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Chapter 1
Introduction

1.1 Foreword

The richness of the theory of functions in one complex variable stimulated, at the
end of the nineteenth century and beginning of twentieth century, the interest in the
study of functions of several complex variables but also of hypercomplex variables.
Some references about these studies can be found in Dickson’s book [29], p. 78 and
in the later paper by Ketchum [31]. Some earlier references are [27, 28].

In this context, the Italian school played a significant role in the twenties and
thirties and in fact there are several works which range from the study of algebras
of hypercomplex numbers, see e.g. the works of Scorza [35–39], to the analysis
of functions of hypercomplex variables, see [40, 42, 43]. When the theory of
monogenic (also called analytic or regular) functions of a quaternionic variable
emerged with the works of Moisil [33] and Fueter [30] it was rather clear that the
setting of quaternions, being a skew field, was a convenient one. The importance of
these functions is witnessed by the fact that they appear in the monograph written by
Segre [41]. But at that time, it seemed that there were different possible approaches,
see for example the work of Sobrero [42] where a specific algebra is introduced to
deal with equations arising from the theory of elasticity. These studies continued, see
e.g. [44], and in the fifties attracted the attention of mathematicians like Rizza and
Sce. Rizza was more interested in the case of Clifford algebras, see [34], whereas
Sce was working in the context of more general algebras with a contribution to the
octonionic case, together with Dentoni.

Most of the works of the Italian school have been essentially forgotten. It is
difficult to understand the reason, but certainly one possible explanation is that many
articles were published in Italian journals and they were written in Italian. Even
today, and despite the existence of powerful search engines, it would be difficult
to retrieve these papers, since the keywords one may use in the search are English
words, not Italian ones.
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2 1 Introduction

On the other hand, it is remarkable to note that Sce, in his works in hypercomplex
algebras and analysis was very accurate about the existing literature and seemed
to be aware of all relevant published works. As the reader will discover in his
biography, he was a passionate bibliophile and this passion probably lead him to
check very carefully the available references, most of them in foreign languages
like English, German, Romanian.

The inspiration for this volume was given by the event “A Scientific Day in Honor
of Michele Sce” held in Milano on October 11th, 2018. Michele Sce was professor
for long time at the University of Milano where the three of us have studied. His
interests in hypercomplex algebras and analysis constitute the common ground with
our own research interests. The fact that the only results of Sce that are quoted in
the modern literature were the one related to Fueter mapping theorem and, more
marginally, the paper with Dentoni on octonions, has stimulated our willingness to
translate his works in hypercomplex analysis to make them accessible. In doing so,
we added some comments since sometimes it is necessary to adapt the notation and
the terminology to the modern language, as well as some examples to clarify the
results of Sce. Where appropriate, we provided the developments of the theory thus
offering a deeper sense of the importance of Sce’s work, and the visionary role he
played in the theory of functions of hypercomplex variables.

We kept the original text and formulas of the various papers, and where we
corrected some typos we point this out in the Editors’ Notes. For typographical
reasons, in Chap. 6 we used the modern Latex for Definitions, Theorems, etc.
combined with the style used by the authors D1, T1, etc.

The book is organized in five chapters, besides this Introduction. Chapter 2
contains the translation of the three parts of a same paper dealing with the notions
of monogenicity and total derivability in real and complex algebras. Chapter 3 deals
with Sce’s paper on systems of partial differential equations related to real algebras.
Chapter 4 contains the paper on the variety of zero divisors in algebras. A central
role is played by Chap. 5 which contains the celebrated theorem nowadays referred
to as the Fueter-Sce-Qian mapping theorem which gave rise to several modern
results discussed in the comments to this chapter. Chapter 6 contains the translation
of the paper by Dentoni and Sce which deals with octonionic analysis, another topic
which has led to many interesting modern developments. Each chapter has its own
list of references and may stand alone.

Our hope is that this book will make Sce’s work accessible to a larger audience
and, possibly, will provide inspiration for future works.

1.2 Biography

Michele Sce was born in 1929 in Tirano in Northern Italy and he graduated “cum
laude” at the Scuola Normale Superiore in Pisa in 1951. He became assistant
professor in Geometry at the University of Milano where he remained officially
until 1963, but already on leave at the end of 1962. During this period he lectured on
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function theory at the University of Parma, and on number theory at the University
of Rome. He was the recipient, in 1959, of the Bonavera Prize awarded by the
Academy of Sciences of Torino.

During this period Sce, among his many interests, was working on finite
geometries and the enumerative problems connected to them but, when he tried
to build examples or significant counterexamples, he faced difficult calculations.
Thus he sought the help of his friend Lorenzo Lunelli who was among the first in
Italy to work with an electronic processor at the Politecnico di Milano and had the
“machine”, namely the electronic calculator CRC-102A/P, capable of performing
such calculations. The computations led them to the paper [2].

The CRC-102A/P, a machine with reduced computing capacity compared to
the mathematical problems that can be resolved or at least clarified by automatic
procedures, assisted Lunelli and Sce in writing four other papers. Given these
interests, it is not surprising that Sce, at the end of 1962, left the university to take
the opportunity to work at the Laboratorio di Ricerche Elettroniche of Olivetti. Sce
then worked as a mathematical consultant at the Office of Electronic-Mechanical
Equipment Projects directed by Pier Giorgio Perotto which was carrying out highly
innovative projects such as the Olivetti Programma 101, the first personal computer
in history, all designed in Italy.

Sce worked on projects concerning character recognition, working on projects
on OCR-B (OCR stands for Optical Character Recognition), see [23], for which he
was using a machine, the Elea 9003, to assist the computations.

Meanwhile, he married Paola Maria Manacorda and they eventually had three
sons: Giovanni, Simone and Jacopo.

The Electronic Division of Olivetti was sold to General Electric in 1965 and Sce
underlined in a newspaper that doing so Italy was losing a possible supremacy in
the newly born computer industry. He continued to work for Olivetti as Head of the
Research and Development Division, and he was still working for Olivetti when he
was called to be a member of the Committee of Mathematics of the CNR (Consiglio
Nazionale delle Ricerche) for the period 1968–1972. There he had the opportunity
to illustrate his point of view on the state and the possible development of applied
mathematics in Italy. He promoted scientific computing, also facilitating the creation
of laboratories equipped with computers. He also envisioned and promoted the
computer assisted teaching, an idea which was absolutely new and revolutionary
at that time.

During the period he spent at Olivetti Sce was continuing his research and his
teaching activity at the university. After he left Olivetti in 1971, he had various roles
at the CNR where he was tasked to provide an impulse to the diffusion of computers
in some Italian universities and to the preparation of curricula in computer science.

The next phase of his career led him to become Director of the Statistical
Division of A.C. Nielsen in Milano, where he proposed a strategic plan based on
data analysis.

He finally returned to academia in 1976 as Full Professor first at the University
of Lecce, then in Torino and eventually, in 1980, back to the University of Milano
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where he taught several courses. As a teacher, he was available and very helpful to
students, most of which still remember him for these qualities.

He had a strong commitment to mathematical libraries, initiating innovations in
their management, and he took care of the Italian version of the Universal Decimal
Classification of Mathematical Sciences on behalf of the CNR. He promoted the
automation of Italian libraries for classification and management. In particular when
he was Director of the library of the University of Milano, he adopted the system
Aleph.

He also devoted himself to the dissemination of mathematics, both collaborating
with magazines in the field and curating the edition of a large Dictionary of
Mathematics published in 1989 by Rizzoli.

Sce has had many interests, a vast culture, and a personal library of about ten
thousands volumes. This collection started when he was young and contains not only
scientific books but also literary, historical, philosophical, anthropological books, as
well as science fiction works and comics. A conspicuous part of the scientific books
has been donated to the University of Milano Bicocca.

Despite his mild, shy and reserved nature, Sce always showed a great willingness
to work with others in projects that aimed to strengthen the role of mathematics
in Italian culture and society. As his wife recalled in her recollection he had few
friends in academy, because of his reserved personality. Among them the late Carlo
Pucci, Edoardo Vesentini and Gianfranco Capriz, and in Milano Stefano Kasangian,
Stefania De Stefano and Alberto Marini. At Olivetti his best friends were Filippo
Demonte and Mario Prennushi, with whom Sce collaborated while working at the
project for the Programma 101.

Michele Sce passed away in Milano in 1993.
His ability to collaborate with various colleagues, his participation to numerous

research projects and his dedication to teaching, left a trace of esteem and affection
in his students, colleagues and friends, evidenced by the Scientific Day in his honor
that the University of Milano organized on the 11th October 2018.

During that celebration it was particularly impressive to realize Sce’s humble
attitude. Despite his many achievements and his bright way of thinking and
envisioning the future, he has never shown off his work with his family and friends.
His various activities are now collected in the website www.michelesce.net
which is a form of acknowledgement of his vision and understanding.

In the list of references below, the items [1–26] correspond to Michele Sce’s
scientific production.
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Chapter 2
Monogenicity and Total Derivability
in Real and Complex Algebras

In this chapter we collect three papers that correspond to the translations of three
parts of the same work originally published as:

M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. I,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
30–35.
M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. II,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
188–193.
M. Sce, Monogeneità e totale derivabilità nelle algebre reali e complesse. III,
(Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 16 (1954),
321–325.

2.1 Monogenicity and Total Derivability in Real
and Complex Algebras, I

Article I by Michele Sce, presented during the meeting of 16 January 1954 by
B. Segre, member of the Academy.

To construct a theory of functions of a hypercomplex variable, a natural way
would be to generalize the function theory of a complex variable. However, to pass
from functions of a complex variable (for which the uniqueness of the derivative
follows from the monogenicity condition) to functions of a hypercomplex variable,
there are two possibilities: one is to impose the uniqueness of the derivative, and
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8 2 Monogenicity and Total Derivability in Real and Complex Algebras

this yields to the theory of totally derivable functions;1 the second is to generalize
the monogenicity conditions and this yields to the theory of monogenic functions.2

In the course held at the Istituto di Alta Matematica in the year 1952–1953,
Prof. B. Segre proposed to study algebras for which the notion of total derivability
implies the one of monogenicity.

This Note I deals with the search of the conditions that the basis of an algebra, for
simplicity we assume any algebra with module [Editors’ note: here module means
unit. In the following, we will always translate the term module with the modern
term unit], must satisfy in order for this to hold. The forthcoming Note II, III will
deal with the case of algebras of order two, three, four,3 and some cases of higher
order algebras, whose bases satisfy these conditions. We believe that our results for
algebras of the fourth order, in which case we find five algebras, are particularly
interesting. Four of them (precisely the bicomplex, the bidual, the quaternions and
the algebra of matrices of the second order) are already widely studied; we think that
the fifth is considered here for the first time and it would maybe deserve a deeper
study.

1. Let A be a real or complex algebra of order n, with unit. Given a basis
u = (u1, . . . , un) we say that the algebras A ′, A ′′ are the first and second regular
representation4 of A if their elements are order n matrices X′, X′′ defined, for any
x ∈ A , by the relations

xu = uX′ (2.1)

ux = uX′′−1.
5 (2.2)

1N. Spampinato, Sulle funzioni totalmente derivabili in un’algebra reale o complessa dotata di
modulo, Rend. Lincei, vol. 21 (1935), I, 621–625, II, 683–687. Functions totally derivable over
the bicomplex numbers have been studied by G. Scorza Dragoni, Sulle funzioni olomorfe di una
variabile bicomplessa, Mem. Acc. d’Italia, vol. 5 (1934), 597–665; in the bidual algebra by L.
Sobrero, Algebra delle funzioni ipercomplesse e una sua applicazione alla teoria matematica
dell’elasticità, Mem. Acc. d’Italia, vol. 6 (1935), 1–64.
2This is the terminology used by B. Segre, Forme differenziali e loro integrali, Roma, 1951 and,
in the particular case of quaternions by Gr. C. Moisil, Sur les quaternions monogènes, Bull.
Sci. Math. (Paris), LV (1931), 168–174. R. Fueter uses the terminology regular functions, Über
die Funktionentheorie in einer hypercomplexen Algebra, Elem. Math., III, 5 (1948), 89–94 and
this is the term used by his school and by G. B. Rizza, Sulle funzioni analitiche nelle algebre
ipercomplesse, Comm. Pont. Ac. Sc., vol. 14 (1950), 169–174. This last Author calls monogenic
the totally derivable functions.
3Algebras of these orders on any field have been classified by G. Scorza in the works Le algebre
doppie, Rend. Acc. Napoli (3), vol. 28 (1922), 65–79, Le algebre del 3o ordine, Acc. Napoli (2),
vol. 20 (1935), n.13, Le algebre del 4o ordine, ibid. n. 14.
4Cfr. A. A. Albert, Structure of algebras, American Mathematical Society Colloquium Publica-
tions, Volume XXIV, New York, 1939.
5In the sequel we will always consider u and its transpose u−1 as n-dimensional vectors, the first
as a row, the second as a column [Editors’ note: the same notation is used for matrices].
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We say that an element

y = y1u1 + · · · + ynun = (y1, . . . , yn)(u1, . . . , un)−1 = ηu−1

belonging to A is a right or left totally derivable function of an element

x = x1u1 + · · · + xnun = ξu−1

in A , if the jacobian matrix ∂η/∂ξ = dy/dx belongs to A ′ or its transpose belongs
to A ′′.6

Finally, we say that the element y in A is a right or left monogenic function7 of
an element x in A , if

u
dy

dx
u−1 = 0 (2.3)

or

u

(
dy

dx

)
−1

u−1 = 0. (2.4)

When performing the change of basis

u′ = uP−1, (2.5)

since

x = ξu−1 = ξ ′u′−1, y = ηu−1 = η′u′−1

[Editors’ note: it was Y in the original manuscript] it turns out that

ξ ′ = ξP−1, η′ = ηP−1

and so

dη

dξ
= dη

dη′
dη′

dξ ′
dξ ′

dξ
= P−1 dη′

dξ ′
P.

Thus the definition of totally derivable functions is invariant with respect to change
of basis (indeed

xu′ = xuP−1 = uX′P−1 = u′PX′P−1 = u′X′∗

6See N. Spampinato cited in (1).
7See B. Segre cited in (2), p. 442.



10 2 Monogenicity and Total Derivability in Real and Complex Algebras

with X′ = P−1X
′∗P ) when performing the change of basis (2.5) in fact formulas

(2.3) and (2.4) become

u′ ∂η′

∂ξ ′
PP−1u

′−1 = 0 (2.6)

u′PP−1

(
∂η′

∂ξ ′

)
−1

u′−1 = 0; (2.7)

the conditions (2.6) and (2.7) depend, in general, on the change of basis,8 in the
sense that they ensure the existence (when |P | �= 0) of a suitable basis u = u′P
such that in that basis y is a monogenic function of x.

After that, the problem of comparing the notion of monogenic function with the
one of totally derivable function translates into the search of conditions under which
a totally derivable function is monogenic with respect to a suitable basis, namely in
the comparison between the conditions that dy/dx belongs to A ′ and formulas (2.6)
and (2.7).

2. We now consider the functions

yi(x) = uix = uξ ′−1, i = 1, . . . , n;

by virtue of (2.1), we can write

uix = uiuξ−1 = uU ′
i ξ−1,

with U ′
i in A ′, and it turns out that

ξ ′−1 = U ′
i ξ−1.

But then

duix

dx
= U ′

i

and yi(x) = uix are right totally derivable.
Thus, if in our algebra the right totally derivable functions are also monogenic,

there should exists a basis such that uix are right or left monogenic in x, that is, it
should hold

uU ′
iPP−1u−1 = 0, (2.8)

8The conditions coincide with (2.3) when PP−1 is a scalar matrix; however, if the matrices in A ′
are direct sum of matrices then the equality with (2.3) also for suitable diagonal, not scalar matrices
PP−1. This property of the elements in A ′ is possessed by the decomposable algebras, but also by
indecomposable algebras like the one of ternions with the basis given in n. 4 [Editors’ note: it was
n. 5 in the original manuscript] but this can be overcome by considering the matrix P .
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or

uPP−1(U
′
i )−1u−1 = 0, (2.9)

for some nonsingular matrix P .9

Since U ′
i are elements in A ′, (2.1), (2.8), and (2.9) allow to deduce

uiuPP−1u−1 = 0, i = 1, . . . , n (2.10)

uPP−1uiu−1 = 0, i = 1, . . . , n. (2.11)

As each element z of A is a linear combination (with real or complex coefficients)
of ui , by taking a linear combination of (2.10) and (2.11) one has

zuPP−1u−1 = 0, (2.12)

or

uPP−1zu−1 = 0; (2.13)

conversely, if (2.12) and (2.13) hold for each element z in A , then they hold also
for u, thus one reobtains (2.10) and (2.11).

In particular, when taking z equal to the unit then (2.12) and (2.13) give

uPP−1u−1 = 0; (2.14)

from this one reobtains in an obvious way both (2.12) and (2.10), so these latter are
equivalent to (2.14).10

Given a right totally derivable function y(x), its jacobian matrix dy/dx will
automatically belong to A ′; let z be the corresponding element in A and let us
assume that (2.14) or (2.11) hold. Then also (2.12) or (2.13) hold, so that because
of (2.1), we reobtain (2.6) or (2.7); thus y(x) is right or left monogenic.

Thus we may conclude that (2.14) and (2.11) with P nonsingular, are necessary
and sufficient conditions for right totally derivable functions in an algebra A to
be right or left monogenic (with respect to a suitable basis); condition (2.14) is
necessary also for the left monogenicity. [Editors’ Note: see Remark 2.4]11

9Evidently the difference between right and left monogenic is not relevant in commutative algebras.
10Since, by virtue of (2.1), from (2.10) it follows (2.8), then (2.14) is also equivalent to all equations
(2.8).
11In an analogous way one can prove that (2.14) and (2.11) are necessary and sufficient conditions
for left totally derivable functions to be monogenic on the left or on the right. [Editors’ Note: see
Remark 2.4]
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This latter assertion ensures that it is necessary that y(x) be right monogenic in
order to have that right total derivability imply left monogenicity; thus the algebras
in which right total derivability implies left monogenicity are the algebras in which
right totally derivable functions are both right and left monogenic.

Let us now recall that the monogenicity conditions are a system of n differential
equations while those of total derivability are a system of n(n − 1) differential
equations;12 moreover the conditions for right and left monogenicity are n+ m ≤
2n.

Since (2.14) or (2.11) translate into linear conditions on the basis elements,
and thus in conditions concerning only the algebra, in order to get right total
differentiability provided that (2.14) or (2.11) hold, one has to add n(n − 2)

differential equations to the n arising from right monogenicity or to the n+m arising
from both the right and left monogenicity.

3. We say that an algebra with unit is solenoidal if its bases satisfy relations of
the form (2.14) with a nonsingular P and we say, in particular, that it is bisolenoidal
if its bases satisfy relations of the form (2.11).

Given two algebras A = (u1, . . . , un), B = (v1, . . . , vm) we consider their
direct sum S and their direct product P whose basis are, respectively

w = (uo
1, . . . , u

o
n, v

o
1 , . . . , vo

m) = (uo; vo)

w′ = (uo
1v

o
1 , uo

1v
o
2 , . . . , uo

nv
o
m) = (uo

1v
o; . . . ; uo

nv
o),

where

Ao = (uo
1, . . . , u

o
n), Bo = (vo

1 , . . . , vo
m)

are algebras isomorphic to A , B.13 If A and B are bisolenoidal, so are also Ao

and Bo so there exist nonsingular matrices P and Q such that

uoPP−1u
o
i u

o
−1 = 0, i = 1, 2, . . . , n,

voQQ−1v
o
kvo−1 = 0, k = 1, 2, . . . ,m.

(2.15)

From this, by setting

R =
(

P 0
0 Q

)

12See Segre cited in (2), p. 443 and p. 451.
13See A. A. Albert, Modern higher Algebra, The University of Chicago Science Series, Chicago,
1937, Chap. X, n. 4 and Albert, cited in (4), Chap. 1, n.5.
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and recalling that in the direct sum uo
i v

o
k = vo

kuo
i = 0, one gets

wRR−1u
o
i w−1 = wRR−1

(
uiu

o
−1

0

)

= (uo vo)

(
PP−1 0

0 QQ−1

) (
uiu

o
−1

0

)

= uoPP−1u
o
i u

o
−1 = 0;

and, analogously, one finds that

wRR−1v
o
kw−1 = 0.

Thus, if wi is any element in w, there exists a nonsingular matrix R such that

wRR−1wiw−1 = 0,

i.e., the direct sum of bisolenoidal algebras is bisolenoidal. Assume that only B is
solenoidal, that is, (2.15) holds; then, by setting

R = Q× In =
⎛
⎜⎝

Q . . . 0
...

. . .
...

0 . . . Q

⎞
⎟⎠

and recalling that in the direct product uivk = vkui , one obtains

w′RR−1u
o
i v

o
kw′−1 = w′RR−1v

o
k

⎛
⎜⎝

vo
−1u

o
i u

o
1

...

vo
−1u

o
i u

o
n

⎞
⎟⎠

= (uo
1v

o, . . . , uo
nv

o)

⎛
⎜⎝

QQ−1 . . . 0
...

. . .
...

0 . . . QQ−1

⎞
⎟⎠

⎛
⎜⎝

vo
kvo
−1u

o
i u

o
1

...

vo
k vo
−1u

o
i u

o
n

⎞
⎟⎠

= uo
1v

oQQ−1v
o
kvo
−1u

o
i u

o
1 + · · · + uo

nv
oQQ−1v

o
kvo
−1u

o
i u

o
n = 0.

Thus, the direct product of algebras, one of which is bisolenoidal is bisolenoidal.14

.

14Obviously, an algebra which is direct product may be bisolenoidal even when one of the factors
is not.
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2.2 Monogenicity and Total Derivability in Real
and Complex Algebras, II

Article II by Michele Sce, continuation of Article I published at p. 30 of this volume,
presented during the meeting of 13 February 1954 by B. Segre, member of the
Academy.

