
Chapter 5
Remarks on the Power Series
in Quadratic Modules

This Chapter contains the translation of the paper:

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad. Naz.
Lincei. Rend. Cl. Sci. Fis. Mat. Nat., (8) 23 (1957), 220–225.

Article by Michele Sce, presented during the meeting of 9 November 1957 by
B. Segre, member of the Academy.

In this short paper we consider modules with units which are quadratic, that
is, whose elements (with respect to the multiplicative structure induced in the
module by their tensor algebra) satisfy a quadratic equation. We show that, in these
modules, power series (positive o negative)—if the order of the module is even—are
nullsolutions of a power of a generalized laplacian. This fact allows to generalize
some results on quaternionic functions of Fueter and his school to Clifford algebras.

1. Let M be a module on a field F with characteristic not equal 2 and let 1 =
i0, i1, . . . , in be a basis. After identifying the unit of F with the unit of M, we can
write the elements in M in the form

x = x0 + x1i1 + · · · + xnin = x0 + x (xi ∈ F).

Let T be the tensor algebra over M and let us assume that for the elements x2 in T
one has

x2 = q(x) =
n∑

j,k=1

ajkxjxk (5.1)

where q(x) denotes a quadratic form on F; it follows that x2(∈ T) is in M. Thus

M is closed with respect to the operation that to the pair x, y associates
xy + yx

2
,

which gives a Jordan algebra M+. When one considers the module M in T equipped
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with the multiplicative structure of M+, one will say that M is a quadratic module
and will denote it by Mq .

Since, by reducing q(x) to a canonical form, one notices that M+ is a Jordan
algebra, central, simple, of degree 2, then Mq can be embedded only in algebras
A such that A+ contains such a Jordan algebra. Among these algebras, those which
may be obtained with the Cayley–Dickson process are particularly interesting; these
algebras are themselves quadratic modules.1 If, in addition, A ⊃ Mq is associative,
it contains the algebra quotient of T and of the ideal generated by (5.1); thus the
smallest associative algebra containing a quadratic module is a Clifford algebra or an
algebra whose semisimple part is a Clifford algebra and whose radical is an algebra
with vanishing square—according to the fact that q(x) is degenerate or not.2

2. We shall call conjugate of an element x = x0+x in Mq the element x̄ = x0−x;
it is immediate that

x + x̄ = 2x0 = t (x) (trace of x)

xx̄ = x2
0 − q(x) = n(x) (norm of x)

are in F and that the elements x in Mq satisfy the equation in F

z2 − t (x)z + n(x) = 0. (5.2)

If x is an element in Mq with nonzero norm, we can consider in Mq

x̄

n(x)
(5.3)

and verify that it is a solution to the equation x · y = 1 in the variable y; moreover,
since (5.3) possesses the formal properties of the inverse, we can call it inverse of x

and denote it by x−1.
3. Let us set

y2 = 1

ε
q(x) and so n(x) = x2

0 − εy2

where y and ε belong to F or to one of its extensions Fo; in the sequel, we shall
consider Mq on Fo and we shall exclude the case y identically equal to zero.

1A. A. Albert, Quadratic forms permitting composition, Ann. of Math., 43 (1942), 161–177.
2C. C. Chevalley, The algebraic theory of spinors, New York 1954, Chapter 11, § 1.
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We will say that a function w(x) in Mq is biholomorphic if

w(x) = u(x0, y) + 1

y
v(x0, y)x (5.4)

where u(x0, y) and v(x0, y) are functions of x0 and y 3 satisfying

∂u

∂x0
= ∂v

∂y

∂u

∂y
= ε

∂v

∂x0
. 4 (5.5)

Taking into account that

(m − 2k)

(
m

2k

)
= (2k + 1)

(
m

2k + 1

)
,

it is easy to verify that powers of a biholomorphic function

wm =
⎛

⎝
[m/2]∑

k=0

(ε)k
(

m

2k

)
um−2kv2k

⎞

⎠ + 1

y

⎛

⎝
[m/2]∑

k=0

(ε)k
(

m

2k + 1

)
um−2k−1v2k+1

⎞

⎠ x

([m/2] is the integer part of m/2) are still biholomorphic functions. Since x and x−1

are evidently biholomorphic, it turns out that all linear combinations with constant
coefficients of positive or negative powers of a variable are biholomorphic, and the
property extends to series if F is finite or with evaluation.

4. Let us denote by ∂ the operator i1
∂

∂x1
+ · · · + in

∂

∂xn

and let

q−1(x) =
n∑

j,k=1

αjkxjxk

be the quadratic form inverse of q(x). Let us set

�w = ∂2w

∂x2
0

− q−1(∂)w, (5.6)

and let us show that, if w0 = u0 + 1

y
v0x is biholomorphic and n is odd, then:

�(n+1)/2w0 = 0. (5.7)

3Note that x0 + y and x0 − y are solutions of (5.2). Thus we can presume that for an extension to
cubic modules, etc. it will be more convenient to consider the expressions that appear when solving
algebraic equations with the Lagrange method.
4Obviously, the derivations are meant as representations which have the usual formal properties.
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To simplify the computations we set

us = ∂us−1

∂y

1

y
, vs = ∂vs−1

∂y

1

y
− vs−1

y2 = ∂

∂y

vs−1

y

ws = us + 1

y
vsx (s = 1, 2, . . .),

and we show that us , vs satisfy the relations

∂us

∂x0
= ∂vs

∂y
+ 2s

vs

y
,

∂us

∂y
= ε

∂vs

∂x0
. (5.8)

For s = 0, (5.8) reduce to (5.5). So, let us suppose that (5.8) hold for s − 1; then

∂us

∂x0
= 1

y

∂2us−1

∂x0∂y
= 1

y

∂

∂y

[
∂vs−1

∂y
+ 2(s − 1)

vs−1

y

]
=

= 1

y

∂

∂y

[
yvs + (2s − 1)

vs−1

y

]
= ∂vs

∂y
+ 2s

vs

y
,

∂us

∂y
= ∂

∂y

(
1

y

∂us−1

∂y

)
= ε

∂

∂y

(
1

y

∂vs−1

∂x0

)
= ε

∂vs

∂x0
,

which is what we had to prove.
With simple computations we then find

∂2ws

∂x2
0

= ∂2us

∂x2
0

+ 1

y

∂2vs

∂x2
0

x = 1

ε

[
y

∂us+1

∂y
+ (2s + 1)us+1

]
+

+ 1

ε

[
∂vs+1

∂y
+ (2s + 2)

vs+1

y

]
x,

∂ws

∂xj

= 1

ε
us+1

∂q

∂xj

+ 1

ε

vs+1

y

∂q

∂xj

x + vs

y
ij

∂2ws

∂xj∂xk

= 1

ε2y

∂us+1

∂y

∂q

∂xj

∂q

∂xk

+ 1

ε
us+1ajk − 1

ε2

vs+1

y3

∂q

∂xj

∂q

∂xk

x+

+ 1

ε2y2

∂vs+1

∂y

∂q

∂xj

∂q

∂xk

x + 1

ε

vs+1

y

[
ajkx + ∂q

∂xj

ik + ∂q

∂xk

ij

]
.

