through binding to the 3´-UTR of its 
mRNA [217]. As one of the most important 
members of the MAPK family, protein 38 kinase 
(p38) signaling impacts on tumorigenesis by acti-
vating inflammation-associated cytokines, such 
as IL-6. In consequence, the authors have shown 
that miRNA-22 regulates the expression of IL-6 
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by targeting MAPK signaling via p38 [217]. 
MiRNA-155, which was shown to play multiple 
roles for tumor-infiltrating immune cells of the 
TME, can also regulate TIDCs by mediating the 
silencing of proto-oncogene c-Fos expression, 
leading to an increase of IFN-β and IL-12 cyto-
kine production [218].

Data demonstrating that tumor-derived miR-
NAs can regulate the process of cross- presentation 
between DCs and effector T cells came from 
investigations about miRNA-203. In humans, 
miRNA-203 is frequently overexpressed in solid 
tumors and often found as cargo in tumor-derived 
exosomes [219]. Moreover, exosomal miRNA-
 203 acts as a regulator to control the expression 
of TLR4 and the production of cytokines such as 
TNF-α and IL-12, contributing to the dysfunction 
of DCs [219]. Similarly, it was shown that 
miRNA-212-3p, via exosomal transfer, is able to 
target regulatory factor X-associated protein 
(RFXAP), the key transcription factor for the 
MHC II gene expression in DCs [220]. An inde-
pendent study to assess the effects of targeted 
delivery of let-7b to TIDCs came to the conclu-
sion that this miRNA is able to restore TIDC 
immunological function, possibly by modulating 
the content of IL-10, IL-12p70, MMP-9, and 
VEGF within the TME [169].

A general role of miRNAs in the regulation of 
NK cell activation, survival, and function has 
been shown using conditional deletion of Dicer 
or DGCR8, since the induced ablation of the 
miRNA biogenesis pathway increased apoptosis 
of NK cells [221]. The link between microRNAs 
and NK cell development came from a study 
showing that miRNA-181 directly regulates the 
developmental process by regulating NOTCH 
signaling [222]. Next-generation sequencing of 
NK-cell transcriptomes revealed that miRNA-
 223 specifically targets the 3´-UTR of granzyme 
B [223]. Similarly, miRNA-27a-5p, miRNA-30e, 
miRNA-150, and miRNA-378 were found to 
regulate perforin and/or granzyme B to impair 
the antitumor potential of NK cells in the TME 
[224–226]. The most intensively investigated 
miRNA in NK cells within the TME is miRNA-
 155. This miRNA is required for the normal 
function of NK cells and expressed during activa-

tion of these cells [227]. Thus, it was shown that 
miRNA-155 plays a central role in NK cell IFN-γ 
production, by regulating the expression of 
SHIP1 as a regulator of the PIK3 pathway [225, 
228–230]. Moreover, Donatelli and colleagues 
observed that TGF-ß treated NK cells exhibit 
reduced tumor cytolysis and abrogated perforein 
polarization at the interface between antigen- 
presenting cells and NK cells. Further investiga-
tions revealed that TGF-β-induced miRNA-183 
expression leads to depleted DNAX-activating 
protein 12 (DAP12), which is critical for surface 
NK receptor stabilization and downstream signal 
transduction [231]. Also, tumor-derived mac-
rovesicles are key mediators between cancer cells 
and NK cells in the TME. Moreover, this process 
can explain how hypoxic stress impairs the anti-
tumor immune response by the transfer of sup-
pressive signals to immune cells, because miRNA 
profiling revealed the presence of high levels of 
miRNA-23a in hypoxic tumor-derived macroves-
icles. Finally, this miRNA has also been shown to 
directly targeting lysosomal-associated mem-
brane protein (LAMP) 1 after uptake into NK 
cells [232].

Additionally, NK cells are characterized by 
several inhibitory and activating receptors. For 
example, NK group 2 member (NKG2) D is 
found on NK cells to trigger cytotoxicity against 
tumor cells, whereas NKG2A is expressed at the 
cell surface as a heterodimer with CD94. Binding 
to its cognate ligand inhibits NK-cell effector 
functions [233, 234]. A study focused on the 
potential interaction between miRNAs and the 
3′-UTR of the NKG2D gene, coding for killer 
cell lectin-like receptor K (Klrk) 1, identified 
miRNA-1245 as a negative regulator of Klrk 1 in 
NK cells. Furthermore, it was found that miRNA-
 1245 expression was inducible by TGF-ß1 by 
post-transcriptional processing in NK cells. More 
interestingly, IL-15, which is a potent inducer of 
NKG2D expression, decreased the expression of 
mature miRNA-1245 significantly [235]. Another 
group characterized the impact of miRNA-182 
on NKG2A and NKG2D to investigate the role of 
miRNAs in the activation and cytotoxic function 
of NK cells from HCC patients. They found a 
positive correlation between miRNA-182 and the 
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expression of both receptors. Since they also 
observed an increased production of perforin-1 
and increased cytotoxicity, the impact of miRNA-
 182 on NK cells still remained unexplored [236]. 
In this context, Ma and colleagues found that 
miRNA-30c could promote the cytotoxicity of 
NK cells by upregulating the expression of 
NKG2D and Fas cell surface receptor (Fas) 
ligand, a member of the tumor necrosis factor 
family which is expressed on the membrane of 
activated NK cells, being involved in the apopto-
sis of target cells. Moreover, LAMP 1, a marker 
for NK cell cytotoxicity, was upregulated via 
miRNA-30a [237]. A representative illustration 
of the network of miRNAs as modulators of 
TIDCs, NK cells, and tumor cells, inclusive of 
possible exosomal transfer, is shown in Fig. 1.3.

1.7  Immune Checkpoint – 
A Therapeutic Approach 
Using miRNAs as Targets or 
Tools in the Future

Surgery, conventional chemotherapies, and radia-
tion therapy are still cornerstones of today’s can-
cer treatment. However, to achieve a significant 
further improvement for patients, personalized 
strategies preventing progression and metastasis 
are indispensable. As discussed above, the TME 
is critical in both the initiation and progression of 
tumor disease. An identification of therapeutic 
targets in the TME context could be useful to 
develop alternative approaches for treatment. 
However, the complex interplay of different 
TME-associated cells and their specific  molecular 
and cellular mechanisms render it highly likely 
that manipulating one TME component will lead 
to ambiguous roles in the prevention of tumori-
genesis, progression, and metastasis.

MiRNAs have gained rapid diagnostic and 
therapeutic value by providing unique expression 
profiles in metastasizing tumor cells, tumor- 
infiltrating and associated cells [73, 238]. The 
intervention of miRNAs at nearly all biological 
processes and cancer-related pathways observed 
within the TME promotes them as attractive 
potential biomarkers and therapeutic targets or 

agents [239]. Since miRNAs are proposed to act 
either as tumor-suppressors or as oncogenic miR-
NAs, some basic strategies for such therapeutic 
approaches were developed in the past, including 
miRNA mimics, anti-miRNA oligonucleotides, 
or miRNA sponges [240]. MiRNA mimic tech-
nologies are based on the gene-silencing effect of 
small ncRNAs acting like mature endogenous 
miRNAs. Antagonistic oligonucleotides, also 
referred to as antagomiRNAs or anti-miRNAs, 
affect miRNA-related pathways by binding and 
blocking oncogenic miRNAs. These synthetic 
small RNA molecules have a complementary 
sequence to the endogenously expressed mature 
miRNAs and inhibit their function by direct bind-
ing [241]. Analog to naturally expressed cir-
RNAs, miRNA sponges are used to scavenge 
endogenous miRNA expression. These miRNA 
sponges are synthetic agonists that contain four 
to ten seed sequences as binding sites, separated 
by a few nucleotides each. These constructs act 
as baits by attracting endogenous miRNAs, pre-
venting their interaction with their native targets 
[242]. To achieve their impact, either as therapeu-
tic agents or as targets of therapeutic inhibition, 
different types of vehicles exist for their delivery 
to the targeted cells, including liposomes, poly-
mers, nanoparticles, and viral approaches, 
besides others [243–245].

One of the most intensively investigated 
potential approaches to therapeutically influence 
the TME in the future is the strategy to include 
miRNAs implicated in the modulation of immune 
checkpoint molecules [246]. Activation or repres-
sion of T-cell functions is tightly controlled by a 
group of specific immune checkpoint molecules, 
and intensive investigations revealed the impact 
of these molecules as important regulators of a 
patient’s immune response in different diseases, 
including cancer. Therefore, among the different 
types of cancer immunotherapies, immune 
checkpoint blockage using several specific anti-
bodies soon became the “state of the art,” and the 
early success in clinical trials led to the approval 
for patient treatment. However, still numerous 
cancer patients did not respond and remained 
uncured by these treatments, leading to the neces-
sity to investigate supplemental or alternative 
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concepts. For example, ncRNA regulation of 
immune checkpoints has been studied in cancer 
for new therapeutic solutions [247].

Under normal physiological conditions, the 
prevention of autoimmunity is regulated by a bal-
ance between co-stimulatory and inhibitory sig-
nals or immune checkpoints. Consequently, the 
immune system can normally distinguish trans-
formed cells from their normal counterparts by a 
diverse set of antigens. Interestingly, co- 
stimulatory and inhibitory receptors and ligands 
that regulate T-cell activation are not necessarily 
expressed in cancer cells compared to normal tis-
sues. In contrast to that, inhibitory ligands and 
receptors that regulate T-cell effector functions in 
tissues are commonly overexpressed on tumor 
cells or TME-associated cells [248]. Most promi-
nent immune checkpoint molecules are cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA 4), 
PD-1, and its ligand PD-L1 [249].

Among them, CTLA-4 was the first check-
point molecule discovered on the surface of T 
cells. CTLA-4 prohibits early T-cell activation by 
counteracting CD28 to prevent TCR signal trans-
duction by binding. PD-1 can be found on several 
immune cells, including DCs, monocytes, or T- 
and B cells, upon stimulation [250]. As a member 
of the B7-CD28 family, it can bind to its ligands 
PD-L1 and PD-L2, leading to downregulation of 
pro-inflammatory cytokines and anti-apoptotic 
signals, as well as reduced T-cell receptor signal-
ing. Both ligands are expressed on antigen- 
presenting cells, like DCs. The mediation of such 
inhibitory signals through PD-1 is the cause for 
T-cell exhaustion, a condition in which T cells 
lose their effector function(s) and upregulate 
 various inhibitory receptors. Furthermore, such T 
cells lose their ability to reach a state of naïve T 
cells termed hyporesponsiveness or quiescence, 
which is characterized by small cell size, low 
proliferative rate, and low basal metabolism 
[251]. PD-L1 itself is stimulated in the TME via 
inflammatory cell-secreted IFN-gamma, and 
interferes with immune tolerance in cancer by 
changing the proliferation of CD8+ cytotoxic T 
cells, the inhibition of cytokine production, and 
proliferation of tumor infiltrating T cells. TIM3 is 
also expressed by different types of immune 

cells, including DCs, NK cells, T cells, and mac-
rophages. It inhibits T helper responses simulta-
neously by blocking TIM3 and PD-1-enhanced 
antitumor immunity [247].

Majority of studies investigating the interac-
tion of miRNAs with immune checkpoint mole-
cules to evaluate their potential as novel 
immunotherapeutic agents have been done at 
PD-L1 expression in solid tumors. Chen et  al. 
found that miRNA-200 plays a pivotal role in the 
immunosuppression and metastasis of NSCLC 
by targeting PD-L1 [252]. Using immunocompe-
tent syngeneic mice, they were able to show that 
expression of PD-l on tumor cells is targeted by 
miRNA-200 under the participation of transcrip-
tion factor ZEB1 and that decreased PD-L1 
expression directly correlates with the amount of 
tumor-infiltrated CD8+ T cells. Therefore, they 
concluded that exogenous overexpression of 
miRNA-200 in tumor cells could decrease PD-L1 
expression, which in turn supports intratumoral 
CD8+ T-cell immune suppression in the TME of 
NSCLC [252]. Another potential therapeutic 
approach for NSCLC has been suggested by a 
study investigating the pivotal role of miRNA-
 197  in platinum-based chemotherapy resistance 
[253]. Using miRNA array technology, this 
miRNA was identified as being upregulated in a 
cohort study comparing primary NSCLC tissue 
with adjacent normal tissue. In a lung cancer 
xenograft mouse model, miRNA-197 was shown 
to inhibit cancer progression by targeting 
CKS1B. Since CKS1B is directly involved in the 
regulation of PD-L1 expression on tumor cells, 
exogenous overexpression of miRNA-197 could 
not only reverse the effect of platinum-based che-
motherapy resistance but also support intratu-
moral immune suppression in the TME [253]. 
Moreover, PD-L1 could be regulated by the 
translational inhibition of Cbl proto-oncogene B 
(Cbl-b) and c-Cbl by miRNA-181 and miRNA-
 194 [254]. In consequence, STATT3/AKT/ERK 
signaling responsible for PD-L1 expression was 
inhibited though this axis. Since patients with a 
low PD-L1 expression showed a significantly 
better survival in this study, also these miRNAs 
can be considered as potential therapeutic agents 
for NSCLC co-treatment in the future [254]. 
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Shaohua and colleagues were interested to antag-
onize the upregulation of PD-L1 expression in 
ovarian cancer and to induce cancer cell-specific 
T-cell activity [255]. They found that increased 
miRNA-424 expression is necessary in ovarian 
cancer cells to suppress its direct target PD-L1, 
thereby increasing cancer cell response to 
platinum- based chemotherapy. Furthermore, dis-
ruption of the PD-L1/PD-1 pathway through this 
axis led to the conclusion that this approach 
might also improve the therapeutic efficacy of 
chemoresistant tumors associated with PD-L1 
overexpression [255]. Other examples of miR-
NAs that have been found to directly target the 
3’UTR of PD-L1 in tumor cells of the TME are 
miRNAs-138-5p and miRNA-148a-3p in CRC, 
miRNA-17-5p in melanomas, miRNA-142-5p in 
pancreatic cancer, miRNA-940 in gastric cancer, 
miRNA-3609 in breast cancer, or miRNA-34 for 
malignant gliomas [256–262].

Despite its well-documented role for antibody- 
based immune checkpoint therapy, the detailed 
roles of miRNAs in the regulation PD-1 to influ-
ence the immune status are, compared to PD-L1, 
still poorly investigated. One study revealed that 
miRNA-374b is directly targeting the 3´-UTR of 
PD-1 in autologous cytokine-induced killer cells 
(CIK) [263]. These cells, also called T cells with 
NK phenotype, are activated and expanded 
peripheral blood mononuclear cells (PBMCs) 
isolated from patients after priming with CD3 
antibodies and a set of cytokines [264]. Using 
this approach, the authors demonstrated increased 
IFN-gamma secretion and enhanced adoptive 
immunotherapy efficacy for liver cancer as a 
direct consequence of PD-1 downregulation in 
these cells [263]. The potential role of miRNA-
 28 as a therapeutic target in cancer immunother-
apy was evaluated by a study investigating the 
effect of miRNAs on PD-1  in melanomas and 
T-cell exhaustion [265]. Here, the authors con-
clusively demonstrated that miRNA-28 can con-
vert the exhaustive phenotype of T cells by 
directly targeting the inhibitory receptor PD-1 on 
T cells. Moreover, this repression of PD-1 recep-
tor expression recovered the ability of T cells to 
secrete cytokines, like IL-2 and TNF-α [265]. In 
this context, miRNA-149-3p was found to be 

responsible to inhibit CD8+ T-cell exhaustion in 
breast cancer. Interestingly, miRNA-149-3p 
alone does not target PD-1 exclusively, but also 
the other immune checkpoint receptors TIM-3 
and BTLA.  Similar to the aforementioned 
miRNA-28, downregulation of PD-1 promotes 
CD8+ T-cell-mediated immune response and 
reverses T-cell exhaustion by enhancing the level 
of T-cell cytokines associated with and mediating 
T-cell activation, enhancing T-cell proliferation, 
and reducing T-cell apoptosis and downregulat-
ing FOXP1 [266]. Using a syngeneic subcutane-
ous glioma mouse model, another group 
investigated the hypothesis that miRNA-138 
could regulate T-regs and that administration 
in  vivo could exert potent antitumor immune 
effects [267]. After demonstrating the direct tar-
geting of the 3′- UTR of PD-1 by miRNA-138 in 
T-reg, CD4+, and CD8+ T cells, they concluded 
that the observed therapeutic effect on tumor 
growth is immune-mediated. This was supported 
by the observation that intravenous administra-
tion of miRNA-138 in a the syngeneic subcutane-
ous glioma mouse model demonstrated significant 
reduction of CTLA-4, PD-1 and FOXP3 on CD4+ 
T cells in the TME of this animals. This provides 
a rationale for the development of miRNA-138- 
based treatments, which target multiple mecha-
nisms of tumor-mediated immune suppression, 
which is further supported by the knowledge that 
despite effective CTLA-4 blockade, PD-1 
becomes upregulated as a compensatory mecha-
nism [267].

The potential of miRNAs to regulate the 
immune checkpoint is not limited to their direct 
influence to mediate PD-1 and PD-L1 expres-
sion. So far, several miRNAs have been described 
that potentially regulate their expression via tar-
geting molecules, involved in signaling pathways 
regulating their expression, which needs to be 
taken into account to illustrate the multilayer 
influence of miRNA regulation in checkpoint 
blockage [249].

One example is IFN-γ-induced pathway. This 
interferon is primarily produced by cells of the 
immune system and interacts as a key immuno-
regulatory protein with nearly every cell type 
within the TME by inducing inflammatory innate 
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response and subsequent immune response 
[268]. IFN-γ signaling is mediated via a cascade 
of tyrosine phosphorylation events after binding 
to IFN-gamma receptor (IFN-γR). This binding 
activates the canonical JAK/STAT signaling 
pathway, leading to an activation of receptor- 
associated JAK1 and JAK2 protein-tyrosine 
kinases, and subsequent tyrosine phosphoryla-
tion and activation of primarily STAT1. After 
translocation to the nucleus, STAT1 binds to 
conserved IFN-γ activation site (GAS) DNA ele-
ments and directly activates the transcription of 
interferon-stimulated genes (ISGs), such as che-
mokines or antigen-presenting molecules [269]. 
As expected, this signaling cascade is also tar-
geted by translational regulation of key compo-
nents and several miRNAs are found to be 
involved in this mechanism. For example, a 
study aimed to investigate the impact of miRNA-
24 and miRNA-181 on IFN-gamma secretion 
and came to the conclusion that these two miR-
NAs negatively regulate the expression of this 
interferon by directly binding to target sites 
within its 3´-UTR [270]. Another miRNA target-
ing the interferon pathway was described by a 
study aiming to identify novel interaction regu-
latory networks based on the crosstalk between 
miRNAs and the JAK/STAT axis in melanoma 
[271]. Using a hematopoietic chimera model, 
this study found an increased expression of 
miRNA-146a in T cells of melanoma-bearing 
mice. Further investigations indicated that 
miRNA-146a is produced in the TME to prevent 
activation of the STAT1/IFN-γ axis. Furthermore, 
it became obvious that miRNA-146a plays a 
central role within the melanoma microenviron-
ment, by affecting  melanoma migration, prolif-
eration, cell-cycle activity, and basal metabolic 
rate through the direct control of IFN γ expres-
sion. However, since it was demonstrated that 
reduced IFN γ expression leads to increased 
PD-L1 levels on the melanoma cells, this benefi-
cial effect of an antagomiRNA- based treatment 
still needs to be supplemented with an immune 
checkpoint blockage using a specific anti-PD-L1 
antibody [271]. These data are supplemented by 
the observation that STAT1 is a direct target of 
miRNA-15 and miRNA-223 [272].

1.8  Concluding Remarks

Cancer is a multistep systemic disease based on 
crucial interactions between tumor cells and the 
specific conditions within the TME.  Tumor 
growth and dissemination strictly depend on an 
interactive crosstalk between cancer cells and 
the TME. This complex network is strongly reg-
ulated and influenced by the presence of miR-
NAs able to silence key mRNAs within this 
network. Thus, miRNAs exert a pivotal influ-
ence on the crosstalk between infiltrated immune 
cells, CAFs, and tumor cells during tumor pro-
gression but also support the unique niche for 
tumor cells to induce angiogenesis and secretion 
of additional factors to promote tumor cell inva-
sion and metastasis. Thus, the identification of 
altered miRNA expression in tumor cells, but 
also infiltrated immune cells, CAFs, further 
stromal cells under conditions such as hypoxia 
can shed more light on this complex interplay. 
This could also potentially lead to overcome 
treatment failures due to immune-suppressive 
conditions of the TME, and suggest miRNA-
based ideas to reverse therapeutic resistance of 
cancer cells. In the long term, this pre-clinical 
knowledge can help to increase the efficacy of 
even modern personalized therapeutic 
approaches, such as immune checkpoint 
inhibitors.
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Abstract

Tumor immune escape is now a hallmark of 
cancer development, and therapies targeting 
these pathways have emerged as standard of 
care. Specifically, immune checkpoint signal 
blockade offers durable responses and increased 
overall survival. However, the majority of can-
cer patients still do not respond to checkpoint 
blockade immune therapy leading to an unmet 
need in tumor immunology research. Sex-
based differences have been noted in the use of 
cancer immunotherapy suggesting that sex hor-
mones such as estrogen may play an important 

role in tumor immune regulation. Estrogen sig-
naling already has a known role in autoimmu-
nity, and the estrogen receptor can be expressed 
across multiple immune cell populations and 
effect their regulation. While it has been well 
established that tumor cells such as ovarian car-
cinoma, breast carcinoma, and even lung carci-
noma can be regulated by estrogen, research 
into the role of estrogen in the regulation of 
tumor-associated immune cells is still emerg-
ing. In this chapter, we discuss the role of estro-
gen in the tumor immune microenvironment 
and the possible immunotherapeutic implica-
tions of targeting estrogen in cancer patients.
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2.1  Introduction

The tumor microenvironment (TME) is made up 
of multiple cell types beyond only tumor cells 
including immune cells, stromal cells including 
pericytes, and extracellular molecules all regulat-
ing tumor growth. These cells have been well 
established as mechanisms of resistance and have 
been targets for cancer therapy [1–4]. While these 
therapeutic strategies have been promising, de 
novo, and acquired resistance leading to inevita-
ble tumor progression remains an ongoing prob-
lem [5–7]. Therefore, alternative regulatory 
pathways have become necessary to evaluate for 
possible avenues for future therapeutic research. 
Female gender has been suggested in retrospec-
tive meta-analyses to be associated with 
decreased response to checkpoint blockade ther-
apy [8–10]. Given the known role of estrogen and 
other sex hormones effecting immune responses, 
these findings warrant the evaluation of estrogen 
signaling in the TME [11]. Estrogen is a steroid 
hormone that has many physiological functions 
associated with reproduction, metabolism, and 
even immune regulation [12]. The main biologi-
cal endogenous estrogen, 17β-estradiol (E2), is 
synthesized from androgens by aromatase 
(CYP19A1) and binds estrogen receptor α (ERα) 
or estrogen receptor β (ERβ) to exert its effects 
through both genomic and non-genomic mecha-
nisms [12–17]. Estrogen has been long estab-
lished as a driver of malignancy in 
hormone-sensitive carcinomas such as ovarian, 
breast, endometrial, lung, colon, and even pros-
tate [18]. The oncogenic function of ER is due to 
the ability of tumor cells to enable transcriptional 
upregulation of proliferation and cell-survival 
genes via growth factors such as insulin growth 
factor (IGF), fibroblast growth factor (FGF), and 
epidermal growth factor (EGF) [19–23]. Therapy 
targeting these aspects of E2 signaling in cancer 
has been in use clinically for decades. These ther-
apeutics include selective estrogen receptor mod-
ulators or degraders (SERMs or SERDs) and 
aromatase inhibitors (AIs), and are typically uti-
lized in hormone-positive breast cancer, but their 
utility is being evaluated in other relevant solid 
tumors [24]. However, most of the studies have 

focused primarily on the tumoral signaling of E2, 
while the remainder of the TME has gone 
unexplored.

E2 signaling and ER expression are not lim-
ited to tumor cells but also found on immune 
cells where they have distinct functions of 
immune regulation [25–28]. The link between E2 
and autoimmunity has been established since 
findings of sex disparities in patients with sys-
temic lupus erythematosus (SLE), and multiple, 
current reviews outline E2 regulation of immune 
cell function and expansion [29–32]. While the 
link between E2 and immune regulation has been 
well characterized and tumor immunology is 
growing as a field, there is a missing connection 
between E2 pathways and tumor immunology. 
This chapter will discuss the current findings in 
the literature exploring the impact of E2 and 
tumor immunology, as well as the future thera-
peutic implications of targeting the E2 pathway 
in the cancer immunotherapy era.

2.2  E2 Signaling Pathways 
on Tumor Cells

While ER expression and E2 pathways are 
canonically associated with tumor cells from 
hormone- sensitive tumors such as ovarian, breast, 
and endometrial, there are almost 30 tumor types 
that are also associated with the E2 pathway [33, 
34]. These findings are also associated with 
changes in outcome for the disease further con-
veying the importance of understanding this 
pathway across multiple relevant tumor types. 
For example, nuclear ERα expression in breast 
cancer, ovarian cancer, or endometrial cancer is 
correlated with improved overall survival (OS) 
compared to cancer patients that are ERα- 
negative [25, 35–38], while some of the breast 
cancer patients that were ERα-positive also had 
increased disease burden. Conversely, cytoplas-
mic ERα expression in non-small-cell lung can-
cer (NSCLC) cells is correlated with worse OS 
[39–41]. Aromatase and ERβ expression in tumor 
cells are more controversial with studies varying 
on whether they convey a survival benefit [42–
47]. These mixed opinions in the literature are 
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possibly due to the lack of standardized and clini-
cally validated staining ERβ antibody, as well as 
the multitude of ERβ splice variants and post-
translational modifications [26, 48, 49]. While 
these findings are consistent with understanding 
E2 on tumor cells, there is still the need to evalu-
ate the remainder of the TME.

2.3  The E2 Pathway in Tumor- 
Associated Stromal Cells 
and Immune Cells

Within the TME, ERs and aromatase are in nota-
ble concentrations in stromal and immune cells 
in addition to neoplastic cells (Table 2.1). A myr-
iad of studies in the past decade have detailed key 
interactions between neoplastic cells and their 
recruited stromal cells that are responsible for 
tumorigenic potentiation (reviewed in [4, 47]). 
Cellular architecture complicit in this potentia-
tion is heterogeneous between and within tumor 
cells, but generally includes cancer-associated 
fibroblasts (CAFs), tumor-associated macro-

phages (TAMs), myeloid-derived suppressor 
cells (MDSCs), immune T and B cells, natural 
killer (NK) cells, and endothelial cells [4]. 
Transitively, the association of hormonal protein 
expression in TME stromal and immune cells 
serves to underlie a potential immunomodulatory 
role of ER signaling in cancer biology, demon-
strated by cell types listed in Table 2.1.

2.3.1  Tumor-Infiltrating 
Lymphocytes (TIL)

There exists a notable interplay between cancer 
type and lymphocyte composition of the TME. It 
is often opposing immune infiltrates within a 
given primary tumor that promote neoplastic evo-
lution and antitumor immunity [65]. For exam-
ple, CD4+ T-cell polarization has been identified 
as a mediator of tumor immune surveillance. 
Specifically, T helper 1 (Th1) T cell responses are 
associated with tumor suppression while T helper 
2 (Th2) exhibit tumor activation via IFNγ and 
IL-12 upregulation and IL-4 expression, respec-

Table 2.1 Estrogen receptor (ER) and aromatase expression in stromal and immune cells in the tumor 
microenvironment

TME cell type Cancer type Human expression Murine expression Method of evaluation Reference
Stromal Breast Aromatase ERα PCR, IHC [50, 51]

Melanoma ERα IHC [51]

Lung ERα IHC [51]

Endometrial Aromatase IHC [52]
CAF Breast ERα PCR [53]

Prostate ERα, ERβ IHC [54, 55]

Endometrial ERα, ERβ PCR [56]

Ovarian ERα IHC [57]

TAM Ovarian ERα, ERβ IF,IHC [58]

Breast Aromatase IHC, PCR [59]
Lung Aromatase Aromatase IHC [17, 60]

MDSC Ovarian ERα ERα PCR, Western [57]

NK cells Breast ERα, ERβ IHC [61]

Effector CD4+/CD8+ T 
cells

Breast
Nonmalignant

ERα, ERβ IHC [27, 62]

Tregs Cervical ERα IHC [63]

Table adapted from [64]
Studies were identified by PubMed searches using keywords: ERα, ERβ, aromatase, stromal, CAF, TAM, MDSC, 
expression, cancer. CAF cancer-associated fibroblast, TAM tumor-associated macrophage, MDSC myeloid-derived sup-
pressor cell, IHC immunohistochemistry, PCR polymerase chain reaction, IF immunofluorescence, Western: Western 
blotting analysis
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tively [66, 67]. Interestingly, several murine and 
human studies have reported an induction of Th2 
response and IL-4 production in settings of ele-
vated E2 [29, 32]. Further support of ER’s role in 
tumorigenesis was illuminated by a recent in 
silico study showing an increase in Th1 T cells, B 
cells, and cytotoxic T lymphocytes (CTLs) in 
ER-negative breast tumors relative to ER-positive 
breast tumors [68]. This study additionally saw 
an inverse correlation between ER activity and 
immune infiltration of these cell types in breast 
cancer tissues. The inverse correlation observed 
affirmed previous reports that increased TIL, spe-
cifically CD8+ T cells, in ER-negative tumors 
correlated with improved OS [68, 69]. 
Additionally, post hoc analysis in ER-positive 
breast cancer patients treated with letrozole 
showed increased infiltration of B and Th1 cells 
both at the initiation and at the end of treatments 
[68].

2.3.1.1  Cytotoxic T Cells and Natural 
Killer Cells

Granule-mediated exocytosis of serine proteases, 
such as granzyme B, is a major pathway CTLs 
and NKCs initiate caspase-dependent apoptosis 
to eliminate pathogenic and tumor cells [70, 71]. 
Jiang et al. cultured ERα-expressing human liver 
carcinoma cells with E2 resulting in upregulated 
expression of the granzyme B inhibitor, protein-
ase inhibitor-9 (PI-9). This upregulation pro-
tected the tumor cells against granule-mediated 
exocytosis by these cells per DNA fragmentation 
assays [72]. A similar study illustrated E2-induced 
PI-9 expression was also observed in ERα- 
positive MCF7 breast cancer cells with the same 
protection, while PI-9 knockdown blocked E2’s 
protective effect [73]. Cumulatively, these studies 
suggest a component of E2 immunosuppression 
is via inhibition of NK- and CTL-mediated tumor 
cell elimination.

2.3.1.2  Regulatory T Cells
T cell activation and effector differentiation are 
integral to the adaptive immune response. FoxP3− 
expressing Tregs subdue neoplastic activity, as 
well as responder T cell expansion, through 
secretion of immunosuppressive cytokines [74]. 

Administration of physiologic doses of E2 to 
immunocompetent, ovariectomized mice has 
been observed to expand CD4+CD25+ Treg con-
centration, as well as Foxp3 expression in various 
tissue types [75]. Furthermore, fluorescence- 
activated cell sorting (FACs) assays revealed 
acquisition of CD25  in E2-incubated ERα- 
expressing CD4+CD25− cells [75]. These trans-
formed CD4+CD25+ T cells then exhibited an 
immunosuppressive Treg phenotype in vitro that 
significantly downregulated T cell concentration 
[75–78]. Additional studies have reported 
E2-stimulated Foxp3 expression in murine Tregs, 
expression of which is vital to Treg functionality. 
High FoxP3+ Tregs in the TME is a negative 
prognostic indicator in a variety of cancers. For 
example, early-stage NSCLC with nuclear ERα 
expression has a relatively higher risk of both 
recurrence and FoxP3+ lymphocyte infiltrate 
[79]. Furthermore, a recent meta-analysis 
reported FoxP3+ Treg infiltration correlated nega-
tively with OS in ER-positive breast cancer 
patients and positively in ER-negative patients 
[80]. Conversely, studies of ERα-positive breast 
tumors treated with letrozole in  vivo demon-
strated a resulting reduction of FoxP3+ Tregs 
[81].

E2 appears to suppress Treg expression in 
both physiologic and ERα/ERβ knockout mice, 
with the former group having increased expres-
sion of programmed-death 1 (PD-1) and the latter 
having decreased PD-1 expression [82]. E2 treat-
ment of ERα-positive endometrial and breast 
cancer cells also stimulates in vitro expression of 
the PD-1 ligand (PD-L1) via activation of PI3K 
signaling [83]. PD-L1+ tumor cells exhaust PD-1+ 
cytotoxic T lymphocytes (CTLs) through this 
protein interaction, resulting in tumor immune 
evasion [84]. Given E2’s upregulation of both 
PD-1 and PD-L1, the hormone appears to have an 
important influence on the pathway and its role in 
the TME.

2.3.2  Stromal Cells

Tumor evolution is heavily dependent on malig-
nant tissue as well as recruited stromal cells that 
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interact between and within the TME.  Via an 
in vivo murine model, ERα expression in stromal 
cells was observed within the context of tumor- 
cell- independent ER signaling in the TME.  E2 
interactions with stromal ERα has also been seen 
to accelerate neoplastic growth and blood vessel 
density in ovariectomized, syngeneic mice trans-
planted with ER-negative melanoma, breast, or 
lung cancer cells [51]. The same study found this 
E2-stimulated tumor growth demonstrated a rela-
tive increase in immunocompromised mice, 
reflecting closer association with E2 modulation 
of innate immunity [51]. Aromatase expression 
appears to also modulate the TME in certain neo-
plasms. Perineoplastic endometrial stromal cells’ 
expression of aromatase also correlates with 
more advanced disease and, transitively, worse 
OS [52, 85]. Similarly, perineoplastic breast adi-
pocytes’ expression of aromatase appears to be 
complicit in tumorigenesis in obese patients via 
inflammation and modification of the TME [50, 
86, 87]. Additionally, type 2 pericytes have also 
been associated with tumorigenesis and vascular 
formation for tumors [88]. Pericytes recruited for 
vascular formation have been associated with 
ERα expression and E2-dependent signaling dur-
ing function [89, 90].

2.3.3  Cancer-Associated Fibroblasts

CAFs are one of the most integral stromal cell 
types in the TME for tumor survival and metasta-
sis via paracrine-induced signaling pathways via 
chemokines and soluble growth factors [91, 92]. 
ERα expression in breast CAFs have been 
observed in vivo through nuclear receptor arrays 
comparing gene expression between CAFs and 
normal human breast adipose fibroblasts [53]. 
Interestingly, similar levels of ERα expression 
are seen in both malignant and physiologic fibro-
blasts, but with downstream upregulation of the 
direct transcriptional activator liver receptor 
homolog-1 (LRH-1) in the former [53]. The 
 regulator serves to increase expression of the 
aromatase- encoding gene CYP19A1 [93–95]. 
Co-expression of aromatase and LRH-1  in the 
breast TME suggests CAF-induced paracrine for-

mation of E2 and subsequent ER-mediated onco-
genesis [96]. Coculturing of endometrial CAFs 
with endometrial neoplastic cells have been seen 
to contribute to tumor progression, possibly 
attributed to CAFs’ expression of ERα and ERβ 
[56]. This tumor progression mechanism is sup-
ported through in vitro upregulation of phospha-
tidylinositide 3-kinase (PI3K) and 
mitogen-activated protein kinase (MAPK) sig-
naling networks, which are both well-known 
ER-mediated pathways in breast and lung cancer 
[56, 97–99].

Contrastingly, ER expression in prostate 
CAFs has contradicting evidence, with reports of 
ERα/ERβ expression portending advanced dis-
ease [54] and others suggesting ERα expression 
is a protective factor again neoplastic invasion 
macrophage infiltration [100, 101]. These latter 
in vitro studies conveyed that CAF ERα expres-
sion reduced murine and human prostate cancer 
cell invasion, as well as lymph node metastasis of 
orthotopically implanted human prostate cancer 
cells in mice [101]. These ERα-positive CAFs 
appeared to halt invasion and metastasis of 
human prostate cancer cells through downstream 
downregulation of the C-C motif chemokine 
ligand 5 (CCL5) and IL-6 chemokines, whose 
roles are involved in growth factor signaling, 
inflammation, and tumor recruitment [102, 103].

2.3.4  Tumor-Associated 
Macrophages

In a physiologic setting, macrophages regulate 
tissue-specific innate immune responses to fight 
foreign invaders through polarization by varied 
cytokines. However, TAMs have been complicit 
in tumor proliferation and migration, as well as 
inflammation in the TME [104, 105]. 
Physiologically, polarized M1 macrophages 
secrete the proinflammatory cytokines IFNγ, 
interleukin 12 (IL-12), and tumor necrosis factor 
(TNF)-α for tumor rejection and antigen presen-
tation [106]. Alternatively, M2 macrophages pro-
duce interleukins 4, 5, 6, and 10 [106], which are 
known promoters of tumor cell growth and 
immune evasion [107]. TAMs within the TME 
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are often M2, with denser concentration demon-
strating worse OS, thus offering a therapeutic 
opportunity for a variety of malignancies [108].

TAMs are an independent poor prognostic 
predictor for ovarian adenocarcinoma [109]. 
Relatedly, co-localized expression of both ERα/
ERβ is reported in human high-grade serous 
ovarian cystadenocarcinoma (HGSOC) TAMs. 
Interestingly, HGSOC in premenopausal women 
demonstrates elevated TAM infiltration relative 
to that of postmenopausal women. The highest 
concentration of TAMs in this TME can be found 
in ERα-positive tumors [58]. The mechanism of 
this was elucidated by an IHC analysis revealing 
aromatase expression in the TME of breast 
TAMs, which was observed to increase E2 pro-
duction and breast cell proliferation [59]. TAM 
proliferation, however, is relatively more preva-
lent in ER-negative breast malignancies [110, 
111]. It is important to note, however, that quan-
tification of TAM polarization was not analyzed 
in these studies. Interestingly, aromatase and 
ERβ expression in NSCLC TAMs have also been 
observed, specifically in infiltrating macrophages 
of preneoplastic, tobacco carcinogen-induced 
murine lung lesions [17, 60].

