
Chapter 2
Monogenicity and Total Derivability
in Real and Complex Algebras

In this chapter we collect three papers that correspond to the translations of three
parts of the same work originally published as:

M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. I,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
30–35.
M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. II,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
188–193.
M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. III,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
321–325.

2.1 Monogenicity and Total Derivability in Real
and Complex Algebras, I

Article I by Michele Sce, presented during the meeting of 16 January 1954 by
B. Segre, member of the Academy.

To construct a theory of functions of a hypercomplex variable, a natural way
would be to generalize the function theory of a complex variable. However, to pass
from functions of a complex variable (for which the uniqueness of the derivative
follows from the monogenicity condition) to functions of a hypercomplex variable,
there are two possibilities: one is to impose the uniqueness of the derivative, and
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8 2 Monogenicity and Total Derivability in Real and Complex Algebras

this yields to the theory of totally derivable functions;1 the second is to generalize
the monogenicity conditions and this yields to the theory of monogenic functions.2

In the course held at the Istituto di Alta Matematica in the year 1952–1953,
Prof. B. Segre proposed to study algebras for which the notion of total derivability
implies the one of monogenicity.

This Note I deals with the search of the conditions that the basis of an algebra, for
simplicity we assume any algebra with module [Editors’ note: here module means
unit. In the following, we will always translate the term module with the modern
term unit], must satisfy in order for this to hold. The forthcoming Note II, III will
deal with the case of algebras of order two, three, four,3 and some cases of higher
order algebras, whose bases satisfy these conditions. We believe that our results for
algebras of the fourth order, in which case we find five algebras, are particularly
interesting. Four of them (precisely the bicomplex, the bidual, the quaternions and
the algebra of matrices of the second order) are already widely studied; we think that
the fifth is considered here for the first time and it would maybe deserve a deeper
study.

1. Let A be a real or complex algebra of order n, with unit. Given a basis
u = (u1, . . . , un) we say that the algebras A ′, A ′′ are the first and second regular
representation4 of A if their elements are order n matrices X′, X′′ defined, for any
x ∈ A , by the relations

xu = uX′ (2.1)

ux = uX′′−1.
5 (2.2)

1N. Spampinato, Sulle funzioni totalmente derivabili in un’algebra reale o complessa dotata di
modulo, Rend. Lincei, vol. 21 (1935), I, 621–625, II, 683–687. Functions totally derivable over
the bicomplex numbers have been studied by G. Scorza Dragoni, Sulle funzioni olomorfe di una
variabile bicomplessa, Mem. Acc. d’Italia, vol. 5 (1934), 597–665; in the bidual algebra by L.
Sobrero, Algebra delle funzioni ipercomplesse e una sua applicazione alla teoria matematica
dell’elasticità, Mem. Acc. d’Italia, vol. 6 (1935), 1–64.
2This is the terminology used by B. Segre, Forme differenziali e loro integrali, Roma, 1951 and,
in the particular case of quaternions by Gr. C. Moisil, Sur les quaternions monogènes, Bull.
Sci. Math. (Paris), LV (1931), 168–174. R. Fueter uses the terminology regular functions, Über
die Funktionentheorie in einer hypercomplexen Algebra, Elem. Math., III, 5 (1948), 89–94 and
this is the term used by his school and by G. B. Rizza, Sulle funzioni analitiche nelle algebre
ipercomplesse, Comm. Pont. Ac. Sc., vol. 14 (1950), 169–174. This last Author calls monogenic
the totally derivable functions.
3Algebras of these orders on any field have been classified by G. Scorza in the works Le algebre
doppie, Rend. Acc. Napoli (3), vol. 28 (1922), 65–79, Le algebre del 3o ordine, Acc. Napoli (2),
vol. 20 (1935), n.13, Le algebre del 4o ordine, ibid. n. 14.
4Cfr. A. A. Albert, Structure of algebras, American Mathematical Society Colloquium Publica-
tions, Volume XXIV, New York, 1939.
5In the sequel we will always consider u and its transpose u−1 as n-dimensional vectors, the first
as a row, the second as a column [Editors’ note: the same notation is used for matrices].
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We say that an element

y = y1u1 + · · · + ynun = (y1, . . . , yn)(u1, . . . , un)−1 = ηu−1

belonging to A is a right or left totally derivable function of an element

x = x1u1 + · · · + xnun = ξu−1

in A , if the jacobian matrix ∂η/∂ξ = dy/dx belongs to A ′ or its transpose belongs
to A ′′.6

Finally, we say that the element y in A is a right or left monogenic function7 of
an element x in A , if

u
dy

dx
u−1 = 0 (2.3)

or

u

(
dy

dx

)
−1

u−1 = 0. (2.4)

When performing the change of basis

u′ = uP−1, (2.5)

since

x = ξu−1 = ξ ′u′−1, y = ηu−1 = η′u′−1

[Editors’ note: it was Y in the original manuscript] it turns out that

ξ ′ = ξP−1, η′ = ηP−1

and so

dη

dξ
= dη

dη′
dη′

dξ ′
dξ ′

dξ
= P−1 dη′

dξ ′ P.

Thus the definition of totally derivable functions is invariant with respect to change
of basis (indeed

xu′ = xuP−1 = uX′P−1 = u′PX′P−1 = u′X′∗

6See N. Spampinato cited in (1).
7See B. Segre cited in (2), p. 442.



10 2 Monogenicity and Total Derivability in Real and Complex Algebras

with X′ = P−1X
′∗P ) when performing the change of basis (2.5) in fact formulas

(2.3) and (2.4) become

u′ ∂η′

∂ξ ′ PP−1u
′−1 = 0 (2.6)

u′PP−1

(
∂η′

∂ξ ′

)
−1

u′−1 = 0; (2.7)

the conditions (2.6) and (2.7) depend, in general, on the change of basis,8 in the
sense that they ensure the existence (when |P | �= 0) of a suitable basis u = u′P
such that in that basis y is a monogenic function of x.

After that, the problem of comparing the notion of monogenic function with the
one of totally derivable function translates into the search of conditions under which
a totally derivable function is monogenic with respect to a suitable basis, namely in
the comparison between the conditions that dy/dx belongs to A ′ and formulas (2.6)
and (2.7).

2. We now consider the functions

yi(x) = uix = uξ ′−1, i = 1, . . . , n;

by virtue of (2.1), we can write

uix = uiuξ−1 = uU ′
i ξ−1,

with U ′
i in A ′, and it turns out that

ξ ′−1 = U ′
i ξ−1.

But then

duix

dx
= U ′

i

and yi(x) = uix are right totally derivable.
Thus, if in our algebra the right totally derivable functions are also monogenic,

there should exists a basis such that uix are right or left monogenic in x, that is, it
should hold

uU ′
iPP−1u−1 = 0, (2.8)

8The conditions coincide with (2.3) when PP−1 is a scalar matrix; however, if the matrices in A ′
are direct sum of matrices then the equality with (2.3) also for suitable diagonal, not scalar matrices
PP−1. This property of the elements in A ′ is possessed by the decomposable algebras, but also by
indecomposable algebras like the one of ternions with the basis given in n. 4 [Editors’ note: it was
n. 5 in the original manuscript] but this can be overcome by considering the matrix P .
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or

uPP−1(U
′
i )−1u−1 = 0, (2.9)

for some nonsingular matrix P .9

Since U ′
i are elements in A ′, (2.1), (2.8), and (2.9) allow to deduce

uiuPP−1u−1 = 0, i = 1, . . . , n (2.10)

uPP−1uiu−1 = 0, i = 1, . . . , n. (2.11)

As each element z of A is a linear combination (with real or complex coefficients)
of ui , by taking a linear combination of (2.10) and (2.11) one has

zuPP−1u−1 = 0, (2.12)

or

uPP−1zu−1 = 0; (2.13)

conversely, if (2.12) and (2.13) hold for each element z in A , then they hold also
for u, thus one reobtains (2.10) and (2.11).

In particular, when taking z equal to the unit then (2.12) and (2.13) give

uPP−1u−1 = 0; (2.14)

from this one reobtains in an obvious way both (2.12) and (2.10), so these latter are
equivalent to (2.14).10

Given a right totally derivable function y(x), its jacobian matrix dy/dx will
automatically belong to A ′; let z be the corresponding element in A and let us
assume that (2.14) or (2.11) hold. Then also (2.12) or (2.13) hold, so that because
of (2.1), we reobtain (2.6) or (2.7); thus y(x) is right or left monogenic.

Thus we may conclude that (2.14) and (2.11) with P nonsingular, are necessary
and sufficient conditions for right totally derivable functions in an algebra A to
be right or left monogenic (with respect to a suitable basis); condition (2.14) is
necessary also for the left monogenicity. [Editors’ Note: see Remark 2.4]11

9Evidently the difference between right and left monogenic is not relevant in commutative algebras.
10Since, by virtue of (2.1), from (2.10) it follows (2.8), then (2.14) is also equivalent to all equations
(2.8).
11In an analogous way one can prove that (2.14) and (2.11) are necessary and sufficient conditions
for left totally derivable functions to be monogenic on the left or on the right. [Editors’ Note: see
Remark 2.4]
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This latter assertion ensures that it is necessary that y(x) be right monogenic in
order to have that right total derivability imply left monogenicity; thus the algebras
in which right total derivability implies left monogenicity are the algebras in which
right totally derivable functions are both right and left monogenic.