[Editors’ Note: the second line of the formula above was +1

ε

[
∂vs+1

∂y
+ 2s

vs+1

y

]
x

in the original text].
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Finally

n∑

j,k=1

αjk

∂2ws

∂xj ∂xk

= 1

ε

[
∂us+1

∂y
y + nus+1 + ∂vs+1

∂y
x + (n + 1)

vs+1

y
x
]

so that, taking into account (5.6),

ε�ws = −(n − 2s − 1)ws+1. (5.9)

[Editors’ Note: in the original text at the right hand side there was (n−2s−1)ws+1.]
Thus, if n is odd, for s = (n − 1)/2 one has

ε�w(n−1)/2 = 0, (5.10)

namely (5.7).
5. A function w in Mq will be called JB-monogenic (Jordan B-monogenic) if,

for B = ‖bjk‖, bjk = bkj , |B| �= 0 (j, k = 1, . . . , n Editors’ note j was i in the
original manuscript; recall also that ‖bjk‖ denotes the matrix with entries bij ), one
has

∂w

∂x0
− 1

2ε

n∑

j,k=1

bjk

[
∂w

∂xj

ik + ik
∂w

∂xj

]
= 0.

As w0 is biholomorphic, we set

S = 1

2ε

n∑

j,k=1

bjk
∂q

∂xj

ik

[Editors’ Note: in the original text it was S = 1
ε

∑n
j,k=1 bjk

∂q
∂xj

ik] and we take into
account that

2 − 1

εy2
(Sx + xS) = 1

εy2
[x(x − S) + (x − S)x].

Then the condition of JB-monogenicity for ws can be written as

0 = 1

ε
us+1(x − S) + ∂vs

∂y

[
1 − 1

2εy2 xS + Sx
]

+

+ ∂vs

∂y

[
2s + 1

2εy2
(xS + Sx)

]
− vs

y

1

ε

n∑

j,k=1

bjkij ik =

[Editors’ Note: it was 1
2ε2y2 in the original text]

= 1

2ε
[ws+1(x − S) + (x − S)ws+1] + vs

y
(2s + 1) − vs

y

1

ε

∑

jk

bjkajk;
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and this is satisfied if s = n − 1

2
and if

x = S. (5.11)

Thus: if (5.11) holds in Mq , the (n−1)/2 power of � of all biholomorphic functions
is JB-monogenic.

6. If Mq is an algebra, or if B is a scalar and w is such that the jacobian matrix
∂w/∂x is symmetric, we can consider in Mq the equation

∂w

∂x0
− 1

ε

n∑

j,k=1

bjkij
∂w

∂xk

= DBw = 0. 5 (5.12)

Functions satisfying (5.12) will be called B-monogenic on the left (in a similar way
one defines functions B-monogenic on the right).

With a computation similar to the one done in n. 5 one can see that, if (5.11)
holds, the (n − 1)/2 power of � of biholomorphic functions is B-monogenic on the
left and on the right.

Moreover if Mq is alternative, multiplying on the left (5.12) by D̄B , the conjugate
operator of DB , one finds that

D̄BDBw =
[

∂2

∂x2
0

− 1

ε2 g(∂)

]
w = 0, (5.13)

where g(x) is the quadratic form associated with the matrix BAB−1. Thus, if B

satisfies the relation

BAB−1 = ε2A−1, 6 (5.14)

then (5.13) coincides with (5.6) and we can say that: Functions B-monogenic are
solutions of the equation �w = 0.

5If Mq is not an algebra, in order that DBw is in Mq it is necessary and sufficient that ∂w/∂xB is
symmetric; if x is such that the jacobian determinant is always nonzero, this implies that B must
be scalar and ∂w/∂x is symmetric.
6It is easy to determine the matrices B, provided that one take sinto account that- since B is
symmetric - (5.14) can be written as (BA)2 = ε2I . All these relations become then particularly
simple in the case of classical quadratic modules, namely for the modules such that

f (x) = −(x2
1 + · · · + x2

n).
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From this and from the preceding result one may reobtain the result of n. 4 (in
the present particular case).

7. Let us assume now that F is with evaluation, and that the norm n(x) is a
definite quadratic form; then in Mq there are no zero divisors. In a future work,
based on the results proved in the preceding sections, we shall show how the theory
of quaternionic functions can be extended to functions in the (alternative) algebra
of Cayley numbers [Editors’ Note: here probably Sce refers to the paper that he
eventually wrote with Dentoni, see Chapter 6]; here we will limit ourselves to some
considerations on quadratic modules in associative algebras.

With reasonings nowadays classical, we prove first that for B-monogenic
functions there is a bilateral integral theorem. Then in the representative space
Mq one can construct an integral formula of Cauchy type, with kernel �(n−1)/2.
From this fact one derives the possibility to develop in series,..., etc. Based on the
penultimate paragraph of n. 6, we also get in this way properties of of functions
satisfying the (elliptic) equation �W = 0.7

Let now Mq be a quadratic module on the real field, and A the smallest
associative algebra containing it. The problem to extend to the elements of A an
integral formula (of Cauchy type), once that it has been found for Mq , is trivial if
Mq is of order 2. On the other hand, the problem is not solvable as soon as the order
of Mq is greater than 4, as it turns out from the classification of Clifford algebras8

and from some simple considerations on the variety of zero divisors in algebras.9

Thus it remains to be considered only the case in which Mq has order 4 (and it is
not an algebra); but then A is a Clifford algebra of order 8 and one would go back
to known results, at least in the classical case.10

7All the researches on these topics rely on R. Fueter, Die Funktionentheorie der Differential-
gleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv., v. 7
pp. 307–330 (1934-35). Among the works of Fueter’s school, those which treats topics near to
ours are: W. Nef, Funktionentheorie einer Klasse von hyperbolischen und ultrahyperbolischen
Differentialgleichungen zweiter Ordnung, ibid. vol. 17, pp. 83–107 (1944-45); H. G. Haefeli,
Hypercomplexe Differentiale, ibid., vol. 20, pp. 382–420 (1947); A. Kriszten, Elliptische systeme
von partiellen Differentialgleichungen mit konstanten Koeffizienten, ibid. vol. 23, pp. 243–271
(1949).
8See C. C. Chevalley cited in (2). The classification of classical Clifford algebras can already be
found in the paper E. Study, E. Cartan, Nombres complexes, Encycl. Franc., I, 5, n. 36, pp. 463.
9See M. Sce, Sulla varietàă dei divisori dello zero nelle algebre, Rend. Lincei, August 1957
10G. B. Rizza, Funzioni regolari nelle algebre di Clifford, Rend., Roma, v. 15 pp. 53–79 (1956).
The integral formulas established in this work hold in general for algebras which are direct sums
of quaternions (but not for Clifford algebras of order greater than 8).
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5.1 Comments and Historical Remarks

The starting point is a vector space M on a field F with characteristic different from
2 and with basis 1 = i0, i1, . . . , in. Following Chevalley [16], one can construct the
tensor algebra

T = ⊕∞
j=0M⊗j

over M and then assume that x ⊗ x = Q(x) where

Q(x) =
n∑

j,k=0

ajkxjxk.

