
Chapter 3
On Systems of Partial Differential
Equations Related to Real Algebras

This chapter contains the translation of the paper:

M. Sce, Sui sistemi di equazioni differenziali a derivate parziali inerenti alle algebre
reali, (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 18
(1955), 32–38.

Article by Michele Sce, presented during the meeting of 11 December 1954 by
B. Segre, member of the Academy.

In this Note, after some preliminaries in algebra and analysis, we classify
systems of partial differential equations which give monogenicity conditions in
algebras. These systems are elliptic for primitive algebras, parabolic with algebras
with radical; the proof of this latter fact is based on a characterization, maybe
unknown, of semisimple algebras via their determinant. Among hyperbolic systems,
we highlight the one obtained from a regular algebra, and which has as characteristic
hypersurface the cone of zero divisors of the algebra itself.

From these systems we deduce some partial differential equations of order
equal to the order of the algebra which are of the same type of those satisfied
by all monogenic functions. I hope that a further study of these equations would
eventually lead me to solve, at least for monogenic functions in regular algebras,
some problems analogous to the Cauchy problem.

1. Let A be an associative algebra over the real, with unit, and let U =
(u1, . . . , un) be a basis. The algebras of matrices A ′ (A ′′) which gives the first
(second) regular representation of A are such that for every x in A and X′ (X′′) in
A ′ (A ′′) one has

xu−1 = X′−1u−1 (ux = uX′′−1), (3.1)
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46 3 On Systems of Partial Differential Equations Related to Real Algebras

the determinant of X′, (X′′) is also called left (right) determinant of x.1

The element y = y1u1 + · · · + ynun = ηu−1 in A is said to be left (right)
monogenic function of x = x1u1 + · · · + xnun if yi are functions derivable with
respect to xk and such that

∑

i,k

∂yi

∂xk

ukui = 0

⎛

⎝
∑

i,k

∂yi

∂xk

uiuk = 0

⎞

⎠ .2

By setting

ukui =
∑

j

c
j
kiuj , (3.2)

one gets a system of n linear differential equations of the first order:

∑

i,k

∂yi

∂xk

c
j
ki = 0 (j = 1, 2, . . . , n), (3.3)

whose coefficients are the constants of multiplication in the algebra. By setting
[Editors’ Note: ‖aij‖ denotes the matrix with entries aij ]

Ω =
∥∥∥∥∥
∑

k

c
j
ki

∂

∂xk

∥∥∥∥∥ = ‖γij‖ (i, j = 1, 2, . . . , n),

(3.3) can be written in a more compact form as:

Ωη−1 = 0; (3.4)

the determinant |C| of the matrix

C = ‖
∑

k

c
j
kizk‖ =

∑

k

Ckzk, (3.5)

Ck = ‖cj

ki‖ (for i, j = 1, . . . , n), obtained from Ω by substituting zk instead of
∂

∂xk

, is called characteristic form of the system. The system itself is called elliptic

or parabolic if the characteristic equation

|C| = f (z1, . . . , zn) = 0 (3.6)

1See G. Scorza, Corpi numerici e algebre, Messina (1921), Part II, n. 184 and 185.
2See B. Segre, Forme differenziali e loro integrali, (Roma, 1951), Ch. IV, n. 90. The indices of the
infinite sums, unless otherwise stated, always run from 1 to n. Later we will always refer to left
monogenicity, since analogous results can be obtained in a similar way for right monogenicity.
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does not have real solutions different from the trivial solution (0, . . . , 0) or, by
means of a change of variables, it can be reduced to an equation depending on
less than n variables;3 in the other cases the system is called hyperbolic and, in
particular, totally hyperbolic if the matrix C is diagonalizable and its characteristic
polynomial has real roots whatever are the zk’s.4

Finally, a hypersurface ϕ(x1, . . . , xn) = 0 in the Euclidean space of n-tuples
(x1, . . . , xn) is called characteristic if the directional cosines of its normal

∂ϕ1

∂x1
, . . . ,

∂ϕn

∂xn

satisfy the characteristic equation (3.6).5

2. Let us multiply the matrix (3.5) on the right by the n-vector u−1; in force of
(3.2), one has:

Cu−1 =

⎛

⎜⎜⎝

∑
j,k c

j

k1zkuj

...∑
j,k c

j
knzkuj

⎞

⎟⎟⎠ =
⎛

⎜⎝

∑
k zkuku1

...∑
k zkukun

⎞

⎟⎠

and, setting z = z1u1 + · · · + znun, we deduce

zu−1 = Cu−1.