Let us now recall that the monogenicity conditions are a system of n differential
equations while those of total derivability are a system of n(n − 1) differential
equations;12 moreover the conditions for right and left monogenicity are n + m ≤
2n.

Since (2.14) or (2.11) translate into linear conditions on the basis elements,
and thus in conditions concerning only the algebra, in order to get right total
differentiability provided that (2.14) or (2.11) hold, one has to add n(n − 2)

differential equations to the n arising from right monogenicity or to the n+m arising
from both the right and left monogenicity.

3. We say that an algebra with unit is solenoidal if its bases satisfy relations of
the form (2.14) with a nonsingular P and we say, in particular, that it is bisolenoidal
if its bases satisfy relations of the form (2.11).

Given two algebras A = (u1, . . . , un), B = (v1, . . . , vm) we consider their
direct sum S and their direct product P whose basis are, respectively

w = (uo
1, . . . , u

o
n, v

o
1 , . . . , vo

m) = (uo; vo)

w′ = (uo
1v

o
1 , uo

1v
o
2 , . . . , uo

nv
o
m) = (uo

1v
o; . . . ; uo

nv
o),

where

Ao = (uo
1, . . . , u

o
n), Bo = (vo

1 , . . . , vo
m)

are algebras isomorphic to A , B.13 If A and B are bisolenoidal, so are also Ao

and Bo so there exist nonsingular matrices P and Q such that

uoPP−1u
o
i u

o
−1 = 0, i = 1, 2, . . . , n,

voQQ−1v
o
kvo−1 = 0, k = 1, 2, . . . ,m.

(2.15)

From this, by setting

R =
(

P 0
0 Q

)

12See Segre cited in (2), p. 443 and p. 451.
13See A. A. Albert, Modern higher Algebra, The University of Chicago Science Series, Chicago,
1937, Chap. X, n. 4 and Albert, cited in (4), Chap. 1, n.5.
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and recalling that in the direct sum uo
i v

o
k = vo

kuo
i = 0, one gets

wRR−1u
o
i w−1 = wRR−1

(
uiu

o
−1

0

)

= (uo vo)

(
PP−1 0

0 QQ−1

) (
uiu

o
−1

0

)

= uoPP−1u
o
i u

o
−1 = 0;

and, analogously, one finds that

wRR−1v
o
kw−1 = 0.

Thus, if wi is any element in w, there exists a nonsingular matrix R such that

wRR−1wiw−1 = 0,

i.e., the direct sum of bisolenoidal algebras is bisolenoidal. Assume that only B is
solenoidal, that is, (2.15) holds; then, by setting

R = Q × In =
⎛
⎜⎝

Q . . . 0
...

. . .
...

0 . . . Q

⎞
⎟⎠

and recalling that in the direct product uivk = vkui , one obtains

w′RR−1u
o
i v

o
kw′−1 = w′RR−1v

o
k

⎛
⎜⎝

vo
−1u

o
i u

o
1

...

vo
−1u

o
i u

o
n

⎞
⎟⎠

= (uo
1v

o, . . . , uo
nv

o)

⎛
⎜⎝

QQ−1 . . . 0
...

. . .
...

0 . . . QQ−1

⎞
⎟⎠

⎛
⎜⎝

vo
kvo

−1u
o
i u

o
1

...

vo
k vo

−1u
o
i u

o
n

⎞
⎟⎠

= uo
1v

oQQ−1v
o
kvo

−1u
o
i u

o
1 + · · · + uo

nv
oQQ−1v

o
kvo

−1u
o
i u

o
n = 0.

Thus, the direct product of algebras, one of which is bisolenoidal is bisolenoidal.14

.

14Obviously, an algebra which is direct product may be bisolenoidal even when one of the factors
is not.
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2.2 Monogenicity and Total Derivability in Real
and Complex Algebras, II

Article II by Michele Sce, continuation of Article I published at p. 30 of this volume,
presented during the meeting of 13 February 1954 by B. Segre, member of the
Academy.

4. Setting PP−1 = ‖aik‖, (i, k = 1, . . . , n), formula (2.14) rewrites as∑
i,k aikuiuk = 0 [Editors’ note: ‖aik‖ denotes the matrix with elements aik];

thus, since the units u1 and u2 of the complex algebras of the second order, i.e.,
of the complex and dual numbers,15 combine according to the rules u1ui = ui ,
u2

2 = −u1, and u1ui = ui , u2
2 = 0, (i = 1, 2), it turns out that to satisfy (2.14),

it must be a11 = a22, a12 = 0 or a11 = a12 = 0. In the second case, PP−1 is
singular and so the algebra of dual numbers is not solenoidal and the algebra of
complex numbers is the only complex algebra solenoidal of the second order. We
now try to satisfy (2.14) for two of the five complex algebras of the third order,
16 tripotential and tridual numbers, whose units combine according to the rules
u1ui = ui , u2

2 = u3, and u1ui = ui , (i = 1, 2, 3); in the first case one has
a11 = a22 = 0 and a13 + a22 = 0, in the second case a1i = 0 and PP−1 is
singular. An analogous analysis for the remaining three algebras shows that only the
algebra of tridual numbers is not solenoidal.

In the case of ternions whose units combine according to the rules u2
1 = u1,

u2
2 = u2, and u1u3 = u3u2 = u3, (2.11) translate into

a11u1 + a13u3 = 0, a22u2 + a32u3 = 0, a12u3 = 0 (2.16)

which ensure that PP−1 is singular; thus the algebra of ternions is not
bisolenoidal,17 and among complex algebras of the third order, only the solenoidal
commutative algebras are bisolenoidal. Considering the 16 multiplication tables
which arise from the complex algebras of the 4th order18 together with (2.14)
it can be proved that only the algebras with multiplication tables XLI and LV

15See G. Scorza, first work cited in I, (3). It is understood that we always consider algebras with
unit, and different up to isomorphisms.
16See G. Scorza, second work cited in I, (3). In the classification in [32] the five algebras have
the multiplication tables III (tricomplex numbers), X (tripotential numbers), XI (tridual numbers),
XXIV (direct sum of dual numbers and the complex field) and XXVII (ternions). Ternions are the
only noncommutative algebra. In the text, instead of tables, we will make use of the multiplication
rules in which the vanishing products uiuk will not appear.
17Since the unit of the algebra is u1 + u2, (2.14) can be obtained by summing the first and the
second relation in (2.16) leading to a11 = a22 = a13 + a32 = 0; thus with the change of basis
u′

i = ui + u2, u′
2 = i(u1 − u2), u′

3 = u3, one gets a basis such that u′u′
−1 = 0.

18See G. Scorza, third work cited in I, (3). ; in this classification the 16 tables are I∗ (quaternions),
X (quadricomplex numbers), XXXVI (quadripotential numbers), XXXVII∗ (∞1 many non
isomorphic algebras depending on a parameter), XXXIX (two algebras for the values 0, 1 of a
parameter), XLI∗, LV (quadridual numbers), XC, C∗, CIII∗ , CIV∗, CV, CVIII∗ , CXXV, CXXVIII∗ .
The asterisk denotes the noncommutative algebras.
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are not solenoidal. To this end, we limit ourselves to observe that since the
multiplication rules in the two algebras are, respectively, u1ui = ui and u1ui = ui ,
u2u3 = −u3u2 = u4 (i = 1, . . . , 4), in both cases to satisfy (2.14) the first row of
PP−1 must vanish.19

Imposing (2.11) for the six noncommutative algebras, one concludes that the only
bisolenoidal algebras are those whose units satisfy u1ui = ui , u2

2 = u2, u3 = −u3,
u2 = u4, u3

3 = αu4.20

5. In the study of real solenoidal algebras, it is important to bear in mind that
also the matrix P in (2.14) and (2.11) is real, thus PP−1 is symmetric and positive
definite.21 . This remark allows to have the converse of the first Theorem in n.
3, namely to show that a direct sum of real algebras is bisolenoidal only if its
components are bisolenoidal.

Indeed, if the real algebra C = (w) = (uo vo), direct sum of the algebras A and
B, is bisolenoidal there exists a symmetric, positive definite matrix

A =
(

A1 A2

A3 A4

)

such that

wAwiw−1 = uoA1wiu
o
−1 + voA4wiv

o
−1 = 0;

from this relation, and according to the fact that wi is an element either in uo or in
vo, one gets

uoA1u
o
i u

o
−1 = 0, voA4u

o
i u

o
−1 = 0

with A1 and A4 still symmetric and positive definite since they are principal minors
of A.