Note that below we use the symbol q to denote a quaternion, thus here we use Q to
denote the quadratic form, although Sce uses q . Below we write x2 instead of x ⊗ x
and xy instead of x ⊗ y and x denotes x0 + x, x0 ∈ R.

The fact that x2 ∈ M implies that (x + y)2 ∈ M and so
xy + yx

2
∈ M, thus M

is closed with respect to the operation

(x, y) 	→ x · y = xy + yx

2
. (5.15)

This multiplicative structure on M gives in fact a (commutative) Jordan algebra M+.
Using Sce’s terminology, although for us MQ would be more appropriate, we

give the following:

Definition 5.1 We call quadratic module, and we denote it by Mq the vector space
M in which the multiplicative structure is given by (5.15).

For the sequel it can be useful to keep in mind the references [1, 16, 55, 61, 63,
71, 74, 77] also quoted in the original paper by Sce.

Remark 5.1 As a special case of the previous construction, we can take F = R and
we can consider, for example, M = R

n+1 identified with the set of paravectors, that
is those x ∈ Rn that are of the form x = x0 + x1e1 + . . . + xnen, for x0, x� ∈ R,
where e0 = 1, and e�, � = 1, . . . , n are the imaginary units generating a Clifford
algebra over R, i.e., M is the set of paravectors in Rn. If the imaginary units satisfy
a nondegenerate bilinear form B(·, ·), as in the case of a Clifford algebra, then we
can set Q(x) = B(x, x) and the construction above corresponds to the construction
of a real universal Clifford algebra over n imaginary units. Note that M can be of
signature (p, s), p + s = n namely p units have positive square and s units have
negative square. In this case, there exists a basis e∗

1, . . . , e∗
p, . . . , e∗

n in which the
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bilinear form B(·, ·) satisfies

1. B(e∗
i , e∗

i ) = 1, i = 1, . . . , p;
2. B(e∗

i , e∗
i ) = −1, i = p + 1, . . . , n = p + s;

3. B(e∗
i , e∗

j ) = 0, i �= j .

The product defined by (5.15) is the classical product of two paravectors in the
Clifford algebra.

The Fueter mapping theorem was proved by Fueter in the Mid Thirthies, see
[45], and provides an interesting way to generate Cauchy–Fueter regular functions
starting from holomorphic functions. The idea is to start with a holomorphic
function

f0(u + iv) = α(u, v) + iβ(u, v)

defined in an open set of the upper half complex plane. Given a nonreal quaternion
q = x0 + q, we define the function

f (q) = α(x0, |q|) + q

|q|β(x0, |q|), (5.16)

which is called the quaternionic valued function induced by f0. Fueter’s theorem
can be stated as follows (the result was also surveyed in [43, 77]):

Theorem 5.1 (Fueter [45]) Let f0(z) = α(u, v) + iβ(u, v) be a holomorphic
function defined in a domain (open and connected) D in the upper-half complex
plane and let

ΩD = {q = x0 + ix1 + jx2 + kx3 = x0 + q | (x0, |q|) ∈ D}

be the open set induced by D in H and let f (q) be the quaternionic valued function
induced by f0. Then Δf is both left and right Cauchy–Fueter regular in ΩD , i.e.,

∂

∂q̄
Δf (q) = Δf (q)

∂

∂q̄
= 0,

where Δ is the Laplacian in the four real variables x�, � = 0, 1, 2, 3 and ∂
∂q̄

is the
Cauchy–Fueter operator.

Almost 20 years later, Sce extended this result in a very pioneering and general way.
In the recent literature, Sce’s result is known in the following form (see Theorem 5.2
below):

By applying Δ(n−1)/2 (Δ is the Laplacian in n + 1 real variables) to a function
induced on the set of paravectors by a holomorphic function, one obtains a
monogenic one with values in the real Clifford algebra Rn over an odd number
n of imaginary units.
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In the sequel, we will discuss mainly the implications of the Fueter–Sce
construction in the Clifford setting, so we fix here the notation. The imaginary units
of the Clifford algebra Rn will be denoted by e�, � = 1, . . . , n, and we set e0 = 1.
The paravectors are elements of the Clifford algebra that are of the form

x = x0 + x1e1 + . . . + xnen, x� ∈ R, � = 0, . . . n,

x0 is the real (or scalar) part of x also denoted by Re(x), the 1-vector part of x is
defined by x = x1e1 + . . . + xnen, the conjugate of x is denoted by x = x0 − x,
and the Euclidean modulus of x is given by |x|2 = x2

0 + . . . + x2
n . The sphere of

1-vectors with modulus 1, is defined by

S = {x = e1x1 + . . . + enxn | x2
1 + . . . + x2

n = 1}.

We can state now the Clifford algebra version of Sce’s theorem in the version that is
commonly known in the recent literature.

Theorem 5.2 (Sce [75]) Consider the Euclidean space R
n+1 whose elements are

identified with paravectors x = x0 + x.
Let f0(z) = f0(u + iv) = α(u, v) + iβ(u, v) be a holomorphic function defined

in a domain (open and connected) D in the upper-half complex plane and let

ΩD = {x = x0 + x | (x0, |x|) ∈ D}

be the open set induced by D in H and f (x) be the Clifford-valued function induced
by f0. Then the function

f̆ (x) := Δ
n−1

2

(
α(x0, |x|) + x

|x|β(x0, |x|)
)

is left and right monogenic.

For the sequel, it is convenient to define the following maps:

TFS1 : α(u, v) + iβ(u, v) 	→ α(x0, |x|) + x

|x|β(x0, |x|) (5.17)

TFS2 : α(x0, |x|) + x

|x|β(x0, |x|) 	→ Δ
n−1

2

(
α(x0, |x|) + x

|x|β(x0, |x|)
)

(5.18)

Sce’s result requires some remarks, in fact it is broader than Theorem 5.2 from two
different points of view: the algebra in which it is proven and the type of functions
obtained.