Although direct observation of ER expression 
in TAMs has been limited, E2 induction of M2 
polarization and subsequent tumor spread has 
been studied. A polyomavirus middle T (PyMT), 
ER-positive breast cancer murine model demon-
strated direct E2 stimulation of tumoral M2 TAM 
infiltration and vascular endothelial growth factor 
(VEGF) [112, 113]. Alternatively, untreated con-
trols exhibited M1 TAM infiltration instead [112]. 
In a HGSOC, ovariectomized murine model, E2 
induced growth of both ER-negative xenografts 
and M2 TAM infiltration [58]. In tobacco carcin-
ogen-exposed mice, administration of E2 
increased pulmonary TAM infiltration while mice 
receiving the aromatase inhibitor anastrozole had 
a significant reduction in pulmonary TAMs [114]. 
Further, E2-induced VEGF expression was also 
observed in this model [114]. Of note, E2-mediated 
TAM infiltration has been observed in vitro to be 
fed forward via M2 TAM- induced epigenetic 
ERα upregulation via interleukin 17A (IL-17A) in 
endometrial malignancy [115]. This positive feed-

back mechanism between E2 and M2 TAMs pro-
vides a potential therapeutic target, a concept 
recently addressed via effects of the phytoestro-
gen SERM resveratrol in a lung cancer xenograft 
model [116]. Resveratrol treatment appeared to 
suppress tumor proliferation through decreased 
signal transducer and activator of transcription 3 
(STAT3) signaling and M2 polarization [116].

2.3.5  Myeloid-Derived Suppressor 
Cells

MDSCs are another myeloid cell present in the 
TME known to interfere immune surveillance 
and facilitate tumor growth [117]. ERα expres-
sion in human ovarian adenocarcinoma MDSCs 
has been identified by IHC and confirmed through 
PCR and immunoblotting [57]. In an 
E2-insensitive syngeneic ovarian cancer model, 
ovariectomized mice exhibited improved survival 
compared to non-ovariectomized mice following 
tumor challenge. Contrastingly, E2 supplementa-
tion in these mice accelerated tumor progression 
and reversed the protective effect found in 
estrogen- depleted mice [57]. Of note, this study 
found that T-cell-deficient mice lost survival ben-
efit of estrogen depletion, suggesting adaptive 
immunocompetence to be mechanistically inte-
gral [57]. Estrogen’s effect on the two legs of 
immunity was also observed in E2-treated mice, 
which were found to have notably decreased con-
centrations of helper and cytotoxic T cells, and 
significantly increased concentrations of granu-
locytic MDSCs in spleen and tumor beds [57]. 
ER-dependence of MDSC expansion was further 
studied with in vitro administration of the ERα 
antagonist methylpiperidino pyrazole (MPP) to 
inhibit MDSC proliferation [57]. Ovarian tumor- 
bearing mice treated with E2 had measurable 
JAK2 and SRC upregulation with downstream 
STAT3 signaling, a regulator of myeloid differen-
tiation and development [118]. In syngeneic lung 
and breast cancer murine models, E2-stimulated 
tumor growth was mitigated by MDSC depletion 
after treatment with anti-Gr1 antibodies [57, 119, 
120]. Patients with cervical cancer that were 
pregnant with high E2 had increased expansion 
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of MDSCs and shorter PFS. These findings were 
further evaluated in mouse models [120].

2.3.6  Inflammatory Cytokines 
and Eicosanoids

Chronic inflammation has been accepted as a 
common factor in tumorigenesis and spread. 
TME facilitates neoplastic progression primarily 
through cytokine-induced oncogenic pathway 
activation, leading to cell proliferation, immune 
evasion, and infiltration [121]. IL-6 from TAFs 
has been observed to assist ERα-positive breast 
cancer proliferation and immune evasion [122] 
via STAT3 activation in vitro and in vivo [123]. 
TNFα in ERα-positive breast cancer cells has 
been observed to regulate gene expression for 
metastasis [124]. This cytokine has also been 
shown to upregulate aromatase expression in cul-
tured human adipose stromal cells [125]. 
Neoplastic implication of these inflammatory 
markers is evidenced by data showing TNFα and 
IL-6 correlate closely with aromatase expression 
in human breast cancer tissue and not in adjacent 
noncancerous tissue [126]. Aromatase has simi-
lar transcriptional correlation with cyclooxygen-
ase- 2 (COX-2) [126]. COX-2 mediates the 
inflammatory response by producing eicosanoids 
such as prostaglandin E2 (PGE2) [127], which 
upregulates aromatase expression through cyclic 
adenosine monophosphate (cAMP) in breast 
malignancy [128]. Despite conflicting reports, a 
case–control study demonstrated regular admin-
istration of the nonsteroidal anti-inflammatory 
drug (NSAID) aspirin reduced the risk of devel-
oping ERα-positive breast cancers (hazard ratio 
(HR) = 0.74; 95% CI, 0.60–0.93), but not ERα- 
negative cancers (HR = 0.97; 95% CI, 0.67–1.40) 
[129].

ERα, TNFα, and NF-κB protein expression 
correlate closely in breast cancer tissues [130]. 
NF-κB signaling, a proinflammatory cytokine 
associated with IL-6 and TNFα, is often constitu-
tively activated in many tumor types [131]. High 
levels of the cytokine are also implicated in 
SERM resistance in ERα-expressing human 
breast cancer cells [132, 133]. E2 also enhanced 

pulmonary inflammation through increased 
NF-κB, VEGF, and IL-17A in a murine model 
evaluating tobacco carcinogen-induced lung can-
cer [114]. E2 inhibition with combined AI/
NSAID treatment served to noticeably decrease 
pulmonary malignancy in these mice. Notable 
pathways affected included IL-17A expression, 
IL-6 concentration, as well as STAT3 and MAPK 
[114]. Cumulatively, there appears to be a poten-
tial target for the E2 pathway as it interacts with 
tumorigenesis via inflammation.

2.3.7  The Impact 
of Supraphysiologic Estrogen

Esterified estrogen, specifically estrone, is sig-
nificantly increased in the setting of obesity. 
Aromatase in adipocytes serves to increase 
estrone secretion in the setting of hypertrophy. 
The effect this supraphysiologic estrogen has on 
tumorigenesis has been controversial [134, 135]. 
Recent findings suggest that while immune dys-
function and tumor progression are associated 
with obesity, improved response to immunother-
apy may also be associated with obesity, support-
ing the immune-mediated link between obesity 
and cancer [136]. Chronic inflammation from 
obesity is integral to carcinogenesis and tumor 
evolution, as observed in postmenopausal, ER- 
and progesterone receptor (PR)-expressing breast 
malignancy [137]. It is important to note that 
studies suggesting protumor effects of estrogen 
in estrogen-depleted mammals have been per-
formed primarily in the setting of hormone 
replacement therapy (HRT).

Tumorigenesis, progression, and infiltration in 
the setting of HRT in estrogen-depleted mam-
mals remain controversial. There is a paucity of 
studies demonstrating proinflammatory changes 
with hormone replacement therapy in murine 
models. In contrast, there are many studies con-
veying a protective effect of exogenous estrogen. 
Specifically, ERβ-expression has been observed 
to prevent progression of human colorectal carci-
noma (CRC) [134, 138]. Mechanistic protection 
against carcinogenesis with exogenous estrogen 
in postmenopausal patients appears to primarily 
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be through a decrease in the natural postmeno-
pausal increase in Th1/Th2 ratio [139, 140]. 
Specifically, Th2 cytokines are quantifiably sta-
ble until late postmenopausal stage, while pro-
duction of Th1 cytokines is progressively 
increased in women after menopause. HRT pre-
vents this increased Th1/Th2 ratio, thereby 
improving the aberration of Th1/Th2 balance that 
is implicated in an inadequate immune response 
and neoplastic conditions [140]. Substantiation 
of this antitumoral concept was provided through 
an in  vivo, placebo-controlled study regarding 
postmenopausal human breast cancer cell dem-
onstrating estrogen’s notable decrease in IL-6 
production [141].

2.4  Clinical Implications 
of Targeting the Estrogen 
Pathway in the Tumor 
Microenvironment

Immunotherapy is a developing and effective 
treatment avenue in the world of cancer; yet the 
TME and its immunosuppressive mechanisms is 
a deterrent for large-scale success. As it stands, 
the immune checkpoint modulators of cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA4) and 
PD-1/PD-L1 are the most studied immunothera-
pies [142]. These revolutionary options have had 
dramatic impacts on OS relative to standard-of- 
care chemotherapies [143–146]. Even so, 
response rates are limited to 20–35% of cases, 
closely dependent on tumor type, stage, and 
PD-L1 expression [147]. Moreover, 25–33% of 
melanoma patients often demonstrate delayed 
relapse during treatments attributed to tumor cell 
adaptation [5, 6].

There appears to be a balance of tumoral 
mutations and immunoediting that facilitate 
immune evasion, and subsequently, failure of 
checkpoint therapy. On the one hand, damaged 
DNA repair mechanisms, increased 
 non- synonymous somatic mutational load, and 
neoantigen presentation cripple immune evasion 
and improve OS [2, 3, 148]. On the other hand, 
damage to antigen-presenting mechanisms, as 
well as recurrence of nonantigenic mutations, 

appears to facilitate immune evasion [149, 150]. 
Studies identifying these mechanisms provide 
insight into measurable biomarkers to assess 
tumor responsiveness to current and, inevitably 
necessary, novel immunotherapies. A potential 
investigative therapy is endocrinological agents 
that modulate E2 and its protumoral pathway to 
abrogate tumor immune evasion. Specifically, 
anti- estrogen therapy may reduce TME immuno-
suppression while increasing E2-sensitive tumor 
responsiveness.

Recently, a high-throughput screening assay 
in human lung cancer cells demonstrated fulves-
trant, an anti-estrogen agent, as the most effica-
cious compound in increasing tumor sensitivity 
to immune-mediated lysis [151]. Fulvestrant 
additionally has few interactions and overlapping 
toxicities with anti-PD-1/PD-L1 agents. Thus, 
anti-E2 therapies to target the immunosuppres-
sive TME could increase efficacy and duration of 
response of current immune checkpoint inhibi-
tors (ICI) [119, 152] (Fig. 2.1).

Based on the well-established evidence of 
sex-driven dimorphism in immune function and 
response, patient sex has been postulated to have 
an influence on the efficacy of ICIs [9]. This sex-
ual dimorphism plays an important role in the 
disparity of cancer immunoediting in females 
and males and could not only explain differences 
in progression and mortality observed between 
male and female cancer patients but also sex dif-
ferences in response rates, toxicity patterns, and 
outcomes to treatment with ICIs. In support of 
this concept, the PD-1/PD-L1 pathway is modu-
lated by multiple X-linked microRNAs (miR-
NAs), which crosstalk with the estrogen-ERα 
axis, suggesting an important role of the estrogen 
pathway and response to ICIs [153, 154]. Further 
since estrogen modulation of the PD-1/PD-L1 
pathway has been demonstrated in animal mod-
els [82, 155], it is reasonable to expect that immu-
notherapy efficacy may vary according to patient 
sex.

In an effort to identify patient characteristics 
linked to ICI effectiveness, several meta-analyses 
have been conducted to evaluate sex-differential 
effects in efficacy of ICIs. Conforti et al. evalu-
ated the effect of patient’s sex on the efficacy of 
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ICIs measured in terms of OS on different tumor 
types [156]. This study included 11,351 patients 
(67% men and 33% women) enrolled in 20 Phase 
II and III randomized controlled trials that evalu-
ated CTLA4 inhibitors, as well as PD-1/PD-L1 
inhibitors in patients with different tumor types, 
mostly melanoma and NSCLC. Results showed 
that male patients who received ICIs alone had a 
reduced risk of death compared to men in the 
control arms (HR  =  0.72, 95% CI 0.65–0.79). 
Similar findings were observed in female patients, 
but the difference in risk reduction was smaller 
between the treatment and the control arm 
(HR = 0.86, 95% CI 0.79–0.93). Although there 
was a significant difference in the efficacy of ICIs 
between male and female patients, the heteroge-
neity test for this sex-related interaction was not 
quite significant.

A subsequent meta-analysis evaluated the 
differences in outcomes based on sex in lung 
cancer patients who received targeted therapy 
or immunotherapy [10]. This study included a 
total of 12 Phase III clinical trials evaluating 
EGFR, ALK, and PD-1 inhibitors versus che-
motherapy. Of the 12 trials included in this 
meta-analysis, five compared PD-1 inhibitors 

versus chemotherapy, two of which compared 
pembrolizumab versus chemotherapy 
(KEYNOTE 010 and KEYNOTE 024), and 
three compared nivolumab versus chemother-
apy (CheckMate 017, CheckMate 026, 
CheckMate 057) [144, 157–159]. The studies 
that compared ICIs versus chemotherapy 
included 1028 female and 1435 male lung can-
cer patients. While there was significant hetero-
geneity between studies, OS was favorable in 
male patients treated with ICIs compared to 
chemotherapy (HR = 0.76; 95% CI 0.068–0.86; 
p < 0.00001). There was no significant differ-
ence in survival in female lung cancer patients 
receiving chemotherapy compared to ICIs 
(HR = 1.03; 95%CI 0.89 to 1.03; p = 0.69). In a 
separate study focused on metastatic NSCLC, 
El-Ostra et al. evaluated results from eight ran-
domized clinical trials for predictors of benefit 
to single agent ICIs over chemotherapy [8]. 
NSCLC patients treated with ICIs had signifi-
cant progression-free survival (PFS) superior-
ity in ever-smokers, male patients, and patients 
with PD-L1-positive tumors. In contrast, female 
NSCLC patients had comparable PFS between 
ICIs and chemotherapy.

Fig. 2.1 Increasing 
estrogen promotes a 
pro-tumor TME via 
increased Th2 responses, 
increased production of 
tumor-promoting 
cytokines (IL-4, IL-6, 
TNFα, and IL-17A), M2 
TAM infiltration, 
decreased Th1 cytokines 
(IL-12 and IFNγ), and 
M1 TAM infiltration. E2 
has also been associated 
with increased Treg and 
MDSC proliferation, 
increased PD-L1 
expression on tumor 
cells, and decreased 
CD8+ T cell and NK cell 
proliferation. CAFs and 
adipocytes may also 
serve as pro-tumor as 
they can supply E2 and 
IL-6. (Adapted from 
[64])
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Wallis et  al. also conducted a meta-analysis 
that included 23 randomized clinical trials 
(67.9% men and 32.1% women) that compared 
ICIs (both ICI alone and ICI plus chemotherapy 
trials) to standard-of-care treatment in advanced 
solid tumors (including NSCLC, SCLC, urothe-
lial carcinoma, head and neck squamous carci-
noma, melanoma, mesothelioma, clear cell renal 
carcinoma, and gastric or gastroesophageal carci-
noma). In this study, no difference in OS between 
men and women who received immunotherapy 
was observed (I2 = 38%; p = 0.6) [160]. The con-
flicting results and limitations in these meta- 
analyses suggest that further investigation of the 
efficacy of ICIs and patients’ sex is warranted in 
future studies. While the majority of the trials 
included in these studies were underpowered to 
detect clinically relevant sex differences in out-
come, these results indicate that the hormonal 
milieu may have some effect on treatment 
response (Table 2.2).

The current best predictive markers of thera-
peutic response to ICIs are high PD-L1 expres-
sion and high tumor mutational burden (TMB). 
The difference between PD-L1 expression 
between men and women has been evaluated in 
some cancer patient cohort with a reported 
increased PD-L1 expression in male patients 
[161–163]. TMB has also been shown to be lower 
in women compared to men (p = 0.0349), across 
multiple studies [164, 165]. TMB is predictive of 
response to ICI in lung cancer and is lower in 
female lung cancer patients compared to male 
lung cancer patients [165]. Similarly, sex differ-
ences in immune-related adverse events (irAEs) 
have also been noted in ICI trials [166, 167]. The 

gut microbiome and obesity are emerging areas 
of interest that may predict response to ICIs 
[168]. Whether or not these factors interact with 
sex hormones in the context of anti-cancer immu-
nity is yet to be determined.

2.5  Conclusions and Perspective

The E2 pathway is an identified promoter of 
tumorigenesis in several cancers, largely for its 
genomic, epigenomic, and transcriptional effects 
on tumor cells and the TME. The reciprocal inter-
actions of the peritumoral and tumoral environ-
ment are becoming more evident, with E2 playing 
a major role in modulation of primarily protu-
moral pathways. With immunoediting being a 
culprit in E2-mediated protumoral activity, it 
appears to be an important deterrent for check-
point blockade immunotherapy success. Thus, 
inhibition of the E2 pathway may augment cur-
rent immunotherapy response rates.

Carcinogenesis from obesity and its related 
illnesses are thought to be primarily driven 
through proinflammatory cytokine secretion. 
Supraphysiologic estrogen from adipocyte aro-
matase expression may also play a role, but as 
of now, it is difficult to distinguish. However, 
estrogen replacement therapy in postmeno-
pausal women appears to have a relatively pro-
tective effect via immune modulation. 
Stabilization of immunologic aberrancies, 
notably in the adaptive immune system, is pro-
tective against age-related malignancies such as 
colorectal carcinoma and breast cancers. Based 
on the above discussion, future studies are war-

Table 2.2 Selected trials evaluating the combination of Estrogen pathway targeting agents with ICIs

Malignancy Selected study drugs n = Clinical trial number
ER+/Her2- Breast cancer Exemestane and durvalumab/tremelimumab 240 NCT02997995
ER+/Her2- Breast cancer Pembrolizumab, letrozole, and palbociclib 22 NCT02778685
ER+/Her2- Breast cancer Atezolizumab and fulvestrant 126 NCT03280563
ER+/Her2- Breast cancer Pembrolizumab and exemestane 25 NCT02990845
ER+/Her2- Breast cancer Pembrolizumab and AI 37 NCT02971748
ER+/Her2- Breast cancer Pembrolizumab and letrozole, exemestane anastrozole 56 NCT02648477
AR+/ER- Breast cancer Pembrolizumab and enobosarm 29 NCT02971761

Selected ongoing trials evaluating ICI in combination with therapeutic agents targeting the E2 pathway. Disease type, 
selected study agents, predicted accrual size, and clinical trial number are provided
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ranted to assess responsiveness to current ICIs 
across sex, menopausal status, and BMI in 
order to isolate E2 pathway contribution to 
immune evasion.
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The Non-Bone-Related Role 
of RANK/RANKL Signaling 
in Cancer
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Abstract

RANK ligand (RANKL) is a member of the 
tumor necrosis factor alpha superfamily of 
cytokines. It is the only known ligand binding 
to a membrane receptor named receptor acti-
vator of nuclear factor-kappa B (RANK), 
thereby triggering recruitment of TNF 
receptor- associated factor (TRAF) adaptor 
proteins and activation of downstream path-
ways. RANK/RANKL signaling is controlled 
by a decoy receptor, osteoprotegerin (OPG), 
but also has additional more complex levels of 
regulation. It is crucial for the differentiation 
of bone-resorbing osteoclasts and is deregu-
lated in disease processes such as osteoporosis 
and cancer bone metastasis. Cells expressing 
RANK and RANKL are commonly found in 
the tumor environment. In many tumor types, 
the RANK/RANKL pathway is overex-
pressed, and this is in most cases correlated 
with poor prognosis. RANK signaling plays 
an important role in the innate and adaptive 
immune response, generates regulatory T 

(Treg) cells, and increases the production of 
cytokines. It is also involved in chemo resis-
tance in vitro. Recent evidence suggests that 
RANKL blockade improves the efficacy of 
anti-CTLA-4 antibodies against solid tumors 
and experimental metastasis. Therefore, there 
is increasing interest to use RANKL inhibition 
as an immunomodulatory strategy in an 
attempt to make immune-resistant tumor 
responsive to immune therapy.
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3.1  Background

In most cancer types, only a minority of patients 
have an improved survival after immune therapy. 
Mutational burden, neoantigen load, quality and 
clonality of neoantigens, expression of antigen 
presenting molecules and immune checkpoints, 
interferon gamma responsiveness, and composi-
tion of the microenvironment (hot versus cold 
tumors), all influence the beneficial effects of 
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immune therapies [1]. Although combinations of 
immune therapy (e.g., CTLA-4 and PD-L1 block-
ing) can be synergistic, they do not resolve their 
diminutive effectiveness in cancer treatment and 
often induce significant additional toxicity [2–5]. 
Hence, there is an increasing interest in combining 
immune therapy with less toxic immune modulat-
ing drugs to sensitize immune unresponsive 
tumors to immune therapies [6]. Recent data sug-
gest that RANK/RANKL inhibition may be an 
attractive approach to increase the effectiveness of 
immunotherapy. Signaling between the receptor 
activator of nuclear factor- kappa B (RANK) and 
its ligand (RANKL) is essential for the differentia-
tion of bone-resorbing osteoclasts and is deregu-
lated in pathological processes such as 
postmenopausal osteoporosis or cancer-induced 
bone destruction [2]. However, cells expressing 
RANK and RANKL are also commonly found in 
the tumor microenvironment. RANK signaling 
plays an important role in the innate and adaptive 
immune response as it generates regulatory T 
(Treg) cells and increases production of cytokines 
[7, 8]. In this chapter, the effects of RANK/
RANKL signaling inhibition on the microenviron-
ment of malignant tumors are reviewed. It is 
hypothesized that this approach may be used to 
improve the response to immunotherapy (Fig. 3.1).

3.2  The RANK/RANKL Signaling 
Pathway

The receptor activator of nuclear factor-kappa B 
ligand (RANKL) was originally identified in T 
cells and dendritic cells (DC) [2]. It is a type II 
homotrimeric transmembrane protein that has 
three known isoforms. RANKL1 and RANKL2 
are expressed as membrane bound proteins. 
RANKL3 is a soluble secreted protein that is 
formed by cleavage of the membranous counter-
parts or by alternative splicing [9]. The RANKL 
has a large cytoplasmic domain containing four 
cystein-rich repeat motifs and two 
N-glycosylation sites. The full length RANKL is 
called RANKL1, in RANKL2 a part of the intra-
cellular domain is deleted, while in RANKL3 
the N-terminal part misses [7, 10]. The RANKL 
is encoded by the TNFS11 gene in humans and is 
also named osteoclast differentiation factor 
(ODF), osteoprotegerin ligand (OPGL), or TNF-
related activation induced cytokine (TRANCE) 
[9, 11]. It is the only known ligand binding to a 
membrane receptor named receptor activator of 
nuclear factor- kappa B (RANK), which is a type 
I transmembrane protein belonging to the TNF 
receptor superfamily (TNFRSF11A) [11, 12]. 
Binding between RANKL and RANK induces 

Fig. 3.1 Main effects of 
RANK/RANKL 
signaling pathway on 
tumor growth, immune 
cells, and 
microenvironment
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trimerization of the receptor. This triggers 
recruitment of TNF receptor- associated factors 
(TRAF), adaptor proteins, and activation of 
downstream signaling pathways (such as NF-kB, 
AKT/PKB, JNK, and the MAP kinase cascade) 
[7, 13, 14]. A regulatory system is built into the 
RANK/RANKL signaling pathway by means of 
a decoy receptor called osteoprotegerin (OPG, 
TBFRSF11B) interacting with RANKL [2]. 
OPG is a soluble glycoprotein that can exist 
either as a 60-kDa monomer or as a 120-kD 
dimer but lacks transmembrane or cytoplasmatic 
domains. The dimerization of OPG increases the 
affinity of OPG to RANKL dramatically and is 
essential for RANK/RANKL signal inhibition 
[15]. Several factors can upregulate OPG expres-
sion such as estrogen (which is important for 
bone metabolism), TRAIL, Wnt, and TNFalpha 
[7]. On the other hand, it can be downregulated 
by PTH and TGF- beta [9]. The overall inhibitory 
effect of OPG on RANKL depends on the bal-
ance of its binding to these various ligands [11, 
12]. The RANK/RANKL signaling network is 
further complexed by a second, more recently 
discovered, decoy receptor for RANKL, LGR4 
[14]. LGR4 suppresses canonical RANK signal-
ing by competing with RANK to bind 
RANKL. The binding of RANKL to LGR4 acti-
vates the Gαq and GSK3-β signaling pathway. 
This suppresses the expression and activity of 
nuclear factor of activated T cells and calcineu-
rin-dependent 1 (NFATC1) during osteoclasto-
genesis. Furthermore, functional RANK splicing 
variants have also been identified, implicating 
several sophisticated levels of the pathway [16].

3.3  The Functional Role 
of RANK/RANKL Signaling 
in Humans

RANK and RANKL can be detected in many dif-
ferent tissues, such as the bone, prostate, thymus, 
mammary glands, and liver, implicating a func-
tional role in these organs [17]. Studies in mice 
indicate that RANK/RANKL signaling is 
required for mammary gland development and 
lymph node formation [7, 17, 18, 19]. The signal-

ing pathway’s crucial role in healthy bone remod-
eling and bone homeostasis is, however, much 
better documented [8]. The RANK/RANKL 
pathway regulates the formation of multinucle-
ated osteoclasts from their monocyte- macrophage 
precursor cells and subsequently also their acti-
vation and survival [8]. By binding RANKL, 
OPG prevents it to connect to and activate RANK, 
thereby protecting the skeleton from excessive 
bone resorption [19, 20]. When deregulated, this 
pathway may lead to pathological processes such 
as cancer-induced bone destruction and osteopo-
rosis but also chronic inflammatory processes 
such as inflammatory bowel diseases and arthritis 
[14, 20, 21].

Another well-known  functional role for 
RANK/RANKL signaling is that of modulating 
the immune response. RANK/RANKL and 
OPG knockout mice showed a disrupted immune 
phenotype (e.g., impaired T or B cell develop-
ment) [7, 22]. RANKL can be found in tumor- 
infiltrating lymphocytes (TILs), immature 
dendritic cells, B cells, macrophages, and 
monocytes [2]. RANK activation induces lym-
phocyte differentiation, T-cell activation, 
and  dendritic cell (DC) survival, triggering 
intracellular signaling pathways (e.g., MAPK, 
NFkB, p38, and c-JNK) and even extracellular 
kinases (ERK) [17, 23, 24, 25]. RANKL can 
induce the expression of multiple activating 
cytokines by DCs, including IL-1, IL-6, IL-12, 
and IL-15, and can enhance DC survival via the 
induction of the antiapoptotic protein Bcl-xL 
(B-cell lymphoma-extra large) [2]. Dendritic 
cells prime and activate T cells during the 
immune response by processing and presenting 
antigens to them. The RANKL signal can alter 
the function of dendritic cells, which may lead 
to an increase of Foxp3-positive Tregs [7]. 
Recent evidence suggests that in response to 
injury, pericytes are also able to modulate local 
tissue immune responses via several indepen-
dent pathways including RANKL signaling. In 
this area, the OPG/RANK/RANKL axis in asso-
ciation with the functions of pericytes may be 
involved in vasculogenesis, the process of ath-
erosclerosis by altering lipid metabolism, vas-
cular signaling, and angiogenesis [26, 27].
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3.4  RANK/RANKL Signaling 
in Cancer

Several studies documented RANK signaling to 
be important in a variety of cancers [23–43]. This 
was recently nicely reviewed by Renema et  al. 
and de Groot et al. [17]. Tregs are a CD4+ helper 
T-cell subset that can suppress autoimmune 
responses in the body and are critical to create an 
immune suppressive environment in cancers [2]. 
Together with other partners, such as TAMs, they 
can create a status of local immunosuppression 
surrounding the tumor [7]. TAMs express immune 
checkpoint modulators (such as PD-L1) that 
directly inhibit activated T cells and produce vari-
ous chemokines that attract other immunosup-
pressive cells, such as Tregs and myeloid- derived 
suppressor cells (MDSCs) [11]. In many situa-
tions, the RANK network is an important driver to 
create an immunosuppressive microenvironment, 
thereby promoting tumor progression. The central 
role of RANK/RANKL signaling in bone metas-
tasis has been well studied [9]. The RANK signal 
network has been shown to drive epithelial to 
mesenchymal transition (EMT), induce stem cell-
like phenotypes, promote osteomimicry, and give 
cancer cells the ability to home to bone [11, 39]. 
In a large population of breast cancer patients, 
strikingly high levels of RANK expression in the 
primary tumor were predictive for the frequency 
of the later occurrence of bone metastasis [37]. 
Recently, it seems that RANK signaling is impor-
tant in the biology of many tumor types beyond 
bone metastasis [2, 7, 8, 11, 17, 23–43]. RANK 
and RANKL- expressing cells are commonly 
found in the tumor microenvironment [2]. The 
RANKL/RANK pathway is often overexpressed 
in cancers of the prostate, endometrium, stomach, 
breast, cervix, stomach, bladder, oesophagus, and 
thyroid, which is correlated with poor prognosis 
[23–43]. RANKL has been detected in endothe-
lial cells and implicated in angiogenesis [7].

There is some circumstantial evidence sug-
gesting that paracrine signaling through RANK/
RANKL is responsible for the expansion of 
mammary stem cells observed during pregnancy 
and luteal cycles [13, 38]. MMTV-RANK trans-
genic mice are prone to develop mammary 

tumors, which may be related to activated RANK 
signaling [35]. Pharmacologic inhibition of 
RANKL or genetic ablation of RANK reduces 
(particularly estrogen and progesterone receptor 
negative) mammary tumor and metastasis devel-
opment in animal models [32]. Breast cancer 
cells are able to produce RANKL and stimulate 
osteoclast differentiation [16, 38, 39]. In humans, 
high RANK expression is associated with altered 
mammary differentiation, which suggests that 
increased RANK signaling may contribute to 
breast carcinogenesis [13, 40]. High RANK 
expression was particularly detected in human 
primary breast adenocarcinomas that lack expres-
sion of the hormone receptors, in tumors with 
high pathologic grade and proliferation index. It 
is associated with the presence of metastases and 
poor prognosis [37]. It has been shown in vitro 
that HIF-1 alpha-induced expression of RANKL 
initiates increased migration of breast cancer 
cells via PI3K/AKT signaling, illustrating that 
the RANK/RANKL pathway also plays an 
important role in breast cancer progression [41, 
42].

Mouse models and randomized studies in 
humans have shown that combination of antibod-
ies blocking OPG or RANK with chemotherapy, 
hormone therapy, or targeted drugs resulted in 
stronger decrease of tumor burden in the bone [8, 
17]. However, inhibition of RANK signaling also 
has a direct effect on tumor cells  at other loca-
tions [28]. The RANK/RANKL pathway was 
variably expressed in tumors of the thyroid, and 
increased serum OPG was also correlated with 
poor prognosis in gastric, cervical, esophageal, 
and bladder carcinoma [23–27, 29–32]. Song 
et  al. found that RANK expression was signifi-
cantly higher in hepatocellular carcinoma (HCC) 
than in peritumoral hepatic tissue [33]. HCC cell 
lines express RANK constitutively, and activa-
tion of the RANK-RANKL axis significantly 
promoted migration and invasion ability of HCC 
cells in vitro. Recently, it has been demonstrated 
that RANK/RANKL expression is also signifi-
cantly elevated in endometrial and prostate can-
cer tissue, particularly in tumors of higher stage 
[20, 34, 35, 44]. Therefore, there may be a role 
for RANKL inhibitors as a therapeutic strategy.
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3.5  Effects of the RANK/RANKL 
Signaling Pathway 
on the Tumor 
Microenvironment

RANK and RANKL expressing cells are com-
monly found in the tumor microenvironment [20]. 
RANKL modulates the immune response by 
inducing T-cell proliferation and dendritic cell 
survival [45]. In human breast carcinomas, 
RANKL is found in tumor-infiltrating lympho-
cytes (TILs), and RANK is strongly expressed in 
tumor-associated macrophages (TAMs) [18]. 
TAMs accumulate in the microenvironment and, 
depending on their M2 or M1 phenotype, are 
involved in tumor growth, angiogenesis, and 
metastasis. RANKL acts as a chemoattractant for 
these cells [2]. RANK/RANKL signaling in M2 
macrophages modulates production of chemo-
kines, promoting the proliferation of Tregs and 
thereby creating an immunosuppressive environ-
ment. As RANKL is mainly produced by Tregs, a 
vicious circle is established in conjunction with 
the TAMs mainly expressing RANK [7, 46]. 
Tumor-infiltrating Tregs have been shown to stim-
ulate mammary cancer metastasis through 
RANKL-RANK signaling [47]. RANKL treat-
ment enhances survival of mature dendritic cells 
(DCs) and triggers generation of proinflammatory 
cytokines (IL-1, IL-6, and IL-12) that can pro-
mote differentiation of CD4+ T cells into Th1 
cells, providing a major costimulatory factor for 
CD4+ T-cell responses [47]. RANK is also 
expressed on NK cells, playing an important role 
in immunosurveillance. RANKL/RANK is 
involved in crosstalk between the bone and the 
immune system. It stimulates osteoclasts to func-
tion as antigen-presenting cells, thereby activating 
CD4+ and CD8+ T cells. A similar phenomenon 
might also be present in the microenvironment of 
solid tumors [7]. The crosstalk of tumor cells with 
the immune system is not completely understood, 
but the impact of RANK- RANKL signaling on 
the tumor immune response is likely to be context 
specific [4]. Due to sequestering OPG by tumor 
cells or entrapment of OPG by the proteoglycans 
and glycosaminoglycans of the extracellular 
matrix, a microenvironment is created that facili-

tates the expansion of the tumor cells [48]. In 
addition, OPG can block TRAIL activity, thereby 
acting as an antiapoptotic and pro-proliferative 
stimulus for cancer cells [11, 21]. It has been 
shown that RANK/RANKL signaling can pro-
mote the initial stages of cancer development by 
inducing stemness and epithelial- mesenchymal 
transition [19]. RANKL (e.g., produced by osteo-
blasts or bone marrow stromal cells) attracts 
RANK-expressing cells and induces their migra-
tion by activation of specific signaling pathways, 
such as the MAP kinase pathway [44]. RANKL 
was also detected in endothelial cells and has been 
implicated in angiogenesis through Src and phos-
pholipase C-dependent mechanisms [2, 49].

3.6  RANKL Signaling Inhibition

The only commercially available inhibitor of 
RANKL is denosumab. This drug is a fully 
human monoclonal antibody that binds RANKL, 
thereby blocking its interaction with RANK [2, 
8]. Denosumab is approved by the Food and Drug 
Administration for the treatment of osteoporosis 
and giant cell tumor of the bone and for the pre-
vention and treatment of skeletal complications 
caused by bone metastases and lytic bone lesions 
in multiple myeloma [8].  The drug  has a well- 
known and acceptable toxicity profile [8]. It 
remains unclear whether RANK/RANKL inhibi-
tion with denosumab in patients with cancer has 
any effect beyond the bone. In a post hoc analysis 
of patients with non-small-cell carcinoma of the 
lung (NSCLC) that were included in a phase III 
randomized trial comparing zoledronic acid ver-
sus denosumab, a survival benefit was observed 
(HR 0.80; 95% CI 0.67–0.95, p = 0.01) for the 
patients treated in the denosumab arm [50]. There 
was no difference in the delay of bone events in 
both groups, and the beneficial effect of deno-
sumab could be observed in patients with visceral 
metastasis, as well as in patients with bone metas-
tasis only. However, the recent prospective 
SPLENDOUR trial could not show any improve-
ment in OS or PFS by adding denosumab to stan-
dard first-line therapy in patients with metastatic 
NSCLC [51].
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The effect of adjuvant denosumab in women 
with early breast cancer was recently studied in 
two large, multicenter, prospective, randomized 
trials [52, 53]. In the ABCSG-18 study, it was 
shown that disease-free survival was significantly 
better in the denosumab group [52]. This study 
compared placebo or denosumab 60 mg subcuta-
neously every 6 months for 5 years in 3425 post-
menopausal patients with hormone-sensitive 
early breast cancer treated with an aromatase 
inhibitor. In the DCARE study, which assessed 
4509 high-risk early breast cancer patients treated 
with standard therapy either with or without 
denosumab 120  mg SC every month (for 
6  months, then 3 monthly up to 5  years), no 
improvement in bone metastasis-free, disease- 
free, or overall survival was reported, even 
though there was an improvement in time to bone 
metastasis at site of first recurrence in the deno-
sumab group [53]. It is important to mention that 
most (95.9%) of these patients had received tax-
ane or anthracycline-based chemotherapy. This 
raises the hypothesis that chemotherapy may 
reduce some of the tumor suppressive effects of 
RANK/RANKL inhibition in the cancer micro-
environment. Other explanations may be the dif-
ferences in molecular characteristics of the 
tumors of these patient populations, or effects of 
the menopause and endocrine treatment on the 
tumor behavior. It is clear that more research is 
necessary to unravel the effect of denosumab on 
tumor behavior. In the D-BEYOND trial, the 
 biological effects of two neoadjuvant injections 
of 120  mg denosumab (1  week apart) in 27 
patients with premenopausal primary breast can-
cer were evaluated [54]. The authors concluded 
that 2 weeks of RANKL inhibition did not have 
an effect on the tumor proliferation rate, but sig-
nificantly increased the number of TILS in the 
tumor environment, making them theoretically 
more susceptible for immune therapy. Recently, 
some additional evidence emerged that RANK/
RANKL inhibition may have a role as immune 
modulator. In preclinical studies, RANKL block-
ade improves the efficacy of anti-CTLA-4- 
targeted antibodies in solid tumor models of 
metastasis [53]. Bakhru et  al. showed that anti-
bodies blocking RANKL and CTLA-4 cooperate 

to increase the frequency of tumor-infiltrating 
CD4+ T cells expressing cytolytic markers, 
thereby improving antimelanoma immunity [55]. 
Addition of RANKL blockade to anti-PD-1 and 
anti CTLA-4 resulted in superior tumor responses 
and was most effective if RANKL inhibition was 
given concurrent or following checkpoint block-
ade [54]. This triple combination therapy 
improved T-cell effector function in tumor bear-
ing mice by increasing the proportion of tumor- 
infiltrating CD4+ and CD8+ T cells that can 
produce both interferon gamma and TNF.  In 
2014, Smyth et al. described a case of a rapidly 
advancing metastatic melanoma with aggressive 
and symptomatic bone metastases requiring 
treatment with the anti-RANKL antibody deno-
sumab for palliation in a patient who was con-
comitantly treated with ipilimumab (an 
anti-CTLA-4 antibody) [56]. She had a spectacu-
lar partial response and was alive at 62 weeks. In 
a melanoma preclinical model, these authors 
could demonstrate that monoclonal antibodies 
(mAbs) directed to CTLA-4 or RANKL have 
modest antimetastatic activities in monotherapy, 
but when these drugs were combined at the time 
of intravenous melanoma inoculation, the devel-
opment of metastases was significantly reduced. 
Mechanistically, the combined effect of anti- 
CTLA- 4 and anti-RANKL depends on lympho-
cytes or natural killer cells. In a retrospective 
study, Afzal and Shirai evaluated the synergistic 
effect of immune checkpoint inhibitors and deno-
sumab in metastatic melanoma patients [57]. 
Eleven (29.72%) out of 37 patients were treated 
with immune checkpoint inhibitors and deno-
sumab, and the others only immune checkpoint 
inhibitors. The median progression-free and 
overall survival in the cohort having the combi-
nation treatment, respectively, was 11.6 and 
57 months compared with 4.15 and 22.8 months 
in the control group. Although there are potential 
confounders, this suggests that adding deno-
sumab to immune checkpoint inhibitors may 
have a beneficial effect on outcome. In a subse-
quent study, Ahern et al. assessed the efficacy of 
a combination of RANKL and CTLA-4 blockade 
by analysis of tumor-infiltrating lymphocytes, 
tumor growth, and metastasis in a model using a 
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variety of neutralizing antibodies and gene- 
targeted mice [58]. RANKL blockade improved 
the efficacy of anti-CTLA-4 mAbs against solid 
tumors and experimental metastases. Treg- 
depleting anti-CTLA-4 mAbs of the mouse 
IgG2a isotype showed the highest combinatorial 
activity. The optimal combination depended on 
the presence of activating Fc receptors and lym-
phocytes (particularly natural killer and CD8+ T 
cells), whereas anti-RANKL alone did not 
require Fc receptors. T-cell infiltration into solid 
tumors post anti-RANKL and anti-CTLA-4 was 
significantly higher, and this was accompanied 
by increased T-cell effector function. Several 
studies are currently ongoing, studying the effect 
of denosumab monotherapy and the combination 
of RANKL inhibition and immunotherapy [2, 7].