It turns out that the only solenoidal algebra of order two is the one of complex
numbers. In fact, besides the two algebras over the complex field, there is the algebra
of bireal numbers22 which is direct sum of the real field (certainly non solenoidal)
with itself.

19This observation extends to the n-dual numbers whose multiplication rules are u1ui = ui (i =
1, . . . , n) and it can be proved that the algebras of n-dual numbers are not bisolenoidal
20These multiplication rules translate into Scorza’s table XXXVII after the change of basis u′

1 =
u1, u′

2 = u2, u′
3 = 1

2 (u2 − u3), u′
4 = u4. We point out that with respect to the basis u′

1 = u1 − u4,
u′

2 = u2 + u3, u′
3 = iu1, u′

4 = u2 + iu3, (2.14) becomes u′u′−1 = 0 which has as immediate
consequence the four relations in (2.11).
21See A. A. Albert, Modern higher algebra, (Chicago, 1937), Chap. V, n.12.
22See Scorza cited in (1).
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About the six algebras of the third order,23 we have already seen in n. 4 that
the three indecomposable algebras cannot satisfy (2.14) with PP−1 symmetric and
positive definite; since the three decomposable algebras are not solenoidal by the
theorem just proven, one can conclude that there are no real algebras solenoidal of
the third order.

Among the real algebras of the fourth order24 in addition to the two algebras
direct product of the algebra of complex numbers with the one of the bireal numbers
and of the dual numbers, only the algebra of quaternions, the algebra of 2 × 2
matrices and the one with multiplication table LXXXI are solenoidal; none of these
algebras is bisolenoidal.

Making use of a direct proof, or of theorems that we will provide in n. 6, one
can prove that among the algebras of the fourth order only the five mentioned in
the assertion can be solenoidal; since, by the second theorem in n. 3, the two direct
product algebras are solenoidal, we shall examine only the three noncommutative
algebras.

The units of the algebras in table LXXXI can be combined according to the
multiplication rules

u1ui = ui, (i = 1, . . . , 4), u2u3 = −u3u2 = u4, u2u4 = −u4u2 = −u3,

[Editors’ note: one needs also the condition u2
2 = −u1] thus (2.14) leads to

a11 − a22 = a12 = a13 = a14 = 0

which ensures the fact that the algebra is solenoidal;25 adding (a11 + a22)u3 = 0
to (2.14), we reobtain all (2.11) which, however, can be satisfied only with PP−1
singular and the algebra is not bisolenoidal.

For the algebra of 2 × 2 matrices, if we select the units ei,k , (i, k = 1, 2) which
combine according to ei,heh,k = ei,k , relations (2.11) give rise to

∑
i

aj,h+i e1,i +
∑

i

aj+2,h+ie2,i = 0,

(i, j = 1, 2; h = 0, 2); since, for h = 0 they impose the vanishing of the first two
columns of PP−1 and for h = 2 of the remaining two columns, the algebra is not
bisolenoidal, not even in the complex field. As the unit of the algebra is e11 + e22,

23See Scorza cited in (2); besides the tables in (2), we have to add I (direct sum of the algebras
of complex and real numbers) which, over the complex field, reduces to III. We recall that the
classification given by Scorza is independent of the field of numbers.
24See Scorza cited in (4); besides the tables listed therein, we have to add III∗ (2 × 2 matrices), V
(direct product of the complex numbers and the bireal), VIII, LXXIX (direct product of complex
numbers with the bidual), LXXXI∗ and CXIX which, in the complex case, may be reduced to I, X,
X, CV, CVIII, CXXV, respectively.
25The fact that it is solenoidal is in fact evident, since uu−1 = 0.
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(2.14) can be obtained by summing the relations that we have for j = 1, h = 0, and
j = h = 2 and this leads to

a11 + a23 = a12 + a24 = a31 + a43 = a32 + a44 = 0;

these conditions are compatible with the fact that PP−1 is symmetric, positive
definite so that the algebra is solenoidal.26

In the algebra of quaternions, whose basis is e0 = 1, e1, e2, e3 = e1e2 and
satisfies

e2
1 = e2

2 = −1, e1e2 + e2e1 = 0,

(2.14) rewrites as

a11 −
∑

k=2,3,4

akk + 2
∑

k=2,3,4

a1kek−1 = 0;

thus one gets a11 = ∑
k=2,3,4 akk, a1k = 0, (k = 2, 3, 4) and since these conditions

are compatible with the fact that PP−1 is positive definite we get that the algebra is
solenoidal.

Since e1(e0, . . . , e3) = 2(e1,−e0, 0, 0) − (e0, . . . , e3)e1, the second of (2.11),
once that the first one of the (2.11) is satisfied namely (2.14), reduces to

(a11 − a22)e1 −
∑

k=3,4

a2kek−1 = 0,

and thus it leads to

∑
k

akk = 0, a2k = 0, (k = 3, 4).

Then, imposing the remaining (2.11), one obtains that PP−1 must vanish and this
excludes that the algebra is bisolenoidal, also over the complex field.

6. Real division algebras are, in addition to the field of real numbers, the algebra
of complex numbers and the one of quaternions;27 thus, from n. 5, we deduce that
also real division algebras of order n > 1 are solenoidal.

An immediate generalization of the proofs in n. 5 allows to state that all regular
algebras (total matric algebras) [Editors’ note: this is written in English in the
original text; see also Definition 2.3 and the comment after that.] and all the real
or complex Clifford algebras are solenoidal but not bisolenoidal.

26See Albert cited in I (4), Ch. IX, n. 11.
27See Albert cited in (26), Chapt. IX, n.11.
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From the two propositions it follows that simple real or complex algebras, i.e.
direct product of a division algebra with an algebra which is regular, of order n > 1
are solenoidal.

In force of the first theorem in n. 5, the real semi-simple algebras, i.e. direct sums
of simple algebras, are solenoidal if and only if all their components are so; since
there are no simple solenoidal algebras of order 1, 3, 5, 7,28 we conclude that real
semi-simple algebras of order 1, 3, 5, 7 are not solenoidal.

An algebra A = (u1, . . . , un−m; un−m+1, . . . , un) = (u′; u′′) of order n not
semisimple has a nontrivial subalgebra R = (u′′) of order m which is its maximal
nilpotent ideal, called radical of the algebra;29 in the case of A , (2.14) rewrites as:

(u′ u′′)
(

A1 A2

A3 A4

)(
u′−1
u′′−1

)
= u′A1u

′−1 + (u′ u′′)
(

0 A2

A3 A4

) (
u′−1
u′′−1

)
= 0,

and, since R and A − R are disjoint, this condition imposes the vanishing of the
two factors in the right hand side. It follows that: in order that the real algebra A
is solenoidal, A − R has to be solenoidal.

Since the real algebra A − R is semisimple,30 from the last two statements
it follows that the real algebras of orders n − 1, n − 3, n − 5, n − 7 are not
solenoidal.31

Algebras with cyclic radical, namely with radical of order m and index m + 1,
are direct sum of two algebras one of which is either the algebra of (m+1)-potential
numbers or the algebra of ternions;32 since, by virtue of the last statement of n. 5,
they are not solenoidal, real algebras with cyclic radical are not solenoidal. In
particular, algebras with radical of order 1 are not solenoidal.

Bearing in mind that if A − R is simple, its order must divide both the order of
A and the one of R,33 we show that there are no solenoidal real algebras of order
5 and 7.

We know already that there are no semisimple, solenoidal, real algebras of orders
5, 7; thus, recalling the next to the last theorem, algebras whose radicals have orders
4, 2, 1, 0 or 6, 4, 2, 1, 0, respectively, are not solenoidal.

If there existed a real solenoidal algebra A of order 5 with radical R of order 3,
the algebra A − R of order 2 would be solenoidal and thus it would be the algebra

28There is a simple solenoidal algebra of order 9, the regular algebra of 3 × 3 matrices.
29See Albert cited in I (4), Ch. II, n.5.
30See G. Scorza, Sopra un teorema fondamentale della teoria delle algebre, Rend. Acc. Lincei (6),
vol. 20, p. 65–72 (1934).
31Since semisimple, commutative algebras of odd order cannot be solenoidal, we will have that
real commutative algebras of even order with radical of order n − 1, n − 3, ..., are not solenoidal.
An analogous result holds for n odd.
32See G. Scorza, Le algebre per ognuna delle quali la sottoalgebra eccezionale è potenziale, Acc.
Sc. Torino, vol. 70 (1934-35), n. 11. Let us recall that here we consider only algebras with unit.
33See Scorza cited in (30), n. 5.
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of complex numbers, which is simple; in this case, its order must divide the order of
A and this is absurd.