Remark 5.2 As Sce observed, the quadratic module Mq can be embedded only in
algebras of specific form: for example in the Cayley–Dickson algebras, in particular
the octonions, and in the particular case of associative algebras, in all Clifford
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algebras or algebras whose semi-simple part is a Clifford algebra. However, Clifford
algebras, of any signature, are only a special case of this construction. A natural
question is then to ask what happens in the case one considers a module which
is not quadratic, but instead cubic or else. It will be interesting to understand if a
“Fueter–Sce mapping theorem” can be constructed in that case, and which operator
has to be considered instead of the Laplacian.

Remark 5.3 As we said, Sce’s extension of Fueter’s result is broader than the one
commonly quoted in the literature. In fact, with the above notations, it shows that
given a function f0(z) = f0(u + iv) = α(u, v) + iβ(u, v) which is holomorphic or
anti-holomorphic, see (4.6), then the function

Δ
n−1

2 f (x) = Δ
n−1

2

(
u(x0, |x|) + x

|x|v(x0, |x|)
)

(5.19)

is a JB-monogenic function namely it satisfies

∂f

∂x0
− 1

2ε

n∑

j,k=1

bjk

[
∂f

∂xj

ik + ik
∂f

∂xj

]
= 0,

where the matrix B = [bjk] is is symmetric and nondegenerate. The proof of this
result, in the special case when B is scalar and the jacobian matrix of f is symmetric,
gives that f is left and right B-monogenic.

Remark 5.4 The case in which one obtains a monogenic function or function in the
kernel of the Dirac operator (in the sense of Clifford analysis) is very special and
occurs when B = I , I being the identity matrix, and Mq is the set of paravectors
in a Clifford algebra. However, the result is proved for an algebra generated by
a module with unit and whose elements satisfy a quadratic equation. And again,
according to this quadratic equation, the function f0 satisfies the Cauchy–Riemann
equation or a variation of it, see (5.5). Operators of Cauchy–Fueter type in which
there are coefficients bjk such that the matrix B = [bjk] is orthogonal have been
considered by Shapiro and Vasilevski in [76].

Remark 5.5 About 40 years after Sce, Qian proved in [67] that the theorem of
Sce holds in the case of a Clifford algebra over an even number n of imaginary
units, using techniques of Fourier multipliers in the space of distributions in order
to deal with the fractional powers of the Laplacian. He showed that also in this case,
Sce’s construction gives a monogenic function. After this paper there have been a
number of generalizations and the interested reader may find more information in
the survey [69] but see also the papers [38, 64–66, 73]. Qian also gave an interesting
application of Fueter–Sce’s theorem, see [68], to prove boundedness of singular
integral operators.
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Remark 5.6 It is also interesting to note that the language of stem functions and
induced functions, later used by Sce in his paper on the octonionic case, see Chap. 6,
was also previously used by Cullen and Rinehart, see [42, 70]. Also Sudbery in
his paper [78] points out that Cullen used functions of the form (5.16) to define
an alternative theory of functions of a quaternion variable. The concepts of stem
functions, intrinsic and induced functions are relevant in the theory of functions
nowadays called slice hyperholomorphic (also called slice regular when they are
quaternionic functions and slice monogenic when they have values in a Clifford
algebra). In the theory of slice hyperhomolomorphic functions, the two functions u

and v (real-valued in the above discussion) have values in the hypercomplex algebra
under consideration. In the language of slice hyperholomorphic functions, functions
of the form (5.16) with u, v real are called intrinsic, according to the terminology
introduced by Cullen and Rinehart [42, 70].

5.2 The Fueter–Sce Theorem: Function and Spectral
Theories

The Fueter–Sce–Qian theorem is one of the most fundamental results in complex
and hypercomplex analysis because it shows how to generalize complex analysis
to the hypercomplex setting. The fact that the generalization procedure is done
in two steps means that there are two function theories in such an extension.
When we consider for example quaternionic valued functions, we obtain slice
hyperholomorphicity for the quaternions at the first step, and Fueter regular
functions at the second step. The other important example is the Clifford algebra
valued functions where we obtain slice hyperholomorphicity for Clifford algebra,
and monogenic functions, respectively. This fact has important consequences in
operator theory, because in both steps of the Fueter–Sce–Qian contruction the two
types of hyperholomorphic functions have a Cauchy formula. From the Cauchy
formula of slice hyperholomorphic functions one deduces the notion of S-spectrum
and, as a consequence, the spectral theory on the S-spectrum, while on the Cauchy
formula of Fueter regular functions or monogenic functions one deduces the notion
of monogenic spectrum and the related spectral theory. In this section we show
how the two function theories are related, how they induce the associated spectral
theories and the connections between them.

It is important to observe that quaternionic quantum mechanics was the main
motivation to search for the S-spectrum but hypercomplex analysis has given the
tools to identify this spectrum. In fact, in 1936 Birkhoff and von Neumann, see [13],
showed that quantum mechanics can be formulated over the real, the complex and
the quaternionic numbers. Since then, several papers and books treated this topic,
however it is interesting, and somewhat surprising, that an appropriate notion of
spectrum for quaternionic linear operators was not present in the literature. The way
in which the so-called S-spectrum and the S-functional calculus were discovered in
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2006 by Colombo and Sabadini is well explained in the introduction of the book
[41], where it is shown how hypercomplex analysis methods allow to identify the
notion of S-spectrum of a quaternionic linear operator which, from the physical
point of view, seemed to be ineffable.

Before the works of the Italian mathematicians on slice hyperholomorphic
functions, this function theory was simply seen an intermediate step in the Fueter–
Sce–Qian’s construction. These functions have various analogies with the theory
of functions of one complex variable, but also crucial differences which make them
very interesting. Moreover, they opened the way in the understanding of the spectral
theories in the quaternionic and in the Clifford settings.

The literature on hyperholomorphic functions and related spectral theories is
nowadays very large, so we mention only some monographs and the references
therein. For the function theory of slice hyperholomorphic functions the main
references are the books [33, 40, 46, 49], while for the spectral theory on the S-
spectrum we mention the books [10, 20, 33, 41]. For the more classic quaternionic
and monogenic function theory we refer to the books [14, 25, 44, 52, 54, 72], and
for the monogenic spectral theory and applications we suggest the interested reader
to consult [58].

It is also worthwhile to mention that also Schur analysis has been considered
in the slice hyperholomorphic setting, see the book [8] and in the references
therein. Schur analysis in the Fueter setting and related topics have been treated,
for example, in the papers [2–4].

The Fueter–Sce Mapping Theorem and Function Theories

In the title of this section and below we will often refer to the Fueter–Sce–Qian
mapping theorem as to Fueter–Sce mapping theorem because, for the sake of
simplicity, the case of the fractional Laplacian considered by Qian will not be
treated.