4. Setting PP−1 = ‖aik‖, (i, k = 1, . . . , n), formula (2.14) rewrites as∑
i,k aikuiuk = 0 [Editors’ note: ‖aik‖ denotes the matrix with elements aik];

thus, since the units u1 and u2 of the complex algebras of the second order, i.e.,
of the complex and dual numbers,15 combine according to the rules u1ui = ui ,
u2

2 = −u1, and u1ui = ui , u2
2 = 0, (i = 1, 2), it turns out that to satisfy (2.14),

it must be a11 = a22, a12 = 0 or a11 = a12 = 0. In the second case, PP−1 is
singular and so the algebra of dual numbers is not solenoidal and the algebra of
complex numbers is the only complex algebra solenoidal of the second order. We
now try to satisfy (2.14) for two of the five complex algebras of the third order,
16 tripotential and tridual numbers, whose units combine according to the rules
u1ui = ui , u2

2 = u3, and u1ui = ui , (i = 1, 2, 3); in the first case one has
a11 = a22 = 0 and a13 + a22 = 0, in the second case a1i = 0 and PP−1 is
singular. An analogous analysis for the remaining three algebras shows that only the
algebra of tridual numbers is not solenoidal.

In the case of ternions whose units combine according to the rules u2
1 = u1,

u2
2 = u2, and u1u3 = u3u2 = u3, (2.11) translate into

a11u1 + a13u3 = 0, a22u2 + a32u3 = 0, a12u3 = 0 (2.16)

which ensure that PP−1 is singular; thus the algebra of ternions is not
bisolenoidal,17 and among complex algebras of the third order, only the solenoidal
commutative algebras are bisolenoidal. Considering the 16 multiplication tables
which arise from the complex algebras of the 4th order18 together with (2.14)
it can be proved that only the algebras with multiplication tables XLI and LV

15See G. Scorza, first work cited in I, (3). It is understood that we always consider algebras with
unit, and different up to isomorphisms.
16See G. Scorza, second work cited in I, (3). In the classification in [32] the five algebras have
the multiplication tables III (tricomplex numbers), X (tripotential numbers), XI (tridual numbers),
XXIV (direct sum of dual numbers and the complex field) and XXVII (ternions). Ternions are the
only noncommutative algebra. In the text, instead of tables, we will make use of the multiplication
rules in which the vanishing products uiuk will not appear.
17Since the unit of the algebra is u1 + u2, (2.14) can be obtained by summing the first and the
second relation in (2.16) leading to a11 = a22 = a13 + a32 = 0; thus with the change of basis
u′i = ui + u2, u′2 = i(u1 − u2), u′3 = u3, one gets a basis such that u′u′−1 = 0.
18See G. Scorza, third work cited in I, (3). ; in this classification the 16 tables are I∗ (quaternions),
X (quadricomplex numbers), XXXVI (quadripotential numbers), XXXVII∗ (∞1 many non
isomorphic algebras depending on a parameter), XXXIX (two algebras for the values 0, 1 of a
parameter), XLI∗, LV (quadridual numbers), XC, C∗, CIII∗ , CIV∗, CV, CVIII∗ , CXXV, CXXVIII∗ .
The asterisk denotes the noncommutative algebras.
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are not solenoidal. To this end, we limit ourselves to observe that since the
multiplication rules in the two algebras are, respectively, u1ui = ui and u1ui = ui ,
u2u3 = −u3u2 = u4 (i = 1, . . . , 4), in both cases to satisfy (2.14) the first row of
PP−1 must vanish.19

Imposing (2.11) for the six noncommutative algebras, one concludes that the only
bisolenoidal algebras are those whose units satisfy u1ui = ui , u2

2 = u2, u3 = −u3,
u2 = u4, u3

3 = αu4.20

5. In the study of real solenoidal algebras, it is important to bear in mind that
also the matrix P in (2.14) and (2.11) is real, thus PP−1 is symmetric and positive
definite.21 . This remark allows to have the converse of the first Theorem in n.
3, namely to show that a direct sum of real algebras is bisolenoidal only if its
components are bisolenoidal.

Indeed, if the real algebra C = (w) = (uo vo), direct sum of the algebras A and
B, is bisolenoidal there exists a symmetric, positive definite matrix

A =
(

A1 A2

A3 A4

)

such that

wAwiw−1 = uoA1wiu
o
−1 + voA4wiv

o
−1 = 0;

from this relation, and according to the fact that wi is an element either in uo or in
vo, one gets

uoA1u
o
i u

o
−1 = 0, voA4u

o
i u

o
−1 = 0

with A1 and A4 still symmetric and positive definite since they are principal minors
of A.

It turns out that the only solenoidal algebra of order two is the one of complex
numbers. In fact, besides the two algebras over the complex field, there is the algebra
of bireal numbers22 which is direct sum of the real field (certainly non solenoidal)
with itself.

19This observation extends to the n-dual numbers whose multiplication rules are u1ui = ui (i =
1, . . . , n) and it can be proved that the algebras of n-dual numbers are not bisolenoidal
20These multiplication rules translate into Scorza’s table XXXVII after the change of basis u′1 =
u1, u′2 = u2, u′3 = 1

2 (u2 − u3), u′4 = u4. We point out that with respect to the basis u′1 = u1 − u4,
u′2 = u2 + u3, u′3 = iu1, u′4 = u2 + iu3, (2.14) becomes u′u′−1 = 0 which has as immediate
consequence the four relations in (2.11).
21See A. A. Albert, Modern higher algebra, (Chicago, 1937), Chap. V, n.12.
22See Scorza cited in (1).
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About the six algebras of the third order,23 we have already seen in n. 4 that
the three indecomposable algebras cannot satisfy (2.14) with PP−1 symmetric and
positive definite; since the three decomposable algebras are not solenoidal by the
theorem just proven, one can conclude that there are no real algebras solenoidal of
the third order.

Among the real algebras of the fourth order24 in addition to the two algebras
direct product of the algebra of complex numbers with the one of the bireal numbers
and of the dual numbers, only the algebra of quaternions, the algebra of 2 × 2
matrices and the one with multiplication table LXXXI are solenoidal; none of these
algebras is bisolenoidal.

Making use of a direct proof, or of theorems that we will provide in n. 6, one
can prove that among the algebras of the fourth order only the five mentioned in
the assertion can be solenoidal; since, by the second theorem in n. 3, the two direct
product algebras are solenoidal, we shall examine only the three noncommutative
algebras.

The units of the algebras in table LXXXI can be combined according to the
multiplication rules

u1ui = ui, (i = 1, . . . , 4), u2u3 = −u3u2 = u4, u2u4 = −u4u2 = −u3,

[Editors’ note: one needs also the condition u2
2 = −u1] thus (2.14) leads to

a11 − a22 = a12 = a13 = a14 = 0

which ensures the fact that the algebra is solenoidal;25 adding (a11 + a22)u3 = 0
to (2.14), we reobtain all (2.11) which, however, can be satisfied only with PP−1
singular and the algebra is not bisolenoidal.

For the algebra of 2 × 2 matrices, if we select the units ei,k , (i, k = 1, 2) which
combine according to ei,heh,k = ei,k , relations (2.11) give rise to

∑
i

aj,h+i e1,i +
∑

i

aj+2,h+ie2,i = 0,

(i, j = 1, 2; h = 0, 2); since, for h = 0 they impose the vanishing of the first two
columns of PP−1 and for h = 2 of the remaining two columns, the algebra is not
bisolenoidal, not even in the complex field. As the unit of the algebra is e11 + e22,

23See Scorza cited in (2); besides the tables in (2), we have to add I (direct sum of the algebras
of complex and real numbers) which, over the complex field, reduces to III. We recall that the
classification given by Scorza is independent of the field of numbers.
24See Scorza cited in (4); besides the tables listed therein, we have to add III∗ (2 × 2 matrices), V
(direct product of the complex numbers and the bireal), VIII, LXXIX (direct product of complex
numbers with the bidual), LXXXI∗ and CXIX which, in the complex case, may be reduced to I, X,
X, CV, CVIII, CXXV, respectively.
25The fact that it is solenoidal is in fact evident, since uu−1 = 0.
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(2.14) can be obtained by summing the relations that we have for j = 1, h = 0, and
j = h = 2 and this leads to

a11 + a23 = a12 + a24 = a31 + a43 = a32 + a44 = 0;

these conditions are compatible with the fact that PP−1 is symmetric, positive
definite so that the algebra is solenoidal.26

In the algebra of quaternions, whose basis is e0 = 1, e1, e2, e3 = e1e2 and
satisfies

e2
1 = e2

2 = −1, e1e2 + e2e1 = 0,

(2.14) rewrites as

a11 −
∑

k=2,3,4

akk + 2
∑

k=2,3,4

a1kek−1 = 0;

thus one gets a11 = ∑
k=2,3,4 akk, a1k = 0, (k = 2, 3, 4) and since these conditions

are compatible with the fact that PP−1 is positive definite we get that the algebra is
solenoidal.

Since e1(e0, . . . , e3) = 2(e1,−e0, 0, 0) − (e0, . . . , e3)e1, the second of (2.11),
once that the first one of the (2.11) is satisfied namely (2.14), reduces to

(a11 − a22)e1 −
∑

k=3,4

a2kek−1 = 0,

and thus it leads to

∑
k

akk = 0, a2k = 0, (k = 3, 4).

Then, imposing the remaining (2.11), one obtains that PP−1 must vanish and this
excludes that the algebra is bisolenoidal, also over the complex field.

6. Real division algebras are, in addition to the field of real numbers, the algebra
of complex numbers and the one of quaternions;27 thus, from n. 5, we deduce that
also real division algebras of order n > 1 are solenoidal.

An immediate generalization of the proofs in n. 5 allows to state that all regular
algebras (total matric algebras) [Editors’ note: this is written in English in the
original text; see also Definition 2.3 and the comment after that.] and all the real
or complex Clifford algebras are solenoidal but not bisolenoidal.

26See Albert cited in I (4), Ch. IX, n. 11.
27See Albert cited in (26), Chapt. IX, n.11.
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From the two propositions it follows that simple real or complex algebras, i.e.
direct product of a division algebra with an algebra which is regular, of order n > 1
are solenoidal.

In force of the first theorem in n. 5, the real semi-simple algebras, i.e. direct sums
of simple algebras, are solenoidal if and only if all their components are so; since
there are no simple solenoidal algebras of order 1, 3, 5, 7,28 we conclude that real
semi-simple algebras of order 1, 3, 5, 7 are not solenoidal.

An algebra A = (u1, . . . , un−m; un−m+1, . . . , un) = (u′; u′′) of order n not
semisimple has a nontrivial subalgebra R = (u′′) of order m which is its maximal
nilpotent ideal, called radical of the algebra;29 in the case of A , (2.14) rewrites as:

(u′ u′′)
(

A1 A2

A3 A4

)(
u′−1
u′′−1

)
= u′A1u

′−1 + (u′ u′′)
(

0 A2

A3 A4

) (
u′−1
u′′−1

)
= 0,

and, since R and A − R are disjoint, this condition imposes the vanishing of the
two factors in the right hand side. It follows that: in order that the real algebra A
is solenoidal, A −R has to be solenoidal.

Since the real algebra A − R is semisimple,30 from the last two statements
it follows that the real algebras of orders n − 1, n − 3, n − 5, n − 7 are not
solenoidal.31

Algebras with cyclic radical, namely with radical of order m and index m + 1,
are direct sum of two algebras one of which is either the algebra of (m+1)-potential
numbers or the algebra of ternions;32 since, by virtue of the last statement of n. 5,
they are not solenoidal, real algebras with cyclic radical are not solenoidal. In
particular, algebras with radical of order 1 are not solenoidal.

Bearing in mind that if A −R is simple, its order must divide both the order of
A and the one of R,33 we show that there are no solenoidal real algebras of order
5 and 7.

We know already that there are no semisimple, solenoidal, real algebras of orders
5, 7; thus, recalling the next to the last theorem, algebras whose radicals have orders
4, 2, 1, 0 or 6, 4, 2, 1, 0, respectively, are not solenoidal.

If there existed a real solenoidal algebra A of order 5 with radical R of order 3,
the algebra A −R of order 2 would be solenoidal and thus it would be the algebra

28There is a simple solenoidal algebra of order 9, the regular algebra of 3× 3 matrices.
29See Albert cited in I (4), Ch. II, n.5.
30See G. Scorza, Sopra un teorema fondamentale della teoria delle algebre, Rend. Acc. Lincei (6),
vol. 20, p. 65–72 (1934).
31Since semisimple, commutative algebras of odd order cannot be solenoidal, we will have that
real commutative algebras of even order with radical of order n− 1, n− 3, ..., are not solenoidal.
An analogous result holds for n odd.
32See G. Scorza, Le algebre per ognuna delle quali la sottoalgebra eccezionale è potenziale, Acc.
Sc. Torino, vol. 70 (1934-35), n. 11. Let us recall that here we consider only algebras with unit.
33See Scorza cited in (30), n. 5.
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of complex numbers, which is simple; in this case, its order must divide the order of
A and this is absurd.

The same reasoning shows that the radical of a real solenoidal algebra of order 7
cannot be of order 5 and that if R is of order 3 then A −R cannot be simple. Thus
let us suppose that there exists a real, solenoidal algebra of order 7 with radical of
order 3—which will not be cyclic—and let A − R be direct sum of the algebra

of complex numbers with itself; the multiplication table of A would be

(
T1 T2

T3 T4

)
,

where T1 is the multiplication table of A −R whose units combine according to the
rules u2

1 = u1, u1u2 = u2, u2
2 = u1, u2

3 = u3u3u4 = u4u
2
4 = −u3, [Editor’s note:

u2
3 = u3, u3u4 = u4, u2

4 = −u3], T2 and T3 are matrices with elements in R and
T4 is the multiplication table of a nilpotent algebra of order 3 whose units combine
according to the rules u2

5 = u6u5 = u7, u2
6 = αu7 or u2

5 = u7, u2
6 = αu7 (case 1),

u5u6 = −u6u5 = u7 (case 2) or it is the table of a zero algebra (case 3).34 Then let
u = (u1 + u3 + αu5 + bu6 + cu7) be the unit of A and let us set

(u2 + u4)u4+i =
∑
k

miku4+k

(i, k = 1, 2, 3) with mik real numbers.
In the first two cases we will have, respectively,

(u2 + u4)u7 = (u2 + u4)u
2
5 = (

∑
i

m1iu4+i )u5 = γ u7

(u2 + u4)u7 = (u2 + u4)u5u6 = (
∑

i

m1iu4+i )u6 = γ u7

with γ real (it can also be zero). On the other hand

u7 = uu7 = (u1 + u3)u7 = −(u2 + u4)
2u7 = −γ 2u7;

thus the real algebra at hand cannot have a radical as in case 1 or 2. Thus let us
consider case 3; then

u4+i = uu4+i = (u1 + u3)u4+i = −(u2 + u4)
2u4+i = −

∑
k

mik(
∑

i

mikui+4),

thus ‖mik‖+ I3 = 0. But a real matrix of odd order cannot satisfy such an equation,
thus the radical of A cannot be a zero-algebra of order 3; this completes the proof
of the theorem.

34See Scorza cited in (2), § 2. [Editors’s Note: it should be Scorza cited in (3), § 2].
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2.3 Monogenicity and Total Derivability in Real
and Complex Algebras, III

Article III by Michele Sce, continuation of the Notes I, II published in these
“Rendiconti” pp. 30–35 and pp. 188–193 presented during the meeting of 13 March
1954 by B. Segre, member of the Academy.

7. Let x and y be elements of the algebra A as in n. 1 and let y(k) denote the
partial derivative of y(x) with respect to xk; in order to have that the Pfaffian form
y dx is closed it is necessary that

y(k)uh − uky
(h) = 0, (h, k = 1, . . . , n) (2.17)

so that y(x) is right totally derivable.35 If—possibly making a basis change—we
assume that u1 is the unit of A , from (2.17) we obtain

y(1)(ukuh − uhuk) = 0, (h, k = 1, . . . , n); (2.18)

so that, if A is not commutative, y(1) is a zero-divisor and the matrix which
corresponds to it in the algebra A ′, first regular representation of A , is singular.
Since this matrix is, by virtue of the total derivability, the jacobian matrix of y(x)

we have that functions y(x) with non-zero jacobian such that y dx is closed are the
functions totally derivable in a commutative algebra.

Since, by virtue of the results in n. 2, the form y dx is co-closed if and only if
the function y(x) is monogenic36 we can state that in the commutative, solenoidal
algebras, closed forms are co-closed, thus they are harmonic both in the Hodge and
in the de Rham sense.37

8. Let Sn be the vector space associated with A and let y be right monogenic in
a domain D, y ′ a left monogenic function in a domain D′; then if Vn−1 is a (n− 1)-
dimensional cycle contained in D ∩ D′ and homologous to zero there, and dx∗ is
the adjoint of the form dx = ∑

i ui dxi , (i = 1, . . . , n), one has

∫
Vn−1

y dx∗ y ′ = 0.38 (2.19)

35See A. Kriszten, Hypercomplexe und pseudo-analytische Funktionen, Comm. Math. Helv. v. 26
(1952), pp. 6–35, § 2; the result appears in integral form in Rizza ciated in (2), n. 11. If one denotes
by dy/dx the jacobian matrix of y(x) and by T the table of multiplication of A , one can see that

(2.17) may be written in the compact form

(
dy

dx

)
−1

T = T−1
dy

dx
which is evidently invariant with

respect to changes of basis.
36See Kriszten cited in (35) §3; the result, though in integral form, can be found already in Rizza
cited in I (2), n.7 and in Segre cited in I (2), p. 446.
37The statement improves the one given by Kriszten cited in 35 §4, since this Author does not take
into account that monogenicity depends on the basis.
38See Fueter cited in I (2) and Rizza cited in (36).
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Now let us suppose that for the monogenic functions of A there exists an integral
formula of Cauchy-type. More precisely, let us assume that in A there exists a
function f (x, ξ) which, for ξ fixed, is right monogenic in x in Sn except a set I , at
most (n−1)-dimensional, of points in which it is not defined, so that for every g(x)

left monogenic in a domain D′ one has

∫
Vn−1

f (x, ξ) dx∗ g(x) = g(ξ) (2.20)

where Vn−1 is an (n− 1)-dimensional cycle encircling ξ and homologous to zero in
D′; by virtue of the theorem just stated, Vn−1 cannot be homologous to zero in the
domain where f (x, ξ) is monogenic and must contain the points in I . In particular,
(2.20) must hold when g(x) is the unit of the algebra and Vn−1 is a sphere centered
at ξ and with radius r; setting

x1 = ξ1 + r cos ϕ1 · · · cos ϕn−1, x2 = ξ2 + r sin ϕ1 cos ϕ2 · · · cos ϕn−1, . . .

. . . , xn = ξn + r sin ϕn−1, (0 ≤ ϕ1 < 2π; −π

2
≤ ϕi ≤ π

2
, . . . , i = 2, . . . , n− 1),

since it turns out that

dx∗ = rn−2(x − ξ) dσ,

where dσ = cosn−2 ϕn−1 · · · cos ϕ2 dϕ1 · · · dϕn−1 is the area element of the unit
sphere,39 (2.20) gives

∫
S

f (x, ξ)rn−2(x − ξ) dσ = 1. (2.21)

Thus in the algebras where the function r2−n(x − ξ)−1 is right monogenic, where
defined, namely it satisfies

∑
k

∂

∂xk

[r2−n(x − ξ)−1]uk =

= r−n(x − ξ)−1[(n− 2)(x − ξ)+ r2
∑

k

uk(x − ξ)−1uk] = 0,

(2.22)

we can presume that formula (2.20) holds where we have set

f (x, ξ) = k−1r2−n(x − ξ)−1, k =
∫

S

dσ. (2.23)

39See W. Nef, Ueber eine Verallegemeinnerung des Satzes von Fatou für Potentialfunktionen,
Comme. Math. Helv., vol. 13 (1943–44), pp. 215–241, in between p. 231 and p. 232.
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Since in Clifford algebras, for any nonzero divisor x one has
∑

k ukxuk = −(n −
2)x̄, with xx̄ = r2, (2.22) is satisfied and it remains to establish if (2.20), where we
have set (2.23), effectively gives an integral formula in Clifford algebras.40

9. To obtain real solutions to the equation

Ωh(x1, . . . , xp) =
p∑

k=1

αk(x1, . . . , xp)
∂2h

∂x2
k

= 0 (2.24)

we can consider the equation

Ωf (x) = 0 (2.25)

where f is a totally derivable function of the element x = x1u1 + · · · + xpup of
the algebra A of order n (p ≤ n). Equation (2.25) is solvable is and only if, with
respect to some basis of A , it holds

p∑
k=1

αku
2
k = 0.41

Thus, if p = n and αk are constant, (2.25) is solvable in solenoidal algebras in
the complex field; in particular, if (2.24) is elliptic, (2.25) is solvable in solenoidal
algebras in the field of real numbers.

The aforementioned method easily extends to partial differential equations of
order greater that two; for example, to solve the equation

Δnh(x1, x2) = 0

we can bring back to totally derivable functions in an algebra such that

(u2
1 + u2

2)
n = 0.

Among this type of algebras, are particularly relevant the cyclic algebras of
order 2n whose basis 1, j, j2, . . . , j2n−1 satisfies the relation (1 + j2)n = 0.
By setting ω = 1 + j2, we can express j through the imaginary unit and powers
of ω; thus one sees that such algebras are direct product of the algebra of complex

40The integral formula given by R. Fueter, Die Funktionentheorie der Differentialgleichungen
Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv., v. 7, pp. 307–330,
(1934-35), n.4 for the algebra of quaternions and those given in Clifford algebras for linear systems
in Clifford algebras are of the indicated form. G. B. Rizza has promised a work on general integral
formulas in Clifford algebras.
41See P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Am. Math. Soc., v. 30
(1928), pp. 641–667, n. 25.
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numbers and algebras of n-potential numbers with basis 1, ω, . . . , ωn−1. 42 This
fact ensures that these algebras are solenoidal and such that totally derivable
functions y(x0, . . . , x2n−1) are harmonic; moreover, a simple inspection of the
jacobian matrix which, by definition of total derivability is of the form

⎛
⎜⎜⎜⎝

α0 0 0 . . .

α1 α0 0 . . .

α2 α1 α0 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ with αk =

(
a2k −a2k+1

a2k+1 a2k

)
(2.26)

ensures that every y is a harmonic function of all pairs x2k, x2k+1. It is worthwhile to
note that monogenic functions which are not totally derivable are not even harmonic.