The same reasoning shows that the radical of a real solenoidal algebra of order 7
cannot be of order 5 and that if R is of order 3 then A −R cannot be simple. Thus
let us suppose that there exists a real, solenoidal algebra of order 7 with radical of
order 3—which will not be cyclic—and let A − R be direct sum of the algebra

of complex numbers with itself; the multiplication table of A would be

(
T1 T2

T3 T4

)
,

where T1 is the multiplication table of A −R whose units combine according to the
rules u2

1 = u1, u1u2 = u2, u2
2 = u1, u2

3 = u3u3u4 = u4u
2
4 = −u3, [Editor’s note:

u2
3 = u3, u3u4 = u4, u2

4 = −u3], T2 and T3 are matrices with elements in R and
T4 is the multiplication table of a nilpotent algebra of order 3 whose units combine
according to the rules u2

5 = u6u5 = u7, u2
6 = αu7 or u2

5 = u7, u2
6 = αu7 (case 1),

u5u6 = −u6u5 = u7 (case 2) or it is the table of a zero algebra (case 3).34 Then let
u = (u1 + u3 + αu5 + bu6 + cu7) be the unit of A and let us set

(u2 + u4)u4+i =
∑
k

miku4+k

(i, k = 1, 2, 3) with mik real numbers.
In the first two cases we will have, respectively,

(u2 + u4)u7 = (u2 + u4)u
2
5 = (

∑
i

m1iu4+i )u5 = γ u7

(u2 + u4)u7 = (u2 + u4)u5u6 = (
∑

i

m1iu4+i )u6 = γ u7

with γ real (it can also be zero). On the other hand

u7 = uu7 = (u1 + u3)u7 = −(u2 + u4)
2u7 = −γ 2u7;

thus the real algebra at hand cannot have a radical as in case 1 or 2. Thus let us
consider case 3; then

u4+i = uu4+i = (u1 + u3)u4+i = −(u2 + u4)
2u4+i = −

∑
k

mik(
∑

i

mikui+4),

thus ‖mik‖+ I3 = 0. But a real matrix of odd order cannot satisfy such an equation,
thus the radical of A cannot be a zero-algebra of order 3; this completes the proof
of the theorem.

34See Scorza cited in (2), § 2. [Editors’s Note: it should be Scorza cited in (3), § 2].
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2.3 Monogenicity and Total Derivability in Real
and Complex Algebras, III

Article III by Michele Sce, continuation of the Notes I, II published in these
“Rendiconti” pp. 30–35 and pp. 188–193 presented during the meeting of 13 March
1954 by B. Segre, member of the Academy.

7. Let x and y be elements of the algebra A as in n. 1 and let y(k) denote the
partial derivative of y(x) with respect to xk; in order to have that the Pfaffian form
y dx is closed it is necessary that

y(k)uh − uky
(h) = 0, (h, k = 1, . . . , n) (2.17)

so that y(x) is right totally derivable.35 If—possibly making a basis change—we
assume that u1 is the unit of A , from (2.17) we obtain

y(1)(ukuh − uhuk) = 0, (h, k = 1, . . . , n); (2.18)

so that, if A is not commutative, y(1) is a zero-divisor and the matrix which
corresponds to it in the algebra A ′, first regular representation of A , is singular.
Since this matrix is, by virtue of the total derivability, the jacobian matrix of y(x)

we have that functions y(x) with non-zero jacobian such that y dx is closed are the
functions totally derivable in a commutative algebra.

Since, by virtue of the results in n. 2, the form y dx is co-closed if and only if
the function y(x) is monogenic36 we can state that in the commutative, solenoidal
algebras, closed forms are co-closed, thus they are harmonic both in the Hodge and
in the de Rham sense.37

8. Let Sn be the vector space associated with A and let y be right monogenic in
a domain D, y ′ a left monogenic function in a domain D′; then if Vn−1 is a (n − 1)-
dimensional cycle contained in D ∩ D′ and homologous to zero there, and dx∗ is
the adjoint of the form dx = ∑

i ui dxi , (i = 1, . . . , n), one has

∫
Vn−1

y dx∗ y ′ = 0.38 (2.19)

35See A. Kriszten, Hypercomplexe und pseudo-analytische Funktionen, Comm. Math. Helv. v. 26
(1952), pp. 6–35, § 2; the result appears in integral form in Rizza ciated in (2), n. 11. If one denotes
by dy/dx the jacobian matrix of y(x) and by T the table of multiplication of A , one can see that

(2.17) may be written in the compact form

(
dy

dx

)
−1

T = T−1
dy

dx
which is evidently invariant with

respect to changes of basis.
36See Kriszten cited in (35) §3; the result, though in integral form, can be found already in Rizza
cited in I (2), n.7 and in Segre cited in I (2), p. 446.
37The statement improves the one given by Kriszten cited in 35 §4, since this Author does not take
into account that monogenicity depends on the basis.
38See Fueter cited in I (2) and Rizza cited in (36).
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Now let us suppose that for the monogenic functions of A there exists an integral
formula of Cauchy-type. More precisely, let us assume that in A there exists a
function f (x, ξ) which, for ξ fixed, is right monogenic in x in Sn except a set I , at
most (n− 1)-dimensional, of points in which it is not defined, so that for every g(x)

left monogenic in a domain D′ one has

∫
Vn−1

f (x, ξ) dx∗ g(x) = g(ξ) (2.20)

where Vn−1 is an (n− 1)-dimensional cycle encircling ξ and homologous to zero in
D′; by virtue of the theorem just stated, Vn−1 cannot be homologous to zero in the
domain where f (x, ξ) is monogenic and must contain the points in I . In particular,
(2.20) must hold when g(x) is the unit of the algebra and Vn−1 is a sphere centered
at ξ and with radius r; setting

x1 = ξ1 + r cos ϕ1 · · · cos ϕn−1, x2 = ξ2 + r sin ϕ1 cos ϕ2 · · · cos ϕn−1, . . .

. . . , xn = ξn + r sin ϕn−1, (0 ≤ ϕ1 < 2π; −π

2
≤ ϕi ≤ π

2
, . . . , i = 2, . . . , n − 1),

since it turns out that

dx∗ = rn−2(x − ξ) dσ,

where dσ = cosn−2 ϕn−1 · · · cos ϕ2 dϕ1 · · · dϕn−1 is the area element of the unit
sphere,39 (2.20) gives

∫
S

f (x, ξ)rn−2(x − ξ) dσ = 1. (2.21)

Thus in the algebras where the function r2−n(x − ξ)−1 is right monogenic, where
defined, namely it satisfies

∑
k

∂

∂xk

[r2−n(x − ξ)−1]uk =

= r−n(x − ξ)−1[(n − 2)(x − ξ) + r2
∑

k

uk(x − ξ)−1uk] = 0,

(2.22)

we can presume that formula (2.20) holds where we have set

f (x, ξ) = k−1r2−n(x − ξ)−1, k =
∫

S

dσ. (2.23)

39See W. Nef, Ueber eine Verallegemeinnerung des Satzes von Fatou für Potentialfunktionen,
Comme. Math. Helv., vol. 13 (1943–44), pp. 215–241, in between p. 231 and p. 232.
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Since in Clifford algebras, for any nonzero divisor x one has
∑

k ukxuk = −(n −
2)x̄, with xx̄ = r2, (2.22) is satisfied and it remains to establish if (2.20), where we
have set (2.23), effectively gives an integral formula in Clifford algebras.40

9. To obtain real solutions to the equation

Ωh(x1, . . . , xp) =
p∑

k=1

αk(x1, . . . , xp)
∂2h

∂x2
k

= 0 (2.24)

we can consider the equation

Ωf (x) = 0 (2.25)

where f is a totally derivable function of the element x = x1u1 + · · · + xpup of
the algebra A of order n (p ≤ n). Equation (2.25) is solvable is and only if, with
respect to some basis of A , it holds

p∑
k=1

αku
2
k = 0.41

Thus, if p = n and αk are constant, (2.25) is solvable in solenoidal algebras in
the complex field; in particular, if (2.24) is elliptic, (2.25) is solvable in solenoidal
algebras in the field of real numbers.

The aforementioned method easily extends to partial differential equations of
order greater that two; for example, to solve the equation

Δnh(x1, x2) = 0

we can bring back to totally derivable functions in an algebra such that

(u2
1 + u2

2)
n = 0.

Among this type of algebras, are particularly relevant the cyclic algebras of
order 2n whose basis 1, j, j2, . . . , j2n−1 satisfies the relation (1 + j2)n = 0.
By setting ω = 1 + j2, we can express j through the imaginary unit and powers
of ω; thus one sees that such algebras are direct product of the algebra of complex

40The integral formula given by R. Fueter, Die Funktionentheorie der Differentialgleichungen
Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv., v. 7, pp. 307–330,
(1934-35), n.4 for the algebra of quaternions and those given in Clifford algebras for linear systems
in Clifford algebras are of the indicated form. G. B. Rizza has promised a work on general integral
formulas in Clifford algebras.
41See P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Am. Math. Soc., v. 30
(1928), pp. 641–667, n. 25.
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numbers and algebras of n-potential numbers with basis 1, ω, . . . , ωn−1. 42 This
fact ensures that these algebras are solenoidal and such that totally derivable
functions y(x0, . . . , x2n−1) are harmonic; moreover, a simple inspection of the
jacobian matrix which, by definition of total derivability is of the form

⎛
⎜⎜⎜⎝

α0 0 0 . . .