We start by discussing the recent research area of slice hyperholomorphic
functions. The construction of Fueter is carried out for functions defined on open
sets of the upper half complex plane but it can be generalized to the whole complex
plane. Consider a stem function

f0(z) = α(u, v) + iβ(u, v), z = u + iv

defined in a set D ⊆ C, symmetric with respect to the real axis, and set

f (x) = f (u + Iv) = α(u, v) + Iβ(u, v), (5.20)
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where I is an element in the sphere S of purely imaginary quaternions or 1-vectors
in the case of a Clifford algebra and x is either a quaternion or a paravector. This
function is well defined if

α(u,−v) = α(u, v) and β(u,−v) = −β(u, v)

namely if α and β are, respectively, even and odd functions in the variable v.
Additionally the pair (α, β) satisfies the Cauchy–Riemann system. This fact was
already understood by Sce, see Chap. 6, no. 4, but was not taken into account until
the work of Qian [68].

The theory of functions of the form (5.20) was somewhat abandoned until 2006
when Gentili and Struppa introduced in [48] the following definition:

Definition 5.2 Let U be an open set in H and let f : U → H be real differentiable.
The function f is said to be (left) slice regular or (left) slice hyperholomorphic in
U if for every I ∈ S, its restriction fI to the complex plane CI = R + IR passing
through origin and containing I and 1 satisfies

∂I f (u + Iv) := 1

2

(
∂

∂u
+ I

∂

∂v

)
fI (u + Iv) = 0,

on U ∩ CI .
Analogously, a function is said to be right slice regular (or right slice hyperholo-

morphic) in U if

(fI ∂I )(u + Iv) := 1

2

(
∂

∂u
fI (u + Iv) + ∂

∂v
fI (u + Iv)I

)
= 0,

on U ∩ CI , every I ∈ S.

Further developments of the theory of slice regular functions were discussed also in
[28] and the above definition was extended by Colombo, Sabadini and Struppa,
in [27], (see also [21, 29, 30]) to the Clifford algebra setting for functions f :
U → Rn, defined on an open set U contained in R

n+1, where Rn is the Clifford
Algebra over n imaginary units. Slice regular functions according to Definition 5.2
and their generalization to the Clifford algebra, called slice monogenic functions,
possess good properties on specific open sets that are called axially symmetric slice
domains. When it is not necessary to distinguish between the quaternionic case and
the Clifford algebra case we call these functions slice hyperholomorphic.

On these domains, slice hyperholomorphic functions satisfy an important for-
mula, called Representation Formula or Structure Formula, which allows to compute
the values of the function once that we know its values on a complex plane CI .

Definition 5.3 Let U ⊆ H (or U ⊆ R
n+1). We say that U is axially symmetric if,

for every u + Iv ∈ U , all the elements u + Jv for J ∈ S are contained in U . We
say that U is a slice domain if U ∩ CI �= ∅ and U ∩ R is a domain in CI for every
I ∈ S.
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The link with functions of the form (5.16) or (5.20) is provided by the
Representation Formula or Structure Formula:

Theorem 5.3 Let f : U → Rn be a slice hyperholomorphic function defined on
an axially symmetric slice domain U ⊆ R

n+1. Let J ∈ S and let x ± Jy ∈ U ∩CJ .
Then the following equality holds for all x = u + Iv ∈ U :

f (u + Iv) = 1

2

[
f (u + Iv) + f (u − Iv)

]
+ I

1

2

[
J [f (u − Iv) − f (u + Iv)]

]

= 1

2
(1 − IJ )f (u + Iv) + 1

2
(1 + IJ )f (u − Iv).

(5.21)

Moreover, for all u + Kv ⊆ U , K ∈ S, there exist two functions α, β, independent
of I , such that for any K ∈ S we have

1

2

[
f (u+Kv)+f (u−Kv)

]
= α(u, v),

1

2

[
K[f (u−Kv)−f (u+Kv)]

]
= β(u, v).

(5.22)

As a consequence we immediately have:

Corollary 5.1 Let U ⊆ R
n+1 be an axially symmetric slice domain, let D ⊆ R

2

be such that u + Iv ∈ U whenever (u, v) ∈ D and let f : U → Rn. The function
f is slice hyperholomorphic if and only if there exist two differentiable functions
α, β : D ⊆ R

2 → H, satisfying

α(u, v) = α(u,−v), β(u, v) = −β(u,−v)

and the Cauchy–Riemann system

{
∂uα − ∂vβ = 0
∂uβ + ∂vα = 0,

(5.23)

such that

f (u + Iv) = α(u, v) + Iβ(u, v). (5.24)

Thus, slice hyperholomorphic functions according to Definition 5.2 or the analogous
definition for slice monogenic functions are in fact functions of the form (5.20)
only on axially symmetric slice domains. However, if one defines a function to
be slice hyperholomorphic if it is of the form (5.20) where α, β satisfy the above
condition, one has that these functions are defined on axially symmetric open sets,
not necessarily slice domains.

Thus, starting with functions of the form (5.20), called slice functions, has the
advantage that they are defined on more general sets, moreover one can weaken the
requests on the two functions α, β requiring, e.g. only continuity, or differentiability



84 5 Remarks on the Power Series in Quadratic Modules

or to be of class C k , thus giving rise to the class of continuous or differentiable or
C k slice functions.

The class of slice functions can be considered over real alternative algebras, as
done by Ghiloni and Perotti in [50, 51]. The idea of considering functions with
values in an algebra more general than quaternions is the one followed by Sce in
the paper translated in this Chapter. Although in his paper α, β are real valued, it is
clear that his discussion involving the Laplacian, which is a real operator, extends
to α, β with values in an algebra.

It is also possible to define slice hyperholomorphic functions, as functions in the
kernel of the first order linear differential operator (introduced in [36])

Gf =
(
|x|2 ∂

∂x0
+ x

n∑

j=1

xj
∂

∂xj

)
f = 0,

where x = x1e1 + . . . + xnen . While, another way to introduce slice hyperholo-
morphicity, done by Laville and Ramadanoff in the paper [56], is inspired by the
Fueter–Sce mapping theorem. They introduce the so called holomorphic Cliffordian
functions defined by the differential equation DΔmf = 0 over R2m+1, where D is
the Dirac operator. Observe that the definition via the global operator G requires
less regularity of the functions with respect to the definition in [56].

Here and in the following we will dedicate less attention to monogenic functions
because they are very well known since long time. They are functions f : U ⊆
R

n+1 → Rn, with suitable regularity, that are in the kernel of the Dirac operator.
Contrary to the monogenic case, slice hyperholomorphic functions can be defined
in different ways, as shown above, not always equivalent, and also for this reason
they require more comments.