A comparison with (3.1) shows that C−1 is the matrix corresponding to z in the first
regular representation of A ;6 thus the characteristic form of system (3.3) coincides
with the left determinant of an element in A .

Since the determinants of elements in A are invariant with respect to change of
basis in the algebra, one has also that the characteristic form of the system expressing
the monogenicity is invariant with respect to changes of basis in the algebra.7

3See R. Courant, D. Hilbert, Methoden der Mathematischen Physik, Band II (Berlin, 1937), Kap.
III, § 4, n.2.
4A definition equivalent to ours can be found, for systems of quasi-linear equations, in R. Courant,
K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publishers, Inc., New York, N.
Y., 1948, Chapt. II, n. 32; sometimes, as in R. Courant, P. Lax, On nonlinear partial differential
equations with two independent variables, Comm. Pure Appl. Math., 2 (1949), 255–273, pp. 255–
273, n.2, totally hyperbolic systems are called hyperbolic.
5See Courant-Friedrichs, cited in (4).
6In particular, Ω−1 corresponds to ω = ∑

k

∂

∂xk

uk considered as an element in A and the

transpose of the Ck’s in (3.5) correspond to the units in A .
7On the contrary, monogenicity conditions depend on the basis of the algebra; see M. Sce,
Monogeneità e totale derivabilità nelle agebre reali e complesse, Atti Accad. Naz. Lincei. Rend.
Cl. Sci. Fis. Mat. Nat., (8) 16 (1954), 30–35, Nota I, n. 1.
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Primitive algebras have no zero divisors and so the determinants of their nonzero
elements are always nonzero; and conversely. Based on the preceding arguments and
on n. 1, this is equivalent to claim that system (3.3) is elliptic for primitive algebras
and only for those.

3. We will prove that the system (3.3) is parabolic for algebras not semi-
simple and only for them, by proving that an algebra is semi-simple if and only
if, with respect to any basis, the determinant of the elements depends on all their
coordinates.

Let us assume the A is semi-simple and that the determinant of the elements
does not depend on all their coordinates. A is direct sum of simple algebras Ai and
so the determinant of the elements in A is the product of the determinants of the
elements in Ai ; thus some algebra Ai is such that the determinant of its elements
x = ∑

i xiui , y = ∑
i yiui does not depend, for example, on the coefficients of the

units um, . . . , un but it depends on the coefficients of all the other units. Then also
the determinant of

xy =
m−1∑

i,k=1

xiykuiuk +
m−1∑

i=1,...n,k=m,...n

(xiykuiuk + xkyiukui) +
n∑

i=m

xiyiu
2
i

does not depend on xm, . . . , xn; ym, . . . , yn; it turns out that all the products of
units appearing in the second sum can be expressible as linear combinations of
um, . . . , un, namely

uiuk =
n∑

j=m

c
j
ikuj (i = 1, . . . , n; k = m, . . . , n) (3.7)

must hold. The relations (3.7) allow to say that the set having basis um, . . . , un is a
proper ideal of Ai ; this contradicts the assumption that Ai is simple and shows the
necessity of the condition.