α1 α0 0 . . .

α2 α1 α0 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ with αk =

(
a2k −a2k+1

a2k+1 a2k

)
(2.26)

ensures that every y is a harmonic function of all pairs x2k, x2k+1. It is worthwhile to
note that monogenic functions which are not totally derivable are not even harmonic.

10. Let us now consider noncommutative algebras An of order 2n whose basis

1, i, ω, iω, . . . , ωn−1, iωn−1

satisfies the relations

i2 = −1, ωn = 0, ωi + iω = 0; 43

we can write any element a in An in the form

a = α0 + α1ω + · · · + αn−1ω
n−1 (2.27)

where αk = a2k+ia2k+1 behave among them like ordinary complex numbers, while

αkω = ωαk. (2.28)

Besides the algebras An, we will consider the algebra Qn of order 4n which can
be obtained by maintaining condition ωn = 0 and assuming that αk in (2.27) and
(2.28) behave among them like ordinary quaternions.

42For n = 2 one has the algebra studied by Sobrero cited in I (1), which, from another point of
view Ketchum already crossed in Ketchum cited in (41), n. 31. [Editors’ Note: the algebra studied
by Sobrero and Ketchum is commutative and corresponds to the case iω = ωi, i.e. to algebra
LXXIX in Scorza’s classification [32]. The algebra that Sce is studying here is noncommutative
and corresponds to algebra LXXXI in [32].] In this case, the transformations from one basis to
another can be expressed by the relations 2i = 3j + j3, ω = a(1 + j2) + b(j + j3), iω =
−b(1 + j2) + a(1 + j3) with a, b arbitrary real numbers (non both zero); to the best of our
knowledge, these general relations have never been considered.
43For n = 2 one has the algebra LXXXI of n. 5.
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Taking into account the expression of the product of two elements a = ∑
k αkω

k ,
b = ∑

k βkω
k

ab =
∑

k

αr β̃sω
k, (r + s = k),

β̃s = βs or βs according to the fact that r = k − s is even or odd, with long but not
difficult calculations one can establish the following results:
the elements in the center of an algebra An or Qn defined via (2.27) and (2.28) and
ωn = 0 have the form

∑
α2kω

2k with α2k = α2k.
The zero divisors are of the form ωia thus they are all and the only nilpotent

elements in the algebra; these latter constitute the radical, which is of index n and
order 2(n − 1) for An and 4(n − 1) for Qn.

The only idempotent not nilpotent is the unit thus An and Qn are algebras
completely primary.

If one considers only the case n = 2, as we shall do, from the first statement one
obtains immediately that A2 and Q2 are normal. Moreover, setting ā = ᾱ0 − α1ω,
if we say that the norm of a is the real number aā = α0ᾱ0, we see that the zero
divisors are all the elements with zero norm and only them.

By setting y = α + βω and x = ξ + ηω, monogenic functions y(x) are also
harmonic in the components of ξ .

In fact, it is known44 that the monogenicity condition for y(x) may be written as
Dy = 0 where D is an operator that behaves like an element in the algebra; since
the norm of D is the laplacian associated with the components of ξ , by applying to
Dy = 0 the operator D̄ we obtain the result.

11. The considerations that we made so far, even though maybe not uninteresting,
would be in need of being deepened if one wishes to deduce more concrete results;
however, it is our belief that such results can be obtained only in special type of
algebras like, for example, An.

About these latter algebras we point out that their zero divisors, in the repre-
sentative space S2n, form a linear space S2(n−1); thus, in this case, the study of the
variety of the zero divisors—necessary preliminary to look for integral formulas—
is trivial. The difficulty in this type of problems is the lack of concrete examples
of monogenic functions, especially in the case of noncommutative algebras;45 for
example, in A2 neither the powers nor the exponential are monogenic function, and
we can only say that such functions are of the form

w = u(x1, x2) + v(x1, x2)

x2
(x2i + x3ω + x4iω)

44See Segre cited in cited in I (2) p. 442.
45It is less difficult in commutative solenoidal algebras, since in these algebras the most common
functions in analysis are totally derivable.
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with u + iv holomorphic. In the algebra of quaternions, from a similar property
one deduces that Δw (and in particular Δxn) are monogenic functions; since such
a result is not valid in A2, there is the problem of knowing if in A2 there is a
differential operator Ω such that Ωw are monogenic.

Since all these problems appear to be connected among them, an answer, even
partial, could shed light on the whole question: this is what we hope to do in another
work.

2.4 Comments and Historical Remarks

In this section we are revising, also providing examples, the concepts contained in
the previous sections i.e. in the original papers [27–29]. We also add some historical
remarks which seem to be nowadays forgotten.

The interest in theories of functions in algebras other than the algebra of complex
numbers and generalizing the complex holomorphic functions started after the study
of these algebras in the classical works of Gauss, Hamilton, Hankel, Frobenius and
goes back to the end of the nineteenth century (see [40] for a list of references). It
then continued with the work of Lanczos [17], who considered the generalization to
quaternions back in 1919, but his work was mostly unknown until [18], and with the
PhD dissertation of Ketchum, see [14]. It was in the early thirties when the study
of quaternionic functions started systematically with the works of Moisil [23] and
Fueter and in the forties, Krylov [16] and Meilikhson [22] studied the notion of
quaternionic differentiability.

It is interesting that in the thirties and forties, various authors considered
functions with values in algebras, for example Ward [40] who developed his PhD
dissertation on the theory of analytic functions in associative algebras, Nef [24],
Spampinato [38], Sobrero [37] and also Fueter [7–9] and Haefeli [11]. The interest
in these studies continued even later as shown by the works of Kriszten [15] and
Rizza [26].

Michele Sce’s works considered in this chapter insert in this field of researches.
He knew rather well the existing literature and despite the fact that the circulation of
the journals, and consequently papers, was more limited in the fifties, his knowledge
of the available works was complete. Sce notes in his papers, that some function
theories were already developed, specifically the theory of hyperholomorphic (or
hyperdifferentiable or monogenic) functions over quaternions, bicomplex numbers,
Clifford algebras. In the quaternionic case, the analog of holomorphic functions are
the Cauchy–Fueter regular functions, so-called since it was Fueter and his school
who developed this function theory.

In his work Sce, as well as a few other authors, quotes the work of Moisil
[23] published in 1931, mentioning that this author was using the term monogenic,
instead of regular, functions. But the history of the birth of regularity on quaternions
is more complicated. For example (as we mentioned before and without any claim
to historical completeness), Lanczos already developed this approach in his 1919
dissertation [17], Fueter presented some of his results at the International Congress
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of Mathematicians in 1928, [6], and Iwanenko and Nikolsky already considered the
case of biquaternions in 1930, [13]. It is also likely that, at that time, other Russian
researchers were working in this framework. Thus, we believe that it is fair to say
that various authors, more or less at the same time, were considering quaternionic
functions and a notion of holomorphicity in this context.

The second four dimensional case (over R), namely the one of bicomplex
numbers, was started by Scorza Dragoni in [35] and, after the monograph [25],
it has attracted attention in more recent times, see [20]. We also note that another
four dimensional case, the one of bidual numbers studied by Sobrero [37] has been
basically abandoned. We note that we kept the name “bidual” to be consistent with
the terminology adopted by the Italian school, even though this algebra is nothing
but the complex Grassmann with one generator f1 such that f21 = 0. Algebras of
order up to four have been studied in [30–34].

The case of functions Clifford algebra valued is widely studied in the literature,
starting with the celebrated monograph [3] which has been followed by several
other books and hundreds of papers. However, one should notice that the notion
of monogenicity treated in this chapter is given for functions from (a subset of) an
algebra to itself. This is not the case treated in [3] and subsequent literature, where
the functions have values in a Clifford algebra but are defined on Euclidean space
identified with the set of paravectors or of vectors in the algebra. It is remarkable
that Sce already considered this class of functions, as we shall see in Chap. 5, in
relation with the celebrated Fueter theorem nowadays known as Fueter-Sce-Qian
theorem. These functions were eventually considered by Iftimie [12] thus denoting
that also the Romanian school was continuing the studies in hypercomplex analysis.

Below, we will use some examples to illustrate what is presented in the previous
sections and to compare the various concepts. In our examples, we will discuss some
particular choices of algebras of order up to four.

We will use standard terminology and notation, like AT (instead of A−1 used by
Sce) to denote the transpose of a matrix A and, in particular, of a vector. By A we
denote a real or complex algebra of order n and by A ′, A ′′ the algebras of n × n

matrices which are the first and second regular representation of A .
Even though the basic notions and terminology about algebras are well known,

we repeat some preliminaries for the sake of completeness.

Definition 2.1 An algebra over a field F is a set A such that A is a vector space
over F and there is a F -bilinear mapping from A × A 
→ A , (a, b) 
→ ab, i.e.

k(ab) = (ka)b = a(kb), for all k ∈ F, a, b ∈ A .