Inversion of the Fueter–Sce–Qian Mapping Theorem

The inverse of the Fueter–Sce–Qian mapping can be obtained in at least two
different ways. The first approach that has been introduced in the paper [32] is based
on the Cauchy formula of monogenic functions and leads to an integral formula
for the inverse Fueter–Sce–Qian mapping. In what follows we give some hints of
the solution of the inversion problem because it is interesting to see how a partial
differential equation is solved using methods of hypercomplex analysis. A second
method to study the inverse of the Fueter–Sce–Qian mapping is based on the Radon
and dual Radon transform. We will not presented this method here, but we refer the
interested reader to the paper [39] for more details.

The Fueter–Sce–Qian mapping has range in the subset of monogenic functions
given by the subclass of those functions which are axially monogenic. In simple
words if U is an axially symmetric open set in R

n+1 a left axially monogenic
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function on the open set U is a function of the form

F(x) = A(x0, r) + IB(x0, r)

where x = x0 + Ir , r = |x| �= 0, I = x/|x|, and such that the functions A =
A(x0, r) and B = B(x0, r) satisfy the Vekua’s system, i.e.

{
∂x0A(x0, r) − ∂rB(x0, r) = n−1

r
B(x0, r),

∂x0B(x0, r) + ∂rA(x0, r) = 0.

Thus, given an axially monogenic function F , we construct a Fueter–Sce primitive
of F , namely a function f such that

Δ
n−1

2 f (x) = F(x).

This problem has been solved in [32] in the case n is odd and in [11] in the case
of any n ∈ N. It is interesting to observe that for the solution of this problem it is
enough to construct a Fueter–Sce primitive of suitable functions constructed via the
Cauchy kernel for monogenic functions. Precisely, we consider the Cauchy kernel
of monogenic functions

G (x) = 1

An+1

x

|x|n+1 , x ∈ R
n+1 \ {0}, (5.25)

where

An+1 = 2π(n+1)/2

Γ (n+1
2 )

.

and we define the kernels

N +
n (x) =

∫

S

G (x − J ) dS(J ), N −
n (x) =

∫

S

G (x − J ) J dS(J ),

where S is the unit (n − 1)-dimensional sphere in R
n+1, while dS(J ) is a scalar

element of area of S. The two functions N ±
n (x) are axially monogenic and their

Fueter–Sce primitives, obviously not unique, can be obtained as the monogenic
extension of the two functions:

W +
n (x0) := Cn

Kn

D−(n−1) x0

(x2
0 + 1)(n+1)/2

,

W −
n (x0) := − Cn

Kn

D−(n−1) 1

(x2
0 + 1)(n+1)/2

,



86 5 Remarks on the Power Series in Quadratic Modules

where the symbol D−(n−1) stands for the (n − 1) integrations with respect to x0
and Cn and Kn are given constant that can be calculated explicitly. Then we used
an extension lemma based on properties of the solutions of the Dirac equation, so
the Fueter–Sce primitives W ±

n (x) are obtained by W ±
n (x0) replacing x0 by x =

x0 + x1e1 + . . . xnen. For example, in the case n = 3, we have

W +
3 (x) = 1

2π
arctan x, W −

3 (x) = − 1

2π
x arctan x.

So we can state the inverse Fueter–Sce mapping theorem:

Theorem 5.4 Let us consider an axially monogenic function

F(x) = A(x0, r) + JB(x0, r)

defined on an axially symmetric domain U ⊆ R
n+1. Let Γ be the boundary of an

open bounded subset V of the half plane R + JR+ and let

V = {x = u + Jv, (u, v) ∈ V , J ∈ S} ⊂ U.

Moreover suppose that Γ is a regular curve whose parametric equations y0 =
y0(s), ρ = ρ(s) are expressed in terms of the arc-length s ∈ [0, L], L > 0. Then,
the function

f (x) =
∫

Γ

W −
n

( 1

ρ
(x − y0)

)
ρn−2(dy0 A(y0, ρ) − dρ B(y0, ρ)) (5.26)

−
∫

Γ

W +
n

( 1

ρ
(x − y0)

)
ρn−2(dy0B(y0, ρ) − dρA(y0, ρ))

is a Fueter–Sce primitive of F(x) on V , where W ±
n (x) are the Fueter–Sce primitive

of N ±
n (x).

The proof of this result is rather involved and, in the general case, it requires Fourier
multipliers in order to give meaning to fractional powers of the Laplacian. As the
Fueter–Sce mapping theorem, also its inversion can be proved in various framework.
It was proved for axially monogenic functions of degree k in [35] for n odd, and in
the general case in [12]. The case of polyaxially monogenic functions seems to be
more complicated and, at the moment, only the biaxial case has been considered
in [37].

The Fueter–Sce Mapping Theorem and Spectral Theories

One of the most important motivations for the study hyperholomorphic functions
theories is that they induce spectral theories through their Cauchy formulas.
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In fact, in quaternionic operator theory a precise notion of spectrum for quater-
nionic linear operator was missing at least since the paper [13] of G. Birkhoff and
J. von Neumann, where they proved that quantum mechanic can be formulated also
on quaternionic numbers, but from the operator theory point of view the notion of
spectrum of quaternionic linear operators was not made precise. In fact, in all the
papers dealing with quaternionic quantum mechanic the notion of right eigenvalues
is used, but as it is well known, a part from the finite dimensional case, the right
eigenvalues alone are insufficient to construct a quaternionic spectral theory.

It was only in 2006 that, using techniques based solely on slice hyperholomorphic
functions, the precise notion of spectrum of a quaternionic linear operator was
identified. This spectrum was called the S-spectrum and since then the literature
in quaternionic spectral theory has rapidly grown, see [41] for more information.
Later in 2015 (and published in 2016) it was proved also the spectral theorem for
quaternionic normal operators based on the S-spectrum, see [6, 7] and perturbation
results of quaternionic normal operators can be found in [15]. Beyond the spectral
theorem there are more recent developments in the direction of the characteristic
operator functions, see [10] and the theory of spectral operators developed in [47].

The quaternionic Riesz–Dunford functional calculus based on the S-spectrum,
called S-functional calculus (see for example [5, 22]), was extended also to the
case of n-tuples of noncommuting operators using the notion of S-spectrum and the
theory of slice monogenic functions, see [26] and the book [33].

An important extension of the S-functional calculus to unbounded sectorial
operators is the H∞-functional calculus which is one of the ways to define functions
of unbounded operators. The H∞-functional calculus has been used to define
fractional powers of quaternionic linear operators that define fractional Fourier laws
for nonhomogeneous material in the theory of heat propagation. For the original
contributions see [9, 18, 19]. For a systematic and recent treatment of quaternionic
spectral theory on the S-spectrum and the fractional diffusion problems based on
these techniques, see the books [20, 41]. Moreover, in the monograph [33] one can
find also the foundations of the spectral theory on the S-spectrum for n-tuples of
noncommuting operators.