10. Let us now consider noncommutative algebras An of order 2n whose basis

1, i, ω, iω, . . . , ωn−1, iωn−1

satisfies the relations

i2 = −1, ωn = 0, ωi + iω = 0; 43

we can write any element a in An in the form

a = α0 + α1ω + · · · + αn−1ω
n−1 (2.27)

where αk = a2k+ia2k+1 behave among them like ordinary complex numbers, while

αkω = ωαk. (2.28)

Besides the algebras An, we will consider the algebra Qn of order 4n which can
be obtained by maintaining condition ωn = 0 and assuming that αk in (2.27) and
(2.28) behave among them like ordinary quaternions.

42For n = 2 one has the algebra studied by Sobrero cited in I (1), which, from another point of
view Ketchum already crossed in Ketchum cited in (41), n. 31. [Editors’ Note: the algebra studied
by Sobrero and Ketchum is commutative and corresponds to the case iω = ωi, i.e. to algebra
LXXIX in Scorza’s classification [32]. The algebra that Sce is studying here is noncommutative
and corresponds to algebra LXXXI in [32].] In this case, the transformations from one basis to
another can be expressed by the relations 2i = 3j + j3, ω = a(1 + j2) + b(j + j3), iω =
−b(1 + j2) + a(1 + j3) with a, b arbitrary real numbers (non both zero); to the best of our
knowledge, these general relations have never been considered.
43For n = 2 one has the algebra LXXXI of n. 5.
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Taking into account the expression of the product of two elements a = ∑
k αkω

k ,
b = ∑

k βkω
k

ab =
∑

k

αr β̃sω
k, (r + s = k),

β̃s = βs or βs according to the fact that r = k − s is even or odd, with long but not
difficult calculations one can establish the following results:
the elements in the center of an algebra An or Qn defined via (2.27) and (2.28) and
ωn = 0 have the form

∑
α2kω

2k with α2k = α2k.
The zero divisors are of the form ωia thus they are all and the only nilpotent

elements in the algebra; these latter constitute the radical, which is of index n and
order 2(n− 1) for An and 4(n− 1) for Qn.

The only idempotent not nilpotent is the unit thus An and Qn are algebras
completely primary.

If one considers only the case n = 2, as we shall do, from the first statement one
obtains immediately that A2 and Q2 are normal. Moreover, setting ā = ᾱ0 − α1ω,
if we say that the norm of a is the real number aā = α0ᾱ0, we see that the zero
divisors are all the elements with zero norm and only them.

By setting y = α + βω and x = ξ + ηω, monogenic functions y(x) are also
harmonic in the components of ξ .

In fact, it is known44 that the monogenicity condition for y(x) may be written as
Dy = 0 where D is an operator that behaves like an element in the algebra; since
the norm of D is the laplacian associated with the components of ξ , by applying to
Dy = 0 the operator D̄ we obtain the result.

11. The considerations that we made so far, even though maybe not uninteresting,
would be in need of being deepened if one wishes to deduce more concrete results;
however, it is our belief that such results can be obtained only in special type of
algebras like, for example, An.

About these latter algebras we point out that their zero divisors, in the repre-
sentative space S2n, form a linear space S2(n−1); thus, in this case, the study of the
variety of the zero divisors—necessary preliminary to look for integral formulas—
is trivial. The difficulty in this type of problems is the lack of concrete examples
of monogenic functions, especially in the case of noncommutative algebras;45 for
example, in A2 neither the powers nor the exponential are monogenic function, and
we can only say that such functions are of the form

w = u(x1, x2)+ v(x1, x2)

x2
(x2i + x3ω + x4iω)

44See Segre cited in cited in I (2) p. 442.
45It is less difficult in commutative solenoidal algebras, since in these algebras the most common
functions in analysis are totally derivable.
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with u + iv holomorphic. In the algebra of quaternions, from a similar property
one deduces that Δw (and in particular Δxn) are monogenic functions; since such
a result is not valid in A2, there is the problem of knowing if in A2 there is a
differential operator Ω such that Ωw are monogenic.

Since all these problems appear to be connected among them, an answer, even
partial, could shed light on the whole question: this is what we hope to do in another
work.

2.4 Comments and Historical Remarks

In this section we are revising, also providing examples, the concepts contained in
the previous sections i.e. in the original papers [27–29]. We also add some historical
remarks which seem to be nowadays forgotten.

The interest in theories of functions in algebras other than the algebra of complex
numbers and generalizing the complex holomorphic functions started after the study
of these algebras in the classical works of Gauss, Hamilton, Hankel, Frobenius and
goes back to the end of the nineteenth century (see [40] for a list of references). It
then continued with the work of Lanczos [17], who considered the generalization to
quaternions back in 1919, but his work was mostly unknown until [18], and with the
PhD dissertation of Ketchum, see [14]. It was in the early thirties when the study
of quaternionic functions started systematically with the works of Moisil [23] and
Fueter and in the forties, Krylov [16] and Meilikhson [22] studied the notion of
quaternionic differentiability.

It is interesting that in the thirties and forties, various authors considered
functions with values in algebras, for example Ward [40] who developed his PhD
dissertation on the theory of analytic functions in associative algebras, Nef [24],
Spampinato [38], Sobrero [37] and also Fueter [7–9] and Haefeli [11]. The interest
in these studies continued even later as shown by the works of Kriszten [15] and
Rizza [26].

Michele Sce’s works considered in this chapter insert in this field of researches.
He knew rather well the existing literature and despite the fact that the circulation of
the journals, and consequently papers, was more limited in the fifties, his knowledge
of the available works was complete. Sce notes in his papers, that some function
theories were already developed, specifically the theory of hyperholomorphic (or
hyperdifferentiable or monogenic) functions over quaternions, bicomplex numbers,
Clifford algebras. In the quaternionic case, the analog of holomorphic functions are
the Cauchy–Fueter regular functions, so-called since it was Fueter and his school
who developed this function theory.

In his work Sce, as well as a few other authors, quotes the work of Moisil
[23] published in 1931, mentioning that this author was using the term monogenic,
instead of regular, functions. But the history of the birth of regularity on quaternions
is more complicated. For example (as we mentioned before and without any claim
to historical completeness), Lanczos already developed this approach in his 1919
dissertation [17], Fueter presented some of his results at the International Congress
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of Mathematicians in 1928, [6], and Iwanenko and Nikolsky already considered the
case of biquaternions in 1930, [13]. It is also likely that, at that time, other Russian
researchers were working in this framework. Thus, we believe that it is fair to say
that various authors, more or less at the same time, were considering quaternionic
functions and a notion of holomorphicity in this context.

The second four dimensional case (over R), namely the one of bicomplex
numbers, was started by Scorza Dragoni in [35] and, after the monograph [25],
it has attracted attention in more recent times, see [20]. We also note that another
four dimensional case, the one of bidual numbers studied by Sobrero [37] has been
basically abandoned. We note that we kept the name “bidual” to be consistent with
the terminology adopted by the Italian school, even though this algebra is nothing
but the complex Grassmann with one generator f1 such that f21 = 0. Algebras of
order up to four have been studied in [30–34].

The case of functions Clifford algebra valued is widely studied in the literature,
starting with the celebrated monograph [3] which has been followed by several
other books and hundreds of papers. However, one should notice that the notion
of monogenicity treated in this chapter is given for functions from (a subset of) an
algebra to itself. This is not the case treated in [3] and subsequent literature, where
the functions have values in a Clifford algebra but are defined on Euclidean space
identified with the set of paravectors or of vectors in the algebra. It is remarkable
that Sce already considered this class of functions, as we shall see in Chap. 5, in
relation with the celebrated Fueter theorem nowadays known as Fueter-Sce-Qian
theorem. These functions were eventually considered by Iftimie [12] thus denoting
that also the Romanian school was continuing the studies in hypercomplex analysis.

Below, we will use some examples to illustrate what is presented in the previous
sections and to compare the various concepts. In our examples, we will discuss some
particular choices of algebras of order up to four.

We will use standard terminology and notation, like AT (instead of A−1 used by
Sce) to denote the transpose of a matrix A and, in particular, of a vector. By A we
denote a real or complex algebra of order n and by A ′, A ′′ the algebras of n × n

matrices which are the first and second regular representation of A .
Even though the basic notions and terminology about algebras are well known,

we repeat some preliminaries for the sake of completeness.

Definition 2.1 An algebra over a field F is a set A such that A is a vector space
over F and there is a F -bilinear mapping from A ×A 
→ A , (a, b) 
→ ab, i.e.

k(ab) = (ka)b = a(kb), for all k ∈ F, a, b ∈ A .

This bilinear map is called multiplication.

In particular, an algebra is called associative (resp. commutative) if the multipli-
cation is associative (resp. commutative).

Even though it is not specified in Sce’s papers, all the algebras considered are
associative. This was a standard assumption in the papers written in Italy at that
time, unless otherwise specified, and it appears also from the calculations performed
in the manuscripts.
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Definition 2.2 We say that A has order n if there exist u1, . . . , un ∈ A such that
every a ∈ A can be expressed in a unique way as

a = a1u1 + · · · + anun, ai ∈ F, i = 1, . . . , n.

We recall that, in this Chapter, we consider associative algebras and that an algebra
A is called division algebra if it is, as a ring, a division ring.
We now state more definitions that are used in the book.

Definition 2.3 An algebra is called regular if it is isomorphic to an algebra of m×m

matrices.

In 6 Sce uses the term regular also referring to the English terminology total matric
algebra which, however, seems to be not anymore in use.

Definition 2.4 An element a ∈ A is called nilpotent if ar = 0 for some r ∈ N and
the least such r is called index of a. Moreover, a is called properly nilpotent if both
ya and ay are zero o nilpotent for every y ∈ A .

Definition 2.5 The set R consisting of zero and of all properly nilpotent elements
is called radical of A .
An algebra is called semi-simple if its radical is the zero ideal.
An algebra is called simple if its only proper ideal is the zero ideal and A is not a
zero algebra of order 1, namely A is not such that ab = 0 for every a, b ∈ A .

It is also useful to recall that

Theorem 2.1 Let N be an ideal of an algebra A . Then A \N is semi-simple if
and only if N is the radical ideal of A .

As explained in Sect. 2.1, the notion of total differentiability has been introduced
by Spampinato in [38]. The development of a function theory starting from this
definition was not really developed. In the case of left (resp. right) derivability,
meant as the existence of the limit of the left (resp. right) difference quotient

(q − q0)
−1(f (q)− f (q0)) (f (q)− f (q0))(q − q0)

−1

where q, q0 are quaternions, one obtains affine functions only. This fact was proved
by Meilikhson in [22], but the interested reader may find a proof in Sudbery’s paper
[39] which made the result commonly known.

It was realized only at a later stage, see for examples the works [10, 19, 21] by
Gürlebeck, Malonek, Shapiro and others, that in order to obtain a meaningful class
of functions one needs to construct differently the quotients. By taking these suitable
difference quotients, the notion of differentiability that one obtains coincides with
the notion of monogenicity, in analogy with the complex case.
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In order to write the notion of total derivability used in this work, we recall the
next definition (see (2.1), (2.2) and [1, 2]):

Definition 2.6 Let A be a real or complex algebra of order n, with unit and let
u = (u1, . . . , un) be a vector containing the ordered elements in a given basis of A .
We say that the algebras A ′, A ′′ are the first and second regular representation of
A if their elements the are order n matrices X′, X′′ defined, for any x ∈ A , by the
relations

xu = uX′

ux = u(X′′)T .

Definition 2.7 Let A be an algebra with basis u1, . . . , un, x ∈ A and y : A −→
A . Let u = (u1, . . . , un) and let ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) be the
coordinates of x, y, respectively, with respect to the given basis, i.e.

x = ξuT ,

y = ηuT .

If y is derivable, that is, all the components of η are derivable with respect to the
components of ξ , we say that y is right (resp. left) totally derivable if the jacobian
dη/dξ belongs to A ′ (resp. the transpose of the jacobian belongs to A ′′).

Remark 2.1 The notion of right or left total derivability is designed on the notion of
right or left differentiability, in the standard sense. In fact, let us consider a function
y with values in an algebra with unit A , where a basis u1, . . . , un is fixed:

y(x) = y1(x)u1 + · · · + yn(x)un,

where x = x1u1+· · ·+xnun. Note that xi , yi , i = 1, . . . , n are real or complex and
x varies in an open set of A of when we identify A with R

n (or Cn). If we assume
that the functions y� admit derivatives with respect to xi and we set

dx = dx1u1 + · · · + dxnun, dy = dy1u1 + · · · + dynun,

with

dy� = ∂y�

∂x1
dx1 + · · · + ∂y�

∂xn

dxn, � = 1, . . . , n,

then the function y is left differentiable or totally derivable on the left if there exists
a function z(x) such that

dy = dx z(x),
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y is right differentiable or totally derivable on the right if there exists a function z(x)

such that

dy = z(x) dx, (2.29)

for every dx. Writing z(x) = z1(x)u1 + · · · + zn(x)un and setting

uiuj =
n∑

�=1

γij�u�,

we have that (2.29) becomes

n∑
�=1

dy�u� =
n∑

i,j,�=1

γij�zidxju�.

By equating the coefficients in front of the units u�, we deduce:

dy� =
n∑

i,j=1

γij�zidxj , � = 1, . . . , n.

Since dy� = ∑n
j=1

∂y�

∂xj

dxj and the differentials dxi are independent we obtain

n∑
i=1

γij�zi = ∂y�

∂xj

, j, � = 1, . . . , n. (2.30)

Thus the total derivability on the right (2.29) is equivalent to (2.30). The left hand
side of (2.30) gives the entries x ′�j of the matrix X′ of the first regular representation
of z. Thus (2.30) expresses the fact that the Jacobian matrix (∂y�/∂xj ) belongs to
A ′.

In Definition 2.7, x is varying in the whole algebra, but when a topology can be
defined (for example identifying the elements in a real algebra of order n with
vectors in R

n) we can consider an open set U in A and have the notion of right
or left totally derivable function on U with values in A . The notion implies that the
jacobian matrix satisfies suitable symmetries, as shown in the following examples.

Example 2.1 Let us consider the case of the real algebra of complex numbers. Then
a basis is given for example by {1, i} with i2 = −1, so that u = (1 i). Then
x = x1 + ix2 and

xu = (x1 + ix2 ix1 − x2) = (1 i)

(
x1 −x2

x2 x1

)
.
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In this commutative case the two representationsA ′ and A ′′ coincide. The jacobian
matrix

⎛
⎜⎝

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

⎞
⎟⎠

belongs to A ′ if and only if

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= − ∂y2

∂x1

namely if and only if the Cauchy–Riemann conditions are satisfied.
We know from the general theory that total derivability is independent of the

choice of a basis. In this specific example, let us choose the basis {1, −i}. Then
x = x1 − ix2

xu = (x1 − ix2 − ix1 − x2) = (1 − i)

(
x1 −x2

x2 x1

)
.

Thus the conclusion is as above.

Example 2.2 Let us consider the algebra of dual numbers, namely the algebra
generated by u1, u2 satisfying u2

1 = u1, u2
2 = 0, u1u2 = u2u1 = u2. Let

x = x1u1+x2u2, u = (u1 u2). Then, since the algebra is commutative the right and
left representations coincide and follow from

xu = (x1u1 + x2u2 x1u2) = (u1 u2)

(
x1 0
x2 x1

)
.

Thus the condition of right and left total derivability of y(x) = y1(x)u1 + y2(x)u2
is then

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= 0.

To conclude the examples in the case of algebras of second order, we consider
the case of hyperbolic numbers:

Example 2.3 Let us consider the algebra of hyperbolic numbers, namely the algebra
generated by u1, u2 satisfying u2

1 = u1, u2
2 = u1, u1u2 = u2u1 = u2. Let
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x = x1u1 + x2u2, u = (u1 u2). Due to the commutative setting, the left and right
representations follow from

xu = ux = (x1u1 + x2u2 x1u2 + x2u1) = (u1 u2)

(
x1 x2

x2 x1

)
.

Thus the condition of total derivability, both left and right, is expressed by

∂y1

∂x1
= ∂y2

∂x2
,

∂y1

∂x2
= ∂y2

∂x1
.

Example 2.4 We now consider the case of an algebra of the third order, specifically
the algebra of ternions which is defined as the real algebra of upper triangular 2× 2
matrices. As a basis of the algebra, we choose

u1 =
(

1 0
0 0

)
, u2 =

(
0 0
0 1

)
, u3 =

(
0 1
0 0

)
.

The multiplication rules are

u2
1 = u1, u2

2 = u2, u2
3 = 0, u1u3 = u3, u3u2 = u3,

u1u2 = u2u1 = u2u3 = u3u1 = 0.

Setting x = x1u1 + x2u2 + x3u3, the first representation can be computed from

xu = (x1u1 x2u2 + x3u3 x1u3) = (u1 u2 u3)

⎛
⎝x1 0 0

0 x2 0
0 x3 x1

⎞
⎠

while the second representation follows from

ux = (x1u1 + x3u3 x2u2 x2u3) = (u1 u2 u3)

⎛
⎝x1 0 0

0 x2 0
x3 0 x2

⎞
⎠ .

Thus the conditions of right total derivability are expressed by

∂y1

∂x2
= ∂y1

∂x3
= ∂y2

∂x1
= ∂y2

∂x3
= ∂y3

∂x1
= 0,

∂y1

∂x1
= ∂y3

∂x3
,
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while the left total derivability corresponds to

∂y1

∂x2
= ∂y1

∂x3
= ∂y2

∂x1
= ∂y2

∂x3
= ∂y3

∂x2
= 0,

∂y2

∂x2
= ∂y3

∂x3
.

Example 2.5 A four order algebra which has been widely studied from the point of
view of a function theory on it is the one of bicomplex numbers BC with respect to
the basis 1, i, j, k so that x = x1+ x2i+ x3j + x4k. We recall that i2 = j2 = −1,
ij = j i = k. It is a commutative algebra, so that right and left total differentiability
coincide. Since

xu = (x1+x2i+x3j+x4k, x1i−x2+x3k−x4j, x1j+x2k−x3−x4i, x1k−x2j−x3i+x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞
⎟⎟⎠ .

Thus, the function y(x) is left or right totally differentiable if and only if the jacobian

matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y1

∂x3
= ∂y2

∂x4
= − ∂y3

∂x1
= − ∂y4

∂x2
,

∂y1

∂x4
= − ∂y2

∂x3
= − ∂y3

∂x2
= ∂y4

∂x1
.

(2.31)

Example 2.6 Let us consider the noncommutative case of quaternions H with
respect to the basis 1, i, j, k so that x = x1 + x2i + x3j + x4k. We recall that
i2 = j2 = −1, ij = −j i = k. We then have

xu = (x1+x2i+x3j+x4k, x1i−x2−x3k+x4j, x1j+x2k−x3−x4i, x1k−x2j+x3i−x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ .
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Thus, the function y(x) is right totally differentiable if and only if the jacobian

matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y1

∂x3
= − ∂y3

∂x1
= ∂y4

∂x2
= − ∂y2

∂x4
,

∂y1

∂x4
= ∂y2

∂x3
= − ∂y3

∂x2
= − ∂y4

∂x1
.

Analogously, we have

ux = (x1+x2i+x3j+x4k, x1i−x2+x3k−x4j, x1j−x2k−x3+x4i, x1k+x2j−x3i−x4)

= (1 i j k)

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 x4 −x3

x3 −x4 x1 x2

x4 x3 −x2 x1

⎞
⎟⎟⎠ .

Thus the left total derivability conditions are:

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x2
= − ∂y2

∂x1
= − ∂y3

∂x4
= ∂y4

∂x3
,

∂y1

∂x3
= − ∂y3

∂x1
= − ∂y4

∂x2
= ∂y2

∂x4
,

∂y1

∂x4
= − ∂y2

∂x3
= ∂y3

∂x2
= − ∂y4

∂x1
.

It is also clear that the 12 = n2 − n conditions arise from imposing that the 16 =
n2 entries depend on 4 = n parameters. These are definitely different from the
conditions expressing the right or left monogenicity, as we shall see below.

Example 2.7 Sce made a comment on the possible interest of the algebra LXXXI in
the classification given by Scorza in [34], so we consider also this case. According
to n. 10, the basis of the algebra can be written as u = (1, i, ω, iω) with i2 = −1,
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ω2 = 0, iω+ωi = 0. Setting x = x1+ ix2+ωx3+ iωx4, easy computations show
that

xu = (1, i, ω, iω)

⎛
⎜⎜⎝

x1 −x2 0 0
x2 x1 0 0
x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ ,

while

ux = (1, i, ω, iω)

⎛
⎜⎜⎝

x1 −x2 0 0
x2 x1 0 0
x3 −x4 x1 x2

x4 x3 −x2 x1

⎞
⎟⎟⎠ .

We deduce that the function y(x) is right totally differentiable if and only if the

jacobian matrix

(
∂yi

∂xk

)
satisfies the conditions

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x3
= ∂y1

∂x4
= ∂y2

∂x3
= ∂y2

∂x4
= 0

∂y1

∂x2
= − ∂y2

∂x1
= ∂y3

∂x4
= − ∂y4

∂x3
,

∂y3

∂x1
= − ∂y4

∂x2
,

∂y3

∂x2
= ∂y4

∂x1
.

while the left totally differentiability conditions are

∂y1

∂x1
= ∂y2

∂x2
= ∂y3

∂x3
= ∂y4

∂x4
,

∂y1

∂x3
= ∂y1

∂x4
= ∂y2

∂x3
= ∂y2

∂x4
= 0

∂y1

∂x2
= − ∂y2

∂x1
= − ∂y3

∂x4
= ∂y4

∂x3
,

∂y3

∂x1
= ∂y4

∂x2
,

∂y3

∂x2
= − ∂y4

∂x1
.
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We now turn to the notions of right or left monogenicity that are made explicit in
the examples below, computed again in the cases considered above. We recall that
a function y = y(x) with values in A is said to be right monogenic (see (2.3) and
[36]) if

u

(
dy

dx

)
uT = 0

or left monogenic if (see (2.3))

u

(
dy

dx

)T

uT = 0.

By explicitly writing these two conditions using the operator

D =
n∑

i=1

ui
∂

∂xi

applied to y(x) = ∑n
i=� u�y�(x), it is clear that the second condition can be

expressed as Dy = 0 while the second one is

n∑
i=1

uj

∂yj

∂xi

ui = yD = 0

(where the notation of writing D on the right means that the units in D are written
on the right).