This bilinear map is called multiplication.

In particular, an algebra is called associative (resp. commutative) if the multipli-
cation is associative (resp. commutative).

Even though it is not specified in Sce’s papers, all the algebras considered are
associative. This was a standard assumption in the papers written in Italy at that
time, unless otherwise specified, and it appears also from the calculations performed
in the manuscripts.
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Definition 2.2 We say that A has order n if there exist u1, . . . , un ∈ A such that
every a ∈ A can be expressed in a unique way as

a = a1u1 + · · · + anun, ai ∈ F, i = 1, . . . , n.

We recall that, in this Chapter, we consider associative algebras and that an algebra
A is called division algebra if it is, as a ring, a division ring.
We now state more definitions that are used in the book.

Definition 2.3 An algebra is called regular if it is isomorphic to an algebra of m×m

matrices.

In 6 Sce uses the term regular also referring to the English terminology total matric
algebra which, however, seems to be not anymore in use.

Definition 2.4 An element a ∈ A is called nilpotent if ar = 0 for some r ∈ N and
the least such r is called index of a. Moreover, a is called properly nilpotent if both
ya and ay are zero o nilpotent for every y ∈ A .

Definition 2.5 The set R consisting of zero and of all properly nilpotent elements
is called radical of A .
An algebra is called semi-simple if its radical is the zero ideal.
An algebra is called simple if its only proper ideal is the zero ideal and A is not a
zero algebra of order 1, namely A is not such that ab = 0 for every a, b ∈ A .

It is also useful to recall that

Theorem 2.1 Let N be an ideal of an algebra A . Then A \ N is semi-simple if
and only if N is the radical ideal of A .

As explained in Sect. 2.1, the notion of total differentiability has been introduced
by Spampinato in [38]. The development of a function theory starting from this
definition was not really developed. In the case of left (resp. right) derivability,
meant as the existence of the limit of the left (resp. right) difference quotient

(q − q0)
−1(f (q) − f (q0)) (f (q) − f (q0))(q − q0)

−1

where q, q0 are quaternions, one obtains affine functions only. This fact was proved
by Meilikhson in [22], but the interested reader may find a proof in Sudbery’s paper
[39] which made the result commonly known.

It was realized only at a later stage, see for examples the works [10, 19, 21] by
Gürlebeck, Malonek, Shapiro and others, that in order to obtain a meaningful class
of functions one needs to construct differently the quotients. By taking these suitable
difference quotients, the notion of differentiability that one obtains coincides with
the notion of monogenicity, in analogy with the complex case.
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In order to write the notion of total derivability used in this work, we recall the
next definition (see (2.1), (2.2) and [1, 2]):

Definition 2.6 Let A be a real or complex algebra of order n, with unit and let
u = (u1, . . . , un) be a vector containing the ordered elements in a given basis of A .
We say that the algebras A ′, A ′′ are the first and second regular representation of
A if their elements the are order n matrices X′, X′′ defined, for any x ∈ A , by the
relations

xu = uX′

ux = u(X′′)T .

Definition 2.7 Let A be an algebra with basis u1, . . . , un, x ∈ A and y : A −→
A . Let u = (u1, . . . , un) and let ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) be the
coordinates of x, y, respectively, with respect to the given basis, i.e.

x = ξuT ,

y = ηuT .

If y is derivable, that is, all the components of η are derivable with respect to the
components of ξ , we say that y is right (resp. left) totally derivable if the jacobian
dη/dξ belongs to A ′ (resp. the transpose of the jacobian belongs to A ′′).

Remark 2.1 The notion of right or left total derivability is designed on the notion of
right or left differentiability, in the standard sense. In fact, let us consider a function
y with values in an algebra with unit A , where a basis u1, . . . , un is fixed:

y(x) = y1(x)u1 + · · · + yn(x)un,

where x = x1u1 +· · ·+xnun. Note that xi , yi , i = 1, . . . , n are real or complex and
x varies in an open set of A of when we identify A with R

n (or Cn). If we assume
that the functions y� admit derivatives with respect to xi and we set

dx = dx1u1 + · · · + dxnun, dy = dy1u1 + · · · + dynun,

with

dy� = ∂y�

∂x1
dx1 + · · · + ∂y�

∂xn

dxn, � = 1, . . . , n,

then the function y is left differentiable or totally derivable on the left if there exists
a function z(x) such that

dy = dx z(x),
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y is right differentiable or totally derivable on the right if there exists a function z(x)

such that

dy = z(x) dx, (2.29)

for every dx. Writing z(x) = z1(x)u1 + · · · + zn(x)un and setting

uiuj =
n∑

�=1

γij�u�,

we have that (2.29) becomes

n∑
�=1

dy�u� =
n∑

i,j,�=1

γij�zidxju�.

By equating the coefficients in front of the units u�, we deduce:

dy� =
n∑

i,j=1

γij�zidxj , � = 1, . . . , n.

Since dy� = ∑n
j=1

∂y�

∂xj

dxj and the differentials dxi are independent we obtain

n∑
i=1

γij�zi = ∂y�

∂xj

, j, � = 1, . . . , n. (2.30)

Thus the total derivability on the right (2.29) is equivalent to (2.30). The left hand
side of (2.30) gives the entries x ′

�j of the matrix X′ of the first regular representation
of z. Thus (2.30) expresses the fact that the Jacobian matrix (∂y�/∂xj ) belongs to
A ′.

In Definition 2.7, x is varying in the whole algebra, but when a topology can be
defined (for example identifying the elements in a real algebra of order n with
vectors in R

n) we can consider an open set U in A and have the notion of right
or left totally derivable function on U with values in A . The notion implies that the
jacobian matrix satisfies suitable symmetries, as shown in the following examples.

Example 2.1 Let us consider the case of the real algebra of complex numbers. Then
a basis is given for example by {1, i} with i2 = −1, so that u = (1 i). Then
x = x1 + ix2 and

xu = (x1 + ix2 ix1 − x2) = (1 i)

(
x1 −x2

x2 x1

)
.
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In this commutative case the two representationsA ′ and A ′′ coincide. The jacobian
matrix

⎛
⎜⎝

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

⎞
⎟⎠

belongs to A ′ if and only if

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= − ∂y2

∂x1

namely if and only if the Cauchy–Riemann conditions are satisfied.
We know from the general theory that total derivability is independent of the

choice of a basis. In this specific example, let us choose the basis {1, −i}. Then
x = x1 − ix2

xu = (x1 − ix2 − ix1 − x2) = (1 − i)

(
x1 −x2

x2 x1

)
.

Thus the conclusion is as above.

Example 2.2 Let us consider the algebra of dual numbers, namely the algebra
generated by u1, u2 satisfying u2

1 = u1, u2
2 = 0, u1u2 = u2u1 = u2. Let

x = x1u1 +x2u2, u = (u1 u2). Then, since the algebra is commutative the right and
left representations coincide and follow from

xu = (x1u1 + x2u2 x1u2) = (u1 u2)

(
x1 0
x2 x1

)
.

Thus the condition of right and left total derivability of y(x) = y1(x)u1 + y2(x)u2
is then

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= 0.

To conclude the examples in the case of algebras of second order, we consider
the case of hyperbolic numbers:

Example 2.3 Let us consider the algebra of hyperbolic numbers, namely the algebra
generated by u1, u2 satisfying u2

1 = u1, u2
2 = u1, u1u2 = u2u1 = u2. Let
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x = x1u1 + x2u2, u = (u1 u2). Due to the commutative setting, the left and right
representations follow from

xu = ux = (x1u1 + x2u2 x1u2 + x2u1) = (u1 u2)

(
x1 x2

x2 x1

)
.

Thus the condition of total derivability, both left and right, is expressed by

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= ∂y2

∂x1
.

Example 2.4 We now consider the case of an algebra of the third order, specifically
the algebra of ternions which is defined as the real algebra of upper triangular 2 × 2
matrices. As a basis of the algebra, we choose

u1 =
(

1 0
0 0

)
, u2 =

(
0 0
0 1

)
, u3 =

(
0 1
0 0

)
.

The multiplication rules are

u2
1 = u1, u2

2 = u2, u2
3 = 0, u1u3 = u3, u3u2 = u3,

u1u2 = u2u1 = u2u3 = u3u1 = 0.

Setting x = x1u1 + x2u2 + x3u3, the first representation can be computed from

xu = (x1u1 x2u2 + x3u3 x1u3) = (u1 u2 u3)

⎛
⎝x1 0 0

0 x2 0
0 x3 x1

⎞
⎠

while the second representation follows from

ux = (x1u1 + x3u3 x2u2 x2u3) = (u1 u2 u3)

⎛
⎝x1 0 0

0 x2 0
x3 0 x2

⎞
⎠ .