Below, we summarize in the following some of the applications and research
directions of the hyperholomorphic function theories and relative spectral theories,
induced by the two steps of the Fueter–Sce construction.

1. The first step generates slice hyperholomorphic functions and the spectral theory
of the S-spectrum. Among the applications we mention:

• The mathematical tools for quaternionic quantum mechanics, related to the
Spectral Theorem based on the S-spectrum.

• New classes of fractional diffusion problems that are based on the definition of
the fractional powers of vector linear operators.

• The characteristic operator functions and applications to linear system theory.
• Quaternionic spectral operators, which allow to consider a class of nonself-

adjoint problems.
• Spectral theory of Dirac operators on manifolds in the nonself-adjoint case.
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2. The second step in the Fueter–Sce construction generates Fueter regular or
monogenic functions and the spectral theory on the monogenic spectrum, and
some of the applications are:

• Boundary value problems treated with quaternionic techniques, see the book of
Gürlebeck and Sprössig [53] and the references therein.

• Quaternionic approach to div-rot systems of partial differential equations, see
[34].

• Harmonic analysis in higher dimension, see the work of McIntosh, Qian, and
many others [57, 59, 60, 62, 68].

For operator theory the most appropriate definition of slice hyperholomorphic
functions is the one that comes from the Fueter–Sce mapping theorem because it
allows to assume that the functions are defined only on axially symmetric open sets.
The definition below generalizes Fueter’s construction from open sets in the upper
half complex plane to more general open sets.

Definition 5.4 Let U ⊆ R
n+1 be an axially symmetric open set and let U ⊆ R×R

be such that x = u+Jv ∈ U for all (u, v) ∈ U . We say that a function f : U → Rn

of the form

f (x) = α(u, v) + Jβ(u, v)

is left slice hyperholomorphic if α, β are Rn-valued differentiable functions such
that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U

and if α and β satisfy the Cauchy–Riemann system

∂uα − ∂vβ = 0, ∂vα + ∂uβ = 0.

It is called right slice hyperholomorphic when f is of the form

f (x) = α(u, v) + β(u, v)J

and α, β satisfy the above conditions.

Since we will restrict just to left slice hyperholomorphic function on U we introduce
the symbol SH(U) to denote them.

Theorem 5.5 Let U ⊆ R
n+1 be an axially symmetric open set such that ∂(U ∩CI )

is union of a finite number of continuously differentiable Jordan curves, for every
I ∈ S. Let f be an Rn-valued slice hyperholomorphic function on an open set
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containing U and, for any I ∈ S, we set dsI = −Ids. Then, for every x ∈ U , we
have:

f (x) = 1

2π

∫

∂(U∩CI )

S−1
L (s, x)dsI f (s), (5.27)

where

S−1
L (s, x) = −(x2 − 2Re(s)x + |s|2)−1(x − s) (5.28)

and the value of the integral (5.27) depends neither on U nor on the imaginary unit
I ∈ S.

It turns out that the kernel S−1
L (s, x) is slice hyperholomorphic in x and right slice

hyperholomorphic in s for x, s such that x2 − 2Re(s)x + |s|2 �= 0.
Denoting by O(D) the set of holomorphic functions on D, by N(ΩD) the set of

induced functions on ΩD (which turn out to be intrinsic slice hyperholomorphic
functions) and by AM(ΩD) the set of axially monogenic functions on ΩD the
Fueter–Sce construction can be visualized by the diagram:

O(D)
TFS1−−−−→ N(ΩD)

TFS2=Δ (or TFS2=Δ(n−1)/2))−−−−−−−−−−−−−−−−−−→ AM(ΩD),

where TFS1 denotes the first operator of the Fueter–Sce construction and TFS2
the second one, see (5.17) and (5.18). The Fueter–Sce mapping theorem induces
two spectral theories according to the classe of functions that we consider. The
Cauchy formula of slice hyperholomorphic functions allows to define the notion of
S-spectrum, while the Cauchy formula for monogenic functions induces the notion
of monogenic spectrum, as illustrated by the diagram:

−−−−→
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

SH(U)
TFS2

AM(U)

Slice Cauchy f ormula Monogenic Cauchy f ormula

S − spectrum monogenic spectrum

S − f unctional calculus monogenic f unctional calculus

H∞ − f unctional calculus H∞ − monogenic f unctional calculus

In the above diagram we have replaced the set of intrinsic functions N by the larger
set of slice hyperholomorphic functions SH . This is clearly possible because the
map TFS2 is the Laplace operator or its powers.
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Let us consider a Banach space V over R with norm ‖ · ‖. It is possible to
endow V with an operation of multiplication by elements of Rn which gives a two-
sided module over Rn and by Vn we indicate the two-sided Banach module over
Rn given by V ⊗ Rn. Our aim is to construct a functional calculus for n-tuples of
not necessarily commuting operators using slice hyperholomorphic functions. So
we consider the so called paravector operator

T = T0 +
n∑

j=1

ejTj ,

where Tμ ∈ B(V ) for μ = 0, 1, ..., n, and where B(V ) is the space of all bounded
R-linear operators acting on V .

The notion of S-spectrum follows from the Cauchy formula of slice hyperholo-
morphic functions and from some not trivial considerations on the fact that we can
replace in the Cauchy kernel S−1

L (s, x) the paravector x by the paravector operator
T also in the case the components (T0, T1, ..., Tn) of T do not commute among
themselves. We have the following definition.

Definition 5.5 (S-Spectrum) Let T ∈ B(Vn) be a paravector operator. We define
the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ R
n+1 : T 2 − 2 Re (s)T + |s|2I is not invertible in B(Vn)}

where I denotes the identity operator. It’s complement

ρS(T ) = R
n+1 \ σS(T )

is called the S-resolvent set.

Definition 5.6 Let T ∈ B(Vn) be a paravector operator and s ∈ ρS(T ). We define
the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re (s)T + |s|2I)−1(T − sI). (5.29)

A similar definition can be given for the right resolvent operator.

Definition 5.7 We denote by SHσS(T ) the set of slice hyperholomorphic functions
defined on the axially symmetric set U that contains the S-spectrum of T .

A crucial result for the definition of the S-functional calculus is that integral

1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f (s), for f ∈ SHσS(T ) (5.30)

depends neither on U nor on the imaginary unit I ∈ S, so the S-functional calculus
turns out to be well defined.
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Definition 5.8 (S-Functional Calculus) Let T ∈ B(Vn) and let U ⊂ H be as
above. We set dsI = −Ids and we define the S-functional calculus as

f (T ) := 1

2π

∫

∂(U∩CI )

S−1
L (s, T ) dsI f (s), for f ∈ SHσS(T ). (5.31)

The definition of the S-functional calculus is one of the most important results in
noncommutative spectral theory.