Remark 2.2 The reader may wonder if the right and left monogenicity conditions
are related by transposition of matrices. However

(
u

dy

dx
uT

)T

= 0

equals

(uT )T
(

dy

dx

)T

uT = u

(
dy

dx

)T

uT

only if A is commutative. And in fact, in this case the two notions coincide.

Example 2.8 In the complex case, the notion of monogenicity (left or right, since
we work in a commutative setting) is expressed by

(1 i)

⎛
⎜⎝

∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

⎞
⎟⎠

(
1
i

)
=

(
∂y1

∂x1
+ i

∂y2

∂x1

)
+

(
∂y1

∂x2
+ i

∂y2

∂x2

)
i = 0
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which translates into the Cauchy–Riemann equations

∂y1

∂x1
− ∂y2

∂x2
= 0,

∂y2

∂x1
+ ∂y1

∂x2
= 0,

so the notion, as expected, corresponds to the one of holomorphicity. It is immediate
to verify that one obtains exactly the same conditions if one takes the transpose of
the jacobian.

Example 2.9 Another case of an algebra of second order that we considered above
is the one of dual numbers. Using the basis in Example 2.2, the right (and left)
monogenicity conditions are expressed by

∂y1

∂x1
= 0,

∂y1

∂x2
+ ∂y2

∂x1
= 0. (2.32)

In the case of hyperbolic numbers we have:

Example 2.10 Using the basis of hyperbolic numbers given in Example 2.3, the left
(and right) monogenicity conditions are expressed by

∂y1

∂x1
+ ∂y2

∂x2
= 0

∂y2

∂x1
+ ∂y1

∂x2
= 0.

(2.33)

We note that in the literature one may find the above equations written with
different signs. In fact, (2.33) expresses the fact that y1u1 + y2u2 is in the kernel

of u1
∂y1

∂x1
+ u2

∂y2

∂x2
, whereas in [20] one finds the conditions characterizing the

kernel of u1
∂y1

∂x1
− u2

∂y2

∂x2
. The two function theories so obtained are different but

equivalent.

Example 2.11 In the case of ternions, using the basis previously introduced, see
Example 2.4, the right and left monogenicity conditions are expressed, respectively,
by

∂y1

∂x1
= ∂y2

∂x2
= 0,

∂y3

∂x2
+ ∂y1

∂x3
= 0,

and

∂y1

∂x1
= ∂y2

∂x2
= 0,

∂y2

∂x3
+ ∂y3

∂x1
= 0.



2.4 Comments and Historical Remarks 37

Example 2.12 For the algebra BC the monogenicity conditions (left or right) are

expressed by u

(
dy

dx

)
uT = 0 and taking into account the multiplication rules we

obtain

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
+ ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
− ∂y3

∂x4
− ∂y4

∂x3
= 0

∂y1

∂x3
− ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
+ ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0.

(2.34)

If the function y(x) is totally derivable, then it is also monogenic, since (2.31) imply
that all the equations in (2.34) are identities, already with the basis {1, i, j, k}.
Example 2.13 In the quaternionic case, if we impose the condition of right mono-
genicity, i.e.,

(1 i j k)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y1

∂x1

∂y1

∂x2

∂y1

∂x3

∂y1

∂x4
∂y2

∂x1

∂y2

∂x2

∂y2

∂x3

∂y2

∂x4
∂y3

∂x1

∂y3

∂x2

∂y3

∂x3

∂y3

∂x4
∂y4

∂x1

∂y4

∂x2

∂y4

∂x3

∂y4

∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1
i

j

k

⎞
⎟⎟⎠ = 0 (2.35)

with easy computations we obtain the system:

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
− ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
+ ∂y3

∂x4
− ∂y4

∂x3
= 0

∂y1

∂x3
− ∂y2

∂x4
+ ∂y3

∂x1
+ ∂y4

∂x2
= 0

∂y1

∂x4
+ ∂y2

∂x3
− ∂y3

∂x2
+ ∂y4

∂x1
= 0

which corresponds to the well known Cauchy–Fueter conditions for the right
regularity of a quaternionic function. By taking the transpose of the jacobian, with
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similar calculations, we obtain the Cauchy–Fueter conditions for the left regularity,
i.e.,

∂y1

∂x1
− ∂y2

∂x2
− ∂y3

∂x3
− ∂y4

∂x4
= 0

∂y1

∂x2
+ ∂y2

∂x1
− ∂y3

∂x4
+ ∂y4

∂x3
= 0

∂y1

∂x3
+ ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
− ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0

(2.36)

Remark 2.3 In various works, see [4] and the references therein, we considered
functions which are Cauchy–Fueter regular with respect to n > 1 quaternionic
variables. The regularity condition is expressed by a system consisting of 4n

equations obtained by writing for each of the n quaternionic variables a system of
the form (2.36). The analysis of this class of functions is rather complicated and is
performed in [4] with algebraic methods based on the construction of a minimal free
resolution of the module associated with the system. It is essential to consider n > 1
since in one variable the methods do not provide interesting information, basically
because the matrix representing the system (2.36) is square and nondegenerate. It is
however interesting to note that when considering the notion of total derivability, the
algebraic study may be meaningful also when n = 1 since the matrix representing
the system is not square. Such a study deserves to be further investigated.

Finally, we consider the case of the algebra LXXXI in [34]:

Example 2.14 In the case of the algebra LXXXI, using the basis in Example 2.7 we
immediately deduce that the left monogenicity conditions are expressed by:

∂y1

∂x1
− ∂y2

∂x2
= 0

∂y1

∂x2
+ ∂y2

∂x1
= 0

∂y1

∂x3
+ ∂y2

∂x4
+ ∂y3

∂x1
− ∂y4

∂x2
= 0

∂y1

∂x4
− ∂y2

∂x3
+ ∂y3

∂x2
+ ∂y4

∂x1
= 0.

These relation are, formally, similar to the conditions of left Cauchy–Fueter
regularity in which in the first two equations only the derivatives with respect to
x1 and x2 appear. However, from the point of view of the algebraic analysis the two
systems are different. This is visible, for example, when taking the minimal free
resolution in the case of two variables in this algebra. The first syzygies in fact are
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quadratic and linear whereas in the Cauchy–Fueter case there are only quadratic
syzygies, see [4].

In order to relate the notions of total derivability and of monogenicity (left or
right) one needs conditions on the ambient algebra and this justifies the notions
of solenoidal or bisolenoidal algebra. In order to distiguish these algebras among
themselves, a useful fact that may be useful in understanding the computations in
Section 2 of [27] (see also Sect. 1.1) is the following

Proposition 2.1 Let u = (u1, . . . , un), u′ = (u′1, . . . , u′n) where u and u′ are bases
of the algebra A and let u = u′P where P is a nonsingular matrix. Let ξ and
ξ ′ = ξPT the coordinates with respect these two bases. The jacobian of ξ ′ with

respect to ξ is

(
dξ ′

dξ

)
= P .

Proof Let P = (pij ), then

ξ ′ = ξPT ⇐⇒ (ξ ′1, ξ ′2, . . . , ξ ′n) = (ξ1, ξ2, . . . , ξn)

⎛
⎜⎜⎝

p11 p21 . . . pn1

p12 p22 . . . pn2

. . . . . .

p1n p2n . . . pnn

⎞
⎟⎟⎠ ,

so that

ξ ′1 = p11ξ1 + p12ξ2 + . . .+ p1nξn

ξ ′2 = p21ξ1 + p22ξ2 + . . .+ p2nξn

. . . = . . .

ξ ′n = pn1ξ1 + pn2ξ2 + . . .+ pnnξn.

Thus
∂ξ ′i
∂ξj

= pij and the statement follows. ��

Let us recall the following formulas:

uiuPP−1u−1 = 0, i = 1, . . . , n (2.10)

uPP−1uiu−1 = 0, i = 1, . . . , n. (2.11)

zuPP−1u−1 = 0, (2.12)

uPP−1zu−1 = 0; (2.13)

uPP−1u−1 = 0. (2.14)
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Definition 2.8 An algebra with unit is solenoidal if its bases satisfy (2.14) with P

non singular. It is bisolenoidal if it has bases satisfying (2.11) with P non singular.

Theorem 2.2 In an algebra with unit we have
(2.10)⇐⇒ (2.12)⇐⇒ (2.14)
and
(2.11)⇐⇒ (2.13)�⇒ (2.14).
Thus, if an algebra is bisolenoidal it is also solenoidal, but not viceversa.

The results in Sect. 2.1 can be summarized as follows:

Theorem 2.3 In an algebra with unit, functions right totally derivable are right
monogenic if and only if (2.14) holds while they are left monogenic if and only if
the relations (2.11) hold. In this latter case, the functions are also right monogenic.

Proof Assume that a function y(x) is right totally derivable, then the condition of
being right monogenic, with respect to a basis obtained via the change of basis given
by the nonsingular matrix P , is expressed by (2.10) which hold if and only if (2.14)
holds. The condition of being left monogenic, with respect to a basis obtained via
the change of basis given by the nonsingular matrix P , is expressed by (2.11). Since
(2.11) imply (2.14), the functions are automatically also right monogenic. ��
Remark 2.4 We believe that in the original manuscript there is a typo and the
sentence

(2.14) and (2.11) with P nonsingular, are necessary and sufficient conditions for
right totally derivable functions in an algebra A to be right or left monogenic (with
respect to a suitable basis) should be instead

(2.14) or (2.11) with P nonsingular, are necessary and sufficient conditions for
right totally derivable functions in an algebra A to be right or left monogenic (with
respect to a suitable basis).

The amended sentence is also in accordance to the review of paper written by B.
Crabtree, see [5].

To illustrate these ideas we consider some examples in the case of algebras of low
order.

Example 2.15 Let us consider the algebra of dual numbers, see Example 2.2.
Setting PPT = A = (ajk) we compute (2.14):

(u1 u2)

(
a11 a12

a12 a22

) (
u1

u2

)
= 0.

We obtain a11u1+a12u2 = 0 which immediately gives a11 = a12 = 0 and PPT and
so P are singular. From this fact one immediately deduces that the algebra of dual
numbers is neither solenoidal, nor bisolenoidal. Note that (2.11) for i = 1 reduces
to the condition above and for i = 2 it is an identity.
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Example 2.16 To illustrate the reasoning in Sect. 2.2, we develop the computations
in the case of ternions. We need to compute the elements aik of the matrix A using
(2.14). We have:

(u1 u2 u3)

⎛
⎝a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

⎛
⎝u1

u2

u3

⎞
⎠ = 0,

which leads to

a11u1 + a22u2 + a23u3 + a13u3 = 0.

We deduce that a11 = a22 = 0 and a13 + a23 = 0 so that

A =
⎛
⎝ 0 a12 a13

a12 0 −a13

a13 −a13 a33

⎞
⎠ .

Although A is nonsingular, it is not positive as one may notice taking the principal
minor, i.e. the determinant of

(
0 a12

a12 0

)

which has negative value, so A cannot be of the form PPT . We conclude that the
algebra of ternions is not solenoidal over the real.

We note that if we would have considered the ternions over the complex field,
then the complexified ternion algebra is solenoidal since the only condition required
on A is of being nonsingular (see Sect. 1.2, paragraph 4). We now consider the
conditions in (2.11):

(u1 u2 u3)

⎛
⎝a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

⎛
⎝uiu1

uiu2

uiu3

⎞
⎠ = 0, i = 1, 2, 3.

Taking into account the relations satisfied by u1, u2, u3 we obtain the following
system:

a11u
2
1 + a13u1u3 = 0

a12u1u2 + a22u
2
2 + a23u3u2 = 0

a12u1u3 + a22u2u3 + a23u
2
3 = 0
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which yields to

a11u1 + a13u3 = 0

a22u2 + a23u3 = 0

a12u3 = 0.

We deduce that a11 = a13 = a22 = a23 = a12 = 0, so that A, and so P , are singular.
We conclude that the algebra of ternions is not bisolenoidal.

As algebra of fourth order, we consider the algebra of bicomplex numbers.

Example 2.17 The condition (2.14) is

(1 i j k)

⎛
⎜⎜⎝

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
i

j

k

⎞
⎟⎟⎠ = 0.

These conditions translate into

a11 − a22 − a33 + a44 = 0

a12 − a34 = 0

a13 − a24 = 0

a14 + a23 = 0,

which shows, with some more computations to show the positivity, that the
bicomplex algebra is solenoidal. Since the algebra is commutative, the conditions
(2.11) follows form the previous ones and thus the algebra is also bisolenoidal.
Thus right total derivability implies monogenicity (right and left) as shown by
Example 2.34. Note that one can take P = A = I , the identity matrix, in the above
computations and this is in accordance with the fact that (right) total derivability
imply (right) monogenicity with respect to the same basis.

Example 2.18 As already noticed in Sect. 1.1 the algebra of quaternions is
solenoidal. This can also be verified by direct computations which lead to

a11 − a22 − a33 − a44 = 0

a12 = 0

a13 = 0

a14 = 0,
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and thus to the matrix

⎛
⎜⎜⎝

a22 + a33 + a44 0 0 0
0 a22 a23 a24

0 a23 a33 a34

0 a24 a34 a44

⎞
⎟⎟⎠ .

It is possible to choose the matrix A such that it is nonsingular.
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Chapter 3
On Systems of Partial Differential
Equations Related to Real Algebras

This chapter contains the translation of the paper:

M. Sce, Sui sistemi di equazioni differenziali a derivate parziali inerenti alle algebre
reali, (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 18
(1955), 32–38.

Article by Michele Sce, presented during the meeting of 11 December 1954 by
B. Segre, member of the Academy.

In this Note, after some preliminaries in algebra and analysis, we classify
systems of partial differential equations which give monogenicity conditions in
algebras. These systems are elliptic for primitive algebras, parabolic with algebras
with radical; the proof of this latter fact is based on a characterization, maybe
unknown, of semisimple algebras via their determinant. Among hyperbolic systems,
we highlight the one obtained from a regular algebra, and which has as characteristic
hypersurface the cone of zero divisors of the algebra itself.

From these systems we deduce some partial differential equations of order
equal to the order of the algebra which are of the same type of those satisfied
by all monogenic functions. I hope that a further study of these equations would
eventually lead me to solve, at least for monogenic functions in regular algebras,
some problems analogous to the Cauchy problem.

1. Let A be an associative algebra over the real, with unit, and let U =
(u1, . . . , un) be a basis. The algebras of matrices A ′ (A ′′) which gives the first
(second) regular representation of A are such that for every x in A and X′ (X′′) in
A ′ (A ′′) one has

xu−1 = X′−1u−1 (ux = uX′′−1), (3.1)
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the determinant of X′, (X′′) is also called left (right) determinant of x.1

The element y = y1u1 + · · · + ynun = ηu−1 in A is said to be left (right)
monogenic function of x = x1u1 + · · · + xnun if yi are functions derivable with
respect to xk and such that

∑
i,k

∂yi

∂xk

ukui = 0

⎛
⎝∑

i,k

∂yi

∂xk

uiuk = 0

⎞
⎠ .2

By setting

ukui =
∑
j

c
j
kiuj , (3.2)

one gets a system of n linear differential equations of the first order:

∑
i,k

∂yi

∂xk

c
j
ki = 0 (j = 1, 2, . . . , n), (3.3)

whose coefficients are the constants of multiplication in the algebra. By setting
[Editors’ Note: ‖aij‖ denotes the matrix with entries aij ]

Ω =
∥∥∥∥∥
∑
k

c
j
ki

∂

∂xk

∥∥∥∥∥ = ‖γij‖ (i, j = 1, 2, . . . , n),

(3.3) can be written in a more compact form as:

Ωη−1 = 0; (3.4)

the determinant |C| of the matrix

C = ‖
∑

k

c
j
kizk‖ =

∑
k

Ckzk, (3.5)

Ck = ‖cj

ki‖ (for i, j = 1, . . . , n), obtained from Ω by substituting zk instead of
∂

∂xk

, is called characteristic form of the system. The system itself is called elliptic

or parabolic if the characteristic equation

|C| = f (z1, . . . , zn) = 0 (3.6)

1See G. Scorza, Corpi numerici e algebre, Messina (1921), Part II, n. 184 and 185.
2See B. Segre, Forme differenziali e loro integrali, (Roma, 1951), Ch. IV, n. 90. The indices of the
infinite sums, unless otherwise stated, always run from 1 to n. Later we will always refer to left
monogenicity, since analogous results can be obtained in a similar way for right monogenicity.
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does not have real solutions different from the trivial solution (0, . . . , 0) or, by
means of a change of variables, it can be reduced to an equation depending on
less than n variables;3 in the other cases the system is called hyperbolic and, in
particular, totally hyperbolic if the matrix C is diagonalizable and its characteristic
polynomial has real roots whatever are the zk’s.4

Finally, a hypersurface ϕ(x1, . . . , xn) = 0 in the Euclidean space of n-tuples
(x1, . . . , xn) is called characteristic if the directional cosines of its normal

∂ϕ1

∂x1
, . . . ,

∂ϕn

∂xn

satisfy the characteristic equation (3.6).5

2. Let us multiply the matrix (3.5) on the right by the n-vector u−1; in force of
(3.2), one has:

Cu−1 =

⎛
⎜⎜⎝

∑
j,k c

j

k1zkuj

...∑
j,k c

j
knzkuj

⎞
⎟⎟⎠ =

⎛
⎜⎝

∑
k zkuku1

...∑
k zkukun

⎞
⎟⎠

and, setting z = z1u1 + · · · + znun, we deduce

zu−1 = Cu−1.

A comparison with (3.1) shows that C−1 is the matrix corresponding to z in the first
regular representation of A ;6 thus the characteristic form of system (3.3) coincides
with the left determinant of an element in A .

Since the determinants of elements in A are invariant with respect to change of
basis in the algebra, one has also that the characteristic form of the system expressing
the monogenicity is invariant with respect to changes of basis in the algebra.7

3See R. Courant, D. Hilbert, Methoden der Mathematischen Physik, Band II (Berlin, 1937), Kap.
III, § 4, n.2.
4A definition equivalent to ours can be found, for systems of quasi-linear equations, in R. Courant,
K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publishers, Inc., New York, N.
Y., 1948, Chapt. II, n. 32; sometimes, as in R. Courant, P. Lax, On nonlinear partial differential
equations with two independent variables, Comm. Pure Appl. Math., 2 (1949), 255–273, pp. 255–
273, n.2, totally hyperbolic systems are called hyperbolic.
5See Courant-Friedrichs, cited in (4).
6In particular, Ω−1 corresponds to ω = ∑

k

∂

∂xk

uk considered as an element in A and the

transpose of the Ck’s in (3.5) correspond to the units in A .
7On the contrary, monogenicity conditions depend on the basis of the algebra; see M. Sce,
Monogeneità e totale derivabilità nelle agebre reali e complesse, Atti Accad. Naz. Lincei. Rend.
Cl. Sci. Fis. Mat. Nat., (8) 16 (1954), 30–35, Nota I, n. 1.
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Primitive algebras have no zero divisors and so the determinants of their nonzero
elements are always nonzero; and conversely. Based on the preceding arguments and
on n. 1, this is equivalent to claim that system (3.3) is elliptic for primitive algebras
and only for those.

3. We will prove that the system (3.3) is parabolic for algebras not semi-
simple and only for them, by proving that an algebra is semi-simple if and only
if, with respect to any basis, the determinant of the elements depends on all their
coordinates.

Let us assume the A is semi-simple and that the determinant of the elements
does not depend on all their coordinates. A is direct sum of simple algebras Ai and
so the determinant of the elements in A is the product of the determinants of the
elements in Ai ; thus some algebra Ai is such that the determinant of its elements
x = ∑

i xiui , y = ∑
i yiui does not depend, for example, on the coefficients of the

units um, . . . , un but it depends on the coefficients of all the other units. Then also
the determinant of

xy =
m−1∑
i,k=1

xiykuiuk +
m−1∑

i=1,...n,k=m,...n

(xiykuiuk + xkyiukui)+
n∑

i=m

xiyiu
2
i

does not depend on xm, . . . , xn; ym, . . . , yn; it turns out that all the products of
units appearing in the second sum can be expressible as linear combinations of
um, . . . , un, namely

uiuk =
n∑

j=m

c
j
ikuj (i = 1, . . . , n; k = m, . . . , n) (3.7)

must hold. The relations (3.7) allow to say that the set having basis um, . . . , un is a
proper ideal of Ai ; this contradicts the assumption that Ai is simple and shows the
necessity of the condition.

Let now A an algebra not semi-simple, that is, it has a nonzero radical R. Let
U1, . . . , Um, . . . , Un, (1 < m < n) be a basis for A ′ such that Um, . . . , Un is a basis
for the image R ′ of R in the first regular representation of A ; then the trace of any
element X′ = ∑

i xiUi in A ′ does not depend on xm, . . . , xn since the matrices
Um, . . . , Un—which are elements of R ′ are nilpotent. Since

X′2 =
m−1∑
i,k=1

xixkUiUk +
∑

i=1,...,n, k=m,...,n

xixk(UiUk + UkUi)−
n∑

i=m

x2
i u2

i ,

only the coefficients of the first sum—among which xm, . . . , xn do not appear—can
give a nonzero contribution to the trace of X′2 in fact R ′ is an ideal of A ′ and so a
relation similar to (3.7) holds. Reasoning in this way we can prove that the traces of
X′, X′2, . . . , X′n do not depend on xm, . . . , xn. Using the recurrence formulas—
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which can be easily obtained8—expressing the coefficients of the characteristic
equation of a matrix via the traces of a matrix and its powers, one gets that each
coefficient of the characteristic equation of X′ does not depend on xm, . . . , xn. This
is true, in particular, for the determinant of x and so the theorem is proved.

4. The system (3.3) is completely hyperbolic for the algebras of n-real numbers
and only for them.

Let u1, . . . , un, u2
i = ui , uiuk = 0, (i �= k), be the basis of n-real numbers;

the matrix (3.5) turns out to be real and diagonal,so that the system (3.3) is totally
hyperbolic.