3.7  RANK/RANKL Signaling 
and Chemo- or Radiotherapy

The role of the RANK/RANKL signaling in drug 
resistance remains unclear. There is some in vitro 
evidence suggesting that RANK/RANKL signal-
ing can induce chemoresistance through the acti-
vation of multiple signal transduction pathways 
[59, 60]. However, in a mouse model, RANKL 
blockade increases the efficacy of cisplatin che-
motherapy [60]. At the moment, there are no 
objective data that RANK/RANKL signaling 
inhibition has an influence on the effectivity of 
chemotherapy or radiotherapy in humans [7].

3.8  Conclusion

The role of RANK/RANKL inhibition as an 
immunomodulatory strategy in combination with 
other treatment modalities should be further 
investigated. As denosumab has clear immune- 
stimulating effects and an interesting toxicity 
profile, the drug has an attractive potential to be 
coadministered with immunotherapies for cancer 
treatment, thereby reinforcing the antitumor 
immune response. Optimal dosage and sequenc-
ing of treatment with other drug combinations 
warrants further investigation.
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Abstract

Caveolin-1 (Cav-1), a major structural compo-
nent of cell membrane caveolae, is involved in 
a variety of intracellular signaling pathways as 
well as transmembrane transport. Cav-1, as a 
scaffolding protein, modulates signal trans-
duction associated with cell cycle progression, 
cellular senescence, cell proliferation and 
death, lipid homeostasis, etc. Cav-1 is also 
thought to regulate the expression or activity 
of oncoproteins, such as Src family kinases, 
H-Ras, protein kinase C, epidermal growth 
factor, extracellular signal-regulated kinase, 
and endothelial nitric oxide synthase. Because 
of its  frequent overexpression or mutation in 
various tumor tissues and cancer cell lines, 
Cav-1 has been speculated to play a role as 
an  oncoprotein  in cancer development and 

progression. In contrast, Cav-1 may also func-
tion as a tumor suppressor, depending on the 
type of cancer cells and/or surrounding 
 stromal cells in the tumor microenvironment 
as well as the stage of tumors.

Keywords
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4.1  Introduction

Caveolae represent a flask-shaped invagination 
of the plasma membrane that play a role in endo-
cytosis and forming vesicles in the cytoplasm. 
Caveolae are heterogeneous in normal and tumor 
cells, and they are most abundant in stromal cells, 
such as adipocytes, fibroblasts, vascular endothe-
lial cells, and smooth muscle cells [1, 2]. A family 
of integral membrane proteins, called caveolins, are 
the principal components of caveolae. Caveolins 
may act by compartmentalizing and concentrating 
signaling molecules and are involved in receptor-
independent endocytosis [3]. Caveolins have 
amino-terminal and carboxy- terminal domains 
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localized at the cytoplasmic face of the cell mem-
brane (Fig. 4.1a) [4]. Caveolins also contain the 
caveolin scaffolding domain required for binding 
to signaling proteins. Caveolins modulate func-
tions of several signaling molecules, such as Src, 
G-protein α-subunits, and H-Ras, involved in cell 
proliferation and growth (Fig. 4.1b) [5]. Caveolins 
consist of the three core members, Caveolin-1 
(Cav-1), Caveolin-2 (Cav-2), and Caveolin-3 
(Cav-3). Cav-1 is highly expressed in various 
cells, such as adipocytes, endothelial cells, fibro-

blasts, and smooth muscle cells. Cav-2 shares a 
similar expression profile with Cav-1, as it 
requires Cav-1 for stabilization. Cav-3 is pre-
dominantly expressed in muscle cells [6]. Cav-1 
and Cav-3 form homo-oligomers, and oligomer-
ization is essential for caveolae biogenesis. 
Ablation of Cav-1 and Cav-3 causes a deficiency 
of caveolae in various cell types [7, 8]. Besides 
formation of caveolae, caveolins have multiple 
cellular functions by interacting with signaling 
molecules, such as receptors, kinases, adhesion 

Fig. 4.1 Structures of caveolae and Cav-1. (a) The dia-
grams of caveolae and Cav-1. Cav-1 is inserted into the 
caveolar membrane, with the N- and C-termini facing the 
cytoplasm and an intramembrane domain embedded 
within the membrane bilayer. (b) The sequence of the 
caveolin-scaffolding domain (CSD; residues 82–102) and 
the caveolin binding sequence motifs within several 

caveolae- localized signaling molecules are shown. These 
include epidermal growth factor receptor (EGF-R), Src 
family tyrosine kinases, endothelial nitric oxide synthase 
(eNOS), G-protein α subunits (Gi2α), and PKC isoforms 
(PKCα). In most cases, such interaction is inhibitory, 
leading to inactivation of the signaling molecules and 
modulation of downstream signal transduction
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molecules, and G proteins. These include choles-
terol homeostasis, vesicle trafficking, and endo-
cytosis [9, 10]. Of three isoforms of caveolin 
family, Cav-1 is the principal structural compo-
nent of caveolae, and its expression is essential 
for driving  the formation of morphologically 
identifiable caveolae [10]. Cav-1, as a scaffolding 
protein, modulates multiple signal transduction 
pathways involved in cell cycle progression, cel-
lular senescence, cell proliferation and death, 
lipid homeostasis, etc.

Over the past years, there has been increasing 
concern about the involvement of Cav-1  in the 
development and pathogenesis of human cancer. 
Cav-1 regulates cancer cell metabolism, prolif-
eration, differentiation, resistance to apoptosis, 
survival, adhesion, migration, invasion, and 
metastasis [12–16]. On the other hand, Cav-1 can 
also act as a tumor suppressor in some circum-
stances in which its low expression favors tumor 
progression [17–20]. Besides epithelial Cav-1 in 
tumors, altered expression of stromal Cav-1  in 
the tumor microenvironment (TME) is observed 
in different types of human malignancies [12, 
14]. However, the clinical significance of 
Cav-1 in cancer is still elusive.

This review summarizes the differential roles 
for Cav-1  in tumor development, migration, 
metastasis, therapy resistance, and cancer cell 
survival.

4.2  Cav-1 Expression in Human 
Cancer

Cav-1 expression has been extensively examined 
in various tumor specimens from cancer patients 
as well as in human cancer cell lines [14–18]. In 
most studies, the association between Cav1 
expression levels and clinicopathological signifi-
cance in terms of prognosis, metastatic status, 
and/or tumor resistance has been analyzed [14–
18]. However, there is a contradictory profile of 
the Cav-1 expression in human cancer [19]. 
While some studies suggest the oncogenic func-
tion of Cav-1, loss or low expression of Cav-1 
has been associated with poor outcomes in vari-
ous tumor types. In other studies, however, there 

is no consistent change in Cav-1 expression 
between cancer cells and their normal adjacent 
cells. Therefore, the effects of Cav-1 expression 
on tumorigenicity and aggressiveness appear to 
vary widely among different cancer types [19].

4.2.1  Oncogenic Function

Cav-1 is frequently overexpressed or mutated in 
various tumor tissues and cancer cell lines. 
Aberrant upregulation of Cav-1 has been postu-
lated to favor cancer cell survival and growth. 
Cav-1 may function as an oncoprotein com-
monly associated with enhanced malignant 
behavior, such as metastasis [15, 16, 18] and 
therapy resistance [14, 15, 17]. The clinicopath-
ologic significance of upregulated Cav-1 is 
described below.

4.2.1.1  Role in Cancer Cell Invasiveness 
and Metastasis

In certain tumors, progression into a metastatic or 
drug-resistant form has been attributable to reex-
pression of Cav-1 [14–18]. Upregulation of 
Cav-1 is thought to contribute to cancer cell inva-
siveness and resistance to anoikis, properties that 
are essential for metastasis [20]. In non- neoplastic 
gastric mucosa, Cav-1 was not expressed in the 
epithelial compartment. However, the expression 
of Cav-1 was significantly correlated with cancer 
progression and poor prognosis in gastric cancer. 
This was associated with an advanced stage and 
lymph node metastasis [21].

Restoration of Cav-1 expression in lung ade-
nocarcinoma cells is sufficient to promote their 
filopodia formation, migration, and metastatic 
potential [22]. Recent studies have indicated that 
cell invasion during tumor progression may be 
critically dependent on the acquisition of 
epithelial- mesenchymal transition (EMT) fea-
tures. Multiple lines of evidence support that 
Cav-1 mediate the invasion and metastasis of 
cancer which are accompanied by EMT.  Thus, 
Cav-1 can promote bladder cancer metastasis by 
inducing EMT which is linked to activation of 
phosphatidylinositol 3-kinase-Akt and upregula-
tion of Slug expression [23]. Moreover, overex-
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pressed Cav-1 increased vimentin expression, but 
downregulated E-cadherin. This accompanied 
the change of EMT, resulting in the increased 
motility and invasiveness in hepatocellular carci-
noma [24]. The reduced levels of Cav-1  in 
hypoxia stimulate activation of epidermal growth 
factor receptor and consequently STAT3. This, in 
turn, results in the downregulation of E-cadherin 
and upregulation of mesenchymal markers, such 
as Slug, α-smooth muscle actin, N-cadherin, and 
vimentin, suggesting that Cav-1 can mediate the 
EMT and promote invasiveness in gastric cancer 
[24] (Fig. 4.2).

Matrix metalloproteins (MMPs) are a family 
of zinc-containing proteolytic enzymes that 
degrade various components of extracellular 
matrix [25]. The migration- and invasion- 
promoting effects of Cav-1 overexpression in 
hepatocellular carcinoma appear to be mediated 
by increasing secretion or expression of MMP-2, 
MMP-9, and MT1-MMP as well as inducing an 
EMT-like phenotype [26].

Rho-GTPases are involved in tumor metasta-
sis and invasion [27, 28]. Previous studies have 
indicated the role of Cav-1  in regulating the 
activity of Rho-GTPases in various metastatic 
cancers. The interaction between Cav-1 and Rho- 
GTPases promotes tumor metastasis, which 
depends on the elevated expression of α5-integrin 
and the enhanced activation of Src and Ras [29]. 
The acquisition of the metastatic phenotype 
requires adhesive interaction between cancer 
cells and the endothelium, in which focal adhe-
sion kinase (FAK) plays an essential role [30]. 
The expression of Cav-1 was positively corre-
lated with that of FAK in gastric cancer [21]. 
Rho/ROCK signaling promotes tumor cell migra-
tion and metastasis by regulating focal adhesion 
dynamics through Cav-1 phosphorylation at the 
tyrosine 14 residue [31]. Cav-1 tyrosine phos-
phorylation is dependent on Src kinase and Rho/
ROCK signaling. The phosphorylated Cav-1 sta-
bilizes FAK association with focal adhesion and 
promotes cell migration and invasion [31].

Acquisition of invasion
of phenotype

PRIMARY SITE

METASTATIC SITE

Endowing EMT

Invasive
phenotype EMT/MET state CSC-like traits Dormancy

Metastasis/
Tumorigenesis

Intravasation into
blood stream

Acquire CSC-like traits

Circulating tumor cells
transit to distant organ

Extravasation at
secondary site

Disseminated tumor
cells dormancy

Survival and growth of
metastatictumorEndowing MET

Fig. 4.2 Cancer cells within the primary tumor undergo 
EMT and acquire stem-like traits (CSCs) and endow inva-
sive capacity, then intravasate into the tumor vasculature 
in the form of circulating tumor cells (CTCs), which must 
be able to survive the circulating blood and evade from the 
innate immune response and other defenses. Once CTCs 
migrate to a secondary site, the settlement in supportive 
niches enables them to survive and retain their stem-like 

tumor-initiating capacity. In the target site, disseminated 
cancer cells (DTCs) encounter inhibitory signals resulted 
in the arrested in cell cycle subsequently leading to dor-
mancy from months to decades while they adapt to their 
new found microenvironment. Cancer cells undergo mes-
enchymal-to-epithelial transition (MET) in order to 
acquire feature proliferation to metastatic outgrowth in 
the target site
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4.2.1.2  Role in Therapy Resistance
Increased expression of Cav-1 can promote 
development of resistance to chemo- or radio-
therapy [14, 17]. In cisplatin-resistant ovarian 
cancer cells, both expression levels of Cav-1 and 
its mRNA transcript were significantly higher 
than those in normal ovarian cancer cells [32]. 
Knockdown of Cav-1 sensitized cisplatin- 
resistant ovarian cancer cells to apoptosis, which 
was attributable to downregulation of expression 
of Notch-1, p-Akt, and p-NF-κB/p65 [32].

4.2.1.3  Role in Cancer Stem Cells (CSCs)
CSCs represent an important subset of TME 
components. CSCs are responsible for tumor ini-
tiation, metastasis, and recurrence as well as 
resistance to chemo- and radiotherapy, which are 
associated with poor clinical outcomes. Because 
CSCs contribute to cancer development and pro-
gression, the presence of CSC population in pre-
cancerous stage is an early indicator of malignant 
progression. Some biological mediators (e.g., 
nitric oxide; NO) found in the TME could pro-
mote manifestation of CSC-like phenotypes of 
human nonsmall-cell lung carcinoma via Cav-1 
upregulation [33].

Our recent study revealed that Cav-1 expres-
sion is significantly lower in tumorspheres 
derived from human breast cancer 
(MDA-MB-231) cells than in adherent cells [34]. 
In line with this notion, silencing of Cav-1 
enhanced stemness of MDA-MB-231  cells as 
evidenced by the increased proportion of CD44high 
and CD24low cells. Notably, Src-mediated phos-
phorylation of Cav-1 at the Tyr 14 residue was 
found to be essential for its destabilization via the 
ubiquitin-proteasome degradation system which 
accounts for the reduced Cav-1 in a breast CSC- 
like state [34].

4.2.2  Tumor Suppressive Function

In some tissues, Cav-1 has been shown or specu-
lated to function as a tumor suppressor. Several 
studies have shown that Cav-1 inhibits colony 
formation and induces apoptosis in transformed 
cells and cancerous cells [35–37]. In addition, 

forced reexpression of Cav-1 abrogated 
anchorage- independent growth of transformed 
cells [35–39].

In human breast cancer, the Cav-1 has been 
considered a tumor suppressor gene associated 
with inhibition of tumor metastasis. Sagara and 
colleagues investigated the mRNA and protein 
expression levels of Cav-1 in 162 cases of breast 
cancer and found that the Cav-1 expression was 
suppressed at both transcriptional and transla-
tional levels in breast cancer tissues compared 
with the normal tissues [40]. In this study, the 
reduced Cav-1 mRNA level was significantly 
associated with an increased tumor size, and was 
correlated with hormonal receptor status [40]. 
Overexpressed Cav-1 reduced the invasion 
capacity of metastatic mammary tumor cells by 
inhibiting the activity of MMP-2 and MMP-9 
[41]. In normal breast, Cav-1 was found to be 
expressed in myoepithelial cells, endothelial 
cells, and a subset of fibroblasts. In contrast, 
luminal epithelial cells showed negligible stain-
ing [42].

Low levels of Cav-1 and its mRNA transcripts 
were detected in several colon carcinoma cell 
lines. Moreover, Cav-1 protein levels were mark-
edly lower in human colon tumor epithelium than 
in normal colon mucosa. Ectopic expression  of 
Cav-1  in the colon carcinoma cells attenuated 
tumor formation when these cells were inocu-
lated into nude mice [43]. Moreover, Cav-1 may 
function as a negative regulator of metastasis by 
inhibiting MT4-MMP expression in colon cancer 
[44]. Cav-1 is not expressed in lipid rafts of the 
highly metastatic colon cancer cell line, but 
expressed in cytosolic fractions of the parental 
lower metastatic cell line. Xenografting Cav-1 
deficient cells in nude mice induced development 
of bigger tumors expressing higher levels of pro-
liferating cell nuclear antigen than in mice 
injected with cells expressing the higher level of 
Cav-1 [45]. In another study, high Cav-1 expres-
sion correlated with good clinical outcomes in 
head and neck cancer and extrahepatic biliary 
carcinoma cells [46]. In mucoepidermoid carci-
noma of the salivary glands, reduced expression 
of Cav-1 was associated with a poor prognosis 
for some patients [45].
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Contrary to the previous report on the associa-
tion between Cav-1 and Rho-GTPases that pro-
motes tumor metastasis [29], Lin and colleague 
have reported that Cav-1 expression inhibits 
RhoC GTPase activation and subsequently acti-
vates the p38 mitogen-activated protein kinase, 
leading to suppression of migration and invasion 
of primary pancreatic cancer cells [47].

In in vivo experiments, Cav-1 knockout mice 
showed increased development or progression of 
some cancers. A novel mouse model of colorectal 
cancer was generated by crossing C57BL/6 
Apcmin/+ with B6129 Cav-1 knockout (Cav1−/−) 
mice. Absence of Cav-1 accelerated colorectal 
tumorigenesis in Apcmin/+ mice, which was 
accompanied by upregulation of Wnt signaling 
[48].

Cav-1 null mice are much more susceptible to 
chemically induced skin carcinogenesis as well 
as epidermal hyperplasia than wild-type litter-
mates [49]. In addition, cyclin D1 expression was 
upregulated during epidermal hyperplasia, which 
may account for the increased susceptibility of 
Cav-1 null mice to skin paillomagenesis [49]. 
Further, orthotopic implantation of B16F10 mel-
anoma cells in the skin of Cav-1 null mice 
increased tumor growth [50].

Lewis lung carcinoma cells implanted into 
Cav-1 knockout mice had increased tumor vascu-
lar permeability compared with tumors implanted 
into wild-type mice. Cav-1 deficient mice also 
had significantly higher tumor growth rates, and 
this  was  attributable to increased tumor angio-
genesis and decreased tumor cell death [51].

4.3  Stromal Versus Tumoral 
Cav-1 in TME

There has been increasing concern about the 
tumor-host interactions, which influence tumor 
growth, metastasis, therapy resistance, and cell 
survival. Understanding such tumor-stroma com-
munication interactions may hence offer a novel 
therapeutic strategy to avoid or minimize therapy 
resistance and improve clinical outcomes [14].

Multiple lines of compelling evidence support 
that the heterogeneous tumor stroma in TME 

contributes to manifestation of a malignant phe-
notype of epithelial tumors, tumor recurrence, 
metastasis, and therapy resistance, resulting in 
poor clinical outcome. In this context, Cav-1  in 
the stroma of TME is also likely to be an impor-
tant prognostic indicator of breast cancer [12, 
14]. An absence or reduced stromal Cav-1 expres-
sion accounts for poor clinical outcome or ther-
apy resistance in many different types of cancers 
[12, 13, 52–54].

4.3.1  Cav-1 in Cancer-Associated 
Fibroblasts

The stroma which constitutes at least half of the 
tumor mass consists of cancer-associated fibro-
blasts (CAFs), macrophages and other immune 
cells, and endothelial cells. Of the stromal cells, 
CAFs play a key role in tumor-stromal interac-
tion. Loss of Cav-1 expression in CAFs results in 
an activated TME, thereby driving early tumor 
recurrence, metastasis, and poor clinical outcome 
in various malignancies [12]. The loss of Cav-1 in 
fibroblasts is sufficient to induce a CAF pheno-
type. In addition to CAFs, metastasis-associated 
macrophages in TME also express abundant lev-
els of Cav-1, which is critical for metastasis and 
not for primary tumor growth [55]. The decreased 
expression of Cav-1 in CAFs resulted in a growth 
advantage and the chemoresistance of cancer 
cells when they were co-injected into immunode-
ficient mice to develop mixed fibroblast/cancer 
cell xenografts [56]. In this study, however, Cav-1 
downregulation in cancer cells had no effect on 
chemoresistance and growth gain in vivo. Thus, it 
is likely that relative expression of tumor vs. stro-
mal Cav-1 in TME has more precise prognostic 
significance than that of each alone. In this con-
text, it is interesting to note that low expression of 
stromal Cav-1 was negatively associated with 
cytoplasmic Cav-1 expression in total tumor tis-
sues [57]. As the colon tumor becomes more 
aggressive and metastatic, it  looses the stromal 
Cav-1 and gains the cellular Cav-1 as well as the 
abnormal β-catenin expression [58]. In line with 
this notion,  the high tumor/low stromal expres-
sion of Cav-1 was closely associated with poor 
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prognostic outcomes in primary human pros-
tate cancer patients [59].

Sotgia and colleagues have proposed para-
crine signaling mechanisms by which the loss of 
stromal Cav-1 promotes tumor progression to 
fuel the growth of adjacent tumor cells [12]. It 
appears that oxidative stress is the root cause of 
initiation of the loss of stromal Cav-1 via autoph-
agy [12]. It is noteworthy that loss of stromal 
Cav-1 correlates with high epithelial Cav-1 levels 
and activated Akt [60]. Low stromal expression 
of Cav-1 increased TGF-β1 expression and 
induced phosphorylation and activation of Akt in 
human dermal fibroblasts [61].

Though the majority of studies suggest stro-
mal Cav-1, especially of CAF origin, has tumor 
suppressive functions, Cav-1 expression of CAFs 
has been shown to be associated with patients’ 
poor prognosis [62, 63]. Moreover, tumors with 
Cav-1-positive CAFs had vascular and pleural 
invasion significantly more frequently than those 
with Cav-1-negative CAF [64].

4.3.2  Cav-1 in Other Stromal Cells

Besides CAFs, Cav-1 may also functions in some 
other stromal cells in TME. Cav-1 is abundant in 
endothelial cells, adipocytes, and smooth muscle 
cells as well as in fibroblasts and epithelial cells. 
Several studies have suggested that Cav-1 may 
function in the main types of vascular cells in 
TME [51, 65–67], including pericytes, endothe-
lial cells, and smooth muscle cells which are 
associated with vascular permeability and mor-
phogenesis in tumor. Endothelial cells play a cen-
tral role in angiogenesis, a process by which new 
vasculature is derived from preexisting blood 
vessels. Several studies have proposed a role for 
Cav-1 in the regulation of vascular development 
and angiogenesis [51, 65–67].

Under physiological condition, the main func-
tion of Cav-1 is to inhibit endothelial permeabil-
ity. Cav-1 knockout mice were observed to 
exhibit a hyperpermeable vascular endothelium 
[66].  Likewise, tumors grown in Cav1−/− mice 
became leaky as evidenced by increased tumor 
vascular permeability, and grew faster, compared 

with tumors implanted into wild-type mice [51]. 
Cav-1 deficient  mice also displayed  elevated 
tumor angiogenesis and decreased tumor cell 
death, which may account for significantly higher 
tumor growth rates [51]. As Cav-1 is an endoge-
nous inhibitor of endothelial NO synthase 
(eNOS), the loss of Cav-1 may result in hyperac-
tivation of eNOS, and resultant NO overproduc-
tion is speculated to increase tumor vascular 
permeability, survival, and ultimately tumor 
growth [51]. Besides inhibition of endothelial 
NO production, there might be an alternative 
mechanism by which Cav-1 modulates the micro-
vascular permeability and angiogenesis. Cav-1 
has been found to interact with many intracellular 
signaling molecules including receptors, thereby 
altering their activity.  For instance, Cav-1 sup-
presses  vascular endothelial cell growth factor 
receptor (VEGFR)-2 signaling by inhibiting tyro-
sine phosphorylation of this receptor mediated 
by adherens junction protein, VE cadherin [51]. 
Therefore, the enhanced tumor permeability and 
growth as a consequence of loss of Cav-1 may be 
attributed to augmented proangiogenic signaling 
through inhibition of phosphorylation-dependent 
VEGFR-2 activation [51].

Soon after microvessels are formed, they 
come in close contact with mural cells of the 
smooth muscle cell lineage, referred to as peri-
cytes or vascular smooth muscle cells. Such asso-
ciation of pericites (smooth muscle cells) with 
endothelial cells lining newly formed blood ves-
sels is essential for vascular development and sta-
bility [68]. Cav-1 was found to be enriched in the 
lipid raft fraction of pericytes [69]. Cav-1 
impaired the migration of pericytes [66]. 
Therefore, a decrease in Cav-1 abundance 
appears to stimulate the angiogenesis and prevent 
its termination by mural cell recruitment [66]. In 
another study, a cell-permeable peptide derived 
from the Cav-1 scaffolding domain inhibited the 
proliferation of pericytes, but not their survival or 
migration [67].

There is paucity of information on the role of 
Cav-1, derived from other stromal cells of TME, 
in cancer development and progression. Cav-1 
promotes differentiation of monocytes to mac-
rophages [70]. Downregulated Cav-1 expres-
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sion in circulating monocytes has been 
implicated in the pathogenesis of psoriasis [71]. 
However, the functional role of Cav-1 in stromal 
macrophages in TME has been poorly under-
stood. It has been reported that Cav-1 functions 
as an anti- metastatic regulator in mouse models 
of lung and breast cancer pulmonary metastasis 
[54]. Among all the recruited inflammatory cell 
populations, metastasis- associated macrophages 
(MAMs) uniquely express high levels of Cav-1. 
Loss of Cav-1 did not affect MAM recruitment 
to the metastatic site, but rather favored lung 
metastatic growth through increased angiogen-
esis [54].

4.4  Role of Cav-1 in the Cancer 
Cell Metabolism 
and Metabolic 
Reprogramming 
of the Tumor Stroma

Recent studies have highlighted the importance 
of Cav-1, especially of stromal origin, in meta-
bolic alterations in cancer cells in relation to their 
survival advantage. Cav-1 influences tumor 
development or progression by modulating such 
metabolic pathways as glycolysis, mitochondrial 
bioenergetics, glutaminolysis, fatty acid metabo-
lism, etc. [13]. Catabolic CAFs represent a key 
metabolic “fuel source,” required for cancer cell 
propagation, survival, and systemic dissemina-
tion during metastasis [52]. A loss of Cav-1 has 
been shown to drive the metabolic reprogram-
ming of stromal cells to support the growth of 
adjacent epithelial tumor cells. Stromal cells 
could function as providers of energy metabolites 
for tumor cells by undergoing the “reverse 
Warburg effect” [53]. The interaction between 
the tumoral microvesicles (TMVs) and stroma in 
the tumor microenvironment plays a critical role 
in facilitating cancer progression. After being 
incubated with tumoral microvesicles, normal 
human gingival fibroblasts acquired a phenotype 
switch to CAFs which was accompanied by deg-
radation of Cav-1 [72]. Notably, Cav-1-deficient 
CAFs undergo autophagy to secrete energy-rich 
metabolites and chemical building blocks that 

can sustain and support the growth of tumor 
cells [12].

Some studies also revealed the critical role of 
oxidative stress in a loss of stromal Cav-1 and the 
metabolic reprogramming of CAFs [73]. 
Although Cav-1 loss is caused by elevated ROS 
levels, Cav-1 downregulation may result in 
increased oxidative stress, which represents a 
feed-forward mechanism [12]. Oncogenes drive 
the onset of the CAF phenotype in adjacent nor-
mal fibroblasts by provoking  oxidative stress. 
This oncogene-triggered fibroblast activation is 
“mirrored” by a loss of stromal Cav-1. These 
fibroblasts exhibit elevated ROS production and 
elevated glucose uptake, indicative of a shift 
toward a glycolytic metabolism [52].

4.5  Conclusion

As a main component of caveolae, Cav-1 is 
involved in many biological processes that 
include substance uptake and transmembrane 
signaling. In addition, Cav-1 can modulate can-
cer cell proliferation, differentiation, migration, 
invasion, metastasis, and resistance to anticancer 
therapy.

Although the role of Cav-1  in cancer is still 
elusive, the majority of reports suggest that Cav-1 
represents an important prognostic marker of 
tumor development and progression, and inde-
pendently serves as a predictor of overall survival 
rate. In addition, through interaction with other 
biological molecules, Cav-1 modulates stem-like 
traits. On the other hand, a functional loss of 
Cav-1 in several tumor cells induces a hyperpro-
liferative state, promoting cell proliferation, sur-
vival, and invasiveness as well as acquisition of 
resistance to cancer therapy [14].

Based on these findings, the roles for Cav-1 in 
human cancer and its suitability as a prognostic 
marker are controversial. Cav-1 is likely to func-
tion both as a tumor suppressor and as an oncop-
rotein, depending on the stage of neoplastic 
transformation and extent of tumor progression 
(Fig. 4.3). Though Cav-1 appears to be downreg-
ulated in early transformed cells, a reexpression 
or rather upregulation and stabilization through 
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phosphorylation of Cav-1, in later tumor stages, 
may confer invasiveness, resistance, and survival 
advantage of multidrug-resistant tumor cells [14].

The differential effects of Cav-1  in tumor 
development and progression may be related to a 
different profile of TME components involved in 
each stage of cancer, particularly in the context of 
tumor vs. stromal form of Cav-1. Loss of stromal 
Cav-1  in TME has been frequently associated 
with poor patient outcomes in diverse malignan-
cies. A characteristic shift in stromal-epithelial 
Cav-1  in advanced and metastatic tumor stages 
with a loss of stromal Cav-1 and a concomitant 
increase in expression of epithelial isoform high-
lights Cav-1 as being a tissue and stage-specific 
tumor modulator [14]. A molecular mechanism 
by which Cav-1 expression is upregulated/
restored in more advanced stages of cancer and 
how Cav-1 deficient CAFs promote this process 
merit further investigation. Identification and 
characterization of CAF-derived signaling mole-
cules that mediate the shift in stromal-tumor 
Cav-1 accumulation during cancer progression 

will be of particular interest. Another interesting 
research subject would be  elucidation of how 
metabolic reprogramming of Cav-1 deficient 
CAFs by CAF-addicted cancer cells is achieved.

Further studies are required to unveil the clini-
cal value of Cav-1 as a prognostic marker and a 
candidate target for cancer therapy.
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Abstract

Neuroblastoma is a solid tumor (a lump or 
mass), often found in the small glands on top 
of the kidneys, and most commonly affects 
infants and young children. Among neuroblas-
tomas, high-risk neuroblastomas are very 
aggressive and resistant to most kinds of 
intensive treatment. Immunotherapy, which 
uses the immune system to fight against can-
cer, has shown great promise in treating many 
types of cancer. However, high-risk neuro-
blastoma is often resistant to this approach as 
well. Recent studies revealed that small vesi-
cles known as exosomes, which are envelopes, 
could deliver a cargo of small RNA molecules 
and provide communication between neuro-

blastoma cells and the surrounding cells and 
trigger metastasis and resistance to immuno-
therapy. In this chapter, we describe the role of 
exosomes and small RNA molecules in the 
metastasis and regression of neuroblastoma 
and the potential therapeutic approaches to 
combat this menace.
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Abbreviations

3′-UTR  Three prime untranslated region
ADCC  Antibody-dependent cell 

cytotoxicity
AURKA Aurora kinase A
EFS Event-free survival
ESCRT Endosomal-sorting complex required 

for transport
GD2 Disialoganglioside
IL-15 Interleukin-15
IL-2 Interleukin-2
ILV Intraluminal vesicle
MAb  Monoclonal antibody
miRNA MicroRNA
mRNA Messenger RNA
MSCs Mesenchymal stem/stromal cells
MVBs  Multivesicular bodies
MYCN  v-myc myelocytomatosis viral- 

related oncogene, 
neuroblastoma-derived

NEDD4 Neuronal precursor cell-expressed 
developmentally downregulated 4

NF-κB Nuclear factor-kappa B
NK  Natural killer
PCR Polymerase chain reaction
PNTs  Peripheral neuroblastic tumors
RNA  Ribonucleic acid
TERF1 Telomeric repeat-binding factor 1
TGFβ 1 Transforming growth factor beta 1
TGFβR1 Transforming growth factor beta 

receptor 1
TGFβR2 Transforming growth factor beta 

receptor 2
TLR8  Toll-like receptor 8

5.1  Neuroblastoma

Neuroblastoma is an embryonal tumor of the 
autonomic nervous system. This means that the 
origin of a cell is preceded to be developing 
immaturely in the neural-crest tissues [26, 29]. 
Neuroblastoma is the most common solid tumor 
found in infants and children. They account for 
almost 8–10% of all childhood tumors. The 
median age of diagnosis with neuroblastoma is 

17 months [22]. Almost 15% of all deaths that are 
related to this cancer are in pediatrics [26, 29]. 
Almost 500 new cases are reported every year 
[26, 29]. 90% of cases are usually diagnosed 
before the age of five, and 30% of those are 
within the first year of life [11]. Neuroblastoma 
has been found to be more prevalent in males 
compared to females [26, 29], and the occurrence 
of neuroblastoma is unusual in adolescents and 
adults. 95% of all neuroblastomas occur in chil-
dren under five years of age [11]. However, cases 
have been detected pre-birth, during an ultra-
sound examination. Many patients diagnosed 
with neuroblastoma have shown to undergo 
immense relapse of neuroblastoma. In infants, 
the prognosis is very good, while it is somewhat 
at a disadvantage in older children. The patient 
outcome with the diagnosis of neuroblastoma has 
improved over the last 30 years. The 5-year sur-
vival rates in low- and medium-risk patients vary 
from 52% to 74% [26]. There is a prediction that 
around 50–60% of patients diagnosed with high- 
risk neuroblastoma will relapse [26]. The tumors 
begin in tissues of the sympathetic nervous sys-
tem. This may cause a mass in the neck, chest, 
abdomen, or pelvis. A mass can either cause no 
symptoms or may progress into a tumor that 
causes severe illness. The diagnosis of neuroblas-
toma is 10.2 cases per million children under 
15 years of age, and it is the most common cancer 
diagnosed during the first year of life [21, 26].

5.2  Exosomes

Exosomes are small extracellular vesicles 
secreted from cells and have lately attracted the 
attention of researchers worldwide owing to their 
critical role in intercellular signaling and disease. 
These are nanoparticles ranging from approxi-
mately 30–100  nm in size [41]. Exosomes are 
released out of the cell into the extracellular sur-
rounding after multivesicular bodies (MVBs) 
fuse with the cellular membrane. All biological 
fluids tested have been shown to contain vesicles, 
including in  vitro grown cell lines, which have 
also been shown to release vesicles to different 
extents. Canonical exosomes display a particular 
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biconcave or cup-like shape when produced by 
artificially drying during preparation, while they 
appear spheroid in solution under a transmission 
electron microscope [31]. Typically, they have a 
density range from 1.13  g/mL (B cell-derived 
exosomes) [31] up to 1.19 g/mL (epithelial cell- 
derived exosomes) [31] on sucrose gradients.

Exosome biogenesis begins within the endo-
somal system. The early endosomes grow into 
multivesicular bodies (MVBs). During this pro-
cess, the endosomal membrane encloses to gen-
erate intraluminal vesicles (ILVs) in the lumen of 
the organelles [15, 21]. The protein sorting of 
ILVs is a highly regulated mechanism that is 
dependent on the endosomal sorting complex 
required for transport (ESCRT) machinery [24] 
or ESCRT-independent mechanism [16]. Both 
pathways are not entirely separated. ESCRT has 
four different protein complexes: ESCRT-0, 
ESCRT-1, ESCRT-2, and ESCRT-3 [32].

The ESCRT mechanism is initiated by recog-
nition and sequestration of ubiquitinated proteins 
to specific domains of the endosomal membrane 
via ubiquitin binding subunits of ESCRT-0. After 
interaction with ESCRT-I and -II complexes, the 
total complex will then combine with ESCRT-III, 
a protein complex that is involved in promoting 
the budding processes. Finally, following cleav-
ing the buds to form ILVs, the ESCRT-III com-
plex separates from the MVB membrane with 
energy supplied by the sorting protein Vps4 [32]. 
Despite the controversy of whether exosome 
release is an ESCRT-regulated mechanism, dif-
ferent ESCRT components and ubiquitinated 
proteins have already been identified in exosomes 
isolated from various cell types. Additionally, the 
typical exosomal protein Alix, which is associ-
ated with several ESCRT (TSG101 and CHMP4) 
proteins, has been reported to participate in endo-
somal membrane budding and abscission, as well 
as exosomal cargo selection via interaction with 
syntenin [32]. These observations led to a hypoth-
esis implicating ESCRT function in exosomal 
biogenesis. ESCRT-independent manner depends 
on raft-based microdomains for the lateral segre-
gation of cargo within the endosomal membrane. 
These microdomains are thought to be highly 
enriched in sphingomyelinases, from which 

ceramides can be formed by hydrolytic removal 
of the phosphocholine moiety [32]. Ceramides 
are known to induce lateral phase separation and 
coalescence of microdomains in model mem-
branes. Moreover, the cone-shaped structure of 
ceramide might cause a spontaneous negative 
curvature of the endosomal membrane, thereby 
promoting domain-induced budding.

Consequently, this ceramide-dependent mech-
anism emphasizes the key role of exosomal lipids 
in exosome biogenesis [32]. Proteins, such as tet-
raspanins, also participate in exosome biogenesis 
and protein loading. Tetraspanin-enriched micro-
domains (TEMs) are ubiquitous specialized 
membrane platforms for compartmentalization 
of receptors and signaling proteins in the plasma 
membrane [32]. It has been shown that TEMs, 
together with tetraspanin CD81, plays a key role 
in sorting target receptors and intracellular com-
ponents toward exosomes [32]. Exosomes play a 
critical role in physiological and pathological set-
tings, strategies that interfere with the release of 
exosomes; and the impairment of exosome- 
mediated cell-to-cell communication could 
potentially be used in the future [32]. The general 
structure of the exosome molecule is given in 
Fig. 5.1.