Here we will not enter into the details of the monogenic functional calculus,
we just point out that the starting point for its definition is the monogenic Cauchy
formula and the fact that one has to give meaning to the monogenic Cauchy kernel
(5.25)

G (s − x) = 1

An+1

s − x

|s − x|n+1

when we replace the paravector x by the paravector operator T . In this case there are
major differences with respect to the slice hyperholomorphic Cauchy kernel when
the components (T0, T1, ..., Tn) of T do not commute among themselves. Moreover,
the operators Tμ : V → V , μ = 1, ...n, must have real spectrum when considered
as linear operators on the real Banach space V and we have to set T0 = 0.

Since we are discussing the consequences of the Fueter–Sce theorem in the next
subsection we will show how we can use an integral version of this theorem to define
the F -functional calculus which is a version of the monogenic functional calculus
for n-tuples of commuting operators but it is based on the S-spectrum.

The Fueter–Sce Theorem in Integral Form
and the F -Functional Calculus

The Fueter–Sce mapping theorem in integral form and the F -functional calculus
where introduced in [31] and further investigated in [17, 23, 24].

We now show how the Fueter–Sce mapping theorem provides an alternative way
to define the functional calculus based on monogenic functions. The main idea is to
apply the Fueter–Sce operator TFS2 to the slice hyperholomorphic Cauchy kernel as
illustrated by the diagram:

⏐
⏐
�

−−−−→
⏐
⏐

⏐
⏐

SH(U) AM(U)

Slice Cauchy f ormula
TFS2 Fueter Sce integral f orm

S Functional calculus F f unctional calculus
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This procedure generates an integral transform, called the Fueter–Sce mapping
theorem in integral form, that allows to define the so called F -functional calculus.
This calculus uses slice hyperholomorphic functions and the commutative version
of the S-spectrum, but defines a monogenic functional calculus. We just give an
idea of how this works. We point out that the operator TFS2 has a kernel and one has
to pay attention to this fact with the definition of the F -functional calculus, more
details are given in [41]. Then, one has to observe that one can apply the powers of
Laplacian to both sides of (5.27) obtaining:

Δhf (x) = 1

2π

∫

∂(U∩CI )

ΔhS−1
L (s, x)dsI f (s)

which amounts to compute the powers of the Laplacian applied to the Cauchy kernel
S−1

L (s, x). In general, it is not easy to compute Δhf and when we apply Δh to the
Cauchy kernel written in the form (5.28), we do not get a simple formula. However,
S−1

L (s, x) can be written in two equivalent ways as follows.

Proposition 5.1 Let x, s ∈ R
n+1 (or in H in the quaternionic case) be such that

x2 − 2xRe(s) + |s|2 �= 0. Then the following identity holds:

S−1
L (s, x) = −(x2 − 2xRe(s) + |s|2)−1(x − s)

= (s − x̄)(s2 − 2Re(x)s + |x|2)−1.
(5.32)

If we use the second expression for the Cauchy kernel we find a very simple
expression for ΔhS−1

L (s, x).

Theorem 5.6 Let x, s ∈ R
n+1 be such that x2 − 2xRe(s) + |s|2 �= 0. Let

S−1
L (s, x) = (s − x̄)(s2 − 2Re(x)s + |x|2)−1

be the slice monogenic Cauchy kernel and let Δ = ∑n
i=0

∂2

∂x2
i

be the Laplace

operator in the variable x = x0 + ∑n
i=1 xiei . Then, for h ≥ 1, we have:

ΔhS−1
L (s, x) = Cn,h (s − x̄)(s2 − 2Re(x)s + |x|2)−(h+1), (5.33)

where

Cn,h := (−1)h
h∏

�=1

(2�)

h∏

�=1

(n − (2� − 1)).

The function ΔhS−1(s, x) is slice hyperholomorphic in s for any h ∈ N but is
monogenic in x only if and only if h = (n + 1)/2, namely if and only if h equals
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the Sce exponent. We define the kernel

FL(s, x) := Δ
n−1

2 S−1
L (s, x)

= γn(s − x̄)(s2 − 2Re(x)s + |x|2)− n+1
2 ,

where

γn := (−1)(n−1)/22(n−1)/2(n − 1)!
(n − 1

2

)
!

which can be used to obtain the Fueter–Sce mapping theorem in integral form.

Theorem 5.7 Let n be an odd number. Let f be a slice hyperholomorphic function
defined in an open set that contains U , where U is a bounded axially symmetric open
set. Suppose that the boundary of U ∩ CI consists of a finite number of rectifiable
Jordan curves for any I ∈ S. Then, if x ∈ U , the function f̆ (x), given by

f̆ (x) = Δ
n−1

2 f (x)

is monogenic and it admits the integral representation

f̆ (x) = 1

2π

∫

∂(U∩CI )

FL(s, x)dsI f (s), dsI = ds/I, (5.34)

where the integral depends neither on U nor on the imaginary unit I ∈ S.

Using the Fueter–Sce mapping theorem in integral form (5.34), one can define a

functional calculus for monogenic functions f̆ = Δ
n−1

2 f using slice hyperholomor-
phic functions and the S-spectrum. The F -functional calculus is based on (5.34) and
it is a monogenic functional calculus in the spirit of the functional calculus based on
the monogenic spectrum introduced by McIntosh (see the book of B. Jefferies [58]).

In the sequel, we will consider bounded paravector operators T , with commuting
components T� ∈ B(V ) for � = 0, 1, . . . , n. Such subset of B(Vn) will be denoted
by BC0,1(Vn). The F -functional calculus is based on the commutative version of the
S-spectrum (often called F -spectrum in the literature). So we define the F -resolvent
operators.

Definition 5.9 (F -Resolvent Operators) Let n be an odd number and let T ∈
BC0,1(Vn). For s ∈ ρS(T ) we define the left F -resolvent operator by

FL(s, T ) := γn(sI − T )(s2 − (T + T )s + T T )−
n+1

2 , (5.35)

where the operator T is defined by

T = −T1e1 − · · · − Tnen

the constants γn are given above.
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Definition 5.10 (The F -Functional Calculus for Bounded Operators) Let n be
an odd number, let T ∈ BC0,1(Vn) be such that T = T1e1 + · · · + Tnen, assume
that the operators T� : V → V , � = 1, .., n have real spectrum and set dsI = ds/I ,
for I ∈ S. Let SHσS(T ) and U be as in Definition 5.7. We define

f̆ (T ) := 1

2π

∫

∂(U∩CI )

FL(s, T ) dsI f (s). (5.36)

The definition of the F -functional calculus is well posed since the integrals in (5.36)
depends neither on U and nor on the imaginary unit I ∈ S.
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