Conversely, let us assume that the system (3.3) is totally hyperbolic, that is, C is
diagonalizable and its characteristic roots are real. If Ci is diagonal and all the zk

except zi , zj are zero, the matrix ziCi + zjCj is diagonal only if Cj is diagonal;
it follows that, when i and j vary, a matrix which reduces a Ck to the diagonal
form must reduce to the diagonal form all the other Ck . Thus the matrices Ck are
pairwise commuting;9 and since their transpose correspond to the units of A in
the first regular representation, A is commutative. On the other hand, since the
system (3.3) is not parabolic, A is semi-simple (n. 3); a semi-simple algebra which
is commutative is direct sum of the real field and of the algebra of complex numbers,
and both can be repeated a certain number of times.10 However, if A would have
as a component the algebra of complex numbers, some Ck would have complex
characteristic roots; thus A cannot be anything but the direct sum of the real field
taken n times.

5. Let e11, e12, . . . , enn with eij ejk = eik , eij elk = 0, (i �= l) the basis of
a regular algebra Mn of order n2; the matrices of order n2 elements of M ′

n are
direct sums of n matrices equal to ‖xik‖, of order n, in Mn. Thus ϕ(xik) = 0 is a
characteristic hypersurface of system (3.3) if:

∂ϕ

∂xik

= 0. (3.8)

Since
∂|xik|
∂xik

is the adjoint of Xik in ‖xik‖, one has

∣∣∣∣∂|xik|
∂xik

∣∣∣∣ = |xik|n−1

and the cone |xik| = 0 of zero divisors of Mn satisfies (3.8); thus the cone of
zero divisors of a regular algebra Mn counted n − 1 times, is a characteristic
hypersurface of system (3.3).

8When a matrix is in canonic form, these formulas reduce to those of symmetric functions.
9See M. Sce, Su alcune proprietà delle matrici permutabili e diagonalizzabili, Rivista di Parma,
vol. 1, (1950), pp. 363–374, n.5.
10See Scorza cited in (1), part II, n. 292.



50 3 On Systems of Partial Differential Equations Related to Real Algebras

Let us now consider the algebra A of order 2n2 direct product of the algebra of
complex numbers and the regular algebra Mn. The elements of A ′ with respect to
eik , ieik are matrices of order 2n2 direct sums of n matrices of order 2n,

X =
(

A −B

B A

)
,

where A,B are arbitrary elements of Mn. Denoting again by Xj� the adjoint of xj�

(where j, � = 1, 2, . . . , 2n, a simple computation shows that—for i, k = 1, . . . , n—
one has:

∣∣∣∣∂|xj�|
∂xj�

∣∣∣∣ =
∣∣∣∣ Xik +Xn+i,n+k

Xn+i,k +Xi,n+k

Xi,n+k −Xn+i,k

Xn+i,n+k +Xi,k

∣∣∣∣ = |Xj�|;

thus the equation |xj�|2n2−1 = 0—in the complex case—represents a characteristic
hypersurface of system (3.3). However, it should be noted that, in the real field,
|xj�| = 0 represents a cone (with vertex at the origin) of dimension 2(n2−1) which
certainly does not give a characteristic hypersurface.

Analogous remarks can be made in the case of an algebra direct product of the
algebra of quaternions with a regular algebra.

6. Let A = ‖aik‖ be a matrix of order n whose elements belong to an integral
domain D with unit, but which is not a principal ideal ring. If A has maximal rank,
its first column cannot be zero; thus, multiplying A on the left by a suitable matrix,
we can assume that the element (1, 1) is nonzero. Let us still denote by A the matrix
obtained in this way, and let us multiply it by the nonsingular matrix

P =

⎛
⎜⎜⎜⎝

1 0 0 . . .

−a21 a11 0 . . .

−a31 0 a11 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ ;

one obtains

PA =

⎛
⎜⎜⎜⎝

a11 a12 a13 . . .

0 a11a22 − a12a21 a11a23 − a13a21 . . .

0 a11a32 − a12a31 a11a33 − a13a31 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ =

(
a11 a

0 A1

)
. (3.9)

Since also the first column of A1 must be nonzero, we can act on A1 as we did on A;
iterating the procedure, we show that every nonsingular matrix in D can be reduced
in triangular form T , multiplying it on the left by a suitable nonsingular matrix.
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As it can be seen from (3.9), the first two elements on the principal diagonal of T

are two minors of order 1 and 2 respectively, the first one contained in the second;
reasoning by induction one finds that—by selecting a sequence of nonzero minors
α1, α2, . . . , αn = |A| of all the orders from 1 to n, each of which contained in the
following (complete chain)—the elements on the principal diagonal of T are

α1, α2, α1α3, α2
1α2α4, . . . , αn−2

1 αn−3
2 · · ·αn−2αn.

11 (3.10)

The degree of the i-th element in the sequence (3.10) in the elements of A is clearly∑i−2
k=1 k2i−2−k + i; since

∞∑
k=i−1

k2i−2−k = i,

we can conclude that the i-th element of the sequence (3.10) is of degree 2i−1 in the
elements of A.

Let us consider the extension F of the field of the real numbers by means of

the operators
∂

∂x1
, . . . ,

∂

∂xn

; defining formally, as usual, the operations of sums and

product, F turns out to be a ring with unit. The set of operators F has no zero
divisors; thus, if we assume that all the functions to which we apply elements of F
have finite derivatives, continuous up to the order m, we can say that all the elements
of order not greater than m behave like elements in an integral domain.

Thus, if we suppose that the yi elements of η in (3.4) possess finite derivatives,
continuous up to order 2n−1, we can apply to the matrix Ω the considerations made
above, this gives for the element yn of η a partial differential equation of order at
most 2n−1. An analogous result can be obtained for the other yi ; but, in general, the
equations obtained for the various yi are different. To obtain a differential equation
satisfied by all the yi’s, one needs to multiply between them the n complete chains,
assuming that the operators which are their elements commute (namely, that the
functions have derivatives finite and continuous up to the order of the equation);

11Obviously for particular matrices one can obtain much more; for example, if

A =
(

A′ A
′′′

−A′′−1 A′′
)

is a symmetric matrix of the fourth order one has:

(
A′J −A

′′
J

−A′′−1J A′J

)(
A′ A

′′

−A′′−1 A
′′′

)
=

(
D 0
0 D

)
, with J =

(
0 −1
1 0

)
, D =

(
0 d

−d 0

)

where d is the pfaffian of A. Another example is given by the elemnts in the algebra which is
the first regular representation of quaternions; these matrices multiplied by the transposed give the
scalar matrix |q|I4 (where |q| is the norm of the quaternion q).
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taking into account that the n-chains have all the same last element, which does not
have to be necessarily repeated in the product, one has that the single components
of a monogenic function satisfy a same partial differential equation of order at most
n(2n−1 − (n− 1)).

7. The procedure illustrated in the preceding section, is maybe of some interest;
however, an equation satisfied by all the yi’s can be easily be obtained by
multiplying (3.4) on the left by the matrix Ω∗ adjoint of Ω . So we have that the
components of a monogenic function satisfy an equation of order at most n.12

The characteristic form of the equation coincides with the characteristic form
of the system; thus the equations satisfied by the components of the monogenic
functions are of the same kind of system (3.3) and the characteristic hypersurfaces
of the system are the same of those of the equation.

Since, as we have seen in n. 5, the elements of the first regular representation of
an algebra simple of order kn2 are composed by n matrices and Ω , as we observed
in the note 6, can be considered an element of the first regular representation, one
has that the single components of a monogenic function in a simple algebra of order
kn2 satisfy an equation of order at most kn.

It is easy to extend the result to semisimple algebras.

3.1 Comments and Historical Remarks

In the paper translated in this chapter, Sce discusses the problem of characterising
an algebra according to the properties of the system satisfied by the monogenic
functions in that algebra see [8]. In his papers, he always has a special taste for
algebraic questions, see also his paper [9], and in fact inspired by this problem, he
also proves a new property of semi-simple algebras. Moreover, he also shows that
each function, which is a component of a monogenic function, satisfies a suitable
system of differential equations with order equal to the order of the algebra. Also
this paper is an interesting combination of properties exquisitely algebraic in nature
and analytical properties of functions.

Most of the properties of the algebras considered in this chapter are given in
Chap. 2. The reader may refer to the books of Albert [1, 2] and of Scorza [10]
which were also used by Sce.

Remark 3.1 In the paper we consider in this chapter, Sce makes use of the Italian
term “algebra primitiva”, i.e., primitive algebra, that we keep in the translation.

12Sometimes, by multiplying Ω on the left by matrices different from Ω∗, we obtain equations of
lesser order; for example, in the case of quaternions multiplying Ω by its transpose one obtains the
scalar matrix ΔIn (Δ is the laplacian in four variables).
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In more modern terms, one should translate the term as division algebra. In fact,
as one can read in various old sources, see e.g. [11–13], a primitive algebra is an
algebra which does not contain zero divisors. Such an algebra is semi-simple and
also simple.

Another important definition is the following:

Definition 3.1 Let A1, . . . ,Am be algebras over a field F . We say that A is the
direct sum of A1, . . . ,Am and we write

A = A1 ⊕ . . .⊕Am

if vi vj = 0 for vi ∈ Ai , i �= j and the order of A is the sum of the orders of Ai ,
i = 1, . . . ,m.

Example 3.1 An instance of algebra which is a direct sum used in this chapter is
the algebra of n-real numbers Rn = R⊕ · · · ⊕ R in which all the various copies of
R are generated by ui (the unit of R) for i = 1, . . . , n, and are such that uiuj = 0
when i �= j .

An algebra is said to be decomposable if it can be written as sum of its (nontrivial)
subalgebras, indecomposable if this is not possible.
These notions about the algebras are useful to characterise the systems of differential
equations associated with the various notions of monogenicity. To provide concrete
examples, we consider the monogenicity conditions in Chap. 1, for increasing
dimension of the algebras considered.

Example 3.2 Let us start by considering second order algebras. We begin with the
real algebra of complex numbers, which is clearly a division algebra. Then

C =
(

x1 −x2

x2 x1

)
,

so that |C| = x2
1 + x2

2 and the system is, as it is well known, elliptic.
Again in dimension 2, we can consider the algebra of dual numbers and the left
monogenicity condition, see (2.32), which are associated with the matrix

C =
(

x1 0
x2 x1

)
,

so that |C| = x2
1 and the system is parabolic, which is consistent with the fact that

the algebra of dual numbers is not semi-simple.

Example 3.3 In the case of hyperbolic numbers, the monogenicity is expressed by
the matrix

C =
(

x1 x2

x2 x1

)
.
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We have that |C| = x2
1−x2

2. Moreover, the matrix is real symmetric with eigenvalues
x1± x2, thus the system is completely hyperbolic. According to the result proven in
n. 4 the algebra of hyperbolic numbers is, up to a suitable isomorphism, the algebra
R

2. To see this fact, let us set

e = u1 + u2

2
, e† = u1 − u2

2
.

Then e, e† are two idempotents such that e e† = e† e = 0. The change of
coordinates

x1 = 1

2
(z1 + z2)

x2 = 1

2
(z1 − z2)

allows to write x = x1u1 + x2u2 = z1e + z2e† = z. At this point we can identify
the element z = z1e + z2e†with the pair (z1, z2) ∈ R

2. We note that given two
elements z = z1e+ z2e†, z′ = z′1e+ z′2e† their sum and product are given by

z+ z′ = (z1 + z′1)e+ (z2 + z′2)e†, zz′ = (z1z
′
1)e+ (z2z

′
2)e

†

which, at level of pairs, corresponds to the sum and multiplication componentwise.
In this new basis, the monogenicity condition (left or right) of a function w = w(z)

rewrites as

(e e†)

⎛
⎜⎝

∂w1

∂z1

∂w1

∂z2
∂w2

∂z1

∂w2

∂z2

⎞
⎟⎠

(
e
e†

)
= 0,

which leads to

∂w1

∂z1
e+ ∂w2

∂z2
e† = 0,

that is

∂w1

∂z1
= ∂w2

∂z2
= 0.

Example 3.4 As an example of third order algebra, we consider the ternions. The
matrix C is in this case

C =
⎛
⎝x1 0 0

0 x2 0
x3 0 x2

⎞
⎠ ,
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and |C| = x1x
2
2 . The matrix is lower triangular, with eigenvalues equal to the

diagonal elements. Easy arguments show that C can be diagonalized over the real
and so the system is completely hyperbolic. We note that by multiplying Ω by its
adjoint Ω∗ we get that the components y�, � = 1, 2, 3 of a monogenic function
y1e1 + y2e2 + y3e3 satisfy the equation

∂3

∂x1∂2x2
y� = 0, � = 1, 2, 3.

Example 3.5 Let us now consider two cases of four dimensional algebras. First we
look at the case of the algebra of quaternions which is a division algebra. Thus we
expect an elliptic system. And in fact the left monogenicity condition is associated
with the matrix

C =

⎛
⎜⎜⎝

x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

⎞
⎟⎟⎠ .

We have that |C| = (x2
1 + x2

2 + x2
3 + x2

4)2 which vanishes only at (0, 0, 0, 0). In the
case of the algebra of bicomplex numbers, we have:

C =

⎛
⎜⎜⎝

x1 −x2 −x3 x4

x2 x1 −x4 −x3

x3 −x4 x1 −x2

x4 x3 x2 x1

⎞
⎟⎟⎠

and

|C| = ((x1 − x4)
2 + (x2 + x3)

2)((x1 + x4)
2 + (x2 − x3)

2).

The determinant |C| can vanish also for (x1, x2,−x2, x1) and (x1, x2, x2,−x1) with
x1x2 �= 0. Thus the system is parabolic and it is possible to construct a change of
basis for which the determinant of new matrix C associated with the monogenicity
condition do not depend on all the four variables.

Remark 3.2 The work of Sce discussed in this chapter was, unfortunately, com-
pletely forgotten despite its relations with physical problems, see [3–5]. In the
works of Krasnov, see e.g. [6, 7], the author discusses various properties of PDEs
in algebras. In particular, in section 7.5 of [6] he considers ellipticity properties of
the solutions of a generalized Cauchy–Riemann operator, i.e. monogenic functions,
according to the type of algebras considered. In particular, it is shown that an
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operator is elliptic if and only if the algebra is a division algebra. He also widely
discusses the case of the Riccati equation. Among various results, he shows that

Proposition 3.1 (Proposition 2.1, [6]) Any n-dimensional polynomial differential
system x ′ = P(x) with deg P = m can be embedded into a Riccati equation
considered in an algebra A of dimension ≥ n.
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Chapter 4
On the Variety of Zero Divisors
in Algebras

This chapter contains the translation of the paper:

M. Sce, Sulla varietà dei divisori dello zero nelle algebre, (Italian) Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 39–44.

Article by Michele Sce, presented during the meeting of 8 August 1957 by
B. Segre, member of the Academy.

In this work, after some brief consideration on matrices on (skew) fields, we
show how the study of the variety of zero divisors in alternative algebras on fields of
characteristic different from 2 and in Jordan algebras on characteristic zero fields,
can be led to the study of these varieties in simple, central algebras.

We then show that the dimension of the variety of zero divisors in alternative
algebras on fields of characteristic different from 2 is given by the order of the
algebra minus the order of the smallest primitive algebra factor of the simple
components of the algebra.

Finally, based on the known classification, we give some partial result on Jordan
algebras.

1. Let A be a matrix of order n on a field C whose element in the first row and
first column is nonzero [Editors’ Note: elsewhere C may denote the complex field,
here it denotes any field]; then

A =

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎠ =
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=

⎛
⎜⎜⎜⎝

a11 0 · · · 0

a21 a22 − a21a−1
11 a12 · · · a2n − a21a

−1
11 a1n

· · · · · · · · · · · ·
an1 an2 − an1a−1

11 a12 · · · ann − an1a−1
11 a1n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 a−1
11 a12 · · · a−1

11 a1n

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

⎞
⎟⎟⎟⎠ = BH.

If A has all the elements in the first column different from zero, we can bring to the
first place any row and decompose the new matrix in the same way we decomposed
A; in this way, starting from A, we obtain n matrices having all the elements in the
first row nonzero, except for the first one. Continuing in this way, we can write A—
under suitable convenient qualitative hypothesis on the elements of the first n − 1
columns—in triangular form, in n! ways.1

If we do not make any assumption on the elements of A, some or none of the
expressions giving A may have sense; in the first case we will call values of A the
elements of C given by the expressions having sense, in the second case we will say
that A has value zero. Sometimes, in the sequel, we will write |A| = 0 to indicate
that A has value zero.2

Using the relation that we established between the values of A and the reduction
of A to triangular form, one may easily show that if the columns of A are linearly
dependent on the right, all the values of A are zero and that—viceversa—if a value
of A is zero, the columns of A are linearly dependent on the right (and thus also the
other values of A are zero). Then, by using known theorems on linear systems,3 one
can show that the values of the matrix are zero if and only if its rows are linearly
dependent (on the left or on the right).

From this it follows that the values of the product of two matrices are zero if and
only if the values of one of the two matrices are zero. It is however easy to verify
that the values of the product are not, in general, the product of the values of the
factor matrices.

2. Let A be an algebra of order nd , with unit, on a field F, which contains a
primitive, associative algebra C (which may coincide with F) of order d and an
algebra B, with unit, and with basis (u1, . . . , un). If the elements of C can be
associated with the elements in A and can be commuted with the elements in B,

1With the same procedure we can write symmetric matrices in the canonical form

(
D 0
0 E

)
, with E =

(
0 1
1 0

)
×D′,

where × denotes the direct product of matrices and D, D′ are diagonal.
2If the field is commutative, all the values of the matrix coincide with the classical determinant (of
course, the values may coincide among them even if the field is not commutative). Starting from
considerations similar to ours, J. Dieudonné, [Les déterminants sur un corps non commutatif, Bull.
Soc. Math. France, 74 (1943), pp. 27–45], introduces a determinant sharing most of the classical
properties, but not in the (skew) field. These considerations extend immediately to fields with
associative inverse (alternative fields).
3See B. Segre, Lezioni di Geometria moderna, vol. I, (Bologna, 1947), n. 97.
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i.e., if C is in the kernel of A and in the commutator of B, we will say that A is
direct product of B and C, and we will write A = B×C. We will write the elements
in A as

x = x1u1 + · · · + xnun = ξu−1 = uξ−1

y = y1u1 + · · · + ynun = μu−1 = uμ−1 (xi, yi ∈ C).

If x is a left or right zero divisor, there exists y such that

0 = xy = xuη−1 = uX′η−1 ⇐⇒ X′η−1 = 0 (4.1)

or

0 = yx = ξu−1x = ξX′′u−1 ⇐⇒ ξX′′ = 0 (4.2)

where X′ (X′′) represents x in the C-module A′ (A′′) first and second representation
of A. Relations (4.1), (4.2) say that x is a left or right zero divisor if and only if the
values of X′ or of X′′ are zero and we will say that these values are first and second
values of x over C; the values of x over F are called first and second norm n′(x),
n′′(x) of x.

If C is, in turn, the direct product of a skew field C1 and a field C2, the elements
of A′ and A′′ consist of matrices which are the first and second representation of
C1 over C2. Moreover, this ensures that the norms of x are the values over F of the
values of x over C.

Let now R be an ideal of A and let

S = (um+1, . . . , un) = u(2)

the ideal of

B = (u(1) u(2))

trace of R on B. Let us consider the first and second representation of an element in
A, x = x(1) + x(2) (x(2) ∈ R) over C:

xu = (x(1) + x(2))(u(1) u(2)) = (u(1) u(2))

(
X

(1)
1 0

X
(1)
2 +X

(2)
1 X

(1)
1 +X

(2)
2

)
= uX′

[Editors’ Note: the entry (2, 2) in the matrix is X
(1)
3 +X

(2)
2 in the original manuscript]

where X
(k)
i depends on the coordinates of x(k) (k = 1, 2); X

(1)
1 represents the class

[x(1)] in A− R.
If x(1) is a zero divisor in A−R, X(1)

1 has dependent columns and thus dependent
rows; then |X′| = 0 and x is a left zero divisor in A for any x(2) in R.
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Therefore, the variety of left zero divisors in A has always at least dimension

v′ + (n−m)d (4.3)

where (n−m)d is the dimension of the space representing the ideal R and v′ is the
dimension of the variety V ′

0(A− R) of the left zero divisors of A− R. 4

If A = A1 ⊕ A2 is direct sum of two algebras A1, A2 of order n1 and n2, taking
into account that A1 and A2 are ideals of A and that the vector spaces A, A′, A′′
are isomorphic, we conclude that the dimension of V ′

0(A) is the greatest of the two
numbers n1 + dim V0(A2) and n2 + dim V0(A1).

3. Let A be a t-algebra, namely an algebra which admits as trace function the
trace of the elements in the F-module of the representation. Then we can define the
radical (maximal nilpotent ideal) of A as the set of elements h such that the trace
t (xh) vanishes for every x in A. It follows that t (xihk) = 0 for every pair of positive
integers i and k; thus t[(x +h)j ] as well as the norm n(x+ h) do not depend on the
coordinates of h.

We can then conclude that the zero divisors of a t-algebra A which are not in the
radical R come from zero divisors of the semisimple part A−R; thus the dimension
of V0(A) is exactly the one given in (4.3).

Taking into account that semisimple algebras are direct sums of simple algebras,
one also has that dim V ′

0(A) is completely determined when the dimension of the
variety of zero divisors of simple t-algebras is known.

Since it is known that the radical of alternative algebras over fields of charac-
teristic different from 2 consists of elements h such that x + h is a zero divisor if
and only if x is a zero divisor,5 for these algebras the theorems stated above for
t-algebras are valid.

In force of these theorems, we can reduce ourselves to the study of the varieties
of zero divisors in simple algebras; if then—as we will do in the sequel—we will
consider only algebras whose center is a field, we can reduce ourselves to the
consideration of central simple algebras.

4. Let A be a central, simple, associative algebra over a field F; then A = M×C,
where M is a regular algebra of degree r and C is a primitive algebra of order d . In
order for an element of A to be a zero divisor it is necessary and sufficient that its
values are zero in C; thus

dim V0(A) ≥ r2d − d. 6 (4.4)

4When A − R is a subalgebra of A, these considerations have a simple geometric interpretation:
V ′

0(A) contains a cone- of dimension v′ + (n −m)d - having V ′
0(A−R) as vertex.