Thus the conditions of right total derivability are expressed by

∂y1

∂x2
= ∂y1

∂x3
= ∂y2

∂x1
= ∂y2

∂x3
= ∂y3

∂x1
= 0,

∂y1

∂x1
= ∂y3

∂x3
,
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while the left total derivability corresponds to

∂y1

∂x2
= ∂y1

∂x3
= ∂y2

∂x1
= ∂y2

∂x3
= ∂y3

∂x2
= 0,

∂y2

∂x2
= ∂y3

∂x3
.

Example 2.5 A four order algebra which has been widely studied from the point of
view of a function theory on it is the one of bicomplex numbers BC with respect to
the basis 1, i, j, k so that x = x1 + x2i + x3j + x4k. We recall that i2 = j2 = −1,
ij = j i = k. It is a commutative algebra, so that right and left total differentiability
coincide. Since

xu = (x1+x2i+x3j+x4k, x1i−x2+x3k−x4j, x1j+x2k−x3−x4i, x1k−x2j−x3i+x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞
⎟⎟⎠ .

Thus, the function y(x) is left or right totally differentiable if and only if the jacobian

matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y1

∂x3
= ∂y2

∂x4
= − ∂y3

∂x1
= − ∂y4

∂x2
,

∂y1

∂x4
= − ∂y2

∂x3
= − ∂y3

∂x2
= ∂y4

∂x1
.

(2.31)

Example 2.6 Let us consider the noncommutative case of quaternions H with
respect to the basis 1, i, j, k so that x = x1 + x2i + x3j + x4k. We recall that
i2 = j2 = −1, ij = −j i = k. We then have

xu = (x1+x2i+x3j+x4k, x1i−x2−x3k+x4j, x1j+x2k−x3−x4i, x1k−x2j+x3i−x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ .
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Thus, the function y(x) is right totally differentiable if and only if the jacobian

matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y1

∂x3
= − ∂y3

∂x1
= ∂y4

∂x2
= − ∂y2

∂x4
,

∂y1

∂x4
= ∂y2

∂x3
= − ∂y3

∂x2
= − ∂y4

∂x1
.

Analogously, we have

ux = (x1+x2i+x3j+x4k, x1i−x2+x3k−x4j, x1j−x2k−x3+x4i, x1k+x2j−x3i−x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1

⎞
⎟⎟⎠ .

Thus the left total derivability conditions are:

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= − ∂y3

∂x4
= ∂y4

∂x3
,

∂y1

∂x3
= − ∂y3

∂x1
= − ∂y4

∂x2
= ∂y2

∂x4
,

∂y1

∂x4
= − ∂y2

∂x3
= ∂y3

∂x2
= − ∂y4

∂x1
.

It is also clear that the 12 = n2 − n conditions arise from imposing that the 16 =
n2 entries depend on 4 = n parameters. These are definitely different from the
conditions expressing the right or left monogenicity, as we shall see below.

Example 2.7 Sce made a comment on the possible interest of the algebra LXXXI in
the classification given by Scorza in [34], so we consider also this case. According
to n. 10, the basis of the algebra can be written as u = (1, i, ω, iω) with i2 = −1,
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ω2 = 0, iω + ωi = 0. Setting x = x1 + ix2 + ωx3 + iωx4, easy computations show
that

xu = (1, i, ω, iω)

⎛
⎜⎜⎝

x1 −x2 0 0
x2 x1 0 0
x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ ,

while

ux = (1, i, ω, iω)

⎛
⎜⎜⎝

x1 −x2 0 0
x2 x1 0 0
x3 −x4 x1 x2

x4 x3 −x2 x1

⎞
⎟⎟⎠ .

We deduce that the function y(x) is right totally differentiable if and only if the

jacobian matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x3
= ∂y1

∂x4
= ∂y2

∂x3
= ∂y2

∂x4
= 0

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y3

∂x1
= − ∂y4

∂x2
,

∂y3

∂x2
= ∂y4

∂x1
.

while the left totally differentiability conditions are

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x3
= ∂y1

∂x4
= ∂y2

∂x3
= ∂y2

∂x4
= 0

∂y1

∂x2
= − ∂y2

∂x1
= − ∂y3

∂x4
= ∂y4

∂x3
,

∂y3

∂x1
= ∂y4

∂x2
,

∂y3

∂x2
= − ∂y4

∂x1
.
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We now turn to the notions of right or left monogenicity that are made explicit in
the examples below, computed again in the cases considered above. We recall that
a function y = y(x) with values in A is said to be right monogenic (see (2.3) and
[36]) if

u

(
dy

dx

)
uT = 0

or left monogenic if (see (2.3))

u

(
dy

dx

)T

uT = 0.

By explicitly writing these two conditions using the operator

D =
n∑

i=1

ui
∂

∂xi

applied to y(x) = ∑n
i=� u�y�(x), it is clear that the second condition can be

expressed as Dy = 0 while the second one is

n∑
i=1

uj

∂yj

∂xi

ui = yD = 0

(where the notation of writing D on the right means that the units in D are written
on the right).

Remark 2.2 The reader may wonder if the right and left monogenicity conditions
are related by transposition of matrices. However

(
u

dy

dx
uT

)T

= 0

equals

(uT )T
(

dy

dx

)T

uT = u

(
dy

dx

)T

uT

only if A is commutative. And in fact, in this case the two notions coincide.

Example 2.8 In the complex case, the notion of monogenicity (left or right, since
we work in a commutative setting) is expressed by

(1 i)

⎛
⎜⎝

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

⎞
⎟⎠

(
1
i

)
=

(
∂y1

∂x1
+ i

∂y2

∂x1

)
+

(
∂y1

∂x2
+ i

∂y2

∂x2

)
i = 0
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which translates into the Cauchy–Riemann equations

∂y1

∂x1
− ∂y2

∂x2
= 0,

∂y2

∂x1
+ ∂y1

∂x2
= 0,

so the notion, as expected, corresponds to the one of holomorphicity. It is immediate
to verify that one obtains exactly the same conditions if one takes the transpose of
the jacobian.

Example 2.9 Another case of an algebra of second order that we considered above
is the one of dual numbers. Using the basis in Example 2.2, the right (and left)
monogenicity conditions are expressed by

∂y1

∂x1
= 0,

∂y1

∂x2
+ ∂y2

∂x1
= 0. (2.32)

In the case of hyperbolic numbers we have:

Example 2.10 Using the basis of hyperbolic numbers given in Example 2.3, the left
(and right) monogenicity conditions are expressed by

∂y1

∂x1
+ ∂y2

∂x2
= 0

∂y2

∂x1
+ ∂y1

∂x2
= 0.

(2.33)

We note that in the literature one may find the above equations written with
different signs. In fact, (2.33) expresses the fact that y1u1 + y2u2 is in the kernel

of u1
∂y1

∂x1
+ u2

∂y2

∂x2
, whereas in [20] one finds the conditions characterizing the

kernel of u1
∂y1

∂x1
− u2

∂y2

∂x2
. The two function theories so obtained are different but

equivalent.

Example 2.11 In the case of ternions, using the basis previously introduced, see
Example 2.4, the right and left monogenicity conditions are expressed, respectively,
by

∂y1

∂x1
= ∂y2

∂x2
= 0,

∂y3

∂x2
+ ∂y1

∂x3
= 0,

and

∂y1

∂x1
= ∂y2

∂x2
= 0,

∂y2

∂x3
+ ∂y3

∂x1
= 0.
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Example 2.12 For the algebra BC the monogenicity conditions (left or right) are

expressed by u

(
dy

dx

)
uT = 0 and taking into account the multiplication rules we

obtain

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
+ ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
− ∂y3

∂x4
− ∂y4

∂x3
= 0

∂y1

∂x3
− ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
+ ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0.

(2.34)

If the function y(x) is totally derivable, then it is also monogenic, since (2.31) imply
that all the equations in (2.34) are identities, already with the basis {1, i, j, k}.
Example 2.13 In the quaternionic case, if we impose the condition of right mono-
genicity, i.e.,

(1 i j k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y1

∂x1

∂y1

∂x2

∂y1

∂x3

∂y1

∂x4
∂y2

∂x1

∂y2

∂x2

∂y2

∂x3

∂y2

∂x4
∂y3

∂x1

∂y3

∂x2

∂y3

∂x3

∂y3

∂x4
∂y4

∂x1

∂y4

∂x2

∂y4

∂x3

∂y4

∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1
i

j

k

⎞
⎟⎟⎠ = 0 (2.35)

with easy computations we obtain the system:

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
− ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
+ ∂y3

∂x4
− ∂y4

∂x3
= 0

∂y1

∂x3
− ∂y2

∂x4
+ ∂y3

∂x1
+ ∂y4

∂x2
= 0

∂y1

∂x4
+ ∂y2

∂x3
− ∂y3

∂x2
+ ∂y4

∂x1
= 0

which corresponds to the well known Cauchy–Fueter conditions for the right
regularity of a quaternionic function. By taking the transpose of the jacobian, with
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similar calculations, we obtain the Cauchy–Fueter conditions for the left regularity,
i.e.,

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
− ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
− ∂y3

∂x4
+ ∂y4

∂x3
= 0

∂y1

∂x3
+ ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
− ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0

(2.36)

Remark 2.3 In various works, see [4] and the references therein, we considered
functions which are Cauchy–Fueter regular with respect to n > 1 quaternionic
variables. The regularity condition is expressed by a system consisting of 4n

equations obtained by writing for each of the n quaternionic variables a system of
the form (2.36). The analysis of this class of functions is rather complicated and is
performed in [4] with algebraic methods based on the construction of a minimal free
resolution of the module associated with the system. It is essential to consider n > 1
since in one variable the methods do not provide interesting information, basically
because the matrix representing the system (2.36) is square and nondegenerate. It is
however interesting to note that when considering the notion of total derivability, the
algebraic study may be meaningful also when n = 1 since the matrix representing
the system is not square. Such a study deserves to be further investigated.