Fig. 5.1 General structure of exosome molecule
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5.3  Neuroblastoma 
and Exosomes

The majority of neuroblastoma deaths occur 
within two years of diagnosis due to the aggres-
siveness of the cancer. Exosomes are released by 
many cell types and transfer their molecular 
cargo to the target cells, thereby modulating the 
signaling pathways in the recipient cells. 
Fibroblasts, endothelial cells, and infiltrating 
immune cells are the major cell types within a 
tumor microenvironment that interacts with 
tumor cells by exosome signaling [7]. The conse-
quences of these interactions depend on the ori-
gin of the exosomes determining the exosome 
cargo. Stressful conditions such as hypoxia, star-
vation, and acidosis increase exosome release 
from malignant cells leading to tumor microenvi-
ronment alteration and expansion, which subse-
quently results in tumor progression. Several 
pieces of evidence show that the major mecha-
nism involved in tumor progression is the role of 
tumor-derived exosomes in cellular communica-
tion. Cancer cell-derived exosomes operate 
numerous functions. These include angiogenesis, 
anti-tumor immune responses, and metastatic 
ability, whereas the non-cancer cell-derived exo-

somes function by promoting the inhibition of 
malignant cells [5, 25, 27]. A transmission elec-
tron microscopy image of the exosome, showing 
95-nm size, enclosed by a lipid bilayer, isolated 
from neuroblastoma (CHLA-255) cell culture 
supernatant is given in Fig. 5.2.

Nearly 20–30% of neuroblastoma cases are 
associated with the amplification of N-Myc 
oncogene, which  are  considered as high risk. 
Even though it is known that exosomes secreted 
from N-Myc-amplified neuroblastoma cells con-
tain a tumor-specific signature, it is not known 
whether exosomes derived from N-Myc- 
amplified neuroblastoma cells can transfer the 
aggressive phenotype including chemoresistance 
between the cells. To test this, exosomes were 
isolated from derived N-Myc-amplified cancer 
cells and added to the non-Myc-amplified cell 
culture, and their properties studied. Addition of 
exosomes to the non-N-Myc-amplified cells 
induced migration, colony-forming abilities, and 
protected the cells against doxorubicin-induced 
apoptosis. This suggests that exosomes derived 
from N-Myc-amplified cancer cells can transfer 
the aggressive phenotype to the neighboring 
cells, thereby aiding in cancer progression. 
Proteomic analysis of N-Myc-amplified cancer 
cell exosomes showed enrichment of TGS101, 
FlOT1, and VPS35. In addition, exosomes of 
N-Myc-amplified cells are also enriched in sig-
naling proteins such as NEDD4, β-catenin, and 
RhoA [10, 14].

In addition to proteins, exosomes carry vari-
ous molecules, including mRNAs, DNA, and 
microRNAs (miRNAs). MiRNAs play a signifi-
cant role in the regulation of genes. MiRNAs 
work by inhibiting the translation of messenger- 
RNAs (mRNAs) or inducing mRNA breakdown 
by binding to the 3′-untranslated region (UTR) of 
the mRNAs [6]. The primary function of the 
miRNAs is the downregulation of gene expres-
sion. Recent studies on NB cell line exosomes 
explored the several miRNAs in them, and func-
tional studies of these miRNAs revealed their 
profound influence on the target cells. 
Challagundla et al. purified exosomes from neu-
roblastoma cell lines (SK-N-B(E)2, CHLA-255, 
and IMR-32) and quantified the content of miR- 

Fig. 5.2 A transmission electron microscopy image of 
the exosome, showing 95-nm size, enclosed by a lipid 
bilayer, isolated from neuroblastoma (CHLA-255) cell 
culture supernatant. Scale: 100 nm
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21, miR-29a, and miR-155 by quantitative real- 
time PCR.  Among these miRs, miR-21 and 
miR-29a are implicated in inflammatory reac-
tions in lung cancer; miR-155 is induced during 
macrophage inflammatory response. In NBL cell 
line exosomes, miR-21P has been shown to be 
the top represented miRNA [7]. Monocytes on 
co-culture with the neuroblastoma cell lines 
revealed that miR-21 is transferred to human 
monocytes through exosomes. In monocytes, 
miR-21 induces upregulation of miR-155 levels 
in a Toll-like receptor-8 (TLR8)-dependent man-
ner, and miR-155 is transferred from monocytes 
to neuroblastoma cells through exocytic vesicles. 
Exosomal targeting of miR-155 in NBL cell lines 
leads to the downregulation of TERF1 mRNA, an 
inhibitor of telomerase, thereby leading to 
increased telomerase activity. Higher telomerase 
activity is commonly associated with chemother-
apy resistance in neuroblastoma patients through 
a novel exosomic miR-21/TLR8-NF-κB/miR- 
155/TERF1 signaling pathway [7]. The func-
tional transfer of exosomal miRNAs from 
neuroblastoma cell to the surrounding monocyte 

and the development of chemotherapy resistance 
are given in Fig. 5.3.

Pericytes are a type of fibroblast-like cells, 
capable of tumor homing and constitute one of 
the main components of the tumor microenviron-
ment. Pericytes were first named as adventitial 
cells by Rouget in the nineteenth century and 
named as pericyte by Zimmermann in 1923. 
Pericytes are located within the basement mem-
brane of the on-blood vessel walls, thus regulat-
ing blood flow, blood vessel permeability, and 
stabilization of the vascular wall. However, how 
many types of pericytes present and their role on 
the development of angiogenesis are not known 
until Birbrair et  al. discovered a mechanistic 
approach in 2014 using a series of in vitro and 
in vivo experimentation involving a double trans-
genic Nestin-GFP/NG2-DsRed mice [4]. The 
authors identified two pericyte populations: type 
1 pericytes expressing Nestin-GFP(-)/NG2- 
DsRed(+)] and type 2 pericytes expressing 
Nestin-GFP(+)/NG2-DsRed(+). These pericyte 
populations were functionally characterized 
using several in vitro assays and confirmed that 
type 2 pericytes, but not type 1, exhibit angio-

Fig. 5.3 A model depicting the transfer of exosomal miRNAs from neuroblastoma cell to the surrounding monocyte 
and the development of chemotherapy resistance
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genic potential and were recruited during tumor 
angiogenesis, raising more questions on the 
potential role of exosomes secreted from peri-
cytes within the tumor microenvironment [4].

In neuroblastoma, cancer cells modulate the 
tumor microenvironment and play a role in 
immune escape mechanisms and drug resistance. 
Neviani et  al. have shown that interleukin-15 
(IL-15)-activated natural killer (NK) cells secrete 
exosomes, which exhibit cytotoxicity against 
MYCN-amplified neuroblastoma cells. The cyto-
toxic potential of these exosomes was partly 
dependent upon the expression of miR-186. 
Interestingly, authors have shown that miR-186 
has been shown to be downregulated in high-risk 
neuroblastoma patients, and its lower levels are a 
poor prognostic factor. MiR-186 ectopic expres-
sion has been shown to downregulate the expres-
sion of neuroblastoma oncogenes  – MYCN, 
AURKA, TGFβR1, and TGFβR2. In addition, 
ectopic expression of miR-186  in MYCN- 
amplified neuroblastoma cell lines inhibits its 
growth and migration. Targeted delivery of miR- 
186 to MYCN-amplified neuroblastoma or NK 
cells resulted in inhibition of neuroblastoma 
tumorigenic potential and prevented the TGFβ1- 
dependent inhibition of NK cells. Neviani et al. 
have shown targeted delivery of miR-186 in high- 
risk neuroblastoma is practicable and may lead to 
an inhibition of tumor growth and spreading [28]. 
The discovery that NK exosomes are cytotoxic 
and have their own killing ability even in an 
immunosuppressive microenvironment supports 
the belief of including ex vivo derived NK exo-
somes as a potential future benefit alongside the 
NK cell-based immunotherapy [28]. A schematic 
model of releasing exosomes into extracellular 
space is given in Fig. 5.4.

Most of the studies on exosomes’ role in neu-
roblastoma are based on cell culture experiments, 
but studies on human neuroblastoma patient exo-
somes were lacking. To investigate the functions 
of tumor-derived exosomal miRNAs in neuro-
blastoma patients in progression and migration of 
neuroblastoma cells, Ma et  al. utilized plasma- 
derived exosomes and carried out differential 
exosomal miRNA expression profiles [23]. Ma 
et  al. identified that the expression of 

hsa-miR199a-3p is significantly upregulated, and 
strongly correlates with the severity in neuroblas-
toma patients. Exosomal hsa-miR199a-3p pro-
motes tumor proliferation and migration via 
decreasing neuronal precursor cell-expressed 
developmentally downregulated 4 (NEDD4) 
expression in neuroblastoma. Ma et  al. have 
shown that hsa-miR199a-3p may inhibit NEDD4 
expression by binding to the 366–373 site of the 
3′-UTR of NEDD4 mRNA in neuroblastoma 
cells, thereby miR-199a-3p promotes prolifera-
tion and facilitates migration of NB cells by regu-
lating NEDD4 expression [23]. This work has 
shown that exosomal hsa-miR-199a-3p can be 
utilized as a fast, easy, and non-invasive detection 
biomarker and contribute to the development of 
novel therapeutic strategies for neuroblastoma in 
the future. Thus, the content analysis of the exo-
somes reveals their function in tumor microenvi-
ronment progression in malignancies, and this 
will further lead to developing more efficient 
micro vesicle-based strategies for cancer progno-
sis and therapy.

5.4  Treatment Options 
for Neuroblastoma

Treatment for neuroblastoma depends on the 
classification of the tumor. There are three broad 
categories: Low-risk, intermediate-risk, and 
high-risk [7–9]. Low-risk patients include those 
with localized tumors and tumors that show char-
acteristics that indicate the tumor is not likely to 
come back. Low-risk patients are subject to mini-
mal treatment or none at all [9]. Surgery may be 
the best option for these patients if the tumor is 
small enough to remove easily. Chemotherapy 
may be used as a treatment post-surgery, but most 
often, the patients are monitored for recurrence 
[9]. Chemotherapy used in low-risk patients 
includes a mixture of carboplatin, cyclophospha-
mide, doxorubicin, and etoposide most often [9]. 
Infants with very small tumors are usually moni-
tored because these tumors are likely to disappear 
on their own without treatment [9].

Patients are classified as having intermediate 
risk if the tumor shows different characteristics, 
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if the tumor is too large to fully resect, or if the 
tumor is causing damage to other organs [3]. 
These patients are given cycles of chemotherapy 
to initially shrink the size of the tumor. The 
amount of cycles depends on the size and severity 
of the tumor [3]. The typical combination of che-
motherapy in this group is similar to low-risk 
patients. Carboplatin, cyclophosphamide, doxo-
rubicin, and etoposide are generally used [30]. 
Once the tumor size has been decreased, surgery 
is the next step. In some cases, surgery is done 
prior to chemotherapy, to target the remaining 
tumor not resected in surgery [30]. Radiation is 
rarely used in the intermediate-risk group [3].

High-risk neuroblastoma patients have char-
acteristics of metastasis or aggressive features of 
cancer cells [12, 17]. There are many ways to 
treat this category of neuroblastoma, and the 
most effective way has yet to be determined [12, 
17]. The most common protocols include multi-
ple phases of treatment: induction, surgery, con-
solidation, and maintenance [12, 17]. The 

induction phase focuses on reducing the size of 
the tumor and removing as much of the tumor as 
it is able in a quick manner [12, 17]. High dos-
ages of chemotherapy are used, and the most 
common medications include cisplatin, etopo-
side, vincristine, cyclophosphamide, doxorubi-
cin, and topotecan in a variety of alternating 
combinations [35]. Surgery is performed next to 
remove large amounts of the tumor [35]. After 
the surgery is performed, the next round of treat-
ment begins to eliminate the body of any remain-
ing cancer cells. Consolidation involves both 
chemotherapy and stem cell transplants. Research 
has shown that patients who are given high-dose 
chemotherapy followed by a stem cell transplant, 
have better results than straight chemotherapy 
[34, 35]. Stem cell transplant is autologous, so 
stem cells are harvested during the induction 
phase of therapy [34]. Also, stem cell transplants 
given back to back have shown promising results 
[34]. Once chemotherapy and the stem cell trans-
plant are complete, radiation is done to the pri-

Fig. 5.4 A schematic model showing the release of exosomes into extracellular space
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mary tumor site as well as any places of previous 
metastasis [35]. This ensures any left behind rem-
nants are eliminated. The final phase in the treat-
ment is maintenance, which is performed to 
prevent patients from relapse [35]. Treatments in 
this phase include medications to stimulate the 
immune system or to mature tumor cells [35]. 
Retinoid therapy using 13-cis-retinoic acid 
(isotretinoin) is most common, along with other 
immunotherapies [35]. Retinoid therapy causes 
cancer cells to differentiate into mature cells. 
Maintenance includes heavy monitoring of tumor 
relapse. Relapse occurs in approximately 50% of 
high-risk patients and 5–15% in low- and 
intermediate- risk patients. Normally, relapse 
occurs within the first few years after the initial 
treatment [35].

5.5  Neuroblastoma 
and Immunotherapy

Several studies have shown that the neuroblas-
toma microenvironment is immunosuppressive 
and tumor growth promoting. In recent times, 
many strategies are devised and tested to over-
come this, and they are being developed to pro-
mote anti-tumor immunotherapy. The 
understanding of the biology of immunotherapy 
of neuroblastoma has increased a lot over the past 
40 years [7, 8, 33]. Monoclonal antibody (MAb)-
based immunotherapy, along with the discoveries 
in immune biology, has revolutionized the immu-
notherapeutic field to design more effective ther-
apies for the treatment of high-risk neuroblastoma. 
These will be combined with new cytotoxic drugs 
and radiation therapies to improve survival and 
quality of life for patients with high-risk neuro-
blastoma [7, 8, 33].

Current therapy options for neuroblastoma are 
separated into three sections: induction, consoli-
dation, and post-consolidation or maintenance 
therapy [33]. Treatment includes chemotherapy, 
surgical resection, and high-dose chemotherapy. 
Also included are stem cell rescue, radiation ther-
apy, immunotherapy, and isotretinoin. The cur-

rent treatment lasts approximately 18  months. 
The induction phase includes chemotherapy, 
stem cell collection, and surgery. The consolida-
tion phase includes high dosages of chemother-
apy and radiation therapy. The maintenance 
phase includes immunotherapy and retinoid 
therapy.

In immunotherapy, the patient’s immune cells 
are used to recognize and destroy cancer cells. 
Monoclonal antibodies are used to recognize and 
attack a very particular neuroblastoma target cell 
[30]. Anti-GD2 (disialoganglioside) mAbs are a 
part of standard immunotherapy for high-risk 
neuroblastoma [38]. Dinutuximab (Unituxin) is a 
humanized monoclonal antibody that recognizes 
and binds to GD2 on neuroblastoma membranes; 
these antibodies in turn bind to Fc-receptors on 
the surface of granulocytes and NK cells and 
eliminate neuroblastoma cells through antibody-
dependent cell cytotoxicity (ADCC) and cell-
mediated toxicity. Dinutuximab is administered 
along with cytokine, interleukin- 2 (IL-2). These 
will help the child’s immune system seek out and 
demolish neuroblastoma cells. This is a new and 
advanced form of immunotherapy for children 
diagnosed with high-risk neuroblastoma. This 
antibody is usually given after all treatment 
options are exhausted, and a stem cell transplant 
has been done.

When diagnosed with high-risk neuroblas-
toma, it requires intensive treatment to achieve 
the current survival rate of slightly less than 50% 
[7, 8, 33]. With further research and a more robust 
understanding of the biology of neuroblastoma, 
there will be a way to identify factors that change 
the outcomes of patients who are diagnosed with 
this disease. Current research is focusing on fur-
ther intensification of therapy to improve out-
comes and evaluating the role of precision 
medicine in this patient population. With ground-
breaking clinical trials and intense research into 
neuroblastoma, all possible options for treating 
patients who are diagnosed with this cancer are 
being explored, and the immunotherapy options 
are allowing for better hope for children diag-
nosed with this cancer.
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5.6  Exosome-Mediated 
Therapeutics

Mesenchymal stem and stromal cells (MSCs) 
that have originated from multiple organs such as 
the bone marrow, umbilical cord (in-utero), adi-
pose tissues, or placentas have shown to carry a 
therapeutic capacity of exosomes [36]. These 
were tested in numerous models of diseases. 
Exosome treatment has been compared to MSC 
treatment and has shown similar and even sub-
stantially better results [2]. When tested, MSC 
exosomes have exhibited favorable results that 
promote functional recovery and neurovascular 
plasticity. Some examples of these are subject, 
but not limited, to traumatic brain injury [40], the 
reduction in myocardial infarction size [1, 19], 
amelioration hypoxia-induced pulmonary hyper-
tension [20], helping with the reparation of an 
injury to a kidney [13, 39], and the arrangement 
of neurological protection with the transfer of 
miRNA [18, 37].

Therapies that are exosome based portray a 
strong promise for the upcoming future in pro-
viding care for patients with various types of dis-
eases. Patients with inflammatory diseases will 
especially benefit from exosome-based therapies 
[36]. The test for effectiveness in MSC-exosome 
treatments has been examined in multiple pre- 
clinical models. Safety concerns for the effective-
ness of MSC-exosome treatment are of primary 
focus. All in all, though, cell-free exosome-based 
clinical trials are shown to have a slighter side- 
effect efficacy compared to live cell MSC trials 
[36].

5.7  Translational Advances

Exosomes could potentially play a role in the 
treatment of cancers. Exosomal vesicles can be 
used in a variety of ways to target different 
aspects of cancer, including diagnosis and treat-
ment. Specifically, exosomes can be used as bio-
markers for cancer diagnosis. Cancer cells are 
known to secrete more exosomes than healthy 
cells, which leads researchers to use this as a 
marker. The process of obtaining exosome sam-

ples from patients is fairly non-invasive, so this 
would be a clinically applicable way to help diag-
nose cancer. Not only can the exosomes be used 
as biomarkers, but also the proteins within the 
exosomes can be used to indicate cancer. 
Exosomes carry various molecules throughout 
the body, including proteins, miRNA, mRNA, 
etc. The overexpression of these molecules could 
be used as a potential prognostic factor for can-
cer. As well as a marker for cancer, exosomes 
could be used for treatment. Exosomes primarily 
function in cell communication, showing that 
they can interact with cell membranes to deliver 
their signals. This leads researchers to determine 
if exosomes could deliver drug therapy. Exosomes 
could be used as a method of delivering chemo-
therapy to malignant cells in the body. Also, it is 
thought that exosomes could be used to stimulate 
cytotoxic T cells into a response against cancer 
cells. The target of exosomes to stop tumor 
growth is also a consideration. Many studies have 
shown that exosomes display oncogenic and 
tumor-promoting effects. Therefore, the targeting 
of exosomes could be a key element to inhibiting 
tumor growth. Similarly, inhibiting the ability of 
cells to receive signals from the exosomes would 
also inhibit tumor progression. Although there 
are many possibilities of using exosome in cancer 
diagnosis and treatment, many mechanisms of 
exosomes are still undetermined. Further research 
into this field needs to be conducted.

5.8  Conclusion

Neuroblastoma is the most frequent solid tumor 
that is diagnosed in children under the age of 5. It 
develops in the immature nerve cells of the sym-
pathetic nervous system during embryonic devel-
opment. These tumors are most often found on 
the adrenal glands. Lumps in the abdomen or 
neck, bruising around the eyes, pain, fatigue, and 
weight loss are all common signs and symptoms 
of neuroblastoma. The current treatments for 
neuroblastoma involve a mixture of surgery, che-
motherapy, radiation, retinoid therapy, and 
immunotherapy. Exosomes play an important 
role in the progression of this cancer. Exosomes 
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are small vesicles that are secreted by cells. They 
regulate cell communication, and transfer mole-
cules between many cells in the body. Exosomes 
have been shown to progress tumor development, 
cause resistance to chemotherapy, and serve as a 
biomarker for tumors. Recent advances made in 
understanding the function of exosomes hold a 
promise to develop anti-cancer therapies.
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Abstract

Tumorigenesis is a multistep, complicated 
process, and many studies have been com-
pleted over the last few decades to elucidate 
this process. Increasingly, many studies have 
shifted focus toward the critical role of the 
tumor microenvironment (TME), which con-
sists of cellular players, cell–cell communica-
tions, and extracellular matrix (ECM). In the 
TME, cyclooxygenase-2 (COX-2) has been 
found to be a key molecule mediating the 
microenvironment changes. COX-2 is an 
inducible form of the enzyme that converts 
arachidonic acid into the signal transduction 
molecules (thromboxanes and prostaglan-
dins). COX-2 is frequently expressed in many 
types of cancers and has been closely linked to 
its occurrence, progression, and prognosis. 
For example, COX-2 has been shown to (1) 
regulate tumor cell growth, (2) promote tissue 
invasion and metastasis, (3) inhibit apoptosis, 
(4) suppress antitumor immunity, and (5) pro-
mote sustainable angiogenesis. In this chapter, 
we summarize recent advances of studies that 
have evaluated COX-2 signaling in TME.
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6.1  Introduction

Tumorigenesis is a multistep and complicated 
process, in which oncogenes and tumor- 
suppressor genes are going through successive 
mutations and eventually lead to enhanced prolif-
eration and resistance to apoptosis. Currently, 
several major hallmarks of human tumor have 
been universally reported, including evading 
growth suppressors, gaining genome instability, 
promoting replicative immortality, resisting cell 
death, eliminating cell energy limitation, promot-
ing metastasis, inducing angiogenesis, sustaining 
proliferative signals, evading immune destruc-
tion, and aggregating inflammation [1, 2].

During the past few decades, the understand-
ing of tumorigenesis has greatly increased [3] 
and the focus of studies has shifted from the 
malignant cells themselves to the tumor microen-
vironment (TME) and the interactions between 
them. TME, which consists of extracellular 
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matrix (ECM) and cellular players such as fibro-
blasts, endothelial cells, neuroendocrine cells, 
adipose cells, leukocytes and so on, and their 
interactions [4], helps tumors to acquire their 
invasive characters. In detail, the tumoral niche 
has increasingly been reported to dictate abnor-
mal tissue functions and play an important role in 
the subsequent evolution of malignancies [5]. 
Scientists have also found that a healthy microen-
vironment could help maintain the healthy cellu-
lar status and protect against tumorigenesis and 
metastasis [3]. Many studies have shown tumors 
are not only a mass of proliferative malignant 
cells, but they also attract other stromal cells [6], 
vascular cells [7], and immune cells [8] by secret-
ing cytokines, chemokines, and stimulatory 
growth factors. These factors released by tumor 
cells may recruit other cells to rebuild the new 
microenvironment. Such communication 
between tumor cells and their microenvironment 
may enhance metastatic capability and immortal 
proliferation, causing eventual death [1, 2].

One of the key factors in the TME that has 
been characterized is cyclooxygenase-2 (COX- 
2). COX proteins are membrane-bound proteins, 
located on the nuclear envelope, and luminal side 
of the endoplasmic reticulum is an important 
mediator of angiogenesis and inflammation. It 
has three isoforms: COX-1, COX-2, and COX-3 
[9, 10]. COX-1, which is expressed in most tis-
sues, is a housekeeping enzyme to maintain the 
basal level of prostaglandins (PGs) [11]. It also 
helps maintain the internal homeostasis by regu-
lating the processes such as vascular smooth 
muscle functioning, cytoprotection of the gastric 
mucosa, platelet aggregation, and renal function 
[9]. COX-3 is reported as a variant of COX-1, 
and it is mainly present in the central nervous 
system [12, 13]. By contrast, COX-2 is an induc-
ible form, usually undetected in normal tissues 
and cells [14] in which its basal expression only 
can be found in the central nervous system, kid-
ney, stomach [15], and female reproductive 
organs [16]. By contrast, it is usually constantly 
expressed in many types of tumor tissues [14, 
17], such as squamous cell carcinoma, adenocar-
cinoma, transitional cell carcinoma, cholangio-
carcinoma, hepatocellular carcinoma, and 
endometrial carcinoma [18, 19].

As TME actively participates in the tumor 
metastasis and progression, and COX-2 is one of 
the critical inflammatory mediators deregulated 
in many tumors, therapeutic strategies targeting 
the COX-2 in TME may have great potential and 
be highly selective. Below, we will highlight the 
role of COX-2 signaling in the regulation of 
tumor progression in the TME and discuss its 
potential value in tumor therapy.

6.2  Structure of COX-2

Human COX-2 is a homodimer of 581 amino 
acids, which encoded by COX-2 gene locates on 
the chromosome 1q25.2-q25.3 [20]. The dimeriza-
tion of two 70 kDa subunits is necessary for cata-
lytic activity and its own structural integrity [21]. 
Each subunit of COX-2 contains three domains to 
form the structure: a membrane- binding domain 
(residues 73–116), an N-terminal epidermal 
growth factor domain (residues 34–72), and a 
C-terminal catalytic domain which comprises the 
bulk of the protein [22–28]. The membrane-bind-
ing domain consists of four amphipathic α helices, 
three of which lie in the same plane, whereas the 
last one extends into the catalytic domain [29]. 
These helices have aromatic and hydrophobic resi-
dues. Therefore, this structure could create a sur-
face that interacts with the lipid bilayer [22].

The peroxidase active site lies at the top of an 
L-shaped channel on the opposite side of the 
membrane-binding domain. It contains the heme 
that positioned at the bottom of a shallow cleft. 
Other molecules could access the heme easily 
except the dome formed by hydrophobic amino 
acids covers part of the cleft. At the entrance of 
the channel is a lobby. It is a large space that nar-
rows to a constriction. Inhibitors or substrates 
can only pass into the channel when the lobby is 
open. On top of the lobby, the channel is sur-
rounded by hydrophobic residues [25, 26, 28]. 
The structure of the active site makes COX-2 
only react with specific substrate but not a wide 
range of organic hydroperoxides [30]. 
Interestingly, although the preference of the per-
oxidase relies on hydrophobic dome, mutation of 
the dome residues affects little on substrate speci-
ficity or peroxidase activity [31].
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6.3  The COX-2 Signaling

6.3.1  The COX-2/PGE Signaling

COX-2 is a rate-limiting [20] and short-living 
enzyme [16] that converts phospholipase A2 
(PLA2)-mobilized arachidonic acid (AA) into 
the signal transduction molecules thromboxanes 
and prostaglandins (PGs) [32]. One principal 
product of COX-2 is prostaglandin E2 (PGE2), a 
mediator contributing to the modulation of sev-
eral biological processes, including angiogenesis, 
immunity, pain, and tumorigenesis [33–35]. In 
the tumor formation process, COX-2 could be 
overexpressed in TME due to transcriptional or 
posttranscriptional malfunction [36, 37]. Thus, 
COX-2 is an important marker for tumor identifi-
cation [14, 38]. Elevated expression of COX-2 
and its major product PGE2 has been reported to 
be inversely associated with patients’ survival 
rate [39–41].

Recent advances in the role of COX-2 and 
PGEs in the pathogenesis of cancer have been 
described [9, 15, 42–44]. The main form of pros-
taglandin involved in many types of cancers is 
PGE2. PGE2 can act on the receptors, for exam-
ple, EP1, EP2, EP3, and EP4 to induce PGE2 sig-
nal cascade, leading to changes of intracellular 
calcium, cAMP, and some inflammatory factors. 
As a result, physiological or pathological pro-
cesses follow [45, 46]. Recent investigations sup-
port that PGE2 may enhance progression of 
colorectal cancer [47–49], and EP4 is a therapeu-
tic target for cancer therapy [50, 51]. COX-2- 
derived PGE2 can also contribute to tumor 
development through several mechanisms includ-
ing inhibition of apoptosis. However, the mecha-
nisms by which PGE2 regulates apoptosis are still 
largely unknown. The EP2 and EP4 receptors 
mediate their activities through cAMP produc-
tion. Suppression of apoptosis by cAMP has been 
seen in intestinal cells through the induction of 
the IAP family member inhibitor of apoptosis 2 
(IAP-2) [52, 53]. Therefore, further research is 
warranted to investigate the antiapoptotic effects 
of PGE2 mediated through cAMP, which results 
in the induction of the IAP family member 
c-IAP2.

6.3.2  Cytokines and Other 
Compounds Regulating COX-2 
Signaling

6.3.2.1  IL-1β and TNF-α
Cytokines and other compounds such as interleu-
kin 1β (IL-1β) and tumor necrosis factor α (TNF- 
α) may promote expression of COX-2 mRNA 
and protein in human colorectal fibroblasts, pro-
foundly in cancer-associated fibroblasts (CAFs) 
[54–56]. When stimulated with the pro- 
inflammatory cytokines IL-1β or TNF-α, orbital 
fibroblasts express high levels of COX-2 and 
PGE2 [57]. Scientists have found that IL-1β or 
TNF-α promotes synthesis of PGE2 by 25-fold in 
human colorectal fibroblasts (CCD-18Co) and 
five human colorectal fibroblast strains obtained 
at routine colonoscopies [58]. Greater levels of 
IL-1β-stimulated COX-2 expression and PGE2 
synthesis in the cancer-associated fibroblasts 
could only be accounted for partially by increased 
COX-2 promoter and transcriptional activity in 
the cancer-associated phenotype. We have noted 
that IL-1β and TNF-α induce mRNA overexpres-
sion of COX-2 and promote production of PGE2 
in human colorectal fibroblasts, especially in 
CRC-associated strains [54, 59] at a rate at which 
COX-2 mRNA decays can be dramatically 
retarded in vitro by PGE2 [60].

6.3.2.2  NF-κB
The nuclear factor (NF)-κB could also regulate 
the activation of COX-2 signaling in cancer cells 
[61]. The subfamily of NF-κB proteins has five 
members, including NF-κB1 (p50), NF-κB2 
(p52), RelA (p65), RelB, and c-Rel [18, 62, 63]. 
Among the subfamily, p65 plays a role in the 
regulation of COX-2  in cancer cells [64, 65]. 
NF-κB/ COX-2 signaling could be induced by 
protein kinase C (PKC) [66], TRIP4 [65], 
ERK1/2 [67], IL-1β [61], caspase-3 [68], and 
conditions like endoplasmic reticulum (ER) 
stress [69]. Inhibition of this signaling is medi-
ated by annexin A5 [66] and miR-16 [70].

6.3.2.3  PKC and MAPK
Cytokines and growth factors induce COX-2 
expression via protein kinase C (PKC) signaling. 
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Molecules that interfere with microtubules such 
as taxanes could induce COX-2 by activating 
PKC and mitogen-activated protein kinases 
(MAPKs). There are three related MAPK pro-
teins including ERK1/2, p38, and c-Jun 
N-terminal kinase, which are contributed to the 
induction of COX-2 [71]. These members could 
mediate PKC effects on COX-2 signaling in can-
cer cells [72]. Combination of PKC and COX-2 
inhibitors can synergistically inhibit melanoma 
metastasis [73]. Among the MAPKs, p38 [74] 
and ERK1/2 [75] are downstream molecules of 
COX-2. In addition, COX-2/P38 signaling favors 
angiogenesis [74] and is involved in cancer cell 
resistance to apoptosis [76].

6.3.2.4  Other Signaling
There are also many other cytokines and com-
pounds which can regulate COX-2 signaling. 
One example is COX-2/STAT3 signaling, which 
contributes to the proliferation [77] and epithe-
lial–mesenchymal transition (EMT) [78] of can-
cer cells by promoting the immunosuppressive 
microenvironment [75]. Another example is 
SDF-1a which plays a role in cancer cell metasta-
sis and invasion through the stimulation of 
COX-2 by interaction with its receptor CXCR4 
[79, 80]. All the research above suggests that 
COX-2 signaling is highly involved in the patho-
genesis of cancer.

6.4  COX-2 Signaling in Tumor 
Microenvironment (TME)

6.4.1  COX-2 Regulates the Tumor 
Cell Growth

The cell behavior is controlled by complex sig-
naling pathways. It is thought that the malfunc-
tion of these signaling pathways causes tumor 
cells to grow uncontrollably. Two major signal-
ing pathways, Ras-MAPK and the PI3K/AKT 
signaling, are frequently shown to be deregulated 
in many human cancers, which can stimulate cell 
growth and survival when activated [81, 82]. 
There is a strong evidence showing that COX-2, 
together with PGE2, are mediators of cancer cell 
growth through the above signaling [83]. PGE2 

derived from COX-2 can enhance cell survival 
through the PI3K/AKT and Ras-MAPK/ERK 
signaling. Aberrant activation of the COX-2/
PGE2 signaling might increase mutations in the 
above two signaling pathways, which could pro-
mote tumor progression [84–86]. Furthermore, 
there are other ways mediating cancer cell growth 
by COX-2. For example, activation of stromal 
cancer-associated fibroblasts (CAFs) and neutro-
phils by COX-2 can release proliferative signals 
on cancer cells [87, 88], and induction of aroma-
tase cytochrome P450 (CYP19) by COX-2 con-
tributes to the conversion of estrogen to estrogen 
quinones [89], which is involved in tumor prolif-
eration [90].

Under physiological conditions, normal tissue 
can control cell growth by the action of antipro-
liferative signals, which is a crucial mechanism 
for maintaining homeostasis [1]. The membrane- 
bound ligands and soluble growth inhibitors are 
two kinds of key compounds of above signals to 
repress cell growth. Scientists have demonstrated 
two antigrowth signals that can restrain prolifera-
tion and maintain tissue homeostasis [1]. 
However, deregulation of the COX-2/PGE2 sig-
naling may limit the function of these signals by 
additional mechanism. The first antigrowth sig-
nals can maintain cells in G0 state to block prolif-
eration and keep cell quiescence. For example, 
transforming growth factor-beta (TGF-β) can 
block cell growth by activation of cyclin- 
dependent kinase inhibitors and suppression of 
c-Myc [91]. Usually, cancer cells are insensitive 
to the suppressive effect of TGF-β due to inacti-
vated mutations of the receptors or downstream 
signaling effectors [91]. One study showed that 
mutations of TGF-β receptor type II occur in 
colorectal tumors at a high frequency [92]. 
However, these mutations do not exist in all types 
of cancer cells. It is also reported that overexpres-
sion of COX-2 can downregulate the expression 
of TGF-β receptor type II, which means COX-2 
signaling can prevent the receipt of antigrowth 
signals [93]. The second antigrowth signals are to 
initiate a terminally differentiated state [1]. 
Aberrant activation of pathways such as 
β-catenin/WNT signaling in colorectal tumors 
contributes to the blockage of normal differentia-
tion and maintenance of progenitor state of  
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cancer cells [94]. Recently, evidence demon-
strates that the COX-2 signaling can activate the 
β-catenin/WNT signaling to keep cells in a pro-
genitor state [95]. Furthermore, when there is 
lack of β-catenin/WNT mutations, inappropriate 
activation of the COX-2/PGE2 signaling could 
discourage cell differentiation.

In addition to the above function, the activa-
tion of β-catenin/WNT signaling by PGE2 might 
also serve to the acquisition of the immortal phe-
notype [95], which means it can help the cancer 
cells to get limitless replicative potential. For 
example, colorectal cancer is thought to start 
from such immortal cells initiated by mutations 
in the β-catenin/WNT signaling. Scientists dem-
onstrated that in intestinal crypts, the stem cells 
and progenitor cells are maintained by activating 
WNT signaling [94]. Mutations of components 
of WNT signaling in colorectal tumors result in 
the formation of an active β-catenin/T-cell factor 
(TCF) complex that can mimic WNT signaling. It 
is reported that COX-2/PGE2 signaling may play 
a role in keeping the crypt in the progenitor phe-
notype by activating β-catenin/TCF complex in 
colorectal cancer cells [95]. Perturbation of the 
WNT signaling by deleting TCF4  in mice also 
leads to loss of the stemness in the small intestine 
[96]. This suggests that the WNT signaling could 
maintain the crypt stem cell phenotype in both 
physiological and cancer status.

6.4.2  COX-2 Promotes Tissue 
Invasion and Metastasis

COX-2 has been shown to be one of the critical 
metastasis progression genes [97] participating in 
the metastasis into the brain [98], bone [99], 
lymph nodes [100], and liver [101]. Factors like 
IL-11 induced by COX-2 are related to the cancer 
metastasis [99]. In order to achieve the invasion 
and metastasis, cancer cells must show an inva-
sive phenotype of more motile status. They lose 
and detach themselves from connected cells 
within the tumor, move into extracellular matrix, 
and finally invade into blood vessels and lym-
phatics [102]. After escaping from the primary 
tumor tissue, cancer cells must then colonize the 
surrounding tissue or distant sites with the help of 

blood or lymphatics. Recently, the significance of 
COX-2 as a necessary mediator for dissemination 
of cancer cells was reported in an in vivo model 
of breast cancer metastasis to the lungs [103]. 
Using both pharmacological and genetic meth-
ods, this study demonstrated that COX-2 is one 
of the key “metastasis” genes which helps to 
mediate tumor development, invasion, and metas-
tasis to other tissues.

There are many other studies demonstrating 
that COX-2 signaling plays critical roles in the 
metastasis processes—more specifically, pro-
moting a more metastatic phenotype in colorectal 
tumor cells through its product PGE2. For exam-
ple, EGFR transactivation mediated by intracel-
lular Src can stimulate the motility and invasion 
controlled by PGE2 [104]. PGE2 could also pro-
mote cytoskeletal reorganization and eventually 
lead to invasion and migration of colorectal can-
cer cells via PI3K signaling [105]. Overexpression 
of COX-2 can modulate the adhesive properties 
of intestinal cells [93] and increase the activity of 
matrix metalloproteinase (MMP) to promote 
tumor invasion [106]. Inhibition of this marker 
can prevent the metastasis of colorectal tumors 
in vivo in both human [107] and mice [108]. In 
addition, c-Met, also known as the hepatocyte 
growth factor receptor, is transactivated by PGE2 
through an EGFR-dependent pathway in colorec-
tal cancer [109]. C-Met signaling is associated 
with the loss of cell contact and invasive growth 
[110]. Scientists found that COX-2, c-Met, and 
β-catenin coexist at the invasive edge of colorec-
tal tumor [109]. The transactivation of c-Met can 
induce nuclear accumulation of β-catenin and 
increase expression and invasion of urokinase- 
type plasminogen activator receptor through 
Matrigel [109]. COX-2 can also induce 
β1-integrin that is related to cancer cell invasion 
[111, 112].

Furthermore, COX-2 can induce epithelial–
mesenchymal transition (EMT) through factors 
like transcription-3 (STAT3) and miR526b [78, 
113]. In cancer cells, EMT is thought to be a pro-
moter of invasiveness [18]. Inhibition of EMT 
mediated by COX-2 occurs after usage of canna-
binoids in cancer [114]. Interestingly, in the 
TME, the tumor maintenance and progression are 
only regulated by COX-2 secreted by the tumor 

6 COX-2 in the Tumor



92

cells but not by other normal cells such as stromal 
cells [115, 116]. Therefore, these findings sug-
gest that COX-2 plays an important role in 
tumorigenesis.