5See R. Dubisch, S. Perlis, The radical of an alternative algebra, Amer. J. Math., 70 (1948), pp.
540–546.
6In the case of associative and alternative algebras it is not necessary to distinguish left and right
zero divisors. One can arrive to (4.4) observing that, given the shape of the matrices in A′ (or in
A′′), V0(A) contains for sure two sets depending on (r−1)d parameters of (r2d−rd)-dimensional
linear spaces.
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Alternative, simple, central algebras which are not associative are Cayley-Dickson
algebras; an element x = ∑8

i=1 xiui (xi ∈ F) of such algebras is a zero divisor if
and only if it is zero the expression

x2
1−(αx2

2+βx2
3−αβx2

4)−γ [x2
5−(αx2

6+βx2
7−αβx2

8)], (α, β, γ ∈ F). (4.5)

When x ′ = ∑4
i=1 xiui , x ′′ = ∑8

i=5 xiui are elements of a primitive algebra, (4.5)
vanishes if and only if

γ = z2
1 − αz2

2 − βz2
3 + αβz2

4 (zi ∈ F).7 (4.6)

(Editors’ note: αβz2
4 was αβ2

4 in the original manuscript). If (4.6) cannot be satisfied,
the algebra is primitive. On the contrary, if (4.6) admits solutions, the quadric cone
of the 8-dimensional space obtained by equating (4.5) to zero contains a linear, 4-
dimensional space (on F) and is a hypersurface (on F).

In the case x ′ and x ′′ do not belong to a primitive algebra, it will happen e.g. that

β = t2
1 − αt2

2 (ti ∈ F);

but we find again that the cone V0(A) contains a 4-dimensional space and is a
hypersurface.

Now taking into account that—by the theorem of Dubisch-Perlis—if F has
characteristic different from 2, the values of elements of A depend on all the
coordinates, we have that if A is an (associative or) alternative simple algebra on a
field with characteristic different from 2

dim V0(A) = n− d

where n is the order of A and d is the order of the primitive algebra with maximum
order which is factor of A.

From here—using the theorems in n. 2 and 3—it immediately follows the
theorem stated in the introduction.

5. Central, simple, Jordan algebras over a field F of characteristic zero are of the
following four types:

a) Algebras of degree 2 with basis u1, . . . , un (n ≥ 4) and the multiplication table

u1ui = uiu1 = ui, u2
i = αiu1 (αi in F), uiuj = ujui = 0.

7For all these notions, see L. E. Dickson, Algebren und ihre Zahlentheorie, Zurich 1927, Kap. XII,
§ 133. Note that the norm of elements of a Cayley-Dickson algebra, defined in n. 2, is the fourth
power of (4.5).
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b) Algebras A+ which can be obtained from a central, simple, associative algebra
A = M × C, (M regular algebra of degree r , C primitive algebra of order d)
considering as new multiplication the operation

x · y = xy + yx

2
. (4.7)

c) Algebras S+ having—as elements—the symmetric elements of a central, simple,
associative algebra A = M×C having an involution J and—as multiplication—
(4.7).

d) Algebras of order 27 having as elements hermitian matrices of the third order
over Cayley algebras and multiplication (4.7).

Jordan matrices of type a) have, evidently, n hyperplanes of zero divisors.
When one considers the representation of Jordan algebras of type b) over F one

obtains

2xu−1 = xu−1 + u−1x = (X′−1 +X′′)u−1; (4.8)

x is a zero divisor if and only if its norm vanishes, i.e. |X′−1 +X′′| = 0. The matrix
X′−1 + X′′ is formed with the matrices representing elements in the associative
algebra C and in the Jordan algebra C+. If C+ is a primitive algebra, the norm of x

is the norm of an element in C+ and thus its vanishing implies at most d conditions.
An easy check shows that the conditions are exactly d .

The situation is less simple if C+ is not primitive; then C+ possesses already a
variety of zero divisors and it turns out that:8

V0(C+) = d − s

2
(4.9)

where s is the degree of C (degree of the minimum equation of C).
To approach the solution of the problem it seems to us necessary to look for a

canonical form for matrices on any skew field.9

A first result—in this stream of ideas—is that the zero divisors of A are the zero
divisors of A+,

V0(A+) ⊃ V0(A);

then V0(A+) contains a variety W(A) made by all zero divisors of A+ which are not
zero divisors of A. Our problem reduces to the problem of finding the dimension of
W(A).

8See C. M. Price, Jordan division algebras and the algebras A(λ), Trans. Amer. Math. Soc., 70
(1951), pp. 291–300.
9For the preliminary notions see, for example, See J. L. Brenner, Matrices of quaternions, Pacific
J. Math., 1 (1951), pp. 329–335, n. 2 and 3.
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When one takes in M a basis of symmetric elements, we can represent through
(4.8) also elements of the algebras of type c) and d). For algebras of type c) we have
to repeat the arguments for algebras of type b). On the other hand, for algebras of
type d), since the symmetric elements of the Cayley algebra form now the field F,
we can say that V0(A) is a hypersurface.

Taking into account that—provided (4.9)—a Jordan algebra coming from a
primitive algebra is not necessarily primitive if its degree, and so its order, is even
we can say that for simple Jordan algebras of type a) and d) and for those of odd
order and type b and c) the equality

dim V0(A) = n− d

holds, where n is the order of the algebra A and d is the order of the primitive
algebra of maximum order contained in A.

From this one could obtain results for non simple Jordan algebras, but we do not
insist on these.

4.1 Comments and Historical Remarks

In this paper, Sce considers algebras which are alternative over fields with character-
istic different from 2 and in Jordan algebras over fields of characteristic 0. This study
looks very pioneering at his time, and to the best of our knowledge, there are few
works in the literature treating the description of zero divisors in Clifford algebras.
The study of zero divisors is of crucial importance while dealing with notions like
the one of derivability and the Cauchy integral formula.
We begin by recalling the notion of Jordan algebra which was begun by Jordan, von
Neumann and Wigner in order to formulate the foundations of quantum mechanics
in terms of a suitable product, instead of the usual one. Other useful references for
the sequel are [1, 6–9, 11, 17].

Definition 4.1 A Jordan algebra is a nonassociative algebra A over a field F of
characteristic different from 2 whose multiplication satisfies:

1. a · b = b · a, ∀a, b ∈ A ;
2. (a · b) · (a · a) = a · (b · (a · a)), ∀a, b ∈ A , (Jordan law).

Remark 4.1 We point out that a Jordan algebra is power associative, namely
the subalgebra generated by any element is associative. Thus, when considering
products of an element with itself, it does not matter how the operations are carried
out so, for example, x · ((x · x) · x) = (x · x) · (x · x) = x · (x · (x · x)) etc.
Moreover, given an associative algebra A one can construct an algebra, denoted by
A +, having the same underlying vector space as A and the multiplication given by

a ◦ b = a · b + b · a
2

,
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where aḃ denotes the multiplication in A . The multiplication a ◦ b is called Jordan
product. Obviously, an associative algebra is a Jordan algebra if and only if it is
commutative.

A Jordan algebra is said to be a special Jordan algebra if it is an algebra of the form
A + or one of its subalgebras. Otherwise it is called an exceptional Jordan algebra.
As examples of special Jordan algebras we can take the set of self-adjoint real,
complex, or quaternionic matrices with the Jordan multiplication. As example
of exceptional Jordan algebra, is the set of 3 × 3 self-adjoint matrices over the
octonions, with the Jordan multiplication. It has dimension 27 and it is an example
of algebras of order 27 considered in the previous section, n. 5.
We also recall the following notion which also appears in the previous section:

Definition 4.2 An algebra over a field F , with unit u1 is called central if its center,
namely the set of elements commuting with any other element in the algebra,
coincides with Fu1 = {ku1 | k ∈ F }.
The study of zero divisors performed by Sce is refined and done in a rather general
setting. As we said already, in the framework of Clifford algebras a lot is known
about the analysis of functions, in particular monogenic functions, but there is no
systematic study of zero divisors. Some studies have been done for bicomplex and
biquaternionic numbers, for hyperbolic numbers, see [10, 14, 16], in the case of the
Clifford algebra R3, see [13]. Let us recall the following well known fact:

Proposition 4.1 Let Rn(= R0,n) be the Clifford algebra generated by e1, . . . , en

satisfying eiej + ej ei = −2δij , i, j = 1, . . . n, where δij is the Kronecker’s delta.
For n ≥ 3 the Clifford algebra contains zero divisors.
Let Rp,q , p + q = n, be the Clifford algebra generated by e1, . . . , en satisfying
e2
i = 1, i = 1, . . . , p, e2

i = −1, i = p + 1, . . . , n, eiej + ej ei = 0, i �= j ,
i, j = 1, . . . , n. For p > 0 the Clifford algebra Rp,q contains zero divisors.

Example 4.1 In the case of bicomplex numbers, let us consider the basis {1, i, j, ij }
where i2 = j2 = −1, ij = j i. The bicomplex numbers may be considered complex
numbers with complex coefficients. We can write them in various ways:

Z = z1 + jz2, z1, z2 ∈ Ci

Z = w1 + iw2, w1, w2 ∈ Cj

where Ci , Cj are the complex planes with imaginary units i, j , respectively. Let us
introduce the notation

|Z|2i = z2
1 + z2

2

Note that | · |i is a Ci -valued function. There are three possible conjugations of the
bicomplex number Z one of which is defined by

Z† = z1 − jz2.
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With this definition it is clear that

|Z|2i = ZZ† (4.10)

thus if Z �= 0 but |Z|i = 0 then it is clear that Z is a zero divisor since also Z† is
nonzero. If |Z|i �= 0 then Z is invertible and (4.10) shows that

Z−1 = Z†

|Z|2i
.

The variety of zero divisors is expressed by the equation z2
1 + z2

2 = 0 which is
equivalent to z1 = ±iz2. We conclude that all the zero divisors in the algebra of
bicomplex numbers are of the form

Z = λ(1± ij ), λ ∈ Ci \ {0}.

There are equivalent ways to express the zero divisor, and we refer the reader to
[10] for more information. One that is very useful is the one based on the so-called
idempotent decomposition. Let us consider

e = 1+ ij

2
, e† = 1− ij

2
,

that are such that e2 = e, e†2 = e†, ee† = 0 and e + e† = 1. Then, every
bicomplex number can be written as

Z = β1e+ β2e†,

with β1, β2 ∈ Ci (or in Cj ) and the zero divisors are all of the form β1e, β2e†,
β1, β2 �= 0.

Example 4.2 With the notations of the previous example, let us set k = ij and
consider

D = {ζ = x + ky | x, y ∈ R}.

This is the set of hyperbolic numbers. Let us introduce the notation

|ζ |2h = x2 − y2.

We note that

|ζ |2h = (x + ky)(x − ky) = ζ ζ �
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where we set z� = x− ky. The value of | · |2h is a real number which can be negative
and can vanish for ζ �= 0, more precisely it vanishes for x = ±y. In this case,
when ζ �= 0 and ζ ζ † = 0 then ζ is a zero divisor and this happens if and only if
ζ = λ(1 ± k), λ ∈ R \ {0}.
Example 4.3 The only case in which the zero divisors in a Clifford algebra have
been fully described is the case of the Clifford algebra R3 over three imaginary
units e1, e2, e3 satisfying e2

i = −1, eiej + ej ei = 0, for all i, j = 1, 2, 3, i �= j .
This case is studied by Rizza in [13]. He first compute the product of two elements
x, y ∈ R3 by writing x = q + q ′e3, where q, q ′ are in the algebra generated by
e1, e2 which is isomorphic to the algebra of quaternions, and then rewriting

q = α1 + β1e2, q ′ = α′1 + β ′1e2,

where α1, β1, α
′
1, β

′
1 ∈ Ce1 , the complex plane with imaginary unit e1. He shows

that x is a zero divisor if and only if α1 = ±e1β
′
1, β1 = ±e1α

′
1. Thus the zero

divisors form a linear variety of real dimension 4.
In alternative, one can introduce the two orthogonal idempotents

o = 1+ e123

2
, o† = 1− e123

2

and observe that x is a zero divisor if and only if it is of the form x = qo, or
x = qo†, where q is a nonzero quaternion.

Remark 4.2 A full characterization of general Clifford algebras Rp,q is available
and it shows that they are either algebras of matrices over R, C, H or direct sum of
such matrices, see [6]. By Bott periodicity, it is enough to describe the case p+q <

8. In view of this result, any element of a Clifford algebra can be identified with a
matrix with real entries and so it is invertible, i.e. it is not a zero divisor, if and only
if its determinant is nonzero.

The knowledge of zero divisors is crucial when dealing with two notions in analysis:
the one of derivability, which require the construction of the limit of a suitable
difference quotient, and integral formulas like the Cauchy integral formula.
As we discussed in Chap. 2, in the hypercomplex setting one can define a
generalization of holomorphic functions of a complex variables in various ways:
one is to consider functions which can be expanded in converging power series of
the variable, the second is to consider functions that admit in each point derivative
in all directions and the third is to consider functions in the kernel of a suitable
operator generalizing the Cauchy-Riemann operator. In all three cases there will be
a theory on the left and one on the right, if the algebra is noncommutative. In the
second and third case the zero divisors play a role and this was also a reason to study
them, see [12].
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When considering the notion of derivative in a given direction, one has to deal with
difference quotients left or right, namely with quotients of the form

(Δx)−1(Δf ) or (Δf )(Δx)−1

and in order to have well defined quotients, it is necessary that Δx is invertible and,
in particular, it is not a zero divisor (we always assume that the algebra has a unit).
In the case of integral formulas one has to pay attention to the fact that there
may exists contour on integration which are homologically trivial in an open set
of the hypercomplex algebra, but it is not necessarily true that this contour is
homologically trivial when considered in the same open set minus the zero divisors.
Thus it is necessary to add topological hypothesis on the open set. We refer the
reader to [3–5, 12] for more information.

Remark 4.3 As it is well known Clifford analysis has been widely studied since
the seventies, when the Belgian school around Brackx, Delanghe and Sommen and
later also the Czech school around Bures and Souček started the systematic study
of functions in the kernel of suitable operators, generalizing the Cauchy-Riemann
operator to higher dimensions, see [2, 6] and the references therein. All these fruitful
studies were performed considering functions defined on open sets in R

n (or Rn+1)
with values in the Clifford algebra Rn over n imaginary units. The elements in R

n

are identified with the so-called 1-vectors in the algebra, i.e. (x1, . . . , xn) 
→ x1e1+
· · · + xnen while elements in R

n+1 are identified with the so-called paravectors
in the algebra, i.e. (x0, x1, . . . , xn) 
→ x0 + x1e1 + · · · + xnen. In this way, one
completely avoids the problems of having zero divisors as input of the functions.
Clifford analysis has been generalized to the complexified case by the above authors
and also by Ryan, see [15] but again considering functions Cn or Cn+1 with values
in the Clifford algebra generated by n imaginary units, over the complex field.
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Chapter 5
Remarks on the Power Series
in Quadratic Modules

This Chapter contains the translation of the paper:

M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti Accad. Naz.
Lincei. Rend. Cl. Sci. Fis. Mat. Nat., (8) 23 (1957), 220–225.

Article by Michele Sce, presented during the meeting of 9 November 1957 by
B. Segre, member of the Academy.

In this short paper we consider modules with units which are quadratic, that
is, whose elements (with respect to the multiplicative structure induced in the
module by their tensor algebra) satisfy a quadratic equation. We show that, in these
modules, power series (positive o negative)—if the order of the module is even—are
nullsolutions of a power of a generalized laplacian. This fact allows to generalize
some results on quaternionic functions of Fueter and his school to Clifford algebras.

1. Let M be a module on a field F with characteristic not equal 2 and let 1 =
i0, i1, . . . , in be a basis. After identifying the unit of F with the unit of M, we can
write the elements in M in the form

x = x0 + x1i1 + · · · + xnin = x0 + x (xi ∈ F).

Let T be the tensor algebra over M and let us assume that for the elements x2 in T
one has

x2 = q(x) =
n∑

j,k=1

ajkxjxk (5.1)

where q(x) denotes a quadratic form on F; it follows that x2(∈ T) is in M. Thus

M is closed with respect to the operation that to the pair x, y associates
xy + yx

2
,

which gives a Jordan algebra M+. When one considers the module M in T equipped
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with the multiplicative structure of M+, one will say that M is a quadratic module
and will denote it by Mq .

Since, by reducing q(x) to a canonical form, one notices that M+ is a Jordan
algebra, central, simple, of degree 2, then Mq can be embedded only in algebras
A such that A+ contains such a Jordan algebra. Among these algebras, those which
may be obtained with the Cayley–Dickson process are particularly interesting; these
algebras are themselves quadratic modules.1 If, in addition, A ⊃ Mq is associative,
it contains the algebra quotient of T and of the ideal generated by (5.1); thus the
smallest associative algebra containing a quadratic module is a Clifford algebra or an
algebra whose semisimple part is a Clifford algebra and whose radical is an algebra
with vanishing square—according to the fact that q(x) is degenerate or not.2

2. We shall call conjugate of an element x = x0+x in Mq the element x̄ = x0−x;
it is immediate that

x + x̄ = 2x0 = t (x) (trace of x)

xx̄ = x2
0 − q(x) = n(x) (norm of x)

are in F and that the elements x in Mq satisfy the equation in F

z2 − t (x)z+ n(x) = 0. (5.2)

If x is an element in Mq with nonzero norm, we can consider in Mq

x̄

n(x)
(5.3)

and verify that it is a solution to the equation x · y = 1 in the variable y; moreover,
since (5.3) possesses the formal properties of the inverse, we can call it inverse of x

and denote it by x−1.
3. Let us set

y2 = 1

ε
q(x) and so n(x) = x2

0 − εy2

where y and ε belong to F or to one of its extensions Fo; in the sequel, we shall
consider Mq on Fo and we shall exclude the case y identically equal to zero.

1A. A. Albert, Quadratic forms permitting composition, Ann. of Math., 43 (1942), 161–177.
2C. C. Chevalley, The algebraic theory of spinors, New York 1954, Chapter 11, § 1.
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We will say that a function w(x) in Mq is biholomorphic if

w(x) = u(x0, y)+ 1

y
v(x0, y)x (5.4)

where u(x0, y) and v(x0, y) are functions of x0 and y 3 satisfying

∂u

∂x0
= ∂v

∂y

∂u

∂y
= ε

∂v

∂x0
. 4 (5.5)

Taking into account that

(m− 2k)

(
m

2k

)
= (2k + 1)

(
m

2k + 1

)
,

it is easy to verify that powers of a biholomorphic function

wm =
⎛
⎝[m/2]∑

k=0

(ε)k
(

m

2k

)
um−2kv2k

⎞
⎠+ 1

y

⎛
⎝[m/2]∑

k=0

(ε)k
(

m

2k + 1

)
um−2k−1v2k+1

⎞
⎠ x

([m/2] is the integer part of m/2) are still biholomorphic functions. Since x and x−1

are evidently biholomorphic, it turns out that all linear combinations with constant
coefficients of positive or negative powers of a variable are biholomorphic, and the
property extends to series if F is finite or with evaluation.

4. Let us denote by ∂ the operator i1
∂

∂x1
+ · · · + in

∂

∂xn

and let

q−1(x) =
n∑

j,k=1

αjkxjxk

be the quadratic form inverse of q(x). Let us set

�w = ∂2w

∂x2
0

− q−1(∂)w, (5.6)

and let us show that, if w0 = u0 + 1

y
v0x is biholomorphic and n is odd, then:

�(n+1)/2w0 = 0. (5.7)

3Note that x0 + y and x0 − y are solutions of (5.2). Thus we can presume that for an extension to
cubic modules, etc. it will be more convenient to consider the expressions that appear when solving
algebraic equations with the Lagrange method.
4Obviously, the derivations are meant as representations which have the usual formal properties.
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To simplify the computations we set

us = ∂us−1

∂y

1

y
, vs = ∂vs−1

∂y

1

y
− vs−1

y2 = ∂

∂y

vs−1

y

ws = us + 1

y
vsx (s = 1, 2, . . .),

and we show that us , vs satisfy the relations

∂us

∂x0
= ∂vs

∂y
+ 2s

vs

y
,

∂us

∂y
= ε

∂vs

∂x0
. (5.8)

For s = 0, (5.8) reduce to (5.5). So, let us suppose that (5.8) hold for s − 1; then

∂us

∂x0
= 1

y

∂2us−1

∂x0∂y
= 1

y

∂

∂y

[
∂vs−1

∂y
+ 2(s − 1)

vs−1

y

]
=

= 1

y

∂

∂y

[
yvs + (2s − 1)

vs−1

y

]
= ∂vs

∂y
+ 2s

vs

y
,

∂us

∂y
= ∂

∂y

(
1

y

∂us−1

∂y

)
= ε

∂

∂y

(
1

y

∂vs−1

∂x0

)
= ε

∂vs

∂x0
,

which is what we had to prove.
With simple computations we then find

∂2ws

∂x2
0

= ∂2us

∂x2
0

+ 1

y

∂2vs

∂x2
0

x = 1

ε

[
y

∂us+1

∂y
+ (2s + 1)us+1

]
+

+ 1

ε

[
∂vs+1

∂y
+ (2s + 2)

vs+1

y

]
x,

∂ws

∂xj

= 1

ε
us+1

∂q

∂xj

+ 1

ε

vs+1

y

∂q

∂xj

x+ vs

y
ij

∂2ws

∂xj∂xk

= 1

ε2y

∂us+1

∂y

∂q

∂xj

∂q

∂xk

+ 1

ε
us+1ajk − 1

ε2

vs+1

y3

∂q

∂xj

∂q

∂xk

x+

+ 1

ε2y2

∂vs+1

∂y

∂q

∂xj

∂q

∂xk

x+ 1

ε

vs+1

y

[
ajkx+ ∂q

∂xj

ik + ∂q

∂xk

ij

]
.