Let now A an algebra not semi-simple, that is, it has a nonzero radical R. Let
U1, . . . , Um, . . . , Un, (1 < m < n) be a basis for A ′ such that Um, . . . , Un is a basis
for the image R ′ of R in the first regular representation of A ; then the trace of any
element X′ = ∑

i xiUi in A ′ does not depend on xm, . . . , xn since the matrices
Um, . . . , Un—which are elements of R ′ are nilpotent. Since

X′2 =
m−1∑

i,k=1

xixkUiUk +
∑

i=1,...,n, k=m,...,n

xixk(UiUk + UkUi) −
n∑

i=m

x2
i u2

i ,

only the coefficients of the first sum—among which xm, . . . , xn do not appear—can
give a nonzero contribution to the trace of X′2 in fact R ′ is an ideal of A ′ and so a
relation similar to (3.7) holds. Reasoning in this way we can prove that the traces of
X′, X′2, . . . , X′n do not depend on xm, . . . , xn. Using the recurrence formulas—
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which can be easily obtained8—expressing the coefficients of the characteristic
equation of a matrix via the traces of a matrix and its powers, one gets that each
coefficient of the characteristic equation of X′ does not depend on xm, . . . , xn. This
is true, in particular, for the determinant of x and so the theorem is proved.

4. The system (3.3) is completely hyperbolic for the algebras of n-real numbers
and only for them.

Let u1, . . . , un, u2
i = ui , uiuk = 0, (i �= k), be the basis of n-real numbers;

the matrix (3.5) turns out to be real and diagonal,so that the system (3.3) is totally
hyperbolic.

Conversely, let us assume that the system (3.3) is totally hyperbolic, that is, C is
diagonalizable and its characteristic roots are real. If Ci is diagonal and all the zk

except zi , zj are zero, the matrix ziCi + zjCj is diagonal only if Cj is diagonal;
it follows that, when i and j vary, a matrix which reduces a Ck to the diagonal
form must reduce to the diagonal form all the other Ck . Thus the matrices Ck are
pairwise commuting;9 and since their transpose correspond to the units of A in
the first regular representation, A is commutative. On the other hand, since the
system (3.3) is not parabolic, A is semi-simple (n. 3); a semi-simple algebra which
is commutative is direct sum of the real field and of the algebra of complex numbers,
and both can be repeated a certain number of times.10 However, if A would have
as a component the algebra of complex numbers, some Ck would have complex
characteristic roots; thus A cannot be anything but the direct sum of the real field
taken n times.

5. Let e11, e12, . . . , enn with eij ejk = eik , eij elk = 0, (i �= l) the basis of
a regular algebra Mn of order n2; the matrices of order n2 elements of M ′

n are
direct sums of n matrices equal to ‖xik‖, of order n, in Mn. Thus ϕ(xik) = 0 is a
characteristic hypersurface of system (3.3) if:

∂ϕ

∂xik

= 0. (3.8)

Since
∂|xik|
∂xik

is the adjoint of Xik in ‖xik‖, one has

∣∣∣∣
∂|xik|
∂xik

∣∣∣∣ = |xik|n−1

and the cone |xik| = 0 of zero divisors of Mn satisfies (3.8); thus the cone of
zero divisors of a regular algebra Mn counted n − 1 times, is a characteristic
hypersurface of system (3.3).

8When a matrix is in canonic form, these formulas reduce to those of symmetric functions.
9See M. Sce, Su alcune proprietà delle matrici permutabili e diagonalizzabili, Rivista di Parma,
vol. 1, (1950), pp. 363–374, n.5.
10See Scorza cited in (1), part II, n. 292.
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Let us now consider the algebra A of order 2n2 direct product of the algebra of
complex numbers and the regular algebra Mn. The elements of A ′ with respect to
eik , ieik are matrices of order 2n2 direct sums of n matrices of order 2n,

X =
(

A −B

B A

)
,

where A,B are arbitrary elements of Mn. Denoting again by Xj� the adjoint of xj�

(where j, � = 1, 2, . . . , 2n, a simple computation shows that—for i, k = 1, . . . , n—
one has:

∣∣∣∣
∂|xj�|
∂xj�

∣∣∣∣ =
∣∣∣∣
Xik + Xn+i,n+k

Xn+i,k + Xi,n+k

Xi,n+k − Xn+i,k

Xn+i,n+k + Xi,k

∣∣∣∣ = |Xj�|;

thus the equation |xj�|2n2−1 = 0—in the complex case—represents a characteristic
hypersurface of system (3.3). However, it should be noted that, in the real field,
|xj�| = 0 represents a cone (with vertex at the origin) of dimension 2(n2 −1) which
certainly does not give a characteristic hypersurface.