6.4.3  COX-2 Inhibits Apoptosis

Apoptosis, the cell death programming process 
[117], plays an essential role in controlling cell 
number and maintaining tissue homeostasis in 
normal tissue [118, 119]. Malfunction of this 
mechanism results in excessive cell number and 
survival rate, which can lead to tumorigenesis 
and its malignant progression [120–122]. COX-2 
is related to suppression of apoptosis in many 
cancer types. The ability of COX-2/PGE2 signal-
ing to control apoptosis in tumor cells may 
depend on factors such as the TME and vary 
between cell types. In this signaling, several 
mechanisms have been reported. COX-2 contrib-
utes to the cancer apoptosis resistance through 
delaying G1 phase to slow the cell cycle [123]. It 
also induces the expressions of BCL-2 [124, 
125], MCL-1 [126], and Survivin [127] and 
represses caspase-3 signaling [128].

First, overexpression of COX-2 might regu-
late the intrinsic apoptosis signaling by inducing 
the expression of BCL-2 and increase resistance 
apoptosis induced by butyrate in rat intestinal 
epithelial cells [93]. Later studies demonstrated 
that COX-2/PGE2 might suppress apoptosis by 
increasing the expression of BCL-2 through acti-
vation of Ras-MAPK/ ERK signaling [129]. 
Other studies also indicated that COX-2 signal-
ing controls apoptosis by inducing the expres-
sions of BCL-2 [124, 125]. Second, scientists 
found that COX-2 is a critical mediator in apop-
tosis resistance by increasing the expression of 
MCL-1 [126]. Knockdown of MCL-1 would sen-
sitize the lung cancer cells to apoptosis substan-
tially. Moreover, the expression of MCL-1 could 
be significantly decreased when COX-2 was sup-
pressed [126]. Third, it was reported that overex-
pression of COX-2 contributes to the expression 
and stabilization of Survivin, which is an inhibi-
tor of apoptosis in non-small-cell lung cancer 
[127]. Suppression of COX-2 activity could 
induce degradation of Survivin and lead to lower 

cellular response to apoptosis pathways [127]. 
Fourth, scientists have reported that overexpres-
sion of COX-2 limited the cleavage of HuR and 
caspase-3, which reduced cell apoptosis in the 
paclitaxel-resistant oral cancer cells [128]. They 
also showed that inhibition of COX-2 increased 
apoptosis in paclitaxel-resistant oral cancer cells 
by activating of caspase-3, both in  vivo and 
in vitro [128]. Furthermore, studies also demon-
strate that COX-2/PGE2 signaling might regulate 
apoptotic by involving in many other pathways. 
For example, it is reported that PGE2 activates 
prosurvival signaling, such as ERK signaling 
[130], PI3K/AKT signaling [105, 131], EGFR 
signaling [132, 133], and cAMP/PKA signaling 
[134].

Other conditions like hypoxia could also con-
tribute to the induction of cell death. For exam-
ple, in colorectal tumor cells, COX-2/PGE2 
signaling could promote cell survival in hypoxia 
condition by activation of Ras-MAPK signaling 
[86], suggesting that COX-2 plays an important 
role in promoting the survival rate of cancer cells 
under difficult microenvironmental conditions. 
In addition, wild-type p53 is a suppressor of 
COX-2 in mediating apoptosis [18, 36]. Mutations 
of p53  in cancer cells would create a positive- 
feedback loop between COX-2 and itself. It 
might be a chemotherapeutic target for cancers 
[36, 135].

6.4.4  COX-2 Suppresses Antitumor 
Immunity

COX-2 signaling plays an important role in 
immune resistance and cancer immunotherapy. It 
regulates the immune response through recruit-
ing immune cells into the tumor milieu to induce 
an immunosuppressive state [136]. Cancer cells 
can release COX-2/PGE2 to the milieu to sup-
press immunological responses by blocking the 
activity of cytotoxic T lymphocytes [137]. 
COX-2/PGE2 has also been shown to be a major 
modulator of macrophage activation for a long 
time [138]. One of the major populations of 
tumor-infiltrating immune cells is tumor- 
associated macrophages (TAMs). 
Reprogramming the TAMs of M2 toward M1 
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phenotype or impeding the process toward the 
pro-tumor M2 subtype is an anticancer strategy 
[44]. COX-2/PGE2 signaling could promote mac-
rophage differentiating to M2 subtype [139, 140]. 
Immune suppression regulated by macrophages 
is related to increased T-cell infiltration regulated 
by CD4+/CD25+ and decreased CD8+ T-cell 
function [44].

Overexpression of COX-2 promotes tumori-
genesis by inhibiting proliferation of B-type and 
T-type lymphocytes, especially natural killer T 
cells, and subsequently limits immunosuppres-
sion of the host [141]. COX-2 inhibits the expo-
sure of antigen-specific T cells to their cellular 
targets and promotes the expression of indole-
amine 2,3-dioxygenase and interleukin-4 (IL-4) 
by tumor cells [44]. Scientists have demonstrated 
that COX-2/PGE2 is the factor resisted to the 
cytotoxicity induced by active form of antigen- 
specific T cells [142]. It has also been shown that 
T-cell receptors (TCR) such as TCR NKG2D 
(natural-killer group 2, member D), Vγ9Vδ2 
(Vδ2 gene with the co-expression of the Vγ9 
chain), and CD16 are all inhibited by COX-2/
PGE2 [143]. Moreover, COX-2/PGE2 helps the 
immune suppression mediated by cancer. They 
play an important role in promoting CD4+ and 
CD8+ T-cell differentiation and directly inhibit-
ing the proliferation and effector functions of 
regulatory T cells [144]. Furthermore, it is 
reported that Treg cells inhibited effector T cells 
by activating COX-2 signaling and participated 
in cancer immunosuppression [145, 146]. The 
expression of COX-2 is also significantly related 
to Treg localization and prevalence [147]. In 
addition, expression of the forkhead/winged 
helix transcription factor (FOXP3) gene could 
also drive the suppressive activity of regulatory T 
cells.

Natural killer (NK) cells are a subpopulation 
of lymphocytes that take part in innate immunity. 
All types of PGE2 receptors are expressed by NK 
cells, and PGE2 derived from tumor is a critical 
barrier to the NK cell-mediated killing. It has 
been reported that the natural cytotoxicity recep-
tors (NCRs), such as NKp30, NKp44, NKp46, 
major NK receptors (NKRs), NKG2D, and 
CD16, could all be inhibited by PGE2 [143]. In 
addition, the function of NK cells such as secrete 

interferon-γ (INF-γ), exert cytotoxic effects, and 
migrate are all inhibited by PGE2 [148]. EP2 and 
EP4 are the major receptors acted by PGE2 while 
inhibiting NK cells. And frondoside A, an EP4 
antagonist, inhibits breast tumor metastasis by 
acting on NK cells and decreases IFN-γ produc-
tion by NK cells [44]. Furthermore, MDSC pres-
ents in many cancer types and blocks adaptive 
immunity by inhibiting NK cells and the activa-
tion of CD4+ and CD8+ T cells [148, 149]. 
COX2 produced by tumor cells would maintain 
high level of MDSC, and subsequently block the 
tumor immunity. It has been shown to allow the 
proliferation of tumor cells without control from 
the immune system of the host [44].

Dendritic cells (DCs) participate in both 
innate and adaptive immunity. COX-2 is a crucial 
immunomodulator of DC activities [150], which 
can reduce DC ability to present antigens, express 
MHC class II molecules, mature, and activate T 
cells [151]. COX-2/PGE2 has been demonstrated 
to decrease the cytokine production of antigen- 
presenting DCs, away from a type 1 T cell (Th1) 
profile, and eventually result in a reduced antitu-
mor activation of cytotoxic CD8+ T cells [152, 
153]. Meanwhile, it is reported that EP2 and EP4 
receptor subtypes of PGE2 may be targets of 
modulating DC activity [90]. For example, PGE2 
could increase interleukin-10 (IL-10) production, 
which can lead to downregulation of DC func-
tions. These abilities of COX-2/PGE2 signaling 
to suppress antitumor immune responses may 
allow malignant cells to escape immunosurveil-
lance and promote tumor development.

6.4.5  COX-2 Promotes Sustainable 
Angiogenesis

COX-2 induced in tumor is associated with 
angiogenesis [154]. Inhibition of COX-2 sup-
presses corneal neovascularization in experimen-
tal lung and colon tumor growth [155]. COX-2 
expression localizes in tumor epithelium [106], 
stromal fibroblasts [115], endothelium [155], and 
infiltrating immune cells [156]. It also promotes 
the production of vascular endothelial growth 
factor (VEGF), a potent angiogenic growth factor 
[157]. It was demonstrated that expression of 
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COX-2 was critical for the induction of VEGF 
and the subsequent tumor angiogenesis in an 
Apc/COX-2 double-knockout mice model [158]. 
It is also reported that in COX-2 knockout mice, 
fibroblasts showed decreased level of VEGF 
mRNA and protein, together with lower vascular 
density compared to wild-type mice [115]. 
Consistent with this, in vivo studies have showed 
that homozygous deletion of COX-2 led to slower 
growth of tumor xenografts and lower tumor vas-
cular density [115]. One possible mechanism is 
that COX-2 might promote tumor angiogenesis 
through the production of PGE2, which has been 
reported to involve in endothelial cell spreading 
and migration by activation of Cdc42 and Rac 
[159]. PGE2 has also been demonstrated to induce 
VEGF expression in colon cancer cells by acti-
vating HIF-1, one of the key regulators of VEGF 
expression [160]. Furthermore, PGE2 has been 
reported to regulate vascularization though che-
mokine receptor signaling. For example, in vivo 
model showed that PGE2 can enhance basic 
fibroblast growth factor-induced chemokine 
receptor-4 that is crucial for vessel assembly 
[161]. Moreover, PGE2 can stimulate the 
 expression of CXCL-1 in vivo, a pro-angiogenic 
chemokine [162].

In addition, COX-2 modifies molecules 
involved in endothelial trafficking with vascular 
mural cells/pericytes, an interaction critical to 
vessel stability [163–165]. Pericytes are found in 
all vascularized tissues, attaching to the walls of 
blood vessels [166]. They surround vascular 
endothelial cells and communicate with them by 
physical contacts and paracrine signaling along 
the length of the blood vessels [167, 168]. 
Increased expression of key modulator of peri-
cyte PDGF-β or enhanced pericytes recruitment 
is characteristic features of tumor vasculature 
[169–171]. Moreover, when transplanting cancer 
cells into Nestin-GFP/NG2-DsRed mice, type-2 
pericytes were recruited during the angiogenesis 
of the development of tumor, while type-1 peri-
cytes did not penetrate [172]. COX-2, which 
modifies the proliferation and function of peri-
cytes, plays a crucial role in vascular response to 
chronic microenvironmental stress [173, 174]. A 
study in 2006 demonstrated the function of 
COX-2  in vascular assembly in an orthotopic 

xenograft model by using the specific COX-2 
inhibitor SC-236. The results showed that tumor 
growth was suppressed by SC-236 significantly 
in human Wilms’ tumor [164]. All the evidence 
above suggests that COX-2 could promote sus-
tainable angiogenesis in tumor.

6.4.6  Regulation of COX-2 
Expression by the TME

Upregulation of COX-2 has been described in 
many different types of tumors [175]. It is reported 
that the TME is a promoter of COX-2 overexpres-
sion [36]. This overexpression is led by uncon-
trolled function of transcriptional or 
posttranscriptional levels [37]; therefore, it could 
be an important marker to identify tumor cells from 
normal tissues [14, 38]. Although PTGS2 (the 
gene-encoding human COX-2) mutations have not 
been described clearly, there are several known 
mechanisms which can promote expression of 
COX-2 in tumor cells. In general, the mechanisms 
can be divided into two types: oncogene activation 
and growth factor signaling deregulation. For 
example, it is reported that the hypoxic microenvi-
ronment can induce COX-2 expression in colorec-
tal tumor cells [86]. This upregulation is mediated 
by HIF-1, a regulator of transcription in hypoxia. 
The same regulation dependent on HIF-1 has also 
been reported in lung cancer cells [176]. Other 
examples include activation of the TGF-β receptors 
[177], gastrin receptors [178], c-Met [179], 
β-catenin/WNT signaling [180, 181], and the Ras-
MAPK pathway [85, 182]. In addition, COX-2 is a 
constituent of exosomes derived from tumor [183]. 
Cancer promoters [184], oncogenic viruses [61], 
proinflammatory cytokines [185], radiation [186], 
and chemotherapy [187] are all inducers of COX-2 
expression in cancer cells.

6.5  Nonsteroidal Anti- 
Inflammatory Drugs 
(NSAIDs)

For decades, significant progress has been 
achieved in the discovery of effective drugs for 
colorectal cancer. One of those is nonsteroidal 
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anti-inflammatory drugs (NSAIDs) which inhibit 
COX-2 [188, 189]. Examples of NSAID include 
aspirin, ibuprofen, naproxen, nimesulide, and 
sulindac acid. Different NSAIDs may act via dif-
ferent signaling pathways to interact with COX- 
2. For example, ibuprofen, indomethacin, and 
naproxen can bind the activity site of COX-2 and 
inhibit its activity reversibly, while aspirin acety-
lates the activity site of COX-2, attenuating its 
activity irreversibly. Some NSAIDs, for example, 
aspirin, can facilitate the effect of COX-2 inhibi-
tors for treatment of stage III colorectal cancer 
[190]. In fact, aspirin may reduce colon cancer 
mortality in women by as much as 50% [191–
193]. Recently, a hybrid drug KSS19, a combina-
tion of NSAID rofecoxib and cis-stilbene, has 
been found to be a potent COX-2 inhibitor, which 
inhibits colon cancer cell growth effectively 
[194].

Although COX-2 inhibitors are promising 
candidates for treatment of cancer, some con-
cerns for treatment of cancer by COX inhibitors 
have been raised. For example, an elevated risk of 
myocardial infarction may be linked to its usage 
[195]. In addition, the extended use of nonselec-
tive NSAIDs is also associated with certain path-
ological symptoms, for example, abdominal pain, 
dyspepsia, gastritis, gastrointestinal bleeding 
nausea, and perforation of gastroduodenal ulcers 
[196]. Therefore, no major clinical trials of those 
inhibitors were successfully completed due to 
concerns of their adverse effects. Nonetheless, 
NSAIDs are effective in certain degrees for pre-
vention and treatment of cancer. For example, a 
randomized trial demonstrated that NSAIDs are 
preventive for colorectal cancer with polyps [197, 
198]. According to the results of large-scale tri-
als, including the Adenomatous Polyp Prevention 
on Vioxx trial [199], the Adenoma Prevention 
with Celecoxib trial [198], the Prevention of 
Colorectal Sporadic Adenomatous Polyps trial 
[200], and colon polyp prevention trial [201], 
COX-2 inhibitors are effective for prevention of 
recurrence from sporadic colon cancer. Regular 
consumption of NSAIDs is also helpful for low-

ering the risk of colorectal, breast, lung, and 
prostate cancer [202]. In all, COX inhibitors have 
shown promise, but there are still safety 
concerns.

To decrease the risk from COX inhibitors, 
many researchers have used low dose of COX 
inhibitors with other NSAIDs that target other 
critical pathways in carcinogenesis. For example, 
combination of celecoxib with erlotinib (an 
EGFR tyrosine kinase inhibitor) is more effective 
to control polyp formation using an ApcMin/+ 
mice model and to inhibit cancer growth in a 
xenograft model [203]. Celecoxib with erlotinib 
treatment is more effective for treatment of the 
advanced non-small-cell lung cancer [204]. A 
5-lipoxygenase inhibitor has been shown to 
inhibit resistant tumor cells to SC-236 (COX 
inhibitor) and tumor growth in a breast cancer 
animal model [205]. Combined treatment of cele-
coxib with peroxisome proliferators-activated 
receptor-γ agonist has been shown better than 
either alone in a mouse breast cancer model 
[206]. Combination of aromatase inhibitors with 
celecoxib has been shown better for patients suf-
fering from metastatic breast cancer than either 
alone [207]. Therefore, we may like to reconsider 
the prospect of COX inhibitors for treatment of 
cancer.

6.6  Conclusion and Perspective

As studies have shown over the last few decades, 
COX-2 is one of the key markers indicating 
worse cancer prognosis and stimulates cancer via 
various roles in the TME.  To date, clinical and 
basic research has shown that reduction of PGE2 
synthesis by either specific COX-2 inhibitors or 
NSAIDs has the potential to decrease the risk of 
tumorigenesis of certain types [97, 208–214]. 
Therefore, therapeutic strategies targeting the 
COX-2 in the TME may have great potential to 
improve clinical outcomes. COX-2 signaling in 
the tumor environment is summarized as follows 
(Fig. 6.1):
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Abstract

For enhancing the antitumor effects of current 
immunotherapies including immune- 
checkpoint blockade, it is important to reverse 
cancer-induced immunosuppression. The 
renin–angiotensin system (RAS) controls sys-
temic body fluid circulation; however, the 
presence of a local RAS in tumors has been 
reported. Furthermore, the local RAS in 
tumors influences various immune and inter-
stitial cells and affects tumor immune 
response. RAS stimulation through the angio-
tensin II type 1 receptor has been reported to 
inhibit tumor immune response. Therefore, 
RAS inhibitors and combined treatment with 
immunotherapy are expected in the future. In 
this chapter, we provide a background on the 
RAS and describe the tumor environment with 
regard to the RAS and tumor immune 
response.
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7.1  Introduction

Recent cancer immunotherapies, including 
immune-checkpoint blockade (i.e., the blockade 
of programmed cell death protein 1 (PD-1), pro-
grammed death-ligand (PD-L1), or cytotoxic 
T-lymphocyte antigen-4 (CTLA-4)), have pro-
duced durable clinical effects in some patients 
with advanced cancers. However, only a subset of 
patients responded to these therapies, and not all 
responses continued indefinitely. 
Unresponsiveness to immune-checkpoint block-
ade therapies may be mediated by numerous 
immunosuppressive mechanisms that inhibit 
antitumor T-cell responses and T-cell infiltration 
into tumor tissues [1, 2]. To improve current can-
cer immunotherapies, strategies to modulate vari-
ous immunosuppressive cells, which are negative 
factors in immune-checkpoint blockade thera-
pies, should be developed [2].

The renin–angiotensin system (RAS) is an 
endocrine system that is generally considered to 
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systemically regulate hydromineral balance and 
blood pressure. However, recent data have dem-
onstrated that renin and angiotensinogen genes 
and their products are locally expressed (the local 
RAS) at many tissue sites, where they serve as 
the fundamental regulators of many additional 
physiologic and pathophysiologic processes [3].

The main components of the RAS (i.e., angio-
tensinogen (AGT), renin, angiotensin-converting 
enzyme (ACE), angiotensin I (Ang I), and angio-
tensin II (Ang II)) elicit their action through sev-
eral receptors, including Ang II type 1 receptor 
(AT1R) and angiotensin II type 2 receptor 
(AT2R). AT1R and AT2R are generally associ-
ated with inverse effects [3, 4]. Angiotensin II 
receptor blockers (ARBs) inhibit the effects of 
AT1R related to angiotensin II. Generally, AGT 
is produced and released into circulation by the 
liver and is then hydrolyzed to Ang I by renin in 
the juxtaglomerular cells of the kidney (Fig. 7.1). 
Subsequently, Ang I is hydrolyzed to Ang II by 
ACE in the endothelial cells of the lungs.

In the tumor microenvironment, the major com-
ponents of the RAS are expressed in cancer cells as 
well as in stromal cells, such as macrophages and 
cancer-associated fibroblasts (CAFs) (Fig. 7.1) [3]. 

Additionally, the components of the RAS have been 
reported in endothelial cells, neutrophils, dendritic 
cells, and T cells [3, 5–8]. The local RAS in cancer 
tissues is involved in cellular migration, prolifera-
tion, inflammation, and angiogenesis in the tumor 
and the supporting stromal cells [9–11]. RAS antag-
onists have been found to suppress tumor progres-
sion in various experimental cancer models, and 
retrospective studies in humans have provided evi-
dence that the long-term use of RAS inhibitors, 
such as ACE inhibitors and ARBs, may protect 
against cancer [3]. Additionally, the overexpression 
of the components of RAS is associated with tumor 
growth in breast cancer, ovarian cancer, and renal 
cancer [12–14]. Furthermore, signaling associated 
with AT1R may promote tumor growth [3, 4].

With regard to angiogenetic suppression, the 
combination of an anti-vascular endothelial 
growth factor (VEGF) antibody and RAS inhibi-
tor was found to improve the survival rates of 
patients with metastatic renal cell carcinoma, 
metastatic colorectal cancer, progressive liver 
cancer, and glioblastoma [15–21]. Additionally, a 
meta-analysis reported that a RAS inhibitor 
might improve the survival rate of patients with 
cancer [22].

Fig. 7.1 The systemic and local renin–angiotensin sys-
tem (RAS). Tumor-infiltrating immune cells, such as mac-
rophages, neutrophils, T cells, dendritic cells, and natural 
killer cells, express the components of RAS, such as 

renin, angiotensin-converting enzyme (ACE), and angio-
tensinogen (AGT). Fibroblasts, which are interstitial cells, 
and certain tumor cells express angiotensin II type 1 
receptor (AT1R)

K. Nakamura et al.



107

7.2  Relation Between Immune 
Cells and the RAS

7.2.1  Cytotoxic T lymphocytes

Various in vitro studies have evaluated the role of 
the RAS in the induction of immune responses. 
RAS activation was shown to enhance antigen- 
specific T-cell responses, which can be blocked 
by ARBs [23]. Additionally, ARBs can inhibit the 
differentiation of human dendritic cells (DCs) 
from monocytes and their maturation by lipo-
polysaccharide stimulation [24]. In non-tumor- 
bearing mouse models, the RAS was found to be 
involved in the induction of T-cell responses [25]. 
However, few studies have reported on the role of 
the RAS in the induction of anti-cancer T-cell 
responses.

We previously reported that tumor antigen- 
specific T-cell responses increased with ARB 
administration [26]. ARB administration in 
C67BL/6 mice with the murine colon cancer cell 
line MC38 resulted in significant enhancement of 
tumor antigen gp70-specific T cells. Additionally, 
ARB administration did not change the number 
of CD11b+ myeloid cells in tumors but signifi-
cantly reduced their T-cell inhibitory ability and 
decreased the production of various immunosup-
pressive factors, including interleukin (IL)-6, 
IL-10, VEGF, and arginase, from CD11b+ cells in 
tumors. Moreover, ARB administration decreased 
the expressions of immunosuppressive factors, 
such as chemokine ligand 12 (CXCL12) and 
nitric oxide synthase 2 (NOS2) in CAFs. 
Furthermore, the combination of an ARB and 
anti-PD-L1 antibody caused significant augmen-
tation of antitumor effects in a CD8+ T-cell- 
dependent manner.

Subsequently, a similar report was published. 
ARB administration (candesartan) increased the 
numbers of CD3+ T cells and effector CD8+ T 
cells and decreased the number of regulatory T 
(Treg) cells in 4T1 mouse mammary tumors [27]. 
Additionally, the effect of treatment with an 
 anti- PD- 1 antibody increased in a tumor model 
with reduced expression of the components of 
RAS. Furthermore, this was thought to be rein-
forced by a systemic tumor immune response 

because the effect of treatment with the anti-PD-1 
antibody increased in a wild-type tumor trans-
planted on the other side of the murine model 
[27].

7.2.2  Regulatory T Cells

Treg cells are associated with the immune escape 
of cancer cells, and they inhibit tumor immune 
responses. The production of transforming 
growth factor-beta (TGF-β) in tumors and the 
low oxygenation of tumor tissues increase the 
number of Treg cells [28]. In a model of pancre-
atic cancer, ARB administration (losartan) was 
found to inhibit TGF-β, suppress fibrosis, and 
decrease the number of Treg cells [29]. In another 
model of pancreatic cancer, ARB administration 
was found to inhibit the activation of pancreatic 
stellate cells, decrease the expression of IL-1β, 
and decrease the number of Treg cells [30].

7.2.3  Macrophages

Macrophages can be divided into antitumor reac-
tive M1 macrophages and immunosuppressive 
M2 macrophages. ARB administration has been 
shown to increase the number of M1 macro-
phages at the tumor site and increase the antitu-
mor effect [31]. Generally, M2 macrophages are 
associated with wound healing, and they inhibit 
tumor immunity and aid in tumor growth [32, 
33]. Various studies have reported on the change 
in M2 macrophages with RAS inhibition, and 
further analysis is necessary [34, 35]. 
Additionally, monocyte chemoattractant protein-
 1 (MCP-1) is produced for the stimulation of 
AT1R by tumors and interstitial cells [36]. 
MCP-1 that is produced correlates with the grade 
of invasion and tumor of the macrophages [36].

7.2.4  CAFs

The dominant mesenchymal cell components in 
tumor tissues are fibroblasts, which are strongly 
involved in cancer progression and metastasis 
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[37, 38]. CAFs are thought to induce an immuno-
suppressive tumor microenvironment through the 
production of various cytokines and chemokines 
that have impacts on tumor angiogenesis and 
remodeling of the extracellular matrix [39].

Ang II has been shown to stimulate the prolif-
eration of CAFs and induce the production of 
various cytokines, such as TGF-β [40, 41], and 
some of these cytokines have immunosuppres-
sive functions. CAFs, which are considered as 
immunosuppressive cells in the cancer microen-
vironment [37], have been shown to express 
AT1R [42].

CAFs are generally considered as immuno-
suppressive cells in the cancer microenvironment 
because they secrete and express immunosup-
pressive molecules, such as nitric oxide, TGF-β1, 
indoleamine-pyrrole 2,3-dioxygenase, PGE2, 
PD-L1, and PD-L2 [39, 43]. CAFs also produce 
CXCL12, which has been shown to inhibit T-cell 
infiltration into tumor tissues, leading to reduced 
antitumor effects of anti-CTLA-4 antibody and 
anti-PD-L1 antibody in a pancreatic cancer 
model [44].

We previously reported that ARB administra-
tion decreased the production of CXCL12 and 
NOS2 by CAFs [17, 26].

CAFs aid tumor growth through angiogenesis 
of the tumor microenvironment and immunocytic 
instructions via NF-κB signaling [45]. When the 
production of extracellular matrix by CAFs 
increases, tumor vessels are pressed and oxygen-
ation reduces in the tumor [46].

ARB administration has been shown to 
decrease the production of immunosuppressive 
CXCL13 by CAFs [47]. CAFs have been found to 
cause dysfunction of T cells and natural killer 
(NK) cells [38], and TGF-β especially inhibits 
T-cell response and reduces tumor immunity [48].

7.2.5  Neutrophils

A high neutrophil-to-lymphocyte ratio has been 
shown to be associated with a poor treatment 
effect of immunotherapy [49, 50]. In a model of 
pancreatic cancer, ARB administration was found 
to inhibit the activation of pancreatic stellate 

cells, decrease the expression of IL-1β, and 
decrease the number of neutrophils [30].

7.2.6  Dendritic Cells

COX2 is induced by tumor cells and interstitial 
cells through stimulation of AT1R, and the 
antigen- presenting ability of DCs is inhibited 
through PGE2 [51, 52]. On the other hand, ARBs 
have been shown to inhibit the differentiation of 
human DCs from monocytes and their matura-
tion by lipopolysaccharide stimulation [24].

7.2.7  Myeloid-Derived Suppressor 
Cells

Myeloid-derived suppressor cells (MDSCs) inhibit 
the activation of CD8+ T cells [53]. Additionally, 
they induce increases in the number of Treg cells, 
the proportion of M2 macrophages, and the pro-
duction of reactive oxygen species (ROS) [53]. 
ACE is associated with myelopoiesis and might be 
involved in the increase in the number of MDSCs; 
however, further study is necessary [54]. ARB 
administration (candesartan) has been shown to 
decrease monocytic MDSCs in 4T1 tumors and 
not alter granulocytic MDSCs [27].

7.2.8  NK Cells

COX2 is induced by tumor cells and interstitial 
cells through stimulation of AT1R, and the activ-
ity of NK cells is inhibited through PGE2 [52, 
55].

7.3  Tumor Environment

7.3.1  Tumor Cells

In tumor tissues, Ang II, the main effector mole-
cule of the RAS, acts through AT1R on both 
tumor cells and stromal cells and regulates the 
secretion of various growth factors and cytokines, 
such as IL-6, IL-8, and VEGF, partly through the 
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activation of NF-κB and signal transducers and 
activator of transcription family members [56, 
57]. These molecules and transcriptional factors 
are well known to induce cancer-promoting 
inflammation and restrain antitumor immune 
responses (Fig. 7.2).

7.3.2  Fibrosis

Fibrosis of the tumor stroma inhibits immune cell 
invasion physically [58]. RAS inhibitor adminis-
tration has been shown to inhibit the production 
of collagen I by CAFs (Fig. 7.2) [59]. Furthermore, 
when fibrosis of the tumor stroma is inhibited, 
the circulation volume in the tumor increases, 
low oxygenation improves, and tumor immune 
response increases [60].

7.3.3  Angiogenesis

RAS inhibitor administration has been shown 
to decrease the production of VEGF and reduce 
angiogenesis and vascular permeability [14, 

61, 62]. Normalization of tumor vessels 
improves low oxygenation, reduces immuno-
suppression, and increases the effect of 
immunotherapy.

7.3.4  Hypoxia and ROS

AT1R stimulation reduces intratumoral circu-
lation and causes hypoxia and acidosis 
(Fig.  7.2) [63]. Tumor hypoxia and acidosis 
result in the production of TGF-β [64, 65]. 
Tumor hypoxia causes dysfunction of T cells 
and DCs, increases the number of M2 macro-
phages and MDSCs, and increases the expres-
sion of PD-1/PD-L1 [32, 65–67]. Additionally, 
in the anoxic tumor environment, Ang II is 
produced.

AT1R stimulation induces ROS production 
from tumor and interstitial cells [68, 69]. ARB 
administration has been shown to decrease the 
production of intratumoral ROS [69]. 
Additionally, ROS has been found to induce Treg 
cells and tumor-associated macrophages and 
affect T-cell function [52, 70, 71].

Fig. 7.2 The local renin–angiotensin system (RAS) 
inhibits tumor immune response through fibrosis, hypoxia, 
immunosuppressive cytokines, and immunosuppressive 
cells. Fibrosis of the tumor stroma associated with fibro-
blasts inhibits the movement of immune cells physically. 
Immunosuppressive cytokines and inflammatory cyto-

kines associated with angiotensin II type 1 receptor 
(AT1R) stimulation promote further accumulation of 
immunosuppressive cells. Tumor growth is enhanced by 
angiogenesis of tumor vessels, but an immunosuppressive 
state occurs via anoxia
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7.3.5  Immune Response Analysis 
in Clinical Trials

In a clinical trial for metastatic ductus pancreati-
cus cancer, RAS inhibitor administration was 
found to significantly increase overall survival 
[72]. Increased expression of genes associated 
with the processing and presentation of antigens 
was noted on genetic analysis of tumors from 
patients who received a RAS inhibitor [72].

7.4  Summary

As the local RAS in a tumor is complicated, con-
tradictory results have been reported. However, 
RAS inhibition has been shown to improve tumor 
immune response. Thus, RAS inhibitors and com-
bined treatment with immunotherapy are expected 
in the future. In tumors with low oxygenation, 
those associated with fibrosis resistance, and 
those with many immunosuppressive cells, RAS 
inhibitors might improve tumor immune response 
[73–77]. Additionally, RAS inhibitors might aug-
ment the treatment effect in renal cell carcinoma, 
colorectal cancer, and hepatocellular carcinoma, 
where inhibition of angiogenesis is beneficial. 
Moreover, a method to transport RAS inhibitors 
to the local tumor site has been studied, and it is 
expected that the tumor immune response will 
improve without an influence on systemic circula-
tion [47]. It is hoped that further trials of the com-
bination of RAS inhibitors and immunotherapy 
will be performed in the future.
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Abstract

The importance of the microenvironment in 
tumor development and their resistance to 
drugs is increasingly well known. This micro-
environment is composed of different cell 
types, among which cells with stemness prop-
erties such as cancer stem cells (CSCs) and 

mesenchymal stem cells (MSCs) are distin-
guished for their relevant role in tumor prolif-
eration, angiogenesis, metastasis, and drug 
resistance. The relationship between these 
stem cells (SCs) and tumor microenvironment 
is conducted by the secretome, consisting of 
several factors, cytokines, chemokines, and 
hormones released to the surrounding stroma, 
which plays a deterministic role in tumor hall-
marks. Knowing the intrinsic and complex 
communication network that SCs establish 
with the microenvironment will allow to 
address the tumor processes responsible for 
cancer progression and the generation of new 
targeted therapeutic approaches useful in the 
clinic arena.
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8.1  Introduction

Over the decades, tumor origin and development 
were attributed only to cancer cells; however, 
tumor cells do not act alone since they are 
immersed in a tumor microenvironment (TME) 
that comprises several cell types, a characteristic 
extracellular matrix (ECM) and a complex cyto-
kines and growth factors network. The TME 
consists of the niche where the tumor develops, 
and it is unique for each tumor and patient, and 
also highly dynamic over time [1, 2]. The role 
played by TME in tumor hallmarks [3] such as 
high proliferation, invasion, angiogenesis, 
metastasis, and resistance to drugs [4–7] is 
increasingly well known. The TME contains 
several cell types including the tumor cells, cells 
from the immune system, CSCs, MSCs, fibro-
blasts, endothelial precursors, and a series of 
chemical components and biophysical signals 
[2]. This niche participates in the carcinogenesis 
by a complex network of cytokines, growth fac-
tors, and inflammatory and matrix-remodeling 
enzymes [8].

An essential process that must be given in 
the TME is the new vessel formation. Tumor 
neovascularization allows tumor growth and 
involves both tube-forming endothelial cells 
and their supporting pericytes, as well as tumor 
and stromal cells [9]. The new branched ves-
sels of the existing vasculature and the devel-
opment of neovascularization from endothelial 
cells and their associated pericytes or from 
cancer stem cells (CSCs) (in a process called 
vascular mimicry) depend on angiogenic sig-
nals from hypoxia regions or soluble factors 
from the TME [10, 11]. The resulting vascula-
ture is chaotic and abnormally fulfills its func-
tions, which facilitates the metastatic spread of 
cancer cells, increases hypoxia in the tumor [2, 
8], and prevents the correct extravasation of 
immune cells and diffusion of drugs, helping 
tumor survival [12].

In TME development, cancer-associated 
fibroblasts (CAFs) are essential cells that secrete 
growth factors and cytokines, which stimulate 

the growth and survival of malignant cells [13–
15] and contribute to drug resistance [16–18]. 
CAFs secrete also factors with chemoattractant 
properties, which stimulate the migration of 
other types of stromal cells and their progenitors 
to the TME, and promote angiogenesis by 
attracting pro-angiogenic myeloid cells and 
stimulating endothelial recruitment [19, 20].

Furthermore, the TME presents a wide diver-
sity of infiltrating immune cells (IICs), among 
which are tumor-associated macrophages 
(TAMs), dendritic cells, lymphocytes, natural- 
killers, and neutrophils, which as a whole can 
perform both protumor and antitumor functions 
depending on a large extent on the signals from 
the TME [21]. IICs deliver to the TME growth 
mediators that stimulate the proliferation of 
both tumor and stromal cells and activate angio-
genic processes [22]. Also, IICs promote inva-
sive cellular phenotypes, contribute to 
therapeutic resistance, and improve protumor 
inflammation [5, 8, 23].

Beyond the contributions of different cell 
types to the TME, the ECM is another key com-
ponent, and involves not only the physical scaf-
folding of the cells in the niche, but also a source 
of different factors and cytokines that model 
tumor behavior. CAFs, TAMs, and tumor cells 
secrete heparanases and matrix metalloprotein-
ases (MMPs) that degrade the ECM, releasing 
these factors to the TME [14, 19, 24, 25]. Through 
them, ECM mediates in angiogenesis, inflamma-
tory processes, dysregulation of stromal cells, 
and tumor proliferation [26].

In addition to the cell types described above in 
the TME, main role is played by characteristics 
SCs such as MSCs and CSCs. Both kinds of SCs 
have several common features and participate 
actively in the TME, being essential for tumor 
growth. In this chapter, we first present the simi-
larities and specific characteristics of both SCs. 
Second, we describe the specific particularities of 
the secretome released by these cells and how it 
participates and regulates the TME and the patho-
genic processes associated with tumor 
development.

G. Jiménez et al.
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8.2  Stem Cells in the Tumor 
Microenvironment

Stem cells are rare cells defined by the capacity 
to self-renew themselves and being able to dif-
ferentiate into mature cells from a tissue [27]. In 
the TME, these cells will acquire special impor-
tance as responsible to manage its origin and par-
ticular characteristics (Fig. 8.1).

In the first place, although there are different 
proposals about how a tumor is generated, there 
is evidence of the existence of a minority sub-
population in the TME called CSCs, responsible 
for tumor growth, metastasis, and cancer recur-
rence [28]. CSCs present similar characteristics 
to MSCs in terms of their capacity for self- 
renewal, the expression of embryonic SCs tran-
scription factors, similar regulation of several 
signaling pathways, and gene expression modu-
lation by short noncoding miRNAs [29]. CSCs 
characterization is a complex challenge due to 
surface markers not being universal for any can-
cer type, the existence of heterogeneous CSC 
pools in the same tumor, and the instability of the 

phenotype [30]. However, several markers have 
been useful to identify CSCs like CD133 and 
CD44 [31], aldehyde dehydrogenase 1 (ALDH1) 
activity [32], and its ability to exclude Hoechst 
33342 (side population) [33].

The importance of CSCs in the TME also lies 
in tumor recurrence and metastasis [34, 35]. 
Moreover, CSCs provide tumor resistance to 
radio- and chemotherapy due to the overexpres-
sion of membrane proteins of multidrug resis-
tance (MDR) and their ability to detoxify or 
mediate the outflow of cytotoxic agents [33, 36], 
high ALDH1 activity [36, 37], rapid reparative 
response to DNA damage [38], and their ability 
to maintain a quiescent state [39]. However, 
CSCs require the TME to regulate their prolifera-
tion and self-maintenance, interacting closely 
with the cells that comprise it [40, 41]. It is known 
that CSCs not only get adapted to TME, but also 
contribute aggressively to its generation and cell 
composition; thanks to the development of a 
powerful interactive network composed of cyto-
kines, growth factors, chemokines, hormones, 
miRNA, microvesicles, and exosomes through 

Fig. 8.1 Schematic illustration of the differential and shared characteristics of both stem CSCs and MSCs
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which CSCs can recruit and activate different 
cells types like MSCs or vascular endothelial 
cells [41]. As well, the ECM is remodeled by the 
CSCs to maintain stem cell properties through 
anchorage, cell–cell and cell–ECM contact sig-
nals, and biomechanical properties [25].