[Editors’ Note: the second line of the formula above was +1

ε

[
∂vs+1

∂y
+ 2s

vs+1

y

]
x

in the original text].
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Finally

n∑
j,k=1

αjk

∂2ws

∂xj ∂xk

= 1

ε

[
∂us+1

∂y
y + nus+1 + ∂vs+1

∂y
x+ (n+ 1)

vs+1

y
x
]

so that, taking into account (5.6),

ε�ws = −(n− 2s − 1)ws+1. (5.9)

[Editors’ Note: in the original text at the right hand side there was (n−2s−1)ws+1.]
Thus, if n is odd, for s = (n− 1)/2 one has

ε�w(n−1)/2 = 0, (5.10)

namely (5.7).
5. A function w in Mq will be called JB-monogenic (Jordan B-monogenic) if,

for B = ‖bjk‖, bjk = bkj , |B| �= 0 (j, k = 1, . . . , n Editors’ note j was i in the
original manuscript; recall also that ‖bjk‖ denotes the matrix with entries bij ), one
has

∂w

∂x0
− 1

2ε

n∑
j,k=1

bjk

[
∂w

∂xj

ik + ik
∂w

∂xj

]
= 0.

As w0 is biholomorphic, we set

S = 1

2ε

n∑
j,k=1

bjk
∂q

∂xj

ik

[Editors’ Note: in the original text it was S = 1
ε

∑n
j,k=1 bjk

∂q
∂xj

ik] and we take into
account that

2− 1

εy2
(Sx+ xS) = 1

εy2
[x(x− S)+ (x− S)x].

Then the condition of JB-monogenicity for ws can be written as

0 = 1

ε
us+1(x− S)+ ∂vs

∂y

[
1− 1

2εy2 xS + Sx
]
+

+ ∂vs

∂y

[
2s + 1

2εy2
(xS + Sx)

]
− vs

y

1

ε

n∑
j,k=1

bjkij ik =

[Editors’ Note: it was 1
2ε2y2 in the original text]

= 1

2ε
[ws+1(x− S)+ (x− S)ws+1] + vs

y
(2s + 1)− vs

y

1

ε

∑
jk

bjkajk;



74 5 Remarks on the Power Series in Quadratic Modules

and this is satisfied if s = n− 1

2
and if

x = S. (5.11)

Thus: if (5.11) holds in Mq , the (n−1)/2 power of � of all biholomorphic functions
is JB-monogenic.

6. If Mq is an algebra, or if B is a scalar and w is such that the jacobian matrix
∂w/∂x is symmetric, we can consider in Mq the equation

∂w

∂x0
− 1

ε

n∑
j,k=1

bjkij
∂w

∂xk

= DBw = 0. 5 (5.12)

Functions satisfying (5.12) will be called B-monogenic on the left (in a similar way
one defines functions B-monogenic on the right).

With a computation similar to the one done in n. 5 one can see that, if (5.11)
holds, the (n− 1)/2 power of � of biholomorphic functions is B-monogenic on the
left and on the right.

Moreover if Mq is alternative, multiplying on the left (5.12) by D̄B , the conjugate
operator of DB , one finds that

D̄BDBw =
[

∂2

∂x2
0

− 1

ε2 g(∂)

]
w = 0, (5.13)

where g(x) is the quadratic form associated with the matrix BAB−1. Thus, if B

satisfies the relation

BAB−1 = ε2A−1, 6 (5.14)

then (5.13) coincides with (5.6) and we can say that: Functions B-monogenic are
solutions of the equation �w = 0.

5If Mq is not an algebra, in order that DBw is in Mq it is necessary and sufficient that ∂w/∂xB is
symmetric; if x is such that the jacobian determinant is always nonzero, this implies that B must
be scalar and ∂w/∂x is symmetric.
6It is easy to determine the matrices B, provided that one take sinto account that- since B is
symmetric - (5.14) can be written as (BA)2 = ε2I . All these relations become then particularly
simple in the case of classical quadratic modules, namely for the modules such that

f (x) = −(x2
1 + · · · + x2

n).
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From this and from the preceding result one may reobtain the result of n. 4 (in
the present particular case).

7. Let us assume now that F is with evaluation, and that the norm n(x) is a
definite quadratic form; then in Mq there are no zero divisors. In a future work,
based on the results proved in the preceding sections, we shall show how the theory
of quaternionic functions can be extended to functions in the (alternative) algebra
of Cayley numbers [Editors’ Note: here probably Sce refers to the paper that he
eventually wrote with Dentoni, see Chapter 6]; here we will limit ourselves to some
considerations on quadratic modules in associative algebras.

With reasonings nowadays classical, we prove first that for B-monogenic
functions there is a bilateral integral theorem. Then in the representative space
Mq one can construct an integral formula of Cauchy type, with kernel �(n−1)/2.
From this fact one derives the possibility to develop in series,..., etc. Based on the
penultimate paragraph of n. 6, we also get in this way properties of of functions
satisfying the (elliptic) equation �W = 0.7

Let now Mq be a quadratic module on the real field, and A the smallest
associative algebra containing it. The problem to extend to the elements of A an
integral formula (of Cauchy type), once that it has been found for Mq , is trivial if
Mq is of order 2. On the other hand, the problem is not solvable as soon as the order
of Mq is greater than 4, as it turns out from the classification of Clifford algebras8

and from some simple considerations on the variety of zero divisors in algebras.9

Thus it remains to be considered only the case in which Mq has order 4 (and it is
not an algebra); but then A is a Clifford algebra of order 8 and one would go back
to known results, at least in the classical case.10

7All the researches on these topics rely on R. Fueter, Die Funktionentheorie der Differential-
gleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen, Comment. Math. Helv., v. 7
pp. 307–330 (1934-35). Among the works of Fueter’s school, those which treats topics near to
ours are: W. Nef, Funktionentheorie einer Klasse von hyperbolischen und ultrahyperbolischen
Differentialgleichungen zweiter Ordnung, ibid. vol. 17, pp. 83–107 (1944-45); H. G. Haefeli,
Hypercomplexe Differentiale, ibid., vol. 20, pp. 382–420 (1947); A. Kriszten, Elliptische systeme
von partiellen Differentialgleichungen mit konstanten Koeffizienten, ibid. vol. 23, pp. 243–271
(1949).
8See C. C. Chevalley cited in (2). The classification of classical Clifford algebras can already be
found in the paper E. Study, E. Cartan, Nombres complexes, Encycl. Franc., I, 5, n. 36, pp. 463.
9See M. Sce, Sulla varietàă dei divisori dello zero nelle algebre, Rend. Lincei, August 1957
10G. B. Rizza, Funzioni regolari nelle algebre di Clifford, Rend., Roma, v. 15 pp. 53–79 (1956).
The integral formulas established in this work hold in general for algebras which are direct sums
of quaternions (but not for Clifford algebras of order greater than 8).
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5.1 Comments and Historical Remarks

The starting point is a vector space M on a field F with characteristic different from
2 and with basis 1 = i0, i1, . . . , in. Following Chevalley [16], one can construct the
tensor algebra

T = ⊕∞j=0M⊗j

over M and then assume that x⊗ x = Q(x) where

Q(x) =
n∑

j,k=0

ajkxjxk.

Note that below we use the symbol q to denote a quaternion, thus here we use Q to
denote the quadratic form, although Sce uses q . Below we write x2 instead of x⊗ x
and xy instead of x⊗ y and x denotes x0 + x, x0 ∈ R.

The fact that x2 ∈ M implies that (x + y)2 ∈ M and so
xy + yx

2
∈ M, thus M

is closed with respect to the operation

(x, y) 
→ x · y = xy + yx

2
. (5.15)

This multiplicative structure on M gives in fact a (commutative) Jordan algebra M+.
Using Sce’s terminology, although for us MQ would be more appropriate, we

give the following:

Definition 5.1 We call quadratic module, and we denote it by Mq the vector space
M in which the multiplicative structure is given by (5.15).

For the sequel it can be useful to keep in mind the references [1, 16, 55, 61, 63,
71, 74, 77] also quoted in the original paper by Sce.

Remark 5.1 As a special case of the previous construction, we can take F = R and
we can consider, for example, M = R

n+1 identified with the set of paravectors, that
is those x ∈ Rn that are of the form x = x0 + x1e1 + . . . + xnen, for x0, x� ∈ R,
where e0 = 1, and e�, � = 1, . . . , n are the imaginary units generating a Clifford
algebra over R, i.e., M is the set of paravectors in Rn. If the imaginary units satisfy
a nondegenerate bilinear form B(·, ·), as in the case of a Clifford algebra, then we
can set Q(x) = B(x, x) and the construction above corresponds to the construction
of a real universal Clifford algebra over n imaginary units. Note that M can be of
signature (p, s), p + s = n namely p units have positive square and s units have
negative square. In this case, there exists a basis e∗1, . . . , e∗p, . . . , e∗n in which the
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bilinear form B(·, ·) satisfies

1. B(e∗i , e∗i ) = 1, i = 1, . . . , p;
2. B(e∗i , e∗i ) = −1, i = p + 1, . . . , n = p + s;
3. B(e∗i , e∗j ) = 0, i �= j .

The product defined by (5.15) is the classical product of two paravectors in the
Clifford algebra.

The Fueter mapping theorem was proved by Fueter in the Mid Thirthies, see
[45], and provides an interesting way to generate Cauchy–Fueter regular functions
starting from holomorphic functions. The idea is to start with a holomorphic
function

f0(u+ iv) = α(u, v) + iβ(u, v)

defined in an open set of the upper half complex plane. Given a nonreal quaternion
q = x0 + q, we define the function

f (q) = α(x0, |q|)+
q

|q|β(x0, |q|), (5.16)

which is called the quaternionic valued function induced by f0. Fueter’s theorem
can be stated as follows (the result was also surveyed in [43, 77]):

Theorem 5.1 (Fueter [45]) Let f0(z) = α(u, v) + iβ(u, v) be a holomorphic
function defined in a domain (open and connected) D in the upper-half complex
plane and let

ΩD = {q = x0 + ix1 + jx2 + kx3 = x0 + q | (x0, |q|) ∈ D}

be the open set induced by D in H and let f (q) be the quaternionic valued function
induced by f0. Then Δf is both left and right Cauchy–Fueter regular in ΩD , i.e.,

∂

∂q̄
Δf (q) = Δf (q)

∂

∂q̄
= 0,

where Δ is the Laplacian in the four real variables x�, � = 0, 1, 2, 3 and ∂
∂q̄

is the
Cauchy–Fueter operator.

Almost 20 years later, Sce extended this result in a very pioneering and general way.
In the recent literature, Sce’s result is known in the following form (see Theorem 5.2
below):

By applying Δ(n−1)/2 (Δ is the Laplacian in n + 1 real variables) to a function
induced on the set of paravectors by a holomorphic function, one obtains a
monogenic one with values in the real Clifford algebra Rn over an odd number
n of imaginary units.
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In the sequel, we will discuss mainly the implications of the Fueter–Sce
construction in the Clifford setting, so we fix here the notation. The imaginary units
of the Clifford algebra Rn will be denoted by e�, � = 1, . . . , n, and we set e0 = 1.
The paravectors are elements of the Clifford algebra that are of the form

x = x0 + x1e1 + . . .+ xnen, x� ∈ R, � = 0, . . . n,

x0 is the real (or scalar) part of x also denoted by Re(x), the 1-vector part of x is
defined by x = x1e1 + . . . + xnen, the conjugate of x is denoted by x = x0 − x,
and the Euclidean modulus of x is given by |x|2 = x2

0 + . . . + x2
n . The sphere of

1-vectors with modulus 1, is defined by

S = {x = e1x1 + . . .+ enxn | x2
1 + . . .+ x2

n = 1}.

We can state now the Clifford algebra version of Sce’s theorem in the version that is
commonly known in the recent literature.

Theorem 5.2 (Sce [75]) Consider the Euclidean space R
n+1 whose elements are

identified with paravectors x = x0 + x.
Let f0(z) = f0(u+ iv) = α(u, v) + iβ(u, v) be a holomorphic function defined

in a domain (open and connected) D in the upper-half complex plane and let

ΩD = {x = x0 + x | (x0, |x|) ∈ D}

be the open set induced by D in H and f (x) be the Clifford-valued function induced
by f0. Then the function

f̆ (x) := Δ
n−1

2

(
α(x0, |x|)+ x

|x|β(x0, |x|)
)

is left and right monogenic.

For the sequel, it is convenient to define the following maps:

TFS1 : α(u, v) + iβ(u, v) 
→ α(x0, |x|)+ x

|x|β(x0, |x|) (5.17)

TFS2 : α(x0, |x|)+ x

|x|β(x0, |x|) 
→ Δ
n−1

2

(
α(x0, |x|)+ x

|x|β(x0, |x|)
)

(5.18)

Sce’s result requires some remarks, in fact it is broader than Theorem 5.2 from two
different points of view: the algebra in which it is proven and the type of functions
obtained.

Remark 5.2 As Sce observed, the quadratic module Mq can be embedded only in
algebras of specific form: for example in the Cayley–Dickson algebras, in particular
the octonions, and in the particular case of associative algebras, in all Clifford
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algebras or algebras whose semi-simple part is a Clifford algebra. However, Clifford
algebras, of any signature, are only a special case of this construction. A natural
question is then to ask what happens in the case one considers a module which
is not quadratic, but instead cubic or else. It will be interesting to understand if a
“Fueter–Sce mapping theorem” can be constructed in that case, and which operator
has to be considered instead of the Laplacian.

Remark 5.3 As we said, Sce’s extension of Fueter’s result is broader than the one
commonly quoted in the literature. In fact, with the above notations, it shows that
given a function f0(z) = f0(u+ iv) = α(u, v)+ iβ(u, v) which is holomorphic or
anti-holomorphic, see (4.6), then the function

Δ
n−1

2 f (x) = Δ
n−1

2

(
u(x0, |x|)+ x

|x|v(x0, |x|)
)

(5.19)

is a JB-monogenic function namely it satisfies

∂f

∂x0
− 1

2ε

n∑
j,k=1

bjk

[
∂f

∂xj

ik + ik
∂f

∂xj

]
= 0,

where the matrix B = [bjk] is is symmetric and nondegenerate. The proof of this
result, in the special case when B is scalar and the jacobian matrix of f is symmetric,
gives that f is left and right B-monogenic.

Remark 5.4 The case in which one obtains a monogenic function or function in the
kernel of the Dirac operator (in the sense of Clifford analysis) is very special and
occurs when B = I , I being the identity matrix, and Mq is the set of paravectors
in a Clifford algebra. However, the result is proved for an algebra generated by
a module with unit and whose elements satisfy a quadratic equation. And again,
according to this quadratic equation, the function f0 satisfies the Cauchy–Riemann
equation or a variation of it, see (5.5). Operators of Cauchy–Fueter type in which
there are coefficients bjk such that the matrix B = [bjk] is orthogonal have been
considered by Shapiro and Vasilevski in [76].

Remark 5.5 About 40 years after Sce, Qian proved in [67] that the theorem of
Sce holds in the case of a Clifford algebra over an even number n of imaginary
units, using techniques of Fourier multipliers in the space of distributions in order
to deal with the fractional powers of the Laplacian. He showed that also in this case,
Sce’s construction gives a monogenic function. After this paper there have been a
number of generalizations and the interested reader may find more information in
the survey [69] but see also the papers [38, 64–66, 73]. Qian also gave an interesting
application of Fueter–Sce’s theorem, see [68], to prove boundedness of singular
integral operators.
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Remark 5.6 It is also interesting to note that the language of stem functions and
induced functions, later used by Sce in his paper on the octonionic case, see Chap. 6,
was also previously used by Cullen and Rinehart, see [42, 70]. Also Sudbery in
his paper [78] points out that Cullen used functions of the form (5.16) to define
an alternative theory of functions of a quaternion variable. The concepts of stem
functions, intrinsic and induced functions are relevant in the theory of functions
nowadays called slice hyperholomorphic (also called slice regular when they are
quaternionic functions and slice monogenic when they have values in a Clifford
algebra). In the theory of slice hyperhomolomorphic functions, the two functions u

and v (real-valued in the above discussion) have values in the hypercomplex algebra
under consideration. In the language of slice hyperholomorphic functions, functions
of the form (5.16) with u, v real are called intrinsic, according to the terminology
introduced by Cullen and Rinehart [42, 70].

5.2 The Fueter–Sce Theorem: Function and Spectral
Theories

The Fueter–Sce–Qian theorem is one of the most fundamental results in complex
and hypercomplex analysis because it shows how to generalize complex analysis
to the hypercomplex setting. The fact that the generalization procedure is done
in two steps means that there are two function theories in such an extension.
When we consider for example quaternionic valued functions, we obtain slice
hyperholomorphicity for the quaternions at the first step, and Fueter regular
functions at the second step. The other important example is the Clifford algebra
valued functions where we obtain slice hyperholomorphicity for Clifford algebra,
and monogenic functions, respectively. This fact has important consequences in
operator theory, because in both steps of the Fueter–Sce–Qian contruction the two
types of hyperholomorphic functions have a Cauchy formula. From the Cauchy
formula of slice hyperholomorphic functions one deduces the notion of S-spectrum
and, as a consequence, the spectral theory on the S-spectrum, while on the Cauchy
formula of Fueter regular functions or monogenic functions one deduces the notion
of monogenic spectrum and the related spectral theory. In this section we show
how the two function theories are related, how they induce the associated spectral
theories and the connections between them.

It is important to observe that quaternionic quantum mechanics was the main
motivation to search for the S-spectrum but hypercomplex analysis has given the
tools to identify this spectrum. In fact, in 1936 Birkhoff and von Neumann, see [13],
showed that quantum mechanics can be formulated over the real, the complex and
the quaternionic numbers. Since then, several papers and books treated this topic,
however it is interesting, and somewhat surprising, that an appropriate notion of
spectrum for quaternionic linear operators was not present in the literature. The way
in which the so-called S-spectrum and the S-functional calculus were discovered in
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2006 by Colombo and Sabadini is well explained in the introduction of the book
[41], where it is shown how hypercomplex analysis methods allow to identify the
notion of S-spectrum of a quaternionic linear operator which, from the physical
point of view, seemed to be ineffable.

Before the works of the Italian mathematicians on slice hyperholomorphic
functions, this function theory was simply seen an intermediate step in the Fueter–
Sce–Qian’s construction. These functions have various analogies with the theory
of functions of one complex variable, but also crucial differences which make them
very interesting. Moreover, they opened the way in the understanding of the spectral
theories in the quaternionic and in the Clifford settings.

The literature on hyperholomorphic functions and related spectral theories is
nowadays very large, so we mention only some monographs and the references
therein. For the function theory of slice hyperholomorphic functions the main
references are the books [33, 40, 46, 49], while for the spectral theory on the S-
spectrum we mention the books [10, 20, 33, 41]. For the more classic quaternionic
and monogenic function theory we refer to the books [14, 25, 44, 52, 54, 72], and
for the monogenic spectral theory and applications we suggest the interested reader
to consult [58].

It is also worthwhile to mention that also Schur analysis has been considered
in the slice hyperholomorphic setting, see the book [8] and in the references
therein. Schur analysis in the Fueter setting and related topics have been treated,
for example, in the papers [2–4].

The Fueter–Sce Mapping Theorem and Function Theories

In the title of this section and below we will often refer to the Fueter–Sce–Qian
mapping theorem as to Fueter–Sce mapping theorem because, for the sake of
simplicity, the case of the fractional Laplacian considered by Qian will not be
treated.

We start by discussing the recent research area of slice hyperholomorphic
functions. The construction of Fueter is carried out for functions defined on open
sets of the upper half complex plane but it can be generalized to the whole complex
plane. Consider a stem function

f0(z) = α(u, v) + iβ(u, v), z = u+ iv

defined in a set D ⊆ C, symmetric with respect to the real axis, and set

f (x) = f (u+ Iv) = α(u, v) + Iβ(u, v), (5.20)
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where I is an element in the sphere S of purely imaginary quaternions or 1-vectors
in the case of a Clifford algebra and x is either a quaternion or a paravector. This
function is well defined if

α(u,−v) = α(u, v) and β(u,−v) = −β(u, v)

namely if α and β are, respectively, even and odd functions in the variable v.
Additionally the pair (α, β) satisfies the Cauchy–Riemann system. This fact was
already understood by Sce, see Chap. 6, no. 4, but was not taken into account until
the work of Qian [68].

The theory of functions of the form (5.20) was somewhat abandoned until 2006
when Gentili and Struppa introduced in [48] the following definition:

Definition 5.2 Let U be an open set in H and let f : U → H be real differentiable.
The function f is said to be (left) slice regular or (left) slice hyperholomorphic in
U if for every I ∈ S, its restriction fI to the complex plane CI = R+ IR passing
through origin and containing I and 1 satisfies

∂I f (u+ Iv) := 1

2

(
∂

∂u
+ I

∂

∂v

)
fI (u+ Iv) = 0,

on U ∩ CI .
Analogously, a function is said to be right slice regular (or right slice hyperholo-

morphic) in U if

(fI ∂I )(u+ Iv) := 1

2

(
∂

∂u
fI (u+ Iv) + ∂

∂v
fI (u+ Iv)I

)
= 0,

on U ∩ CI , every I ∈ S.

Further developments of the theory of slice regular functions were discussed also in
[28] and the above definition was extended by Colombo, Sabadini and Struppa,
in [27], (see also [21, 29, 30]) to the Clifford algebra setting for functions f :
U → Rn, defined on an open set U contained in R

n+1, where Rn is the Clifford
Algebra over n imaginary units. Slice regular functions according to Definition 5.2
and their generalization to the Clifford algebra, called slice monogenic functions,
possess good properties on specific open sets that are called axially symmetric slice
domains. When it is not necessary to distinguish between the quaternionic case and
the Clifford algebra case we call these functions slice hyperholomorphic.

On these domains, slice hyperholomorphic functions satisfy an important for-
mula, called Representation Formula or Structure Formula, which allows to compute
the values of the function once that we know its values on a complex plane CI .

Definition 5.3 Let U ⊆ H (or U ⊆ R
n+1). We say that U is axially symmetric if,

for every u + Iv ∈ U , all the elements u + Jv for J ∈ S are contained in U . We
say that U is a slice domain if U ∩ CI �= ∅ and U ∩ R is a domain in CI for every
I ∈ S.
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The link with functions of the form (5.16) or (5.20) is provided by the
Representation Formula or Structure Formula:

Theorem 5.3 Let f : U → Rn be a slice hyperholomorphic function defined on
an axially symmetric slice domain U ⊆ R

n+1. Let J ∈ S and let x ± Jy ∈ U ∩CJ .
Then the following equality holds for all x = u+ Iv ∈ U :

f (u+ Iv) = 1

2

[
f (u+ Iv) + f (u− Iv)

]
+ I

1

2

[
J [f (u− Iv) − f (u+ Iv)]

]

= 1

2
(1− IJ )f (u+ Iv) + 1

2
(1+ IJ )f (u− Iv).