Finally, we consider the case of the algebra LXXXI in [34]:

Example 2.14 In the case of the algebra LXXXI, using the basis in Example 2.7 we
immediately deduce that the left monogenicity conditions are expressed by:

∂y1

∂x1
− ∂y2

∂x2
= 0

∂y1

∂x2
+ ∂y2

∂x1
= 0

∂y1

∂x3
+ ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
− ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0.

These relation are, formally, similar to the conditions of left Cauchy–Fueter
regularity in which in the first two equations only the derivatives with respect to
x1 and x2 appear. However, from the point of view of the algebraic analysis the two
systems are different. This is visible, for example, when taking the minimal free
resolution in the case of two variables in this algebra. The first syzygies in fact are



2.4 Comments and Historical Remarks 39

quadratic and linear whereas in the Cauchy–Fueter case there are only quadratic
syzygies, see [4].

In order to relate the notions of total derivability and of monogenicity (left or
right) one needs conditions on the ambient algebra and this justifies the notions
of solenoidal or bisolenoidal algebra. In order to distiguish these algebras among
themselves, a useful fact that may be useful in understanding the computations in
Section 2 of [27] (see also Sect. 1.1) is the following

Proposition 2.1 Let u = (u1, . . . , un), u′ = (u′
1, . . . , u

′
n) where u and u′ are bases

of the algebra A and let u = u′P where P is a nonsingular matrix. Let ξ and
ξ ′ = ξPT the coordinates with respect these two bases. The jacobian of ξ ′ with

respect to ξ is

(
dξ ′

dξ

)
= P .

Proof Let P = (pij ), then

ξ ′ = ξPT ⇐⇒ (ξ ′
1, ξ

′
2, . . . , ξ

′
n) = (ξ1, ξ2, . . . , ξn)

⎛
⎜⎜⎝

p11 p21 . . . pn1

p12 p22 . . . pn2

. . . . . .

p1n p2n . . . pnn

⎞
⎟⎟⎠ ,

so that

ξ ′
1 = p11ξ1 + p12ξ2 + . . . + p1nξn

ξ ′
2 = p21ξ1 + p22ξ2 + . . . + p2nξn

. . . = . . .

ξ ′
n = pn1ξ1 + pn2ξ2 + . . . + pnnξn.

Thus
∂ξ ′

i

∂ξj

= pij and the statement follows. ��

Let us recall the following formulas:

uiuPP−1u−1 = 0, i = 1, . . . , n (2.10)

uPP−1uiu−1 = 0, i = 1, . . . , n. (2.11)

zuPP−1u−1 = 0, (2.12)

uPP−1zu−1 = 0; (2.13)

uPP−1u−1 = 0. (2.14)
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Definition 2.8 An algebra with unit is solenoidal if its bases satisfy (2.14) with P

non singular. It is bisolenoidal if it has bases satisfying (2.11) with P non singular.

Theorem 2.2 In an algebra with unit we have
(2.10) ⇐⇒ (2.12) ⇐⇒ (2.14)
and
(2.11) ⇐⇒ (2.13) �⇒ (2.14).
Thus, if an algebra is bisolenoidal it is also solenoidal, but not viceversa.

The results in Sect. 2.1 can be summarized as follows:

Theorem 2.3 In an algebra with unit, functions right totally derivable are right
monogenic if and only if (2.14) holds while they are left monogenic if and only if
the relations (2.11) hold. In this latter case, the functions are also right monogenic.

Proof Assume that a function y(x) is right totally derivable, then the condition of
being right monogenic, with respect to a basis obtained via the change of basis given
by the nonsingular matrix P , is expressed by (2.10) which hold if and only if (2.14)
holds. The condition of being left monogenic, with respect to a basis obtained via
the change of basis given by the nonsingular matrix P , is expressed by (2.11). Since
(2.11) imply (2.14), the functions are automatically also right monogenic. ��
Remark 2.4 We believe that in the original manuscript there is a typo and the
sentence

(2.14) and (2.11) with P nonsingular, are necessary and sufficient conditions for
right totally derivable functions in an algebra A to be right or left monogenic (with
respect to a suitable basis) should be instead

(2.14) or (2.11) with P nonsingular, are necessary and sufficient conditions for
right totally derivable functions in an algebra A to be right or left monogenic (with
respect to a suitable basis).

The amended sentence is also in accordance to the review of paper written by B.
Crabtree, see [5].

To illustrate these ideas we consider some examples in the case of algebras of low
order.

Example 2.15 Let us consider the algebra of dual numbers, see Example 2.2.
Setting PPT = A = (ajk) we compute (2.14):

(u1 u2)

(
a11 a12

a12 a22

) (
u1

u2

)
= 0.

We obtain a11u1+a12u2 = 0 which immediately gives a11 = a12 = 0 and PPT and
so P are singular. From this fact one immediately deduces that the algebra of dual
numbers is neither solenoidal, nor bisolenoidal. Note that (2.11) for i = 1 reduces
to the condition above and for i = 2 it is an identity.
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Example 2.16 To illustrate the reasoning in Sect. 2.2, we develop the computations
in the case of ternions. We need to compute the elements aik of the matrix A using
(2.14). We have:

(u1 u2 u3)

⎛
⎝a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

⎛
⎝u1

u2

u3

⎞
⎠ = 0,

which leads to

a11u1 + a22u2 + a23u3 + a13u3 = 0.

We deduce that a11 = a22 = 0 and a13 + a23 = 0 so that

A =
⎛
⎝ 0 a12 a13

a12 0 −a13

a13 −a13 a33

⎞
⎠ .

Although A is nonsingular, it is not positive as one may notice taking the principal
minor, i.e. the determinant of

(
0 a12

a12 0

)

which has negative value, so A cannot be of the form PPT . We conclude that the
algebra of ternions is not solenoidal over the real.

We note that if we would have considered the ternions over the complex field,
then the complexified ternion algebra is solenoidal since the only condition required
on A is of being nonsingular (see Sect. 1.2, paragraph 4). We now consider the
conditions in (2.11):

(u1 u2 u3)

⎛
⎝a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

⎛
⎝uiu1

uiu2

uiu3

⎞
⎠ = 0, i = 1, 2, 3.

Taking into account the relations satisfied by u1, u2, u3 we obtain the following
system:

a11u
2
1 + a13u1u3 = 0

a12u1u2 + a22u
2
2 + a23u3u2 = 0

a12u1u3 + a22u2u3 + a23u
2
3 = 0
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which yields to

a11u1 + a13u3 = 0

a22u2 + a23u3 = 0

a12u3 = 0.

We deduce that a11 = a13 = a22 = a23 = a12 = 0, so that A, and so P , are singular.
We conclude that the algebra of ternions is not bisolenoidal.

As algebra of fourth order, we consider the algebra of bicomplex numbers.

Example 2.17 The condition (2.14) is

(1 i j k)

⎛
⎜⎜⎝

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
i

j

k

⎞
⎟⎟⎠ = 0.

These conditions translate into

a11 − a22 − a33 + a44 = 0

a12 − a34 = 0

a13 − a24 = 0

a14 + a23 = 0,

which shows, with some more computations to show the positivity, that the
bicomplex algebra is solenoidal. Since the algebra is commutative, the conditions
(2.11) follows form the previous ones and thus the algebra is also bisolenoidal.
Thus right total derivability implies monogenicity (right and left) as shown by
Example 2.34. Note that one can take P = A = I , the identity matrix, in the above
computations and this is in accordance with the fact that (right) total derivability
imply (right) monogenicity with respect to the same basis.

Example 2.18 As already noticed in Sect. 1.1 the algebra of quaternions is
solenoidal. This can also be verified by direct computations which lead to

a11 − a22 − a33 − a44 = 0

a12 = 0

a13 = 0

a14 = 0,
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and thus to the matrix

⎛
⎜⎜⎝

a22 + a33 + a44 0 0 0
0 a22 a23 a24

0 a23 a33 a34

0 a24 a34 a44

⎞
⎟⎟⎠ .

It is possible to choose the matrix A such that it is nonsingular.
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