Analogous remarks can be made in the case of an algebra direct product of the
algebra of quaternions with a regular algebra.

6. Let A = ‖aik‖ be a matrix of order n whose elements belong to an integral
domain D with unit, but which is not a principal ideal ring. If A has maximal rank,
its first column cannot be zero; thus, multiplying A on the left by a suitable matrix,
we can assume that the element (1, 1) is nonzero. Let us still denote by A the matrix
obtained in this way, and let us multiply it by the nonsingular matrix

P =

⎛
⎜⎜⎜⎝

1 0 0 . . .

−a21 a11 0 . . .

−a31 0 a11 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ ;

one obtains

PA =

⎛
⎜⎜⎜⎝

a11 a12 a13 . . .

0 a11a22 − a12a21 a11a23 − a13a21 . . .

0 a11a32 − a12a31 a11a33 − a13a31 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ =

(
a11 a

0 A1

)
. (3.9)

Since also the first column of A1 must be nonzero, we can act on A1 as we did on A;
iterating the procedure, we show that every nonsingular matrix in D can be reduced
in triangular form T , multiplying it on the left by a suitable nonsingular matrix.
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As it can be seen from (3.9), the first two elements on the principal diagonal of T

are two minors of order 1 and 2 respectively, the first one contained in the second;
reasoning by induction one finds that—by selecting a sequence of nonzero minors
α1, α2, . . . , αn = |A| of all the orders from 1 to n, each of which contained in the
following (complete chain)—the elements on the principal diagonal of T are

α1, α2, α1α3, α2
1α2α4, . . . , αn−2

1 αn−3
2 · · ·αn−2αn.

11 (3.10)

The degree of the i-th element in the sequence (3.10) in the elements of A is clearly∑i−2
k=1 k2i−2−k + i; since

∞∑

k=i−1

k2i−2−k = i,

we can conclude that the i-th element of the sequence (3.10) is of degree 2i−1 in the
elements of A.

Let us consider the extension F of the field of the real numbers by means of

the operators
∂

∂x1
, . . . ,

∂

∂xn

; defining formally, as usual, the operations of sums and

product, F turns out to be a ring with unit. The set of operators F has no zero
divisors; thus, if we assume that all the functions to which we apply elements of F
have finite derivatives, continuous up to the order m, we can say that all the elements
of order not greater than m behave like elements in an integral domain.

Thus, if we suppose that the yi elements of η in (3.4) possess finite derivatives,
continuous up to order 2n−1, we can apply to the matrix Ω the considerations made
above, this gives for the element yn of η a partial differential equation of order at
most 2n−1. An analogous result can be obtained for the other yi ; but, in general, the
equations obtained for the various yi are different. To obtain a differential equation
satisfied by all the yi’s, one needs to multiply between them the n complete chains,
assuming that the operators which are their elements commute (namely, that the
functions have derivatives finite and continuous up to the order of the equation);

11Obviously for particular matrices one can obtain much more; for example, if

A =
(

A′ A
′′′

−A′′
−1 A′′

)

is a symmetric matrix of the fourth order one has:

(
A′J −A

′′
J

−A′′
−1J A′J

)(
A′ A

′′

−A′′−1 A
′′′

)
=

(
D 0
0 D

)
, with J =

(
0 −1
1 0

)
, D =

(
0 d

−d 0

)

where d is the pfaffian of A. Another example is given by the elemnts in the algebra which is
the first regular representation of quaternions; these matrices multiplied by the transposed give the
scalar matrix |q|I4 (where |q| is the norm of the quaternion q).
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taking into account that the n-chains have all the same last element, which does not
have to be necessarily repeated in the product, one has that the single components
of a monogenic function satisfy a same partial differential equation of order at most
n(2n−1 − (n − 1)).