On the other hand, one of the cell types 
recruited by the TME includes the MSCs, multi-
potent SCs that reside in many human organs and 
comprise a heterogeneous population with self- 
renewal ability [42]. Although their morphology, 
immunophenotype, and differentiation potentials 
are dependent on their tissue of origin [42], three 
criteria have been defined for their identification: 
(i) must be plastic-adherent when maintained in 
standard culture conditions, (ii) must express cer-
tain membrane markers, and (iii) must differenti-
ate in  vitro to osteoblasts, adipocytes, and 
chondroblasts [43, 44].

MSCs could be also found in the circulatory 
system and can arrive to inflammatory sites, 
where they seem to perform a restorative func-
tion, not only by structural repair of tissue, but 
also modulating the local environment due to its 
immunomodulatory and anti-inflammatory prop-
erties [42]. The role played by MSCs in the TME 
is not exempt from controversy [45]; however, in 
a relevant way, it has been shown that these cells 
are recruited by the TME [46–48]. It has been 
amply demonstrated that MSCs contribute to 
tumor growth and proliferation [48–51], increase 
the metastatic potential of tumor cells by promot-
ing their motility, invasiveness [52, 53], the 
epithelial- to-mesenchymal transition (EMT) 
[54], and angiogenesis [55, 56], and participate in 
the appear of CAFs in the TME [51, 57]. 
Moreover, they play a key role in the tumor niche 
formation and support CSCs maintenance [58, 
59]. Recently, our research group has shown that 
the MSCs secretomes, among which are interleu-
kine- 6 (IL-6) and hepatocellular growth factor 
(HGF) stand out, support the selection of CMCs 
with specific chromosomal alterations character-
ized by a translocation in the long arm of chro-
mosome number 17 (17q25), that makes them 
more aggressive [58].

8.3  Stem Cell-Secreted Factors

In normal adult tissues, the presence of MSCs 
generates an environment termed as “stem cell 
niche,” and the communication between the 
MSCs and their microenvironment is fundamen-
tal for normal tissue homeostasis, SCs mainte-
nance, differentiation, and immunomodulation 
[60]. In cancer, this SC niche is modified with 
altered intercellular communication, be trans-
formed in a TME that allows tumor growth 
changes over tumor progression and re-adapting 
[60–62]. All cells that constitute the TME display 
altered or modified secretomes compared to nor-
mal tissues, with simultaneous up- and downreg-
ulation of several factors [63]. SCs communicate 
with their microenvironment through the release 
of microvesicles and exosomes, as well as a wide 
range of soluble factors that include chemokines, 
cytokines, growth factors, hormones, and metab-
olites [64]. Specifically, factors released by tumor 
SCs promote several associated tumor processes, 
including tumor growth, invasion, metastasis, 
and promotion of angiogenesis, in addition to 
other processes such as influencing in cell pheno-
type, homing, differentiation, inflammation and 
immunodulation processes, and drug resistance 
mechanisms [63] (Fig. 8.2).

8.3.1  Angiogenesis

A decisive factor in tumor development is the 
presence of blood vessels, which provide both 
the nutrients and oxygen needed, and offer sup-
port for the metastasis. Several studies show that 
tumor SCs secrete vascular endothelial growth 
factor (VEGF), which is the principal growth fac-
tor promoting vascularization [65, 66]. 
Furthermore, it has been observed that the 
secreted VEGF itself has the potential to induce 
differentiation of MSCs into endothelial cells 
(ECs) [66, 67]. However, this factor not only has 
this fundamental role in the TME, but it also 
stimulates CSCs proliferation and maintenance 
through the stimulation of neuropilin-1, a core-
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ceptor of VEGF receptor 2. In addition, VEGF 
overexpression accelerates tumor growth, pro-
moting CSCs division [65, 68, 69] (Fig. 8.1).

Nevertheless, VEGF is not the only factor 
related with angiogenesis, IL-6 secreted by 
MSCs increases the secretion of endothelin-1 
(ET-1) in cancer cells, which induces the activa-
tion of Akt and ERK pathways in ECs, leading to 
the development of mature vessels [70]. Also, a 
recent study situates another cytokine secreted by 
MSCs, the interleukin-8 (IL-8), as responsible 
for endothelial proliferation induction and tube 
formation, demonstrating the paracrine pro- 
angiogenic effect of IL-8 [71] (Fig. 8.1).

8.3.2  Hypoxia

A hallmark in solid TME is hypoxia, which is 
directly related with tumor progression and ther-
apeutic response failure. Within the tumor, the 
oxygen concentration is variable, appearing in 
distinct areas with different oxygen contents. The 
responsible for the adaptation to hypoxic micro-
environment is the hypoxia-inducible factor 
(HIF) family of transcription factors, and plays 
crucial roles in diverse tumor processes such as 
 angiogenesis, treatment and immune system 

resistance, proliferation, tumor cell plasticity, 
metastasis, and maintenance of CSCs [72]. It was 
observed that under hypoxic conditions, MSCs 
increase HIF-1α secretion and their proliferative 
capacity. In addition, elevated release of energy 
metabolism-associated genes such as lactate 
dehydrogenase, GLUT-1, and PDK1 was 
observed, thereby leading to acidosis in the tumor 
microenvironment, and all this results in a feed-
back of the hypoxia environment [73]. On the 
other hand, the expression of HIF-1α and HIF-2α 
is different between non-SCs and CSCs. HIF-1α 
is produced by stem and nonstem tumor cells, 
and is only stabilized under acute hypoxic condi-
tions, but HIF-2α is significantly secreted by 
CSCs and is accumulated under low levels of 
hypoxia or even normal physiological oxygen 
levels [74]; so, the role of the two HIF isoforms 
depends on the timely characteristics of the TME. 
In addition, HIF-1α produced by SCs stimulates 
tumor angiogenesis through the enhanced expres-
sion of angiogenic proteins like VEGF [75]. Also, 
several studies evidence that hypoxia plays a 
determinant role in CSCs maintenance, enhanc-
ing the self-renewal capacity, and retaining the 
undifferentiated state of CSCs, state that is 
reversible when normoxic conditions are reset-
tled [76–78].

Fig. 8.2 Schematic overview of SCs secretome released to TME and the pathways and tumor processes it regulates
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8.3.3  Metastasis

Cells from the primary tumor present intravasa-
tion capacity, which allows them to enter into the 
surrounding blood and lymphatic vessels, and 
around 0.2% of these cells survive in circulation 
and have extravasation ability; finally, they colo-
nize distant organs producing metastasis [79]. As 
can be seen, metastasis is a very complex process 
that requires a set of factors that support it to 
achieve success. MSCs present different roles in 
the metastatic process, on the one hand, they 
increase the metastatic potential of tumor cells, 
and on the other hand, they present the ability to 
prepare the metastatic niche in the distant tissue 
[48]. Related to the increment of metastatic 
potential, the release of chemokine CCL5 by 
MSCs activates its receptor CCR5 on breast can-
cer cells thereby promoting altered breast cancer 
development and metastasis [52]. In addition, 
ovarian CSCs present CCR1, CCR3, and CCR5 
upregulated, being more sensitive to CCL5 
induction, enhancing invasiveness through 
nuclear factor κB (NF-κB) activation and the 
consequently elevated MMP9 secretion [80]. 
Others MMPs are highly secreted in the TME, 
such as MMP10 and MMP13 that are released by 
CSCs, and this fact promotes ECM degradation 
and remodeling, which enhances metastatic 
behavior [81, 82]. As other factors described, 
MMPs also perform different functions, such as 
MMP10 that has an essential role in CSCs main-
tenance and treatment resistance through the acti-
vation of Wnt signaling [83]. Main factors of 
other tumor processes also participate in metasta-
sis, for example, hypoxia promotes metastasis 
through the activation and enhancement expres-
sion of HIF, which mediates paracrine signaling 
between cancer cells and MSCs mediated by 
CXCL10 and CCL5 and its respective receptors 
CXCR3 and CCR5 in cancer cells [84].

EMT phenomenon and the intravasation are 
essential processes in metastasis, and are pro-
cesses driven by a complex network of cytokines 
and factors. For example, MSCs secretome in 
general, and IL-6, IL-8, and TGFβ in particular, 
have the capacity to upregulate EMT specific 
markers (N-cadherin, Vimentin, Twist, and Snail) 

via activation of PI3K/AKT pathway [85–87]. 
Once the cells are in the blood vessel, they have 
to perform the extravasation to be able to colo-
nize the new tissue, and TGFβ displays an indis-
pensable role in this process [88]. TGFβ induces 
angiopoietin-like 4 via the Smad signaling path-
ways in cancer cells, and these cells enter the cir-
culation to metastasize to the lungs. After that, 
circulating cells that retain angiopoietin-like 4 
release this cytokine and disrupt endothelial cell–
cell adhesions in lung capillaries, facilitating the 
target organ invasion [89].

The TME also includes the metastatic niche, a 
niche in which there are also SCs and the factors 
secreted by them, making metastasis a successful 
process. Kaplan et al. first described the forma-
tion of a premetastatic niche where MSCs that 
express VEGFR1 present the capacity to migrate 
and form premetastatic niches through the pro-
duction of MMP9, preparing it before the arrival 
and establishment of tumor cells [90]. Also, peri-
ostin (an ECM molecule) is highly expressed in 
CSCs [91] and when it binds to Wnt ligands, pro-
motes stemness [92] so that the first CSCs that 
reach the premetastatic niche could favor the 
stemness of the new cells through this molecule. 
All these data together show that metastasis is a 
process induced by original TME secretome, 
where SCs are a principal player that can handle 
such complex processes as traveling through 
blood and lymphatic vessels and establishing a 
new tumor in a different organ.

8.3.4  Inflammation 
and Immunomodulation 
Processes

Inflammation and immunomodulation play a crit-
ical role in tumor development through the pro-
duction of several molecules that participate in 
diverse tumor processes [93, 94]. In the TME 
there are several immune system cellular types 
including macrophages, neutrophils, mast cells, 
eosinophils, and myeloid-derived suppressor 
cell, which are attracted by TME through the 
tumor cell secretome, as well as ECM-degrading 
enzymes that allow invasion [75, 95]. The tran-
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scription factors NF-κB and Stat3 regulate mul-
tiple aspects and serve as a central inflammatory 
mediator that responds to a large variety of 
immune stimulus [93, 94, 96], and as described 
in previous sections, these factors are very active 
in tumors. MSCs constitutively secrete several 
factors implicated in the immune suppressive 
role of these cells which include IL-1β, IL-6, 
IL-8, IL-10, HGF, TNFα, GM-CSF, TGFβ-1, 
prostaglandin E2, human leukocyte antigen-G5, 
and tryptophan-degrading enzyme indoleamine 
2,3- dioxygenase (IDO) [97, 98]. In addition, 
CSCs have been demonstrated to have immuno-
modulatory properties through the release of 
inflammatory factors like IL-6, IL-17, and TGFβ, 
inducing Foxp3-positive regulatory T cells and 
pathogenic Th17 cells that can make the TME 
unresponsive to the recognizance of immune 
cells [99].

8.3.5  Homing

As described in the introduction section, the 
TME is composed of different cell types that 
interact to create the most optimal TME, as well 
as the different processes associated with tumor 
evolution; but to achieve this, it is necessary that 
the tumor “recruits” these cells. MSCs are 
attracted and activated by IL-6 released by differ-
ent cell types, among them the CSCs, and in turn, 
the MSCs recruited produce CXCL7 that favors 
the maintenance of CSCs, generating a positive 
feedback loop [100]. Also, IL-1β, that shows 
higher expression in CSCs compared to their 
more differentiated counterparts [101], promotes 
MSCs migration through the expression of 
MMP1, which then activates the PAR1 and 
G-protein-coupled signal pathways [102].

Definitely, MSCs homing to tumor requires 
the participation of a complex molecule network 
that includes several cytokines and factors 
released by CSCs such as TGFβ1, VEGF, FGF, 
CCL2, CXCL8, and TNFα [103]. But MSCs do 
not respond only to signals from other cell types; 
for example, autocrine signaling of SDF-1 leads 
to the activation of Jak2/STAT3 and ERK1/2 sig-
naling, thereby promoting FAK activation that 

finally promotes MSCs’ migration to the TME 
[104]. TAMs also are critical modulators of the 
TME and support tumor progression; their 
recruitment is done through the chemokine CCL2 
and its receptor CCR2, secreted by MSCs, as 
well as VEGF in a HIF-1α-dependent manner 
released by both SCs [105, 106].

8.3.6  Cell Phenotype Maintenance 
or Differentiation Induction

The maintenance or alteration of the cell pheno-
type or the stemness state is highly influenced by 
the TME.  CSCs phenotype, proliferation, and 
invasiveness are regulated by MSCs and the 
CSCs themselves that activate NF-κB pathway 
through the release of several growth factor and 
cytokines, such as CXCL12, CXCL7, IL-6, IL-8, 
HGF, VEGF, HIF, and Gremlin 1 (see previous 
sections) [59, 100, 107, 108]. TGFβ is one of the 
key factors produced by the CSCs, and helps to 
transform fibroblasts and MSCs to cancer- 
associated fibroblasts (CAFs); thanks to the acti-
vation of TGFBR1/Smad pathways, and these 
CAFs participate in several TME process through 
its secretome network, like angiogenesis, EMT, 
and metastasis [62, 109, 110]. Moreover, MSCs 
also present the capacity to differentiate into peri-
cytes and ECs under the effect of VEGF produced 
by both SCs [111]. The balance between the 
differentiated- dedifferentiated state of the CSCs 
is essential for tumor evolution and treatment 
resistance, and the balance between both states 
depends of NF-κB signaling (and related mole-
cules describes above), enhancing Wnt activation 
that drives tumor cells dedifferentiation [112].

8.4  Future Trends

CSCs are responsible for tumor development, 
metastasis, and relapses, but the entire responsi-
bility of a tumor process should not be associated 
only with a single cell type, since the TME is 
composed of different cell types that are inter-
connected by a complex network of chemokines, 
cytokines, growth factors, hormones, and metab-
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olites. MSCs and CSCs create the stem niche and 
participate in several indispensable tumor pro-
cesses such as angiogenesis, hypoxia, cell recruit-
ment, inflammation, undifferentiated phenotype 
maintenance or cell differentiation, and metasta-
sis. The potential of future therapeutic approaches 
is based on the knowledge of the TME, and espe-
cially of both types of SCs, as well as the com-
plex communication network between them and 
with the rest of tumor subpopulations. For exam-
ple, both SCs release VEGF to induce angiogen-
esis that supports CSCs maintenance and 
metastasis, and many novel approach drugs are 
focused on disrupting this growth factor pathway, 
including tyrosine kinase inhibitors [113, 114]. 
In the same way, high HIF expression correlates 
with poor glioma patient survival [115], so new 
therapies against this factor and its signaling 
pathway will allow the disruption of the hypoxic 
environment that affects several tumor processes 
and characteristics, including angiogenesis. A 
key factor in future therapeutic approaches is to 
avoid CSCs maintenance/protection. As 
described in this chapter, the entire TME in gen-
eral, and the SCs in particular, has developed a 
complex cellular communication directed to 
CSCs preservation; therefore, new therapies 
should focus on this connection, and, in fact, 
there are already several studies and clinical trials 
aimed at these cytokines and specific factors, 
such as IL-6 [116, 117], IL-8 [118], HGF [119], 
and TGFβ [120]. In conclusion, the molecules 
released in the TME form a complex network that 
determines the success of the hallmarks of cancer 
[3], and may constitute a powerful tool in the 
therapeutic targeting of precision and personal-
ized oncology.

Acknowledgments This work has been partially funded 
by the Ministerio de Economía y Competitividad 
(MINECO, FEDER funds, grant numbers 
MAT2015- 62644.C2.2.R and RTI2018-101309-B-C22), 
the Consejería de Economía, Conocimiento, Empresas y 
Universidad de la Junta de Andalucía (European Regional 
Development Fund (ERDF), ref. SOMM17/6109/UGR), 
grants from the Ministry of Economy and Competitiveness, 
Instituto de Salud Carlos III (FEDER funds, projects no. 
PIE16/00045 and DTS17/00087), and from the Chair 
“Doctors Galera-Requena in cancer stem cell research” 
(CMC-CTS963).

Conflicts of Interest None of the authors have a 
conflict of interest to declare.

References

 1. Caiado F, Silva-Santos B, Norell H (2016) Intra- 
tumour heterogeneity  – going beyond genetics. 
FEBS J 283:2245–2258

 2. Hanahan D, Coussens LM (2012) Accessories to 
the crime: functions of cells recruited to the tumor 
microenvironment. Cancer Cell 21:309–322

 3. Hanahan D, Weinberg RA (2011) Hallmarks of can-
cer: the next generation. Cell 144:646–674

 4. Joyce J, Quail D (2013) Microenvironmental regula-
tion of tumor progression and metastasis. Nat Med 
19:1423–1437

 5. Junttila MR, De Sauvage FJ (2013) Influence of 
tumour micro-environment heterogeneity on thera-
peutic response. Nature 501(7467):346–354

 6. Hui L, Chen Y (2015) Tumor microenvironment: 
sanctuary of the devil. Cancer Lett 368(1):7–13

 7. Yeldag G, Rice A, del Rio Hernández A (2018) 
Chemoresistance and the self-maintaining tumor 
microenvironment. Cancers (Basel) 10(12):pii: E471

 8. Balkwill FR, Capasso M, Hagemann T (2012) The 
tumor microenvironment at a glance. J Cell Sci 
125:5591–5596

 9. Qian C-N, Tan M-H, Yang J-P, Cao Y (2016) 
Revisiting tumor angiogenesis: vessel co-option, 
vessel remodeling, and cancer cell-derived vascula-
ture formation. Chin J Cancer 35:10

 10. Carmeliet P, Jain RK (2011) Molecular mechanisms 
and clinical applications of angiogenesis. Nature 
473:298–307

 11. Weis SM, Cheresh DA (2011) Tumor angiogenesis: 
molecular pathways and therapeutic targets. Nat 
Med 17:1359–1370

 12. Turley SJ, Cremasco V, Astarita JL (2015) 
Immunological hallmarks of stromal cells in the 
tumour microenvironment. Nat Rev Immunol 
15:669–682

 13. Olumi AF, Grossfeld GD, Hayward SW, Carroll 
PR, Tlsty TD, Cunha GR (1999) Carcinoma- 
associated fibroblasts direct tumor progression of 
initiated human prostatic epithelium. Cancer Res 
59(19):5002–5011

 14. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos 
F, Delaunay T, Naeem R et al (2005) Stromal fibro-
blasts present in invasive human breast carcinomas 
promote tumor growth and angiogenesis through ele-
vated SDF-1/CXCL12 secretion. Cell 121:335–348

 15. Hwang RF, Moore T, Arumugam T, Ramachandran 
V, Amos KD, Rivera A et  al (2008) Cancer- 
associated stromal fibroblasts promote pancreatic 
tumor progression. Cancer Res 68(3):918–926

G. Jiménez et al.



123

 16. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, 
Modrusan Z et  al (2009) PDGF-C mediates the 
angiogenic and tumorigenic properties of fibroblasts 
associated with tumors refractory to anti-VEGF 
treatment. Cancer Cell 15:21–34

 17. Straussman R, Morikawa T, Shee K, Barzily-Rokni 
M, Qian ZR, Du J et  al (2012) Tumour micro- 
environment elicits innate resistance to RAF inhibi-
tors through HGF secretion. Nature 487:500–504

 18. Paraiso KHT, Smalley KSM (2013) Fibroblast- 
mediated drug resistance in cancer. Biochem 
Pharmacol 85:1033–1041

 19. Räsänen K, Vaheri A (2010) Activation of fibroblasts 
in cancer stroma. Exp Cell Res 316:2713–2722

 20. Vong S, Kalluri R (2011) The role of stromal myofi-
broblast and extracellular matrix in tumor angiogen-
esis. Genes Cancer 2:1139–1145

 21. Zamarron BF, Chen W (2011) Dual roles of immune 
cells and their factors in cancer development and 
progression. Int J Biol Sci 7:651–658

 22. Eyileten C, Majchrzak K, Pilch Z, Tonecka K, 
Mucha J, Taciak B et  al (2016) Immune cells in 
cancer therapy and drug delivery. Mediat Inflamm 
2016:1–13

 23. Condeelis J, Pollard JW (2006) Macrophages: obli-
gate partners for tumor cell migration, invasion, and 
metastasis. Cell 124:263–266

 24. Bhowmick NA, Chytil A, Plieth D, Gorska AE, 
Dumont N, Shappell S et al (2004) TGF-beta signal-
ing in fibroblasts modulates the oncogenic potential 
of adjacent epithelia. Science 303:848–851

 25. Lu P, Weaver VM, Werb Z (2012) The extracellular 
matrix: a dynamic niche in cancer progression. J 
Cell Biol 196:395–406

 26. Pickup MW, Mouw JK, Weaver VM (2014) The 
extracellular matrix modulates the hallmarks of can-
cer. EMBO Rep 15:1243–1253

 27. Reya T, Morrison SJ, Clarke MF, Weissman IL 
(2001) Stem cells, cancer, and cancer stem cells. 
Nature 414:105–111

 28. Hernández-Camarero P, Jiménez G, López-Ruiz E, 
Barungi S, Marchal JA, Perán M (2018) Revisiting 
the dynamic cancer stem cell model: importance of 
tumour edges. Crit Rev Oncol Hematol 131:35–45

 29. Ni C, Huang J (2013) Dynamic regulation of cancer 
stem cells and clinical challenges. Clin Transl Oncol 
15:253–258

 30. Visvader JE, Lindeman GJ (2012) Cancer stem cells: 
current status and evolving complexities. Cell Stem 
Cell 10:717–728

 31. Jang J-W, Song Y, Kim S-H, Kim J, Seo HR (2017) 
Potential mechanisms of CD133  in cancer stem 
cells. Life Sci 184:25–29

 32. Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) 
Breast cancer stem cells: tools and models to rely on. 
BMC Cancer 9:202

 33. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern 
JG, Jax TW, Gobel U et al (2004) A distinct “side 
population” of cells with high drug efflux capacity 

in human tumor cells. Proc Natl Acad Sci U S A 
101:14228–14233

 34. Hermann PC, Huber SL, Herrler T, Aicher A, 
Ellwart JW, Guba M et  al (2007) Distinct popula-
tions of cancer stem cells determine tumor growth 
and metastatic activity in human pancreatic cancer. 
Cell Stem Cell 1:313–323

 35. Malanchi I, Santamaria-Martínez A, Susanto E, Peng 
H, Lehr H-A, Delaloye J-F et al (2011) Interactions 
between cancer stem cells and their niche govern 
metastatic colonization. Nature 481:85–89

 36. Dean M (2009) ABC transporters, drug resistance, 
and cancer stem cells. J Mammary Gland Biol 
Neoplasia 14:3–9

 37. Eyler CE, Rich JN (2008) Survival of the fittest: can-
cer stem cells in therapeutic resistance and angio-
genesis. J Clin Oncol 26:2839–2845

 38. Maugeri-Saccà M, Bartucci M, De Maria R (2012) 
DNA damage repair pathways in cancer stem cells. 
Mol Cancer Ther 11:1627–1636

 39. Moore N, Lyle S (2011) Quiescent, slow-cycling 
stem cell populations in cancer: a review of the 
evidence and discussion of significance. J Oncol 
2011:pii: 396076

 40. Wels J, Kaplan RN, Rafii S, Lyden D (2008) 
Migratory neighbors and distant invaders: tumor- 
associated niche cells. Genes Dev 22:559–574

 41. Ye J, Wu D, Wu P, Chen Z, Huang J (2014) The 
cancer stem cell niche: cross talk between cancer 
stem cells and their microenvironment. Tumor Biol 
35:3945–3951

 42. Klimczak A, Kozlowska U (2016) Mesenchymal 
stromal cells and tissue-specific progenitor cells: 
their role in tissue homeostasis. Stem Cells Int 
2016:4285215

 43. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, 
Douglas R, Mosca JD et  al (1999) Multilineage 
potential of adult human mesenchymal stem cells. 
Science 284:143–147

 44. Dominici M, Le Blanc K, Mueller I, Slaper- 
Cortenbach I, Marini FC, Krause DS et  al (2006) 
Minimal criteria for defining multipotent mesen-
chymal stromal cells. The International Society for 
Cellular Therapy position statement. Cytotherapy 
8(4):315–317

 45. Bergfeld SA, DeClerck YA (2010) Bone marrow- 
derived mesenchymal stem cells and the tumor 
microenvironment. Cancer Metastasis Rev 
29:249–261

 46. Dwyer RM, Potter-Beirne SM, Harrington KA, 
Lowery AJ, Hennessy E, Murphy JM et  al (2007) 
Monocyte chemotactic protein-1 secreted by pri-
mary breast tumors stimulates migration of mesen-
chymal stem cells. Clin Cancer Res 13:5020–5027

 47. Senst C, Nazari-Shafti T, Kruger S, Höner Zu 
Bentrup K, Dupin CL, Chaffin AE et  al (2013) 
Prospective dual role of mesenchymal stem cells in 
breast tumor microenvironment. Breast Cancer Res 
Treat 137:69–79

8 Stem Cell-Secreted Factors in the Tumor Microenvironment



124

 48. Ridge SM, Sullivan FJ, Glynn SA (2017) 
Mesenchymal stem cells: key players in cancer pro-
gression. Mol Cancer 16:31

 49. Djouad F, Plence P, Bony C, Tropel P, Apparailly 
F, Sany J et al (2003) Immunosuppressive effect of 
mesenchymal stem cells favors tumor growth in allo-
geneic animals. Blood 102:3837–3844

 50. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y et al 
(2012) Exosomes derived from human bone mar-
row mesenchymal stem cells promote tumor growth 
in vivo. Cancer Lett 315:28–37

 51. Spaeth EL, Dembinski JL, Sasser AK, Watson K, 
Klopp A, Hall B et al (2009) Mesenchymal stem cell 
transition to tumor-associated fibroblasts contributes 
to fibrovascular network expansion and tumor pro-
gression. PLoS One 4(4):e4992

 52. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks 
MW, Bell GW et al (2007) Mesenchymal stem cells 
within tumour stroma promote breast cancer metas-
tasis. Nature 449:557–563

 53. Nabha SM, dos Santos EB, Yamamoto HA, Belizi A, 
Dong Z, Meng H et al (2008) Bone marrow stromal 
cells enhance prostate cancer cell invasion through 
type I collagen in an MMP-12 dependent manner. Int 
J Cancer 122:2482–2490

 54. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy 
JM, Curran C et  al (2010) Potential role of mes-
enchymal stem cells (MSCs) in the breast tumour 
microenvironment: stimulation of epithelial to mes-
enchymal transition (EMT). Breast Cancer Res Treat 
124:317–326

 55. Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata 
T, Itoh J et al (2011) Mesenchymal stromal cells pro-
mote tumor growth through the enhancement of neo-
vascularization. Mol Med 17:579–587

 56. Zhang T, Lee Y, Rui Y, Cheng T, Jiang X, Li G (2013) 
Bone marrow-derived mesenchymal stem cells pro-
mote growth and angiogenesis of breast and prostate 
tumors. Stem Cell Res Ther 4:70

 57. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, 
Alexe G, Mesirov JP et  al (2008) Carcinoma- 
associated fibroblast-like differentiation of human 
mesenchymal stem cells. Cancer Res 68:4331–4339

 58. Hossain A, Gumin J, Gao F, Figueroa J, Shinojima 
N, Takezaki T et  al (2015) Mesenchymal stem 
cells isolated from human gliomas increase prolif-
eration and maintain stemness of glioma stem cells 
through the IL-6/gp130/STAT3 pathway. Stem Cells 
33:2400–2415

 59. Jiménez G, Hackenberg M, Catalina P, Boulaiz 
H, Griñán-Lisón C, García MÁ et  al (2018) 
Mesenchymal stem cell’s secretome promotes selec-
tive enrichment of cancer stem-like cells with spe-
cific cytogenetic profile. Cancer Lett 429:78–88

 60. Kuhn NZ, Tuan RS (2010) Regulation of stemness 
and stem cell niche of mesenchymal stem cells: 
implications in tumorigenesis and metastasis. J Cell 
Physiol 222:268–277

 61. Bissell MJ, Hines WC (2011) Why don’t we get 
more cancer? A proposed role of the microenviron-

ment in restraining cancer progression. Nat Med 
17:320–329

 62. Quail DF, Joyce JA (2013) Microenvironmental 
regulation of tumor progression and metastasis. Nat 
Med 19:1423–1437

 63. Paltridge JL, Belle L, Khew-Goodall Y (1834) The 
secretome in cancer progression. Biochim Biophys 
Acta 2013:2233–2241

 64. Melzer C, von der Ohe J, Lehnert H, Ungefroren H, 
Hass R (2017) Cancer stem cell niche models and 
contribution by mesenchymal stroma/stem cells. 
Mol Cancer 16:28

 65. Beck B, Driessens G, Goossens S, Youssef KK, 
Kuchnio A, Caauwe A et al (2011) A vascular niche 
and a VEGF-Nrp1 loop regulate the initiation and 
stemness of skin tumours. Nature 478:399–403

 66. Beckermann BM, Kallifatidis G, Groth A, 
Frommhold D, Apel A, Mattern J et al (2008) VEGF 
expression by mesenchymal stem cells contributes to 
angiogenesis in pancreatic carcinoma. Br J Cancer 
99:622–631

 67. Zhang K, Shi B, Chen J, Zhang D, Zhu Y, Zhou C 
et al (2010) Bone marrow mesenchymal stem cells 
induce angiogenesis and promote bladder cancer 
growth in a rabbit model. Urol Int 84:94–99

 68. Xu C, Wu X, Zhu J (2013) VEGF promotes prolif-
eration of human glioblastoma multiforme stem- 
like cells through VEGF receptor 2. Sci World J 
2013:1–8

 69. Mercurio AM (2019) VEGF/neuropilin signaling in 
cancer stem cells. Int J Mol Sci 20(3):pii: E490

 70. Huang W-H, Chang M-C, Tsai K-S, Hung M-C, 
Chen H-L, Hung S-C (2013) Mesenchymal stem 
cells promote growth and angiogenesis of tumors in 
mice. Oncogene 32:4343–4354

 71. Conroy S, Kruyt FAE, Wagemakers M, Bhat KPL, 
den Dunnen WFA (2018) IL-8 associates with a pro- 
angiogenic and mesenchymal subtype in glioblas-
toma. Oncotarget 9:15721–15731

 72. Lequeux A, Noman MZ, Xiao M, Sauvage D, Van 
Moer K, Viry E et al (2019) Impact of hypoxic tumor 
microenvironment and tumor cell plasticity on the 
expression of immune checkpoints. Cancer Lett 
458:13–20

 73. Lavrentieva A, Majore I, Kasper C, Hass R (2010) 
Effects of hypoxic culture conditions on umbilical 
cord-derived human mesenchymal stem cells. Cell 
Commun Signal 8:18

 74. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee 
S et  al (2009) Hypoxia-inducible factors regulate 
tumorigenic capacity of glioma stem cells. Cancer 
Cell 15:501–513

 75. Kitamura T, Qian B-Z, Pollard JW (2015) Immune 
cell promotion of metastasis. Nat Rev Immunol 
15:73–86

 76. Soeda A, Park M, Lee D, Mintz A, Androutsellis- 
Theotokis A, McKay RD et  al (2009) Hypoxia 
promotes expansion of the CD133-positive glioma 
stem cells through activation of HIF-1α. Oncogene 
28:3949–3959

G. Jiménez et al.



125

 77. Lee D-H, Oh SC, Giles AJ, Jung J, Gilbert MR, Park 
DM (2017) Cardiac glycosides suppress the main-
tenance of stemness and malignancy via inhibiting 
HIF-1α in human glioma stem cells. Oncotarget 
8(25):40233–40245

 78. Jacobsson H, Harrison H, Hughes É, Persson 
E, Rhost S, Fitzpatrick P et  al (2019) Hypoxia- 
induced secretion stimulates breast cancer stem 
cell regulatory signalling pathways. Mol Oncol 
13(8):1693–1705

 79. Zeeshan R, Mutahir Z (2017) Cancer metastasis  – 
tricks of the trade. Bosn J Basic Med Sci 17:172–182

 80. Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z et al 
(2012) Autocrine CCL5 signaling promotes invasion 
and migration of CD133+ ovarian cancer stem-like 
cells via NF-κB-mediated MMP-9 upregulation. 
Stem Cells 30:2309–2319

 81. Justilien V, Regala RP, Tseng I-C, Walsh MP, Batra 
J, Radisky ES et al (2012) Matrix metalloproteinase-
 10 is required for lung cancer stem cell maintenance, 
tumor initiation and metastatic potential. PLoS One 
7:e35040

 82. Inoue A, Takahashi H, Harada H, Kohno S, Ohue 
S, Kobayashi K et al (2010) Cancer stem-like cells 
of glioblastoma characteristically express MMP- 
13 and display highly invasive activity. Int J Oncol 
37:1121–1131

 83. Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, Asano 
T, Saijo H et al (2016) Matrix metalloproteinase-10 
regulates stemness of ovarian cancer stem-like cells 
by activation of canonical Wnt signaling and can be 
a target of chemotherapy-resistant ovarian cancer. 
Oncotarget 7:26806–26822

 84. Chaturvedi P, Gilkes DM, Wong CC, Kshitiz, Luo 
W, Zhang H et al (2013) Hypoxia-inducible factor- 
dependent breast cancer-mesenchymal stem cell 
bidirectional signaling promotes metastasis. J Clin 
Invest 123:189–205

 85. So KA, Min KJ, Hong JH, Lee J-K (2015) 
Interleukin-6 expression by interactions between 
gynecologic cancer cells and human mesenchymal 
stem cells promotes epithelial-mesenchymal transi-
tion. Int J Oncol 47:1451–1459

 86. Ritter A, Friemel A, Fornoff F, Adjan M, Solbach 
C, Yuan J et al (2015) Characterization of adipose- 
derived stem cells from subcutaneous and visceral 
adipose tissues and their function in breast cancer 
cells. Oncotarget 6(33):34475–34493

 87. Wu S, Wang Y, Yuan Z, Wang S, Du H, Liu X et al 
(2018) Human adipose-derived mesenchymal stem 
cells promote breast cancer MCF7 cell epithelial- 
mesenchymal transition by cross interacting with the 
TGF-β/Smad and PI3K/AKT signaling pathways. 
Mol Med Rep 19:177–186

 88. McAndrews KM, McGrail DJ, Ravikumar N, 
Dawson MR (2015) Mesenchymal stem cells induce 
directional migration of invasive breast cancer cells 
through TGF-β. Sci Rep 5:16941

 89. Padua D, Zhang XH-F, Wang Q, Nadal C, Gerald 
WL, Gomis RR et  al (2008) TGFβ primes breast 
tumors for lung metastasis seeding through 
angiopoietin- like 4. Cell 133:66–77

 90. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, 
Vincent L, Costa C et  al (2005) VEGFR1-positive 
haematopoietic bone marrow progenitors initiate the 
pre-metastatic niche. Nature 438:820–827

 91. Xu D, Xu H, Ren Y, Liu C, Wang X, Zhang H et al 
(2012) Cancer stem cell-related gene periostin: a 
novel prognostic marker for breast cancer. PLoS One 
7:e46670

 92. Wang X, Liu J, Wang Z, Huang Y, Liu W, Zhu X 
et al (2013) Periostin contributes to the acquisition 
of multipotent stem cell-like properties in human 
mammary epithelial cells and breast cancer cells. 
PLoS One 8:e72962

 93. Mantovani A, Allavena P, Sica A, Balkwill F 
(2008) Cancer-related inflammation. Nature 
454(7203):436–444

 94. Grivennikov SI, Greten FR, Karin M (2010) 
Immunity, inflammation, and cancer. Cell 
140:883–899

 95. Kessenbrock K, Plaks V, Werb Z (2010) Matrix 
metalloproteinases: regulators of the tumor microen-
vironment. Cell 141:52–67

 96. Mantovani A (2010) Molecular pathways linking 
inflammation and cancer. Curr Mol Med 10:369–373

 97. De Miguel MP, Fuentes-Julián S, Blázquez- 
Martínez A, Pascual CY, Aller MA, Arias J et  al 
(2012) Immunosuppressive properties of mesenchy-
mal stem cells: advances and applications. Curr Mol 
Med 12:574–591

 98. Liubomirski Y, Lerrer S, Meshel T, Morein D, 
Rubinstein-Achiasaf L, Sprinzak D et  al (2019) 
Notch-mediated tumor-stroma-inflammation net-
works promote invasive properties and CXCL8 
expression in triple-negative breast cancer. Front 
Immunol 10:804

 99. Yoshimura A, Muto G (2011) TGF-β function in 
immune suppression. Curr Top Microbiol Immunol 
350:127–147

 100. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, 
Monville F et al (2011) Breast cancer stem cells are 
regulated by mesenchymal stem cells through cyto-
kine networks. Cancer Res 71:614–624

 101. Nomura A, Gupta VK, Dauer P, Sharma NS, Dudeja 
V, Merchant N et  al (2018) NFκB-mediated inva-
siveness in CD133 + pancreatic TICs is regulated by 
autocrine and paracrine activation of IL1 signaling. 
Mol Cancer Res 16:162–172

 102. Chen M-S, Lin C-Y, Chiu Y-H, Chen C-P, Tsai P-J, 
Wang H-S (2018) IL-1β-induced matrix metallopro-
tease- 1 promotes mesenchymal stem cell migration 
via PAR1 and G-protein-coupled signaling pathway. 
Stem Cells Int 2018:3524759

 103. Wang S, Miao Z, Yang Q, Wang Y, Zhang J (2018) 
The dynamic roles of mesenchymal stem cells in 
colon cancer. Can J Gastroenterol Hepatol 2018:1–8

8 Stem Cell-Secreted Factors in the Tumor Microenvironment



126

 104. Gao H, Priebe W, Glod J, Banerjee D (2009) 
Activation of signal transducers and activators of 
transcription 3 and focal adhesion kinase by stro-
mal cell-derived factor 1 is required for migration of 
human mesenchymal stem cells in response to tumor 
cell-conditioned medium. Stem Cells 27:857–865

 105. Zhang J, Lu Y, Pienta KJ (2010) Multiple roles of 
chemokine (C-C motif) ligand 2 in promoting pros-
tate cancer growth. J Natl Cancer Inst 102:522–528

 106. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-
associated macrophages as major players in the tumor 
microenvironment. Cancers (Basel) 6:1670–1690

 107. Cabarcas SM, Mathews LA, Farrar WL (2011) The 
cancer stem cell niche  – there goes the neighbor-
hood? Int J Cancer 129:2315–2327

 108. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, 
Bardella C et al (2015) Aberrant epithelial GREM1 
expression initiates colonic tumorigenesis from cells 
outside the stem cell niche. Nat Med 21:62–70

 109. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. 
Nat Rev Cancer 6:392–401

 110. Nwabo KAH, Kamga PT, Simo RT, Vecchio L, Seke 
EPF, Muller JM et al (2017) Mesenchymal stromal 
cells’ role in tumor microenvironment: involvement 
of signaling pathways. Cancer Biol Med 14:129

 111. Orecchioni S, Gregato G, Martin-Padura I, Reggiani 
F, Braidotti P, Mancuso P et al (2013) Complementary 
populations of human adipose CD34+ progenitor 
cells promote growth, angiogenesis, and metastasis 
of breast cancer. Cancer Res 73:5880–5891

 112. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek 
T, Göktuna SI, Ziegler PK et  al (2013) Intestinal 

tumorigenesis initiated by dedifferentiation and 
acquisition of stem-cell-like properties. Cell 
152:25–38

 113. Ebos JML, Kerbel RS (2011) Antiangiogenic ther-
apy: impact on invasion, disease progression, and 
metastasis. Nat Rev Clin Oncol 8:210–221

 114. Ding L, Ni J, Yang F, Huang L, Deng H, Wu Y et al 
(2017) Promising therapeutic role of miR-27b in 
tumor. Tumor Biol 39:101042831769165

 115. Liu Q, Cao P (2015) Clinical and prognostic signifi-
cance of HIF-1α in glioma patients: a meta-analysis. 
Int J Clin Exp Med 8:22073–22083

 116. Li J, Xu J, Yan X, Jin K, Li W, Zhang R (2018) 
Targeting interleukin-6 (IL-6) sensitizes anti-PD-L1 
treatment in a colorectal cancer preclinical model. 
Med Sci Monit 24:5501–5508

 117. Kampan NC, Xiang SD, McNally OM, Stephens AN, 
Quinn MA, Plebanski M (2018) Immunotherapeutic 
interleukin-6 or interleukin-6 receptor blockade 
in cancer: challenges and opportunities. Curr Med 
Chem 25:4785–4806

 118. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, 
Teijeira Á, Oñate C, González Á et  al (2017) 
Interleukin-8 in cancer pathogenesis, treatment and 
follow-up. Cancer Treat Rev 60:24–31

 119. Papaccio F, Della Corte C, Viscardi G, Di Liello R, 
Esposito G, Sparano F et al (2018) HGF/MET and 
the immune system: relevance for cancer immuno-
therapy. Int J Mol Sci 19:3595

 120. Colak S, ten Dijke P (2017) Targeting TGF-β signal-
ing in cancer. Trends Cancer 3:56–71

G. Jiménez et al.



127© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2020 
A. Birbrair (ed.), Tumor Microenvironment, Advances in Experimental Medicine and Biology 1277, 
https://doi.org/10.1007/978-3-030-50224-9_9

Tight Interplay Between 
Therapeutic Monoclonal 
Antibodies and the Tumour 
Microenvironment in Cancer 
Therapy

Quentin Riller, Aditi Varthaman, 
and Sophie Sibéril

Abstract

Therapeutic monoclonal antibodies (mAb) 
have changed the landscape of cancer therapy. 
With advances in the understanding of tumour 
biology and its microenvironment, different 
categories of mAbs have been developed; a 
first category is directed against tumour cells 
themselves, a second one comprises antibod-
ies blocking the formation of neo-vasculature 
that accompanies tumour development, and, 
during the last decades, a third new category 
of immunomodulatory antibodies that target 
immune cells in the tumour microenvironment 
rather than cancer cells has emerged. In this 
chapter, we outline the main mechanisms of 
action of the different anti-tumour antibodies. 
We discuss the notion that, rather than passive 
immunotherapy that solely induces tumour 
cell killing, mAbs have multifaceted effects 
on the tumour microenvironment and could, 
qualitatively and quantitatively, reshape the 
immune infiltrate. We also discuss bystander 
effects of mAbs on the tumour microenviron-

ment that should be carefully considered for 
the design of new therapeutic strategies.
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9.1  Introduction

Forty years after their discovery by Milstein and 
Köhler, monoclonal antibodies are widely used 
for the treatment of cancer (Table 9.1). This suc-
cess is partly due to the discovery of new thera-
peutic targets resulting from research advances in 
tumour biology and its microenvironment.