7. The procedure illustrated in the preceding section, is maybe of some interest;
however, an equation satisfied by all the yi’s can be easily be obtained by
multiplying (3.4) on the left by the matrix Ω∗ adjoint of Ω . So we have that the
components of a monogenic function satisfy an equation of order at most n.12

The characteristic form of the equation coincides with the characteristic form
of the system; thus the equations satisfied by the components of the monogenic
functions are of the same kind of system (3.3) and the characteristic hypersurfaces
of the system are the same of those of the equation.

Since, as we have seen in n. 5, the elements of the first regular representation of
an algebra simple of order kn2 are composed by n matrices and Ω , as we observed
in the note 6, can be considered an element of the first regular representation, one
has that the single components of a monogenic function in a simple algebra of order
kn2 satisfy an equation of order at most kn.

It is easy to extend the result to semisimple algebras.

3.1 Comments and Historical Remarks

In the paper translated in this chapter, Sce discusses the problem of characterising
an algebra according to the properties of the system satisfied by the monogenic
functions in that algebra see [8]. In his papers, he always has a special taste for
algebraic questions, see also his paper [9], and in fact inspired by this problem, he
also proves a new property of semi-simple algebras. Moreover, he also shows that
each function, which is a component of a monogenic function, satisfies a suitable
system of differential equations with order equal to the order of the algebra. Also
this paper is an interesting combination of properties exquisitely algebraic in nature
and analytical properties of functions.

Most of the properties of the algebras considered in this chapter are given in
Chap. 2. The reader may refer to the books of Albert [1, 2] and of Scorza [10]
which were also used by Sce.

Remark 3.1 In the paper we consider in this chapter, Sce makes use of the Italian
term “algebra primitiva”, i.e., primitive algebra, that we keep in the translation.

12Sometimes, by multiplying Ω on the left by matrices different from Ω∗, we obtain equations of
lesser order; for example, in the case of quaternions multiplying Ω by its transpose one obtains the
scalar matrix ΔIn (Δ is the laplacian in four variables).
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In more modern terms, one should translate the term as division algebra. In fact,
as one can read in various old sources, see e.g. [11–13], a primitive algebra is an
algebra which does not contain zero divisors. Such an algebra is semi-simple and
also simple.

Another important definition is the following:

Definition 3.1 Let A1, . . . ,Am be algebras over a field F . We say that A is the
direct sum of A1, . . . ,Am and we write

A = A1 ⊕ . . . ⊕ Am

if vi vj = 0 for vi ∈ Ai , i �= j and the order of A is the sum of the orders of Ai ,
i = 1, . . . ,m.

Example 3.1 An instance of algebra which is a direct sum used in this chapter is
the algebra of n-real numbers Rn = R ⊕ · · · ⊕ R in which all the various copies of
R are generated by ui (the unit of R) for i = 1, . . . , n, and are such that uiuj = 0
when i �= j .

An algebra is said to be decomposable if it can be written as sum of its (nontrivial)
subalgebras, indecomposable if this is not possible.
These notions about the algebras are useful to characterise the systems of differential
equations associated with the various notions of monogenicity. To provide concrete
examples, we consider the monogenicity conditions in Chap. 1, for increasing
dimension of the algebras considered.

Example 3.2 Let us start by considering second order algebras. We begin with the
real algebra of complex numbers, which is clearly a division algebra. Then

C =
(

x1 −x2

x2 x1

)
,

so that |C| = x2
1 + x2

2 and the system is, as it is well known, elliptic.
Again in dimension 2, we can consider the algebra of dual numbers and the left
monogenicity condition, see (2.32), which are associated with the matrix

C =
(

x1 0
x2 x1

)
,

so that |C| = x2
1 and the system is parabolic, which is consistent with the fact that

the algebra of dual numbers is not semi-simple.

Example 3.3 In the case of hyperbolic numbers, the monogenicity is expressed by
the matrix

C =
(

x1 x2

x2 x1

)
.
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We have that |C| = x2
1−x2

2. Moreover, the matrix is real symmetric with eigenvalues
x1 ± x2, thus the system is completely hyperbolic. According to the result proven in
n. 4 the algebra of hyperbolic numbers is, up to a suitable isomorphism, the algebra
R

2. To see this fact, let us set

e = u1 + u2

2
, e† = u1 − u2

2
.

Then e, e† are two idempotents such that e e† = e† e = 0. The change of
coordinates

x1 = 1

2
(z1 + z2)

x2 = 1

2
(z1 − z2)

allows to write x = x1u1 + x2u2 = z1e + z2e† = z. At this point we can identify
the element z = z1e + z2e†with the pair (z1, z2) ∈ R

2. We note that given two
elements z = z1e + z2e†, z′ = z′

1e + z′
2e† their sum and product are given by

z + z′ = (z1 + z′
1)e + (z2 + z′

2)e
†, zz′ = (z1z

′
1)e + (z2z

′
2)e

†

which, at level of pairs, corresponds to the sum and multiplication componentwise.
In this new basis, the monogenicity condition (left or right) of a function w = w(z)

rewrites as

(e e†)

⎛
⎜⎝

∂w1

∂z1

∂w1

∂z2
∂w2

∂z1

∂w2

∂z2

⎞
⎟⎠

(
e
e†

)
= 0,

which leads to

∂w1

∂z1
e + ∂w2

∂z2
e† = 0,

that is

∂w1

∂z1
= ∂w2

∂z2
= 0.

Example 3.4 As an example of third order algebra, we consider the ternions. The
matrix C is in this case

C =
⎛

⎝
x1 0 0
0 x2 0
x3 0 x2

⎞

⎠ ,
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and |C| = x1x
2
2 . The matrix is lower triangular, with eigenvalues equal to the

diagonal elements. Easy arguments show that C can be diagonalized over the real
and so the system is completely hyperbolic. We note that by multiplying Ω by its
adjoint Ω∗ we get that the components y�, � = 1, 2, 3 of a monogenic function
y1e1 + y2e2 + y3e3 satisfy the equation

∂3

∂x1∂2x2
y� = 0, � = 1, 2, 3.

Example 3.5 Let us now consider two cases of four dimensional algebras. First we
look at the case of the algebra of quaternions which is a division algebra. Thus we
expect an elliptic system. And in fact the left monogenicity condition is associated
with the matrix

C =

⎛

⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞

⎟⎟⎠ .

We have that |C| = (x2
1 + x2

2 + x2
3 + x2

4)2 which vanishes only at (0, 0, 0, 0). In the
case of the algebra of bicomplex numbers, we have:

C =

⎛
⎜⎜⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞
⎟⎟⎠

and

|C| = ((x1 − x4)
2 + (x2 + x3)

2)((x1 + x4)
2 + (x2 − x3)

2).

The determinant |C| can vanish also for (x1, x2,−x2, x1) and (x1, x2, x2,−x1) with
x1x2 �= 0. Thus the system is parabolic and it is possible to construct a change of
basis for which the determinant of new matrix C associated with the monogenicity
condition do not depend on all the four variables.

Remark 3.2 The work of Sce discussed in this chapter was, unfortunately, com-
pletely forgotten despite its relations with physical problems, see [3–5]. In the
works of Krasnov, see e.g. [6, 7], the author discusses various properties of PDEs
in algebras. In particular, in section 7.5 of [6] he considers ellipticity properties of
the solutions of a generalized Cauchy–Riemann operator, i.e. monogenic functions,
according to the type of algebras considered. In particular, it is shown that an
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operator is elliptic if and only if the algebra is a division algebra. He also widely
discusses the case of the Riccati equation. Among various results, he shows that

Proposition 3.1 (Proposition 2.1, [6]) Any n-dimensional polynomial differential
system x ′ = P(x) with deg P = m can be embedded into a Riccati equation
considered in an algebra A of dimension ≥ n.
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