Lloyd Old and Ted Boyse’s discovery of the 
first cell-surface differentiation antigens – used to 
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Table 9.1 Approved or ongoing approval monoclonal antibodies in cancer regimen

International name Class Target Indication
Approval year 
(EU/US)

Monoclonal antibodies targeting tumour-associated antigens
Tositumomab-I131 Murine IgG2a CD20 Non-Hodgkin lymphoma NA/2003#
Rituximab Chimeric IgG1 CD20 Non-Hodgkin lymphoma 1998/1997
Ibritumomab tiuxetan Murine IgG1 CD20 Non-Hodgkin lymphoma 2004/2002
Ofatumumab Human IgG1 CD20 Chronic lymphocytic 

leukaemia
2010/2009

Obinutuzumab Humanized IgG1 CD20 Chronic lymphocytic 
leukaemia

2014/2013

Inotuzumab ozogamicin Humanized IgG4 
ADC

CD22 Acute lymphoblastic 
leukaemia

2017/2017

Moxetumomab pasudotox Murine 
IgG1- 
immunotoxin

CD22 Hairy cell leukaemia NA/2018

Blinatumomab Murine bispecific 
antibody

CD19, 
CD3

Acute lymphoblastic 
leukaemia

2015/2014

Brentuximab vedotin Chimeric IgG1 
ADC

CD30 Hodgkin lymphoma, 
systemic anaplastic large 
cell lymphoma

2012/2011

Gemtuzumab ozogamicin Humanized IgG4 
ADC

CD33 Acute myeloid leukaemia 2018/2017; 
2000#

Daratumumab Human IgG1 CD38 Multiple myeloma 2016/2015
Isatuximab Humanized IgG1 CD38 Multiple myeloma 2020/2020
Alemtuzumab Humanized IgG1 CD52 Chronic myeloid leukaemia 2001#/2001#
Trastuzumab Humanized IgG1 HER2 Breast cancer 2000/1998
Pertuzumab Humanized IgG1 HER2 Breast cancer 2013/2012
Ado-trastuzumab emtansine Humanized IgG1 

ADC
HER2 Breast cancer 2013/2012

Dinutuximab Chimeric IgG1 GD2 Neuroblastoma 2015/2015
Edrecolomab Murine IgG2a EpCAM Colon cancer 1995#/NA
Catumaxomab Rat/mouse 

bispecific mAb
EPCAM/
CD3

Malignant ascites 2009#/NA

Elotuzumab Humanized IgG1 SLAMF7 Multiple myeloma 2016/2015
Mogamulizumab Humanized IgG1 CCR4 Sézary syndrome 2018/2018
Polatuzumab vedotin Humanized IgG1 

ADC
CD79b Diffuse large B-cell 

lymphoma
2020/2019

Sacituzumab govitecan Humanized IgG1 
ADC

TROP-2 Triple-negative breast cancer NA/2020

Monoclonal antibodies that interfere with tumour–stroma interactions
Cetuximab Chimeric IgG1 EGFR Colorectal cancer 2004/2004
Panitumumab Human IgG2 EGFR Colorectal cancer 2007/2006
Necitumumab Human IgG1 EGFR Non-small-cell lung cancer 2015/2015
Bevacizumab Humanized IgG1 VEGF Colorectal cancer 2005/2004
Ramucirumab Human IgG1 VEGFR2 Gastric cancer 2014/2014
Olaratumab Human IgG1 PDGFRα Soft tissue sarcoma 2016/2016

Monoclonal antibodies that exert direct immunostimulatory effects
Ipilimumab Human IgG1 CTLA-4 Metastatic melanoma 2011/2011
Nivolumab Human IgG4 PD1 Melanoma, non-small-cell 

lung cancer
2015/2014

Pembrolizumab Humanized IgG4 PD1 Melanoma 2015/2014
Cemiplimab Human IgG4 PD-1 Cutaneous squamous cell 

carcinoma
2019/2018

Atezolizumab Humanized IgG1 PD-L1 Bladder cancer 2017/2016
Avelumab Human IgG1 PD-L1 Merkel cell carcinoma 2017/2017
Durvalumab Human IgG1 PD-L1 Bladder cancer 2018/2017

Source: ‘The Antibody Society’ (https://www.antibodysociety.org/resources/approved-antibodies/)
# Withdrawn or marketing discontinued, NA not approved, ADC antibody-drug conjugate

https://www.antibodysociety.org/resources/approved-antibodies/
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distinguish lineage and functional subsets of leu-
cocytes [1, 2] – led to the CD (cluster of differen-
tiation) classification and the wide use of 
cell-surface markers to distinguish between nor-
mal and malignant cells. Anti-tumour antibodies 
can be broadly classified into three categories: 1. 
Antibodies targeting CD antigens expressed spe-
cifically by tumour cells of the hematopoietic lin-
eage: lymphocytes (CD20, CD22 CD38) and 
myeloid cells (CD30, CD33) (Table  9.1). 2. 
Antibodies that are directed against tumour- 
associated antigens (HER2/neu, MUC1, CEA, 
EGFR) – a number of molecules overexpressed 
by tumour cells discovered using tumour genetics 
[3–7] (Table  9.1). 3. Antibodies targeting the 
tumour microenvironment (TME). Established 
tumours are complex tissues composed not only 
of tumour cells but also of stromal and mesen-
chymal cells, vasculature components and 
immune cells. Tumour-derived factors stimulate 
blood vessel growth that in turn sustains tumour 
progression leading to the hypothesis that anti- 
angiogenesis agents might be an effective anti-
cancer strategy [8–11]. The isolation of vascular 
endothelial growth factor (VEGF)  – an 
endothelial- cell mitogen and a key regulator of 
angiogenesis in the TME – and the demonstration 
that an anti-VEGF mAb inhibits tumour growth 
in different preclinical models, led to the devel-
opment and approval in 2004 of bevacizumab 
(humanized IgG1 anti-VEGF mAb) for clinical 
use in cancer patients [11, 12]. Other antibodies 
blocking neo-vasculature formation that accom-
panies tumour development have been subse-
quently developed, notably anti-VEGFR2, 
-PDGFRα mAbs (Table 9.1).

Control of tumour growth is largely dependent 
on the quantity and quality of the tumour immune 
infiltrate [13, 14]. The role of immunity in the 
control of tumours, although suggested as early 
as 1957 by Burnet [15] has been neglected for a 
long time. Studies in 1957 clearly showed that 
tumours harbour immunological determinants 
capable of eliciting anti-tumour immunity and 
long-term immune memory [16]. Consistent with 
these observations, the team of Boon reported 
that autologous cytotoxic T-lymphocytes (CTL) 
from melanoma patients recognize self-peptides 

derived from MAGE-1 protein expressed on 
tumours [17]. MAGE-1 is the first member of a 
larger family of proteins called the cancer testis 
(CT) antigen family – expressed only in tumours 
and in germ cells – which has been widely used 
in vaccination assays to elicit anti-tumour T-cell 
immunity. The use of genetically modified mouse 
models of immunodeficiency revealed the key 
role of immune components in tumour growth 
control; such as IFN-γ signalling, perforin mole-
cules and the T-cell compartment. These preclini-
cal data have incited interest in the understanding 
of cancer surveillance [18]. From the concept of 
‘the three Es’ of cancer immunoediting defined 
by Schreiber’s group; elimination – correspond-
ing to immunosurveillance of tumour growth by 
intratumoural immunity; equilibrium  – repre-
senting the process by which immune attack 
induces the selection of resistant tumour cell 
variants; and escape  – the process by which 
tumour cells escape immune control, came the 
finding that the immune system not only protects 
the host against tumour development but can also 
reshape the immunogenic phenotype of a devel-
oping tumour [18]. Studies performed on large 
cohorts of patients with cancer reveal correla-
tions between the presence of tumour- infiltrating 
lymphocytes (TILs) and patient survival [13, 18, 
19]. A favourable clinical outcome is often asso-
ciated with the presence of tertiary lymphoid 
structures (TLS) – ectopic lymphoid formations 
that contain components required for the genera-
tion of an adaptive immune response including 
B-cell germinal centres, T-cell zones, mature 
dendritic cells and follicular dendritic cells [20]. 
These basic and clinical observations have paved 
the way to the development of a new category of 
immunomodulatory antibodies that target 
immune cells within the TME. Particularly, anti-
bodies directed against regulatory receptors or 
immune checkpoint (ICP) molecules on immune 
cells have emerged over the last decade [21], as 
exemplified by the success of anti- CTLA- 4 or 
anti-PD-1 antibodies in clinics. In the late 1990s, 
James P.  Allison and T.  Honjo (both awarded 
with the Nobel Prize in 2018) demonstrated, in 
preclinical tumour models, that the expression of 
inhibitory ICP on intratumoural T cells dampens 
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their anti-tumour activity and that blockade of 
PD-1/PD-L1 or CTLA-4 pathways using mAbs 
dramatically halts tumour development [22, 23]. 
These pioneering studies reveal anti-ICP mAbs 
as a promising strategy for specific tumour 
immunotherapy and have revolutionized the 
landscape of cancer therapy.

In this chapter, we will present the Fab- and 
Fc-dependent mechanisms of action of different 
categories of anti-tumour antibodies.

9.2  Direct Fab- 
and Fc-Dependent 
Mechanisms of Action 
of Therapeutic Monoclonal 
Antibodies in Cancer

Initially, it was thought that anti-tumour antibod-
ies acted by rapidly recruiting blocking/killer 
mechanisms on tumour cells. Thus, use of mAbs 
was considered until recently more as passive 
immunotherapy based on their transient ability to 
block cancer cell activation and/or proliferation 
(i.e. by targeting growth receptors such as EGF-R 
or HER2/Neu (erbB-2)), to induce apoptosis 
(even marginal by HER2/neu, CD20), or to inter-
fere with the adhesion of tumour cells (EpCAM) 
blocking the formation of metastases. However, 
the expression of mAb-targets on cancer cells 
and in the tumour area is not necessarily predic-
tive of response to treatment. For example, 
although the presence of EGFR-positive tumour 
cells is a requirement for colorectal cancer 
patients to receive cetuximab and panitumumab 
(anti-EGFR mAbs), EGFR expression at the pro-
tein or mRNA level has not been correlated with 
treatment response [24], suggesting that the 
mechanism of activity of these mAbs may also be 
related to their effect on tumour infiltrating 
immune cells. Similarly, although the use of anti-
bodies targeting the VEGF pathway has shown 
clinical benefits associated with a reduction in 
tumour blood vessel density, the direct neutral-
ization of VEGF-driven vascular effects explains 
only part of their therapeutic effect. VEGF inhib-

itors, particularly bevacizumab, not only induce 
vessel normalization – associated with increased 
tumour blood perfusion, restoration of adhesion 
molecules on endothelial cells and improved 
influx of leucocytes into the tumour  – but also 
activate and modulate the function of immune 
cells within the TME [12, 25]. Anti-VEGF and/or 
anti-VEGFR mAbs have an impact on the fre-
quency of regulatory T cells and of tumour- 
infiltrating myeloid-derived suppressor cells 
(MDSCs) and reinvigorate dysfunctional DCs 
[12, 25].

Part of the therapeutic effects of anti- 
angiogenic antibodies can be triggered by Fc/
FcγR interactions. Most of the marketed thera-
peutic antibodies are human IgG1 (either chi-
merized, humanized or fully human antibodies), 
the most efficient human IgG subclass, together 
with IgG3, in engaging FcγR and activating the 
complement cascade. Anti-tumour antibodies 
can trigger effector mechanisms leading to 
tumour cell death, such as complement-depen-
dent cytotoxicity (CDC), antibody-dependent 
cell cytotoxicity (ADCC), antibody-dependent 
cell phagocytosis (ADCP). The activation of 
the classical pathway of complement through 
the binding of C1q to the Fc portion of mAbs 
and the recruitment of Fcγ receptors (FcγRs) 
expressed by NK cells, neutrophils, monocytes 
and macrophages leads to the formation and/or 
the release of effector molecules (membrane 
attack complex made of C5b-C9, perforin and 
granzymes, TNF- α, reactive oxygen intermedi-
ates (ROI), etc.) that induce cell death. ADCC 
and ADCP in myeloid cells through the engage-
ment of FcγR are considered to play an impor-
tant role in the in vivo efficacy of anti-tumour 
antibodies both in pre-clinical tumour models 
and in treated cancer patients [26]. Macrophages 
in tumour tissues are important for the efficacy 
of therapeutic antibodies thanks to their expres-
sion of different types of FcγR, enabling 
ADCP.  Several studies provide evidence that 
macrophages are effector targets of therapeutic 
antibodies in cancer; in  vitro human macro-
phages phagocytose tumour cells in response to 
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anti-CD20 (rituximab) and anti- HER2/neu 
mAbs (trastuzumab) [27–29] and, in vivo, mac-
rophages have been associated with a better 
response to trastuzumab [30, 31]. Interestingly, 
all human IgG subclasses, including isotypes 
that exhibit low NK cell-mediated ADCC due 
to their poor binding to FcγRIIIa, have the 
potential to engage other FcγR (FcγRI and 
FcRγIIa) expressed in macrophages and to 
stimulate macrophage-dependent phagocytosis 
[32]. Significant correlations of FcγR polymor-
phisms with clinical outcome in patients treated 
with rituximab [33, 34], trastuzumab [35, 36] 
and cetuximab [37, 38], argue in favour of a 
role for FcγR+ immune cells in the TME in the 
clinical response to mAb-based treatment. 
However, studies reveal no such associations in 
patients with breast cancer [39], raising the 
possibility of additional immune mechanisms 
that account for the clinical benefit of mAb-
based immunotherapy. Notably, the duration 
and strength of the clinical responses following 
mAb treatment can be linked to the ability of 
tumour antigen-specific mAb to elicit adaptive 
cellular immunity via the activation of antigen 
presenting cells, as described later in this 
chapter.

FcγR/FcR interactions are also implicated in the 
anti-tumour activity of anti-ICP mAbs [40]. One 
underlying mechanism of the anti-tumour activity 
of anti-GITR, -OX40, -CTLA-4 and -TIGIT anti-
bodies is through intratumoural depletion of regu-
latory T cells via FcγR+ myeloid effector cells 
[40–46]. Consistent with these preclinical studies, 
melanoma patients with higher frequencies of 
FcγRIIIA+ myeloid effector cells in the peripheral 
blood show higher response to ipilimumab treat-
ment which is attributed to ADCC/ADCP medi-
ated depletion of Treg in the TME [45]. Recently, 
Waight et al., reported an FcγR-dependent mecha-
nism of action of anti- CTLA- 4 mAbs that is inde-
pendent of Treg depletion [46]. Engagement of 
activating FcγRIIIA on APCs by anti-CTLA-4, 
anti-TIGIT and anti- CD45RB antibodies mAbs 
improves T-cell activity by modulating both TCR 
and CD28 signalling [46].

9.3  Therapeutic Antibodies 
Reshape the Tumour 
Microenvironment

9.3.1  From Tumour Cell Destruction 
to the Triggering of Long- 
Term Adaptive Anti-tumour 
Immunity

In addition to the anti-tumour effects triggered by 
mAbs treatment on innate immunity, evidence 
suggests that these agents might also affect the 
local inflammatory and immune microenviron-
ment [13]. Clinical data and in vivo animal models 
suggest that antibody treatment leading to tumour 
cell killing induces long-term anti-tumour 
responses by triggering target-specific adaptive 
memory responses, a phenomenon that has been 
termed the ‘vaccinal’ effect of antibody treatment 
[47]. Specific T- and B-cell responses are reported 
in cancer patients following therapy with anti-
 CA125 [48], anti-MUC1 [49], anti-HER2/neu [50, 
51] and anti-EGF-R [52] mAbs. Studies in murine 
models also report that the therapeutic effect of 
anti-CD20 [53–56], anti-HER2/neu [57–60], or 
anti-EGF-R [61] mAbs depends on the induction 
of an adaptive immune response and on the pres-
ence of T cells. The anti-HER2/neu studies reveal 
an antibody-mediated mechanism in which danger 
signals activate both innate and T-cell-mediated 
immune responses [57–60]. A role for dendritic 
cells (DC) and macrophages at the tumour site in 
this vaccinal effect is supported by the ability of 
these cells to internalize – in an FcγR-dependent 
manner  – exogenous IgG-complexed antigens 
(probably derived from tumour cell debris), and to 
present MHC II and MHC I-restricted peptides 
derived from these complexes [62–65]. In a human 
glioma model, FcγR-dependent engulfment of 
cetuximab- coated glial tumour cells by DCs leads 
to an increase in anti-tumour CD8+ T cells [65]. 
Several studies demonstrate that upon mAb ther-
apy, a cross-talk between NK cells and DCs can 
occur [52, 66, 67]. Cetuximab-activated NK cells 
result in enhanced cross-presentation of EGF-R-
derived peptides to specific CTL [52].
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Interestingly, it has been reported that human 
macrophages and DCs equally present tumour- 
associated antigens to CD8+ T cells after phago-
cytosis of γ-irradiated melanoma cells [68]. One 
can thus hypothesize that phagocytosis of mAb- 
coated immune complexes by FcγR+ macro-
phages also leads to an efficient activation of 
CD8+ T cells. Nevertheless, the extent to which 
both APCs process and cross-present non- 
mutated tumour-associated antigens within the 
tumour microenvironment to prime T cells in situ 
has yet to be clarified. Non-mutated self-proteins 
overexpressed by tumour cells are universal tar-
get antigens to induce tumour-specific 
T-lymphocytes without the need to identify the 
mutanome of tumour cells. Recent results dem-
onstrate that thymic deletion prunes but does not 
eliminate self-specific CD4+ and CD8+ T cells, 
and that some self-peptide-specific T cells can be 
detected at frequencies similar to T cells specific 
for non-self-antigens [69–72]. We also found that 
CD4+ T cells against non-mutated human CD20- 
derived peptides are present in healthy donors 
and lymphoma patients [73]. While T-cell 
responses against these self-derived epitopes can 
be limited by a self-tolerant T-cell repertoire, it 
has been demonstrated that anti-CA125, anti- 
HER2/neu, anti-MUC1 and anti-EGFR mAb 
treatment can circumvent this tolerance as shown 
by the increase in frequencies of CD4+ and/or 
CD8+ T cells recognizing peptides derived from 
the target molecule in cancer patients [48–52].

9.3.2  Effects of Immunomodulatory 
mAbs on Lymphoid 
and Myeloid Compartments 
Within the Tumour 
Microenvironment

In the last decade, therapeutic mAbs directed 
against inhibitory checkpoints have changed the 
landscape of cancer therapy. Clinical studies have 
demonstrated that these antibodies can induce 
durable clinical responses even in patients with 
advanced cancer [74–76]. Of the many different 
checkpoint receptors, the cytotoxic T-lymphocyte 
antigen-4 (CTLA-4), as well as PD-1 and its 

ligands, PD-L1 and PD-L2, are most intensely 
studied. CTLA-4, expressed on T cells, is an 
early contributor to the development of immune 
tolerance. It negatively controls the priming and 
early antigen-dependent T-cell activation in lym-
phoid organs, and is also expressed in regulatory 
T cells (Treg). CTLA-4 inhibition is used with 
the aim of stimulating T-cell activation and, sub-
sequently, anti-tumour immune responses. 
Ipilimumab, a human IgG1 anti-CTLA-4 mAb, 
which was the first anti-ICP mAb to demonstrate 
survival benefit for patients with metastatic mela-
noma, received Federal Drug Administration 
(FDA) approval for melanoma treatment in 2011 
and is currently in clinical trials in various can-
cers, including lung, colorectal, bladder, renal 
and prostate cancer (https://www.cancer.gov/
about-cancer/treatment/clinical-trials/interven-
tion/ipilimumab?pn=4). PD-1 is a checkpoint 
inhibitor of T cells within peripheral tissues and 
the tumour microenvironment. PD-1 is also 
highly expressed in intratumoural Treg cells and 
might enhance the immunosuppressive activity 
of these cells. MAbs that target the PD-1/PD-L1 
axis are approved for the treatment of patients 
with melanoma, cutaneous squamous cell carci-
noma, non-small-cell lung cancer, bladder cancer 
and Merkel cell carcinoma (Table 9.1).

Overall changes in the tumour microenviron-
ment during ICP therapy, both in preclinical 
models and in treated patients, have been com-
prehensively analysed through longitudinal gene 
expression studies as well as high-dimensional 
profiling approaches, such as mass cytometry and 
single-cell RNA sequencing [77–82]. Major 
changes in tumour- and immune-associated 
genes are reported in melanoma patients who 
exhibit clinical activity following ipilimumab 
(anti-CTLA-4 mAb) therapy [79]. A lower 
expression was observed for genes encoding 
tumour antigens (e.g. members of the MAGEA 
family, NY-ESO-1, MLANA), for genes involved 
in dermatological phenotype and functions (e.g. 
SOX10, MITF, two key transcription regulators 
in melanocytes, and tyrosinases TYR and 
TYRP1, involved in melanin synthesis) and for 
genes implicated in cell growth and differentia-
tion (e.g. MYC, MXI1, IGF1R, CDK2, CCND1, 
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BIRC7, HRK and TNFRSF10B). By contrast, 
many IFN-γ-inducible genes and Th1-associated 
markers (e.g. PRF1, TAP1 and GZMB) increased 
after ipilimumab treatment, suggesting an accu-
mulation of this type of T cells at the tumour site, 
which might play an important role in mediating 
the antitumour activity of ipilimumab [79].

It is generally assumed that ICP blockade 
(anti-PD-1, anti-CTLA-4 mAbs) can restore anti- 
tumour activity in dysfunctional infiltrating 
immune cells. Checkpoint inhibitors amplify pre-
existing T-cell responses, broaden the range of 
antigens being targeted by the T-cell repertoire, 
and induce T-cell-mediated immune responses 
against tumour neoantigens [82–85]. A whole-
exome and transcriptome analysis in tumours 
from patients with advanced melanoma treated 
with nivolumab (anti-PD-1 mAb) shows that 
mutation and neoantigen load reduce from base-
line in responding patients [77]. Interestingly, in 
responding patients, T-cell clones expand in pro-
portion to the number of neoantigen mutations 
that disappear on therapy, suggesting an effective 
immune elimination of tumour cells containing 
non-synonymous mutations and neoantigens, and 
a selective pressure against the generation of 
antigenic mutations.

Analysis of changes in the TME in tumours of 
mice treated with anti-CTLA-4 and/or anti-PD-1 
mAbs by mass cytometry and single-cell RNA 
sequencing demonstrates that anti-ICP mAbs 
induce both quantitative and qualitative changes 
in intratumoural CD4+ and CD8+ T cells as well 
as NK cell subsets. The dramatic reduction in 
Treg frequency and suppressive functions, and 
the remodelling of the CD4+ and CD8+ T-cell 
compartments, lead to increased expression of an 
anti-tumour effector gene signature (e.g. Ifng, 
Gzmb). This study also shows that anti-ICP ther-
apy induces a shift towards a more activated 
CD4+ T-cell compartment that expresses high 
levels of IFN-γ. T-cell activation markers are also 
altered: anti-CTLA-4 decreases the expression of 
TIM-3, LAG-3 and PD-1 in tumour neoantigen- 
specific CD8+ T cells, while anti-PD-1 therapy 
decreases the expression of LAG-3 and PD-1 
[80]. Recent work from the Allison group in 
murine tumour models and human melanomas 

show that the clinical activity of anti-CTLA-4 or 
anti-PD-1 mAbs relies on distinct effects on 
intratumoural T-cell subsets [81]. Both antibod-
ies induce the expansion of specific tumour infil-
trating T-cell subsets. Anti-PD-1 mAb 
predominantly expands exhausted tumour infil-
trating CD8+ T cells, while anti-CTLA-4, but not 
anti-PD-1, modulates the CD4+ T-cell compart-
ment, particularly by expanding an ICOS+ Th1-
like CD4+ effector subset. Differences in the 
impact of the two mAbs on specific subsets of 
lymphoid cells are also reported in the work of 
Gubin et al. [80].

Recent studies suggest that durable clinical 
responses to immunotherapy also depend on 
bystander effects on T-cell subsets that do not 
express ICP molecules. Indeed, PD-1+ CD8+ T 
cells have limited potential to give rise to a long- 
lasting effector response due to their acquisition 
of a stable epigenetic state that cannot be reverted 
by ICP blockade [86–90]. In a preclinical model 
of colon cancer, Kurtulus et al. examined changes 
in the RNA profiles of intratumoural CD8+ T 
cells after TIM-3/PD-1 blockade [91]. Two TIL 
populations with either high (PD-1+TIM3+) or 
low (PD-1−TIM3−) dysfunctional state acquired 
an effector profile following TIM3/PD-1 block-
ade. Interestingly, the PD-1−TIM3− subset 
showed more profound changes than PD-1+TIM3+ 
subset. TIM3/PD-1 blockade increased the fre-
quency of PD1− T-cell subsets bearing character-
istics of effector and memory precursor-like 
cells, indicating that the treatment led to indirect 
changes in pre-existing populations in the 
TME.  This memory-precursor-like subset 
requires the transcription factor Tcf7 and shares 
features with CD8+ T cells that respond to check-
point blockade in patients [91].

Intratumoural monocytes and macrophages 
also undergo striking remodelling following anti- 
ICP mAbs. While CXC3CR1+ CD206+ macro-
phages – CD206 is a marker of anti-inflammatory 
M2 macrophages – are present in progressively 
growing tumours in mice infused with control 
mAb, they dramatically reduce in response to 
anti-PD-1 and/or anti-CTLA-4 mAb therapy 
[80]. The therapy also leads to an accumulation 
of myeloid cells expressing high levels of Nos2 
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(iNOS), a marker of IFN-γ activated, pro- 
inflammatory macrophages. Indeed, IFN-γ pro-
duction, as a consequence of T-cell reinvigoration 
following anti-ICP mAbs therapy, positively 
drives polarization of newly arrived monocytes 
towards iNOS-positive macrophages with anti- 
tumour activity [80]. In line with this observa-
tion, in patients with advanced melanoma treated 
with nivolumab (anti-PD-1 mAb) therapy, 
changes in macrophage-associated genes in 
tumours are associated with better clinical 
responses, suggesting that macrophages may 
play an important role in response to anti-ICP 
mAbs [77].

Several studies have shown that the tumour 
stroma can be a major target of anti-ICP therapy. 
As an example, clinical activity of agonist mAb 
anti-CD40 (developed to mimic CD40L engage-
ment on T cells and to increase T-cell priming) 
can be a result of anti-CD40-dependent alteration 
of tumour stroma [92]. In a mouse model of pan-
creatic ductal adenocarcinoma, anti-CD40 mAb 
induces tumour regression by the recruitment and 
activation of circulating macrophages, which 
then translocate to tumour tissues and degrade 
the tumour stroma (displaying a decrease in col-
lagen I content, consistent with degradation of 
the tumour matrix) [92]. Studies also reveal side 
effects leading to a cytokine storm and lethality, 
following systemic injection of CD40 agonist 
antibodies together with IL-2  in aged mice and 
young obese mice [93, 94]. In these mice, higher 
percentages of TNF+-activated macrophages are 
detected in tissues following therapy as com-
pared to young mice. This suggests a link between 
the hyper-inflammatory cytokine response to sys-
temic immune stimulation and the increase in 
visceral fat observed in aged or young obese 
mice [94].

9.3.3  When Therapeutic mAbs are 
‘Not-So-Good Guys’

The CD40/CD40L story is an interesting case 
demonstrating that monoclonal antibodies are 
more than passive immunotherapy agents, and 
some of them may have multifaceted – beneficial 

or detrimental – effects on the tumour microenvi-
ronment and on anti-tumour immunity.

In a large clinical trial in metastatic colorectal 
cancer, the addition of cetuximab (anti-EGFR) to 
bevacizumab (anti-VEGF) plus chemotherapy 
resulted in decreased progression-free survival 
[95]. Pander et  al. show that M2 macrophages 
present abundantly in colon carcinoma are acti-
vated by cetuximab-opsonized tumour cells, 
resulting in anti-inflammatory and tumour-pro-
moting factors production, including IL-10 and 
VEGF. They suggest that this effect might explain 
the negative clinical effect of cetuximab in colon 
cancer [96]. In bevacizumab- resistant patient 
glioblastomas, the therapeutic mAb directly 
binds to the macrophage migration inhibitory 
factor (MIF) from the TME and blocks MIF-
induced M1 polarization of macrophages, result-
ing in more M2 pro-tumoral macrophages [97]. 
Moreover, as VEGF increases glioma MIF pro-
duction in a VEGFR2-dependent manner, bevaci-
zumab-induced VEFG depletion down-regulates 
MIF in TME.  Nevertheless, it should be noted 
that other studies in different microenvironments 
have reported beneficial effects of MIF down-
regulation or deletion, including increased intra-
tumoural effector CD4+ and CD8+ T cells [98, 
99], reduced regulatory T cells [98], reduced 
MDSCs in the tumour [100] and higher numbers 
of activated DCs [99].

Moreover, mAbs, as therapeutic agents that 
actively reshape the microenvironment, could in 
some conditions induce immunosuppressive 
molecules. It has been reported that the numbers 
of CD4+, CD8+ T cells and CD68+ macrophages 
expressing PD-L1 and VISTA inhibitory immune 
checkpoints increased in the prostate tumour 
microenvironment after ipilimumab therapy 
(anti-CTLA-4 mAb) [101]. This suggests that 
VISTA might represent a compensatory inhibi-
tory pathway in ipilimumab-treated prostate can-
cer that is poorly responsive to immune 
checkpoint monotherapy. The authors also show 
that ipilimumab leads to an increase in PD-L1+ 
and VISTA+ macrophages expressing CD163 and 
ARG1, suggesting a shift towards an M2-like 
phenotype and function of these cells [101]. 
Furthermore, whereas antibody-dependent cellu-
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lar cytotoxicity (ADCC) and antibody-dependent 
cellular phagocytosis (ADCP) are two main 
mechanisms that critically contribute to the effi-
cacy of anti-tumour therapeutic antibodies, a 
recent study reports that ADCP results in an 
immunosuppressive phenotype of tumour- 
associated macrophages with overexpression of 
inhibitory molecules PD-L1 and indoleamine 
2,3-dioxygenase (IDO) [102]. Macrophages that 
undergo ADCP upon rituximab (anti-CD20) or 
trastuzumab (anti-Her2/Neu) mAbs treatment 
subsequently inhibit NK-cell-mediated ADCC 
and T-cell-mediated cytotoxicity in lymphomas 
and breast cancers. This study reveals a deleteri-
ous role of ADCP in macrophages that can be 
overcome with concomitant immune checkpoint 
blockade [102].

Interestingly, different studies also report that 
FcγR engagement by anti-ICP mAbs dampens 
anti- tumour activity of the mAbs. In a preclinical 
model, negative effects of FcγR recruitment was 
observed for two anti-PD-1 mAbs recognizing 
different epitopes on PD-1. The mechanism by 
which FcγR engagement reduces anti-tumour 
activity is different for the two mAbs. For one 
mAb, engagement of high affinity activating 
FcγRI results in the elimination of intratumoural 
CD8+ effector cells. For the other mAb, the 
reduced activity relies on its binding to inhibitory 
FcγRIIB [103]. Anti-PD-1 mAbs (nivolumab, 
pembrolizumab and cemiplimab) are of the IgG4 
isotype which has reduced ADCC and ‘null’ 
CDC.  However, IgG4 binds to FcγRI and 
FcγRIIB, and these interactions can have clinical 
consequences. In vivo imaging studies reveal that 
a rat IgG2a anti-PD-1 mAb (that is used to mimic 
the biological property of human IgG4) can be 
captured from PD-1+ T-cell surfaces by PD-1− 
tumour-associated macrophages. This transfer 
limits anti-tumour efficacy of the therapeutic 
mAb [104]. More recently, hyperprogression 
observed in cancer patients treated with anti-
PD-1 mAbs has been linked to the interactions of 
the mAbs with FcγR+ M2 macrophages [105]. A 
possible role of inhibitory FcγRIIB is suggested 
by the authors of this work.

These different observations outline deleteri-
ous effects of mAbs on anti-tumour immunity, 

and should be carefully considered for the design 
of therapeutic strategies in cancer patients.

9.4  Concluding Remarks

Besides the direct impact on tumour growth, 
mAbs therapies can have remarkable effects on 
the network of cells within the TME, including 
(i) induction of long-term anti-tumour adaptive 
immunity by APC-mediated uptake and presenta-
tion of tumour antigens released upon cell death, 
(ii) durable modulation of the range of immune 
cells reactive against the tumour and (iii) overall 
reshaping of the myeloid and lymphoid compart-
ments within the TME (Fig.  9.1a). Bystander 
effects of therapeutic mAbs can also occur, lead-
ing to deleterious inflammation and/or decreased 
anti-tumour immune responses (Fig.  9.1b). In 
this case, the underlying mechanisms should be 
carefully considered to overcome these negative 
effects with concomitant treatment to reduce 
inflammatory symptoms or by blocking addi-
tional inhibitory pathways.

Immunotherapies in patients with solid 
tumours include mAbs targeting tumour cells, the 
tumour vasculature and/or immune cells within 
the TME. Multiple immune evasion mechanisms 
can be used by tumours; immunosuppression or 
exhaustion in the TME, biological or physical 
barriers around the tumour that inhibit or prevent 
immune cell infiltration and poor antigen presen-
tation due to a lack of antigens or of antigen- 
presenting cells. Thus, combinations of antibodies 
against different targets within the TME can cir-
cumvent the current limitations of single anti-
body therapies. Numerous mAb combinations 
are under investigation in clinical trials (i.e. anti-
bodies against either different epitopes of the 
same molecule or different targets on the same 
tumour cell; anti-angiogenic antibodies com-
bined with tumour-targeting or immunomodula-
tory mAbs; combinations of antibodies targeting 
different ICP molecules; anti-ICP mAbs com-
bined with mAbs directed against cytokines, etc.) 
[106]. Bispecific or multispecific antibodies that 
simultaneously target tumour cells and immune 
effector cells are also being currently developed 

9 Tight Interplay Between Therapeutic Monoclonal Antibodies and the Tumour Microenvironment…



Fig. 9.1 Multifaceted effects of monoclonal antibodies 
on the tumour microenvironment and on anti-tumour 
immunity. Different categories of monoclonal antibodies 
(mAbs) have been developed for cancer therapy. A first 
category is directed against tumour cells themselves (in 

blue), a second one comprises antibodies blocking the 
formation of neo-vasculature that accompanies tumour 
development (in yellow) and a third category of immu-
nomodulatory antibodies target immune cells in the 
tumour microenvironment rather than cancer cells (in pink). 
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for clinical use in patients with solid tumours 
[106]. These different combinations would exert 
wider therapeutic effects than a single therapeutic 
agent. Finally, the categorization of tumours 
according to the molecular and cellular composi-
tion of the TME would help to identify which 
tumour types are most likely to respond to differ-
ent types of immunotherapies and to choose the 
appropriate combination of immunotherapies for 
each cancer.
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Tumor Microenvironment 
and Nitric Oxide: Concepts 
and Mechanisms

Anastasia Vedenko, Kush Panara, 
Gabriella Goldstein, Ranjith Ramasamy, 
and Himanshu Arora

Abstract

The cancer tissue exists not as a single entity, 
but as a combination of different cellular phe-
notypes which, taken together, dramatically 
contribute to the entirety of their ecosystem, 
collectively termed as the tumor microenvi-
ronment (TME). The TME is composed of 
both immune and nonimmune cell types, stro-

mal components, and vasculature—all of 
which cooperate to promote cancer progres-
sion. Not all immune cells, however, are 
immune-suppressive; some of them can pro-
mote the immune microenvironment to fight 
the invading and uncontrollably dividing cell 
populations at the initial stages of tumor 
growth. Yet, many of these processes and cel-
lular phenotypes fall short, and the immune 
ecosystem more often than not ends up stabi-
lizing in favor of the “resistant” resident cells 
that begin clonal expansion and may progress 
to metastatic forms. Stromal components, 
making up the extracellular matrix and base-
ment membrane, are also not the most innocu-
ous: CAFs embedded throughout secrete 
proteases that allow the onset of one of the 
most invasive processes—angiogenesis—
through destruction of the ECM and the base-
ment membrane. Vasculature formation, 
because of angiogenesis, is the largest invader 
of the TME and the reason metastasis hap-
pens. Vasculature is so sporadic and omnipres-
ent in the TME that most drug therapies are 
mainly focused on stopping this uncontrolla-
ble process. As the tumor continues to grow, 
different processes are constantly supplying it 
with the ingredients favorable for tumor pro-
gression and eventual metastasis. For exam-
ple, angiogenesis promotes blood vessel 
formation that will allow the bona fide escape 
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of tumor cells to take place. Another process 
like hypoxia will present itself in several 
forms throughout the tumor (mild or acute, 
cycling or permanent), starting mechanisms 
such as epithelial to mesenchymal transitions 
(EMT) of resident cells and inadvertently 
placing the cells in such a stressful condition 
that production of ROS and DNA damage is 
unavoidable. DNA damage can induce muta-
genicity while allowing resistant cells to sur-
vive. This is where drugs and treatments can 
subsequently suffer in effectiveness. Finally, 
another molecule has just surfaced as being a 
very important player in the TME: nitric 
oxide. Often overlooked and equated with 
ROS and initially assigned in the category of 
pathogenic molecules, nitric oxide can defi-
nitely do some damage by causing metabolic 
reprogramming and promotion of immuno-
suppressive phenotypes at low concentrations. 
However, its actions seem to be extremely 
dose-dependent, and this issue has become a 
hot target of current treatment goals. 
Shockingly, nitric oxide, although omnipres-
ent in the TME, can have a positive effect on 
targeting the TME broadly. Thus, while the 
TME is a myriad of cellular phenotypes and a 
combination of different tumor-promoting 
processes, each process is interconnected into 
one whole: the tumor microenvironment.

Keywords

Tumor microenvironment (TME) · Cancer · 
Immune surveillance · Angiogenesis · 
Angiogenic switch · Sprouting angiogen-
esis · Cancer metabolism · Hypoxia · Nitric 
oxide · Cancer-associated fibroblasts 
(CAFs) · Tumor-associated macrophages 
(TAMs) · Innate and adaptive immunity · 
Stromal cells · Immunosuppression · 
Immune elimination/equilibrium/escape · 
Immunotherapy · Treatment resistance

10.1  Tumor Microenvironment

Long gone is the idea that a tumor is simply a 
combination of cancer cells that are involved in 
uncontrolled clonal expansion; instead, there 
has been a shift to a more revolutionary idea 
that a tumor is a combination of heterogeneous 
populations of cells: tumor cells, immune cells 
and nonimmune cells, stromal components, 
and vasculature. Together, these create an eco-
system—a cancerous organ-like structure that 
exists and grows on its own [1–3]. For this rea-
son, the development of current drug therapies 
has evolved from inhibiting one or many of the 
specific components that reside in the tumor 
microenvironment (TME) to the more concrete 
approach of targeting the tumors broadly [4]. 
Tumorigenesis is initiated when oncogenic 
activation disrupts normal gene expression pat-
terns, thereby interrupting normal tissue 
homeostasis and initiating a secretion of cyto-
kines and growth factors that recruit stromal 
cells and vascular components [5, 6]. These 
cells include cancer-associated fibroblasts 
(CAFs), endothelial cells (ECs), adipocytes, 
pericytes, and immune cells such as macro-
phages, monocytes, lymphocytes, and den-
dritic cells (DCs) that become trapped in the 
extracellular matrix and are affected by its 
changing biophysical parameters [7–10]. Thus, 
the TME is not a static process of resident cell 
populations but a dynamic and ever-evolving 
ecosystem that is crucial for the initiation, pro-
gression, and metastasis of cancer. To reach 
significant growth and expansion and establish 
metastatic niches, the tumor microenvironment 
involves several important processes that con-
tribute to tumor progression: angiogenesis, 
hypoxia, endothelial to mesenchymal transi-
tion (EMT), macrophage infiltration, and regu-
latory effects of secreted factors such as 
reactive oxygen species (ROS) or nitric oxide 
(NO) (Fig. 10.1) [11–13].
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10.1.1  Composition of the Tumor 
Microenvironment

Cells in the TME are heterogeneous in origin and 
nature and can come from the bone marrow, 
blood vessels, or the stroma [14]. The cellular 
plasticity seen in these cells is mediated by EMT, 
loss of E-cadherin function, and loss of apical- 
basal polarity [15]. These cells provide the foun-
dation for the TME.

Stromal Components The stroma is a network 
of the extracellular matrix (ECM) supported by 
the basement membrane, which is lined with 
endothelial cells [16]. The ECM scaffolding is 
composed of collagen, fibronectin, proteogly-
cans, and laminins, all of which are intricately 
interwoven and well organized. The interesting 
thing about the ECM in tumor tissues is that it has 
an extremely abnormal morphology—it often 
exhibits aberrant patterns of fibril deposition, 
which lead to invasion of the surrounding tissue. 
Furthermore, the stroma plays a critical role in 
angiogenesis as it is intertwined with a busy net-
work of blood vessels. As far as cell types resid-
ing in the stroma are concerned, these include 
cancer-associated fibroblasts (CAFs), mesenchy-
mal stem cells (MSCs), and tumor-associated 
macrophages (TAMs). CAFs are known to 
enhance angiogenesis, tumorigenesis, and metas-
tasis, as well as promote drug resistance. 
Angiogenesis is usually triggered by CAFs’ 
 ability to secrete matrix metalloproteinases 
(MMPs) and other enzymes that destroy the 
ECM as well as factors that upregulate expres-
sion of the vascular endothelial growth factor 
(VEGF), which stimulates angiogenesis [17]. On 
the other hand, MSCs residing in the TME 
attempt to repair the injured cells by transferring 
mitochondria via nanotubules but can also differ-
entiate into CAFs, which further promote angio-
genesis and metastasis [18]. Thus, while MSCs 
mean well, in the context of the TME, these cells 
may actually promote cancer survival and pro-
gression. Finally, macrophages are recruited to 
the TME via signaling molecules and cytokines 
to fight the rapidly growing ecosystem; however, 
they can become polarized and converted to 

TAMs, the M2 phenotype, which actually plays a 
significant role in cancer progression [19]. Thus, 
the stroma of the TME is a supportive network 
that plays an important role in establishing tumor 
integrity, all the while promoting its subsequent 
growth and expansion.

Immune Surveillance The main role of the 
mammalian immune system is to find, tag, and 
eliminate a pathological invader in order to pro-
tect the organism against infectious agents and 
eliminate damaged cells [20]. However, unlike in 
normal tissue, cancerous tissue is marked by per-
sistent immunological cell populations that not 
only expand but also diversify due to malignant 
processes such as fibrosis, angiogenesis, and neo-
plasia [21, 22]. Three stages of immune involve-
ment in cancer have been proposed: elimination, 
equilibrium, and escape [23]. In the first stage, 
the immune system tags uncontrollably growing 
cell populations and is particularly efficient at 
destroying and eliminating them. However, in the 
equilibrium stage the immune system is not as 
efficient at fighting the ever-growing malignant 
cells, giving them sufficient time to adapt to the 
new immune microenvironment and differentiate 
into other cell types by undergoing EMT. This 
allows the establishment of a cancer niche that is 
full of immune-resistant cells, which will inad-
vertently develop into a solid tumor. Finally, the 
involvement of the immune system has been well 
documented at the escape stage, where it reduces 
anticancer proteins and other surveillance mech-
anisms, allowing tumor cells to escape their orig-
inal niche, migrating to distant metastatic sites. 
In this sense, the immune system evolves from a 
mechanism that fights cancer invasion to a mech-
anism that becomes completely entrapped by the 
tumor ecosystem and thus promotes cancer 
progression.

The tumor ecosystem contains cells of both 
adaptive and innate immunity, both of which play 
a role in tumor establishment and progression, 
modulation of angiogenesis, and subsequent 
immune escape. Adaptive immune cells include 
T lymphocytes and B cells, while innate immune 
cells include dendritic cells, natural killer cells, 
monocytes and macrophages, neutrophils, mast 
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cells, and eosinophils [24]. T cells in the TME 
can be CD4+ (helper T cells) or CD8+ (cytotoxic 
T cells), which secrete IFN-gamma, TNF-alpha, 
and IL-17 that mediate adaptive immune 
responses and exhibit antitumor effects. T-cell 
infiltration has been shown to be associated with 
a positive outcome in cancer patients; however, 
tumors have evolved to display dominant inhibi-
tory mechanisms that work against proliferation 
of T effector cells. Currently, a hot target of 
immunotherapy approaches are immune check-
point blockade inhibitors, such as cytotoxic 
T-lymphocyte antigen-4 (CTLA4), programmed 

cell-death-1 (PD1) and its ligand, PDL1. B-cells, 
which can be divided into immature B cells, 
plasma cells, or memory cells, express different 
immunoglobulins on their surface for antigen 
recognition, and these phenotypes can vary 
depending on the stage of tumor as well as tumor 
type, such as IgM, IgD, IgA, or IgG [22]. In addi-
tion, dendritic cells (DCs) express inflammatory 
cytokines IL-12, IL-23, and IL-1 that promote 
IFN-gamma CD4+ T-cell responses [25]. Natural 
killer (NK) cells express HLA class-I receptors, 
which can recognize and eliminate malignant 
cells [26]. There are also immunosuppressive cell 

Fig. 10.1 Composition of the tumor microenvironment. 
TME is a combination of different cellular phenotypes, all 
of which dramatically contribute to the entirety of their 
ecosystem. The TME is composed of both immune (T and 
B cells, dendritic cells, monocytes, TAMs) and nonim-
mune cells types (CAFs, epithelial cells, etc.), stromal 
components, and vasculature—all of which exist in uni-
son to allow cancer progression to take place. Not all 
immune cells, however, are immunosuppressive; some of 
them can promote the immune microenvironment to fight 
the invading and uncontrollably dividing cell populations 
at initial stages of tumor growth. However, many of these 
processes and cellular phenotypes fall short, and the 
immune ecosystem more often than not ends up stabiliz-

ing in favor of the “resistant” resident cells that begin 
clonal expansion and may progress to metastatic forms. 
Stromal components, constituting the extracellular matrix 
and basement membrane, contain potentially hazardous 
CAFs, which secrete proteases that initiate angiogenesis 
through destruction of the extracellular matrix (ECM) and 
the basement membrane. Vasculature is the biggest 
invader of the tumor microenvironment, and the reason 
metastasis occurs. The fusion of the immune and nonim-
mune cells, stromal components, and vasculature creates a 
favorable microenvironment for the progression of cancer. 
TAMs: tumor-associated macrophages; CAFs: cancer- 
associated fibroblasts
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types in the TME, which includes the T-regulatory 
cell population (Treg), myeloid-derived suppres-
sor cells, and M2 macrophages [27–29].

Other Cells In addition to stromal and immune 
components, there are multiple other cell types 
residing in the TME that contribute to tumor 
growth. For instance, endothelial cells continue 
to grow and divide uncontrollably during cancer 
progression, which express the VEGF receptor 
on the cell surface, which allows them to continu-
ally stimulate angiogenesis. Platelets within the 
TME can be an additional source of VEGF and 
both pro- and antiangiogenic proteins that are 
usually carried in alpha-granules of platelets 
[30]. Pericytes are another important cell type 
that maintains the integrity of blood vessels, but 
which begin to loosen their attachment upon acti-
vation of angiogenesis via signaling molecules 
such as PDGF, TGF-beta, angiopoietin, and 
Notch [31]. Loss of pericyte attachment leads to 
higher permeability of blood vessels and 
increased metastatic spread of tumor cells.

Vasculature Just like normal tissue, malignant 
tissue develops a network of blood and lymphatic 
vessels to supply the necessary oxygen, remove 
waste and carbon dioxide, and provide a route for 
immune surveillance [32]. However, unlike in 
normal tissues, these vascular networks often 
contain leaky capillaries. During angiogenesis, 
the vasculature becomes even more complicated. 
An ever-hypoxic state of the TME initiates aber-
rant blood vessel formation that allows tumor 
cells to escape the low-oxygen setting and dis-
seminate to distant sites, where nutrient and oxy-
gen levels are not yet depleted. Hypoxia triggers 
the release of hypoxia-inducible factor 1 (HIF-1), 
leading to upregulation of genes such as VEGF 
and PDGF, which stimulate angiogenic factors 
[33]. Formation of new blood vessels begins with 
degradation of the basement membrane around 
the tumor and disruption of the EC monolayer, 
followed by tube formation and EC invasion into 
the surrounding tissue [34]. Pericyte recruitment 
then stabilizes the newly formed blood vessels, 
providing structural support and allowing for the 

necessary crosstalk between ECs that further 
stimulates VEGF production [35].

10.2  Angiogenesis

10.2.1  Angiogenic Switch

In the absence of new vasculature, tumor growth 
is restricted with a well-maintained balance 
between proliferation and apoptosis [36]. An 
angiogenic switch occurs when this homeosta-
sis—the balance between proangiogenic and 
angiogenic pathways—skews in one direction 
over the other. This loss of angiogenic homeosta-
sis may occur for several reasons, but evidence 
from many studies points to genetic and epigen-
etic remodeling as being the main contributors to 
such a switch. The angiogenic switch is corre-
lated with both loss of tumor suppressor genes, 
such as p53, and upregulation of oncogenes, such 
as Myc, which increases production of VEGF by 
10-fold [37–39]. Regardless of the reasons this 
happens, angiogenic switch starts a cascade of 
processes that make it much more likely and 
favorable for cancer to progress.

Hypoxia is a well-known inducer of angio-
genic switch, as it forces a very rapid metabolic 
reprogramming, skewing this well-maintained 
angiogenic homeostasis [40]. In the absence of 
oxygen, cells go into a crisis mode, trying to get 
nutrients and oxygen from nearby tissues. Tumors 
are no exception to this—they are highly hypoxic 
structures with abnormal vascular networks that 
are constantly trying to survive. Hypoxia shifts 
the cellular metabolism in a way that the extra-
cellular space becomes more acidic and glucose 
metabolism along with lactic acid production 
become upregulated, which subsequently lowers 
the pH in the TME [41]. Such a pH decrease is 
correlated with rigorous EMT, cell dissemina-
tion, and eventual metastasis [42–45]. An acidic 
environment is an important contributor to an 
increase in angiogenic factors through upregu-
lated expression of VEGF [46]. Hypoxia triggers 
additional processes, ranging from mobilization 
of bone-marrow-derived precursor cells to 
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immune activation [47]. Hypoxia is also one of 
the main contributors to induce expression of 
VEGF, MMPs, and angiopoietin-like 4 
(ANGPTL4)—all of which are promoters of 
angiogenic pathways [48, 49].

10.2.2  Mechanisms That Drive 
Angiogenesis

Pathological vessel proliferation is one hallmark 
of cancer progression [50]. In normal tissue, 
blood vessels appear as ordered tubular networks 
that facilitate the transport of gases, nutrients, 
and cells around the body, and are carriers of dif-
ferent trophic signals, all of which are necessary 
for normal organ homeostasis [51]. They are cat-
egorized into veins, arteries, and capillaries, and 
comprise a thin monolayer of epithelial cells on 
the luminal side, the basement membrane on the 
outside covered with pericyte, and vascular 
smooth muscle cells. Two processes are required 
for the maintenance of vascular networks, 
namely, vasculogenesis and sprouting angiogen-
esis, both of which are essential mechanisms for 
cancer progression. Vasculogenesis is the de 
novo formation of new blood vessels, while 
sprouting angiogenesis is the formation of new 
vessels from a pre-existing network of 
capillaries.

Sprouting angiogenesis is the first process in 
blood vessel formation, which involves an intri-
cate interplay between the ECM, stromal cells, 
and soluble factors [52]. During sprouting angio-
genesis, endothelial cells begin to loosen their 
contact with pericytes, which are the stabilizing 
cells surrounding blood vessels, whose function 
it is to maintain the vessels’ integrity and quies-
cent state. Once endothelial cells have been 
destabilized, they undergo EMT, where they 
acquire a highly migratory and invasive personal-
ity. This process is accompanied by the basement 
membrane destabilization and ECM degradation, 
much needed for angiogenesis to proceed by 
allowing the formation of an immature blood 
vessel [53]. Vessel maturation occurs when a pro-
cess known as mesenchymal to endothelial tran-
sition (the reverse of EMT) occurs, which restores 

endothelial cells to their quiescent state, followed 
by the synthesis of a new basement membrane 
[54]. Initiation of an angiogenic sprout is con-
trolled by VEGF and the Notch signaling path-
way [55]. The growing end of the sprout is known 
as the “tip cells,” which respond to VEGF signal-
ing by extending filopodia that sense their envi-
ronment and recruit stromal cells for stabilization 
and support. Endothelial cells that are located in 
the stalk portion of the angiogenic sprout are 
known as the “stalk cells,” which undergo the 
same process but sprout sideways, contributing to 
extensive branching—most often in response to 
VEGF-A signaling [56].

Vasculogenesis begins with the mobilization 
of endothelial progenitor cells (EPCs), which get 
recruited in response to chemokines, cytokines, 
and growth factors released by both tumor and 
stromal cells [57]. In hypoxic conditions, expres-
sion of HIF is seen to activate VEGF, PDGF, 
C-X-C chemokine receptor Type 4 (CXCR4), 
and stromal-derived factor-1 (SDF-1), which are 
important for EPC proliferation [57, 58]. In 
response to VEGF and PDGF particularly, EPC 
mobilization occurs through the release of matrix 
metalloprotease 9 (MMP9), which activates the 
Kit ligand, a stem-cell migratory cytokine that 
allows EPC mobilization to take place [59]. 
Besides its role in primary tumor growth, vascu-
logenesis has also been implicated in the dissem-
ination of cells and eventual metastasis via 
soluble factors such as SDF-1, which recruit 
EPCs to distant sites [60]. The interaction of 
SDF-1 on EPCs and the CXCR4 receptor on 
tumor cells establishes the development of a pre-
metastatic niche.

10.2.3  Metastasis 
Due to Angiogenesis

Unfortunately, angiogenesis is the main contribu-
tor to cancer progression from a primary tumor 
ecosystem to a metastatic tumor ecosystem, 
where cells disseminate and invade the surround-
ing tissue. As already discussed, VEGF is the 
main inducer of multiple processes that make 
metastasis much more likely—it upregulates pro-
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tease production that degrades the basement 
membrane and secretes factors that weaken 
endothelial-tumor cell interactions, a necessary 
process for metastasis [61]. The pericyte lining 
the blood vessels also loosens their attachments 
to endothelial cells on the luminal side of the ves-
sel, leading to a decrease in endothelial cell sur-
vival and creation of a leaky environment through 
the intercellular gaps that allow tumor cells to 
escape and travel to disseminated sites [62–64].

10.2.4  Blocking Vessels in the TME

Since angiogenesis is such an important part of 
neoplasms, modern therapies have focused on 
finding a suitable therapy that targets this pro-
cess. There has even been marginal success in the 
treatment of several tumor types with such drugs 
as Sutent and Avastin against kidney and colorec-
tal cancer [50, 65–67]. However, modern 
approaches still rely on standard chemotherapy, 
which seems to fall short due to its low selectivity 
of cancer cells and its high toxicity to normal 
cells [68]. While drug delivery to tumors is inef-
ficient because of highly abnormal vasculature, 
as already discussed, multiple targets are being 
developed to inhibit or induce regression of neo-
plastic blood vessels [69].

Direct vessel signaling inhibition. EPC mobi-
lization and seeding are the absolute requirement 
necessary to start angiogenesis, which occurs via 
targeting of tyrosine kinase (TK) receptors by 
angiogenic growth factors such as VEGF [70, 
71]. Therefore, approaches that inhibit TK recep-
tors or their ligands are being investigated as an 
antiangiogenic therapy approach, including anti-
bodies, soluble factors, and small-molecule 
inhibitors [71–73]. Examples of TK inhibitors 
(TKIs) include Sorafinib, which downregulates 
Raf signaling along with VEGFR-2 and PDGFR- 
beta [71], and Sunitinib, a TKI for both VEGFR-2 
and PDGFR-beta and a potent inhibitor of c-kit 
[72].

Vascular environment inhibition. Another 
approach is to inhibit the vascular environment of 
the TME, and since angiogenesis begins with 
EPC recruitment and establishment of EPC meta-

static niches, this process may also target phar-
macologically. For instance, as the SDF-1/
CXCR4 signaling axis is the main regulator of 
EPC mobilization and homing, antibodies against 
CXCR4 might be a plausible target [60].

Vessel normalization. Another promising type 
of treatment is actually the opposite of the two 
aforementioned therapeutic approaches—a 
desire to stabilize vascular networks [74]. As 
already mentioned, in contrast to normal vascula-
ture in nonmalignant tissue, which is efficient 
and follows predictable patterns, the vasculature 
of a tumor is in a state of extreme disarray, char-
acterized by aberrant, disorganized, and dilated 
morphologies. This decreases pericyte associa-
tion, elevates chances for hypoxia, increases per-
meability to escaping tumor cells, and lowers 
perfusion. One of the main issues of chemothera-
peutic drugs and immune therapies is that they 
cannot reach the target area because of this faulty 
vasculature [75]. Thus, drugs have developed to 
stabilize the vascular networks, with the goal of 
improving pericyte recruitment and tightening 
cell-to-cell junctions in a process known as vas-
cular normalization [76]. Such drugs include 
bevacizumab (Avastin) and trebananib, which 
have shown favorable clinical outcomes when 
used in combination with chemotherapy in breast 
and ovarian cancer patients [77–79].

10.3  Hypoxia

10.3.1  Role of Hypoxia in the TME

Hypoxia is at the forefront of cancer growth and 
progression [80]. Because of oncogene activa-
tion, initial cell proliferation is so aggressive that 
there are not enough available nutrients and oxy-
gen in the environment to supply the cells, and so 
the environment becomes hypoxic as those 
resources quickly deplete [81]. This lack of nutri-
ent and oxygen supply triggers a cascade of 
changes in the TME that increases production of 
angiogenic factors and revascularization events 
[82]. However, as already mentioned, vascular 
structures in the tumor environment are not per-
fectly ordered; instead, they are chaotic and 
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sporadic with constant angiogenic mechanisms 
triggered in response to hypoxic episodes, which 
lead to vascular leakiness and nonlaminar blood 
flow [83, 84]. Because tumors are heterogeneous 
structures with dynamic fluctuations in blood 
flow, within a single tumor ecosystem there may 
exist regions of both mild hypoxia and acute 
hypoxia; those fluctuations in blood flow can lead 
to cycling hypoxia, which can vary from hours to 
days. Two frequencies of cycling may be 
detected: higher-frequency cycling usually 
results from small alterations in red blood cell 
perfusion, while lower-frequency cycling results 
from large-scale remodeling of the vascular net-
work and angiogenesis [85]. Short-term hypoxia 
activates autophagy as well as apoptotic and met-
abolic adaptation of cells to survive in adverse 
conditions [86, 87] and production of reactive 
oxygen species (ROS), which contributes to 
tumor survival and growth [88, 89]. Acute 
hypoxia induces metastasis and is associated 
with aggressive tumor phenotypes [90]. Long- 
term hypoxia contributes to long-term cellular 
and genetic changes, such as DNA breaks, higher 
DNA replication errors, genetic instability, and 
mutagenesis [91–93]. Regardless, neither chronic 
nor acute hypoxia is good news for a growing 
tumor—these sporadic events at irregular inter-
vals usually present with adverse clinical 
manifestations.

10.3.2  Hypoxia in Blood Vessel 
Formation

Hypoxia induces overexpression of transcription 
factors such as HIF-1-alpha and HIF-2-alpha 
(Fig. 10.2), which target blood vessel formation 
and metastasis, and play a role in resistance to 
treatment [94]. Abnormal angiogenesis ensues in 
response to the pathological condition in which, 
because of rapid cell proliferation, nutrients and 
oxygen are used up by the rapid cell increase [95, 
96]. The hypoxic state allows the production of 
proangiogenic factors, thus skewing the intricate 
balance that maintains the normal angiogenic 
equilibrium, resulting in rapid vessel formation. 
These disordered vessels lack structure, organi-

zation, and proper pericyte contacts, which make 
them leaky and more susceptible to metastatic 
spread. Thus, angiogenesis results from a cell’s 
attempt to relieve the hypoxic state, thus inducing 
the formation of more blood vessels to relieve the 
oxygen demands, but inadvertently restarting the 
vicious cycle [51]. However, the cycle continues 
as soon as another need to improve hypoxia 
arises. There are some antiangiogenic drug thera-
pies being developed that target highly malignant 
and invasive cancer types, including bevaci-
zumab, an anti-VEGF monoclonal antibody 
approved for colorectal cancer and other solid 
tumor types [97].

10.3.3  Hypoxia in Metastasis

A bona fide metastatic process results from 
hypoxia-induced angiogenesis, where the cells 
end up escaping the highly hypoxic conditions 
via the newly formed blood vessels to relieve 
oxygen demands and survive [51]. However, as 
the result of sporadic growth, the new vasculature 
is so fragile, highly permeable, and heteroge-
neous that it permits the massive relocation and 
delivery of tumor cells to distant organs via circu-
lation. Levels of tumor oxygenation and overex-
pression of HIF-alpha has been shown to correlate 
with highly metastatic and aggressive tumors and 
the poor overall survival of patients [98]. It may 
not come as a surprise, therefore, that previous 
hypoxic cells can also keep their ability to 
 metastasize at a higher rate than cells only cul-
tured in normoxic conditions, as was shown by 
an orthotopic mouse model, where lymph node 
metastasis seemed to increase due to acute 
hypoxia followed by normoxia [99]. 
Mechanistically, hypoxia seems to trigger an 
invasive and migratory phenotype of cells by 
inducing EMT [100, 101]. On the genetic regula-
tory level, genes responsible for maintaining an 
epithelial phenotype are reduced (E-cad, beta-
catenin) [102], while mesenchymal-like gene 
expression is stimulated (N-cad, vimentin, SMA, 
CXCR4) [103, 104]. Though the bona fide master 
regulator of the physiological EMT is TGF-beta, 
it is increased in response to hypoxia, activating 
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downstream transcription factors (TFs) such as 
Snail, Smad, Slug, and Twist with the inhibition 
of E-cadherin expression [105], thus inducing 
massive EMT. The development of resistance to 
radio- and chemotherapy has been linked to 
faulty EMT processes that are regulated via Snail 
and Slug [105]. HIF inhibition has been viewed 
as a major promising therapeutic approach, espe-
cially for metastatic and solid tumor types, and 
there has been marginal success with several 
drugs that have undergone phase I and II clinical 
trials [106, 107]. Thus, there are multiple correla-
tions between metastasis, development of drug 
resistance, and hypoxia-induced EMT changes 
that take place in terminal cancers.

10.3.4  Hypoxia in Radiation 
and Drug Resistance

Resistance to treatment-induced apoptosis from 
radio- or chemotherapy is one of the biggest 
obstacles in cancer treatment [108]. Often, this 
occurs because residual cells that are resistant to 
treatment are left over and multiply, contributing 

to a clonal expansion of treatment-resistant cells 
that can quickly lead to tumor recurrence and 
metastasis [109]. Hypoxia can also cause resis-
tance of cancer cells to treatment, often leading 
to various physiological states that allow cells to 
survive via a variety of mechanisms such as cell 
cycle arrest (quiescence), a state of reduced pro-
liferation that protects cells from external stress, 
inhibition of apoptosis, senescence, autophagy, 
and increased mitochondrial activity [110–112]. 
In normoxic conditions, an abundance of oxygen 
supply causes oxygen to react with free radicals 
generated by ionizing radiation during treatment 
in a process known as “oxygen fixation,” which 
leads to irreversible DNA damage and profound 
cell death [113]. However, when oxygen supplies 
are low, there is a slow generation of free radicals 
that would otherwise contribute to DNA damage, 
allowing cells to adapt and survive. These “left-
over” cell populations after treatment are danger-
ous because they can come back at full force. An 
additional disadvantage is that radio- or chemo-
therapy often targets the bulk of rapidly prolifer-
ating cells. Hypoxic cells are difficult to target 
because they are usually quiescent, low- 

Fig. 10.2 Role of hypoxia in the TME.  Hypoxia can 
present itself in several forms throughout the tumor—
mild or acute, cycling or permanent—initiating mecha-
nisms such as epithelial to mesenchymal transitions 
(EMT) of resident cells as well as inadvertently placing 
the cells in such a stressful condition that production of 
ROS and DNA damage is unavoidable. The reason DNA 
damage to mild forms of hypoxia (or cycling hypoxia) is 
so dangerous is because it can induce mutagenicity while 

allowing resistant cells to survive. This is where drugs and 
treatments can subsequently suffer in effectiveness. 
Hypoxia causes release of inducible factor 1 (HIF-1) that 
upregulates vascular endothelial growth factor (VEGF), 
and platelet-derived growth factor (PDGF) that stimulates 
angiogenesis. Angiogenesis degrades the basement mem-
brane, disturbs the endothelial cell (EC) monolayer, and 
results in an invasion into the surrounding tissue
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proliferating, have stem-cell-like properties, and 
live in the most hypoxic (innermost) regions 
[105, 112]. The least sensitive cell cycle phases 
to ionizing radiation are G1 and the end of S 
phase, while the most sensitive are G2 and M, 
when DNA repair mechanisms are most suscep-
tible [114]. Since these facts about hypoxia- 
induced treatment resistance have surfaced, 
researchers have turned to attempting to block 
HIF-1 with inhibitors to stimulate the cells to 
respond to treatment in the same way that nor-
moxic cells do. For instance, the HIF-1 inhibitor 
(YC-1) was tested in tumor-bearing mice and 
found to cause radiation-induced vessel damage, 
while HIF1-alpha inhibitor (PX-478) re- 
sensitized squamous and pancreatic cancer cells, 
cultured in a hypoxic environment, to radiation 
therapy [115, 116].

10.4  Nitric Oxide

10.4.1  Nitric Oxide in the Tumor 
Microenvironment

Nitric oxide (NO) is an intriguing molecule that 
has resurfaced in the recent decade after much 
debate as to its pathogenicity. NO, however, is 
also a known inducer of apoptosis and may play 
a therapeutic role in cancer rather than just a 
pathological one [11]. Thus, NO has a dual role 
as both a physiological and a pathophysiological 
molecule. NO is a product of a metabolic reac-
tion that converts L-arginine to L-citrulline using 
nitric oxide synthase (NOS), and can exist in sev-
eral forms depending on the origin of its produc-
tion: neuronal NOS (nNOS), inducible NOS 
(iNOS), and endothelial NOS (eNOS) [12]. NO 
by itself is reactive and thus has been implicated 
to play a significant role in activating multiple 
signaling pathways. It is regulated by intracellu-
lar calcium concentrations (nNOS and eNOS), 
but it can also be brought about with no calcium 
present (iNOS) by the upregulation of factors 
such as endotoxins, inflammatory cytokines, 
hypoxia, and oxidative stress [12, 117]. 
Overexpression of different NOS isoforms has 
been linked to many solid tumors [13]. The most 

striking feature of NO is that it can exhibit a 
dose-dependency, so that at high concentrations 
it acts as the source of nitrosative and oxidative 
stress, causing DNA damage and mitochondrial 
dysfunction along with upregulating apoptosis, 
while at low concentrations it decreases apopto-
sis and promotes angiogenesis, thus displaying 
tumoricidal roles (Fig. 10.3) [11, 118]. However, 
because of its obvious antitumor effects, NO has 
been gaining popularity in anticancer treatments. 
For instance, as already discussed, resistance to 
chemo- and radiotherapy is a main issue in meta-
static forms of cancer, but NO has been shown to 
sensitize cells to subsequent treatment, thus pro-
viding a combinatorial therapy approach to can-
cer treatment [119].

Besides promoting many of the TME essential 
processes (angiogenesis, metabolism, apoptosis), 
NO might also play an important role in repro-
gramming the immune component of the TME.

10.4.2  NO in Immunosuppression

NO can play the role of an immunosuppressive 
messenger in the TME. One of the main immune 
cell populations that NO targets is T-cell- 
mediated antihumoral responses by mediating 
several mechanisms. In one study, it was shown 
that NO-derived peroxinitrite inhibits T-cell pro-
liferation, a mechanism which consequently 
induces apoptosis of T cells [120]. NO can also 
interfere with T-cell humoral recognition by 
inhibiting migration of T cells into the TME. One 
explanation for this interesting observation could 
be that high concentrations of NO in the TME 
induces S-nitrosylation of CCL2, a chemoattrac-
tant chemokine, which abolishes the tumor’s 
ability to attract CD8+ T cells into the tumor core 
[121]. In addition, there is another population of 
cells regulated and attracted by CCL2—myeloid- 
derived suppressor cells (MDSCs), which pro-
duce NO and thus further restrict T-cell migration 
into the tumor by downregulating E-selectin 
[122]. INOS was also shown to promote recruit-
ment of T-regulatory cells (Tregs), an immuno-
suppressive cell type, by modulating IL-12 
expression [123]. Additional studies have pointed 
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to other mechanisms of NO-mediated tumor 
immunosuppression, such as inhibiting antigen 
presentation from dendritic cells to CD4+ helper 
T cells [124] and directly impairing natural killer 
(NK) cell functions [125]. It may also play a role 
in immune-activation processes, as NO was 
shown to be released by activated macrophages 
in the TME, thus inducing their cytotoxic antitu-
mor activity [126].

10.4.3  NO in Evasion of the Immune 
Response by Cancer Stem 
Cells

Considering all of this, there is a large body of 
evidence that points to NO also exerting other 
immunosuppressive functions on the TME by 
regulating the “stemness” of cancer cells. Tumors 

seem to be so good at evading immune system 
recognition because of a subset of cells in the 
TME termed “cancer stem cells,” and this has led 
scientists to refer to cancer as a “stem cell dis-
ease” [127]. The “cancer stem cell model” states 
that there is a subpopulation of cancer stem cells 
(CSCs) at the initiation stages of tumor growth, 
which display pluripotent and renewing proper-
ties. These properties allow the initial tumor 
seeding events to take place and eventual propa-
gation and metastasis, which are responsible for 
the bulk of failures of many conventional thera-
pies and poor cancer survival rates [128, 129]. 
The effect of stem cell signaling on the TME 
seems to be driven by the active WNT/beta- 
catenin signaling pathway and a complete 
absence of T-cell gene expression signature in 
human melanoma [130]. In addition, CSCs do 
not exhibit tumor antigen expression and show a 

Fig. 10.3 Role of nitric oxide in the TME. Nitric oxide 
(NO), previously grouped with ROS in the pathogenic 
molecule category, was recently found to be an important 
molecule in the TME.  Though NO has been found to 
induce damage by causing metabolic reprogramming and 
the promotion of immunosuppressive phenotypes, it has 
also been found to have a positive effect on targeting the 

TME broadly. Furthermore, it has been found to be excep-
tionally dose-dependent with regard to both its negative 
and positive effects on the TME.  NO at low doses 
decreases apoptosis along with promoting angiogenesis, 
while at high doses it causes DNA damage and increases 
apoptosis
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defective MHC-antigen presentation pathway 
and downregulation of MHC class I molecules 
[131]. CSCs can also recruit cells that further 
promote immunosuppressive functions, support-
ing the CSC phenotype and stabilizing their niche 
in the TME [132].

NO metabolism contributes to the mainte-
nance of “stemness” that is characteristic of 
CSCs. As was shown in glioblastoma, eNOS acti-
vates the Notch signaling pathway, which pro-
motes the CSC phenotype [133]. CSCs also 
promote expression of the iNOS isoform, which 
cranks up the synthesis of NO [134]. The mainte-
nance of the CSC phenotype by NO signaling is 
demonstrated in several cancer types, including 
breast [135], colorectal [136], lung [137], and 
liver [138] cancers. NO produced by immuno-
suppressor cells in the TME may contribute to 
the plasticity of cancer cells themselves that 
allows them to gain and maintain a stem cell phe-
notype [139].

10.4.4  Metabolic Reprogramming by 
NO in the TME

Tumors adapt rapidly to stress conditions by 
rewiring their metabolic pathways. Shockingly, 
most energy in the TME is generally derived 
from aerobic glycolysis, which is not as effi-
cient at producing ATP but is a fast process that 
can generate some energy to be used immedi-
ately. Unfortunately, the downside is that aero-
bic glycolysis quickly builds up lactic acid in 
the extracellular space, lowering the pH [140]. 
The acidic microenvironment induces expres-
sion of VEGF that, besides increasing angiogen-
esis, also leads to polarization of the M2 
macrophage phenotype [141]. At early stages of 
tumor growth, TAMs maintain a proinflamma-
tory and antitumorigenic phenotype, the M1 
state, while at later stages of metastasis and 
tumor progression M1 differentiates into the M2 
phenotype, which displays a protumoral pheno-
type and contributes to immunosuppression 
[142]. In high-grade tumors, TAMs are mostly 
the M2 phenotype, which also produces NO and 

has endogenous mechanisms that protect tumor 
cells from chemotherapy [143]. Since hypoxia 
induces the upregulation of enzymes involved in 
glycolysis and the inhibition of mitochondrial 
function, in this sense, NO-induced hypoxia 
contributes to the “Warburg effect” (aerobic 
glycolysis metabolism observed in cancer) 
[144]. NO has also been shown to prevent dif-
ferentiation of M1 macrophages into the M2 
phenotype by abolishing mitochondrial respira-
tion and reducing their plasticity [145].
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