(5.21)

Moreover, for all u+Kv ⊆ U , K ∈ S, there exist two functions α, β, independent
of I , such that for any K ∈ S we have

1

2

[
f (u+Kv)+f (u−Kv)

]
= α(u, v),

1

2

[
K[f (u−Kv)−f (u+Kv)]

]
= β(u, v).

(5.22)

As a consequence we immediately have:

Corollary 5.1 Let U ⊆ R
n+1 be an axially symmetric slice domain, let D ⊆ R

2

be such that u + Iv ∈ U whenever (u, v) ∈ D and let f : U → Rn. The function
f is slice hyperholomorphic if and only if there exist two differentiable functions
α, β : D ⊆ R

2 → H, satisfying

α(u, v) = α(u,−v), β(u, v) = −β(u,−v)

and the Cauchy–Riemann system

{
∂uα − ∂vβ = 0
∂uβ + ∂vα = 0,

(5.23)

such that

f (u+ Iv) = α(u, v) + Iβ(u, v). (5.24)

Thus, slice hyperholomorphic functions according to Definition 5.2 or the analogous
definition for slice monogenic functions are in fact functions of the form (5.20)
only on axially symmetric slice domains. However, if one defines a function to
be slice hyperholomorphic if it is of the form (5.20) where α, β satisfy the above
condition, one has that these functions are defined on axially symmetric open sets,
not necessarily slice domains.

Thus, starting with functions of the form (5.20), called slice functions, has the
advantage that they are defined on more general sets, moreover one can weaken the
requests on the two functions α, β requiring, e.g. only continuity, or differentiability
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or to be of class C k , thus giving rise to the class of continuous or differentiable or
C k slice functions.

The class of slice functions can be considered over real alternative algebras, as
done by Ghiloni and Perotti in [50, 51]. The idea of considering functions with
values in an algebra more general than quaternions is the one followed by Sce in
the paper translated in this Chapter. Although in his paper α, β are real valued, it is
clear that his discussion involving the Laplacian, which is a real operator, extends
to α, β with values in an algebra.

It is also possible to define slice hyperholomorphic functions, as functions in the
kernel of the first order linear differential operator (introduced in [36])

Gf =
(
|x|2 ∂

∂x0
+ x

n∑
j=1

xj
∂

∂xj

)
f = 0,

where x = x1e1 + . . . + xnen . While, another way to introduce slice hyperholo-
morphicity, done by Laville and Ramadanoff in the paper [56], is inspired by the
Fueter–Sce mapping theorem. They introduce the so called holomorphic Cliffordian
functions defined by the differential equation DΔmf = 0 over R2m+1, where D is
the Dirac operator. Observe that the definition via the global operator G requires
less regularity of the functions with respect to the definition in [56].

Here and in the following we will dedicate less attention to monogenic functions
because they are very well known since long time. They are functions f : U ⊆
R

n+1 → Rn, with suitable regularity, that are in the kernel of the Dirac operator.
Contrary to the monogenic case, slice hyperholomorphic functions can be defined
in different ways, as shown above, not always equivalent, and also for this reason
they require more comments.

Inversion of the Fueter–Sce–Qian Mapping Theorem

The inverse of the Fueter–Sce–Qian mapping can be obtained in at least two
different ways. The first approach that has been introduced in the paper [32] is based
on the Cauchy formula of monogenic functions and leads to an integral formula
for the inverse Fueter–Sce–Qian mapping. In what follows we give some hints of
the solution of the inversion problem because it is interesting to see how a partial
differential equation is solved using methods of hypercomplex analysis. A second
method to study the inverse of the Fueter–Sce–Qian mapping is based on the Radon
and dual Radon transform. We will not presented this method here, but we refer the
interested reader to the paper [39] for more details.

The Fueter–Sce–Qian mapping has range in the subset of monogenic functions
given by the subclass of those functions which are axially monogenic. In simple
words if U is an axially symmetric open set in R

n+1 a left axially monogenic
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function on the open set U is a function of the form

F(x) = A(x0, r)+ IB(x0, r)

where x = x0 + Ir , r = |x| �= 0, I = x/|x|, and such that the functions A =
A(x0, r) and B = B(x0, r) satisfy the Vekua’s system, i.e.

{
∂x0A(x0, r)− ∂rB(x0, r) = n−1

r
B(x0, r),

∂x0B(x0, r)+ ∂rA(x0, r) = 0.

Thus, given an axially monogenic function F , we construct a Fueter–Sce primitive
of F , namely a function f such that

Δ
n−1

2 f (x) = F(x).

This problem has been solved in [32] in the case n is odd and in [11] in the case
of any n ∈ N. It is interesting to observe that for the solution of this problem it is
enough to construct a Fueter–Sce primitive of suitable functions constructed via the
Cauchy kernel for monogenic functions. Precisely, we consider the Cauchy kernel
of monogenic functions

G (x) = 1

An+1

x

|x|n+1 , x ∈ R
n+1 \ {0}, (5.25)

where

An+1 = 2π(n+1)/2

Γ (n+1
2 )

.

and we define the kernels

N +
n (x) =

∫
S

G (x − J ) dS(J ), N −
n (x) =

∫
S

G (x − J ) J dS(J ),

where S is the unit (n − 1)-dimensional sphere in R
n+1, while dS(J ) is a scalar

element of area of S. The two functions N ±
n (x) are axially monogenic and their

Fueter–Sce primitives, obviously not unique, can be obtained as the monogenic
extension of the two functions:

W +
n (x0) := Cn

Kn

D−(n−1) x0

(x2
0 + 1)(n+1)/2

,

W −
n (x0) := − Cn

Kn

D−(n−1) 1

(x2
0 + 1)(n+1)/2

,
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where the symbol D−(n−1) stands for the (n − 1) integrations with respect to x0
and Cn and Kn are given constant that can be calculated explicitly. Then we used
an extension lemma based on properties of the solutions of the Dirac equation, so
the Fueter–Sce primitives W ±

n (x) are obtained by W ±
n (x0) replacing x0 by x =

x0 + x1e1 + . . . xnen. For example, in the case n = 3, we have

W +
3 (x) = 1

2π
arctan x, W −

3 (x) = − 1

2π
x arctan x.

So we can state the inverse Fueter–Sce mapping theorem:

Theorem 5.4 Let us consider an axially monogenic function

F(x) = A(x0, r)+ JB(x0, r)

defined on an axially symmetric domain U ⊆ R
n+1. Let Γ be the boundary of an

open bounded subset V of the half plane R+ JR+ and let

V = {x = u+ Jv, (u, v) ∈ V , J ∈ S} ⊂ U.

Moreover suppose that Γ is a regular curve whose parametric equations y0 =
y0(s), ρ = ρ(s) are expressed in terms of the arc-length s ∈ [0, L], L > 0. Then,
the function

f (x) =
∫

Γ

W −
n

( 1

ρ
(x − y0)

)
ρn−2(dy0 A(y0, ρ)− dρ B(y0, ρ)) (5.26)

−
∫

Γ

W +
n

( 1

ρ
(x − y0)

)
ρn−2(dy0B(y0, ρ)− dρA(y0, ρ))

is a Fueter–Sce primitive of F(x) on V , where W ±
n (x) are the Fueter–Sce primitive

of N ±
n (x).

The proof of this result is rather involved and, in the general case, it requires Fourier
multipliers in order to give meaning to fractional powers of the Laplacian. As the
Fueter–Sce mapping theorem, also its inversion can be proved in various framework.
It was proved for axially monogenic functions of degree k in [35] for n odd, and in
the general case in [12]. The case of polyaxially monogenic functions seems to be
more complicated and, at the moment, only the biaxial case has been considered
in [37].

The Fueter–Sce Mapping Theorem and Spectral Theories

One of the most important motivations for the study hyperholomorphic functions
theories is that they induce spectral theories through their Cauchy formulas.
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In fact, in quaternionic operator theory a precise notion of spectrum for quater-
nionic linear operator was missing at least since the paper [13] of G. Birkhoff and
J. von Neumann, where they proved that quantum mechanic can be formulated also
on quaternionic numbers, but from the operator theory point of view the notion of
spectrum of quaternionic linear operators was not made precise. In fact, in all the
papers dealing with quaternionic quantum mechanic the notion of right eigenvalues
is used, but as it is well known, a part from the finite dimensional case, the right
eigenvalues alone are insufficient to construct a quaternionic spectral theory.

It was only in 2006 that, using techniques based solely on slice hyperholomorphic
functions, the precise notion of spectrum of a quaternionic linear operator was
identified. This spectrum was called the S-spectrum and since then the literature
in quaternionic spectral theory has rapidly grown, see [41] for more information.
Later in 2015 (and published in 2016) it was proved also the spectral theorem for
quaternionic normal operators based on the S-spectrum, see [6, 7] and perturbation
results of quaternionic normal operators can be found in [15]. Beyond the spectral
theorem there are more recent developments in the direction of the characteristic
operator functions, see [10] and the theory of spectral operators developed in [47].

The quaternionic Riesz–Dunford functional calculus based on the S-spectrum,
called S-functional calculus (see for example [5, 22]), was extended also to the
case of n-tuples of noncommuting operators using the notion of S-spectrum and the
theory of slice monogenic functions, see [26] and the book [33].

An important extension of the S-functional calculus to unbounded sectorial
operators is the H∞-functional calculus which is one of the ways to define functions
of unbounded operators. The H∞-functional calculus has been used to define
fractional powers of quaternionic linear operators that define fractional Fourier laws
for nonhomogeneous material in the theory of heat propagation. For the original
contributions see [9, 18, 19]. For a systematic and recent treatment of quaternionic
spectral theory on the S-spectrum and the fractional diffusion problems based on
these techniques, see the books [20, 41]. Moreover, in the monograph [33] one can
find also the foundations of the spectral theory on the S-spectrum for n-tuples of
noncommuting operators.

Below, we summarize in the following some of the applications and research
directions of the hyperholomorphic function theories and relative spectral theories,
induced by the two steps of the Fueter–Sce construction.

1. The first step generates slice hyperholomorphic functions and the spectral theory
of the S-spectrum. Among the applications we mention:

• The mathematical tools for quaternionic quantum mechanics, related to the
Spectral Theorem based on the S-spectrum.

• New classes of fractional diffusion problems that are based on the definition of
the fractional powers of vector linear operators.

• The characteristic operator functions and applications to linear system theory.
• Quaternionic spectral operators, which allow to consider a class of nonself-

adjoint problems.
• Spectral theory of Dirac operators on manifolds in the nonself-adjoint case.
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2. The second step in the Fueter–Sce construction generates Fueter regular or
monogenic functions and the spectral theory on the monogenic spectrum, and
some of the applications are:

• Boundary value problems treated with quaternionic techniques, see the book of
Gürlebeck and Sprössig [53] and the references therein.

• Quaternionic approach to div-rot systems of partial differential equations, see
[34].

• Harmonic analysis in higher dimension, see the work of McIntosh, Qian, and
many others [57, 59, 60, 62, 68].

For operator theory the most appropriate definition of slice hyperholomorphic
functions is the one that comes from the Fueter–Sce mapping theorem because it
allows to assume that the functions are defined only on axially symmetric open sets.
The definition below generalizes Fueter’s construction from open sets in the upper
half complex plane to more general open sets.

Definition 5.4 Let U ⊆ R
n+1 be an axially symmetric open set and let U ⊆ R×R

be such that x = u+Jv ∈ U for all (u, v) ∈ U . We say that a function f : U → Rn

of the form

f (x) = α(u, v) + Jβ(u, v)

is left slice hyperholomorphic if α, β are Rn-valued differentiable functions such
that

α(u, v) = α(u,−v), β(u, v) = −β(u,−v) for all (u, v) ∈ U

and if α and β satisfy the Cauchy–Riemann system

∂uα − ∂vβ = 0, ∂vα + ∂uβ = 0.

It is called right slice hyperholomorphic when f is of the form

f (x) = α(u, v) + β(u, v)J

and α, β satisfy the above conditions.

Since we will restrict just to left slice hyperholomorphic function on U we introduce
the symbol SH(U) to denote them.

Theorem 5.5 Let U ⊆ R
n+1 be an axially symmetric open set such that ∂(U ∩CI )

is union of a finite number of continuously differentiable Jordan curves, for every
I ∈ S. Let f be an Rn-valued slice hyperholomorphic function on an open set
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containing U and, for any I ∈ S, we set dsI = −Ids. Then, for every x ∈ U , we
have:

f (x) = 1

2π

∫
∂(U∩CI )

S−1
L (s, x)dsI f (s), (5.27)

where

S−1
L (s, x) = −(x2 − 2Re(s)x + |s|2)−1(x − s) (5.28)

and the value of the integral (5.27) depends neither on U nor on the imaginary unit
I ∈ S.

It turns out that the kernel S−1
L (s, x) is slice hyperholomorphic in x and right slice

hyperholomorphic in s for x, s such that x2 − 2Re(s)x + |s|2 �= 0.
Denoting by O(D) the set of holomorphic functions on D, by N(ΩD) the set of

induced functions on ΩD (which turn out to be intrinsic slice hyperholomorphic
functions) and by AM(ΩD) the set of axially monogenic functions on ΩD the
Fueter–Sce construction can be visualized by the diagram:

O(D)
TFS1−−−−→ N(ΩD)

TFS2=Δ (or TFS2=Δ(n−1)/2))−−−−−−−−−−−−−−−−−−→ AM(ΩD),

where TFS1 denotes the first operator of the Fueter–Sce construction and TFS2
the second one, see (5.17) and (5.18). The Fueter–Sce mapping theorem induces
two spectral theories according to the classe of functions that we consider. The
Cauchy formula of slice hyperholomorphic functions allows to define the notion of
S-spectrum, while the Cauchy formula for monogenic functions induces the notion
of monogenic spectrum, as illustrated by the diagram:

−−−−→
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

SH(U)
TFS2

AM(U)

Slice Cauchy f ormula Monogenic Cauchy f ormula

S − spectrum monogenic spectrum

S − f unctional calculus monogenic f unctional calculus

H∞ − f unctional calculus H∞ − monogenic f unctional calculus

In the above diagram we have replaced the set of intrinsic functions N by the larger
set of slice hyperholomorphic functions SH . This is clearly possible because the
map TFS2 is the Laplace operator or its powers.
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Let us consider a Banach space V over R with norm ‖ · ‖. It is possible to
endow V with an operation of multiplication by elements of Rn which gives a two-
sided module over Rn and by Vn we indicate the two-sided Banach module over
Rn given by V ⊗ Rn. Our aim is to construct a functional calculus for n-tuples of
not necessarily commuting operators using slice hyperholomorphic functions. So
we consider the so called paravector operator

T = T0 +
n∑

j=1

ejTj ,

where Tμ ∈ B(V ) for μ = 0, 1, ..., n, and where B(V ) is the space of all bounded
R-linear operators acting on V .

The notion of S-spectrum follows from the Cauchy formula of slice hyperholo-
morphic functions and from some not trivial considerations on the fact that we can
replace in the Cauchy kernel S−1

L (s, x) the paravector x by the paravector operator
T also in the case the components (T0, T1, ..., Tn) of T do not commute among
themselves. We have the following definition.

Definition 5.5 (S-Spectrum) Let T ∈ B(Vn) be a paravector operator. We define
the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ R
n+1 : T 2 − 2 Re (s)T + |s|2I is not invertible in B(Vn)}

where I denotes the identity operator. It’s complement

ρS(T ) = R
n+1 \ σS(T )

is called the S-resolvent set.

Definition 5.6 Let T ∈ B(Vn) be a paravector operator and s ∈ ρS(T ). We define
the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re (s)T + |s|2I)−1(T − sI). (5.29)

A similar definition can be given for the right resolvent operator.

Definition 5.7 We denote by SHσS(T ) the set of slice hyperholomorphic functions
defined on the axially symmetric set U that contains the S-spectrum of T .

A crucial result for the definition of the S-functional calculus is that integral

1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f (s), for f ∈ SHσS(T ) (5.30)

depends neither on U nor on the imaginary unit I ∈ S, so the S-functional calculus
turns out to be well defined.
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Definition 5.8 (S-Functional Calculus) Let T ∈ B(Vn) and let U ⊂ H be as
above. We set dsI = −Ids and we define the S-functional calculus as

f (T ) := 1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f (s), for f ∈ SHσS(T ). (5.31)

The definition of the S-functional calculus is one of the most important results in
noncommutative spectral theory.

Here we will not enter into the details of the monogenic functional calculus,
we just point out that the starting point for its definition is the monogenic Cauchy
formula and the fact that one has to give meaning to the monogenic Cauchy kernel
(5.25)

G (s − x) = 1

An+1

s − x

|s − x|n+1

when we replace the paravector x by the paravector operator T . In this case there are
major differences with respect to the slice hyperholomorphic Cauchy kernel when
the components (T0, T1, ..., Tn) of T do not commute among themselves. Moreover,
the operators Tμ : V → V , μ = 1, ...n, must have real spectrum when considered
as linear operators on the real Banach space V and we have to set T0 = 0.

Since we are discussing the consequences of the Fueter–Sce theorem in the next
subsection we will show how we can use an integral version of this theorem to define
the F -functional calculus which is a version of the monogenic functional calculus
for n-tuples of commuting operators but it is based on the S-spectrum.

The Fueter–Sce Theorem in Integral Form
and the F -Functional Calculus

The Fueter–Sce mapping theorem in integral form and the F -functional calculus
where introduced in [31] and further investigated in [17, 23, 24].

We now show how the Fueter–Sce mapping theorem provides an alternative way
to define the functional calculus based on monogenic functions. The main idea is to
apply the Fueter–Sce operator TFS2 to the slice hyperholomorphic Cauchy kernel as
illustrated by the diagram:

⏐
⏐
�

−−−−→
⏐
⏐

⏐
⏐

SH(U) AM(U)

Slice Cauchy f ormula
TFS2 Fueter Sce integral f orm

S Functional calculus F f unctional calculus
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This procedure generates an integral transform, called the Fueter–Sce mapping
theorem in integral form, that allows to define the so called F -functional calculus.
This calculus uses slice hyperholomorphic functions and the commutative version
of the S-spectrum, but defines a monogenic functional calculus. We just give an
idea of how this works. We point out that the operator TFS2 has a kernel and one has
to pay attention to this fact with the definition of the F -functional calculus, more
details are given in [41]. Then, one has to observe that one can apply the powers of
Laplacian to both sides of (5.27) obtaining:

Δhf (x) = 1

2π

∫
∂(U∩CI )

ΔhS−1
L (s, x)dsI f (s)

which amounts to compute the powers of the Laplacian applied to the Cauchy kernel
S−1

L (s, x). In general, it is not easy to compute Δhf and when we apply Δh to the
Cauchy kernel written in the form (5.28), we do not get a simple formula. However,
S−1

L (s, x) can be written in two equivalent ways as follows.

Proposition 5.1 Let x, s ∈ R
n+1 (or in H in the quaternionic case) be such that

x2 − 2xRe(s)+ |s|2 �= 0. Then the following identity holds:

S−1
L (s, x) = −(x2 − 2xRe(s)+ |s|2)−1(x − s)

= (s − x̄)(s2 − 2Re(x)s + |x|2)−1.
(5.32)

If we use the second expression for the Cauchy kernel we find a very simple
expression for ΔhS−1

L (s, x).

Theorem 5.6 Let x, s ∈ R
n+1 be such that x2 − 2xRe(s)+ |s|2 �= 0. Let

S−1
L (s, x) = (s − x̄)(s2 − 2Re(x)s + |x|2)−1

be the slice monogenic Cauchy kernel and let Δ = ∑n
i=0

∂2

∂x2
i

be the Laplace

operator in the variable x = x0 +∑n
i=1 xiei . Then, for h ≥ 1, we have:

ΔhS−1
L (s, x) = Cn,h (s − x̄)(s2 − 2Re(x)s + |x|2)−(h+1), (5.33)

where

Cn,h := (−1)h
h∏

�=1

(2�)

h∏
�=1

(n− (2�− 1)).

The function ΔhS−1(s, x) is slice hyperholomorphic in s for any h ∈ N but is
monogenic in x only if and only if h = (n + 1)/2, namely if and only if h equals
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the Sce exponent. We define the kernel

FL(s, x) := Δ
n−1

2 S−1
L (s, x)

= γn(s − x̄)(s2 − 2Re(x)s + |x|2)− n+1
2 ,

where

γn := (−1)(n−1)/22(n−1)/2(n− 1)!
(n− 1

2

)
!

which can be used to obtain the Fueter–Sce mapping theorem in integral form.

Theorem 5.7 Let n be an odd number. Let f be a slice hyperholomorphic function
defined in an open set that contains U , where U is a bounded axially symmetric open
set. Suppose that the boundary of U ∩ CI consists of a finite number of rectifiable
Jordan curves for any I ∈ S. Then, if x ∈ U , the function f̆ (x), given by

f̆ (x) = Δ
n−1

2 f (x)

is monogenic and it admits the integral representation

f̆ (x) = 1

2π

∫
∂(U∩CI )

FL(s, x)dsI f (s), dsI = ds/I, (5.34)

where the integral depends neither on U nor on the imaginary unit I ∈ S.

Using the Fueter–Sce mapping theorem in integral form (5.34), one can define a

functional calculus for monogenic functions f̆ = Δ
n−1

2 f using slice hyperholomor-
phic functions and the S-spectrum. The F -functional calculus is based on (5.34) and
it is a monogenic functional calculus in the spirit of the functional calculus based on
the monogenic spectrum introduced by McIntosh (see the book of B. Jefferies [58]).

In the sequel, we will consider bounded paravector operators T , with commuting
components T� ∈ B(V ) for � = 0, 1, . . . , n. Such subset of B(Vn) will be denoted
by BC0,1(Vn). The F -functional calculus is based on the commutative version of the
S-spectrum (often called F -spectrum in the literature). So we define the F -resolvent
operators.

Definition 5.9 (F -Resolvent Operators) Let n be an odd number and let T ∈
BC0,1(Vn). For s ∈ ρS(T ) we define the left F -resolvent operator by

FL(s, T ) := γn(sI − T )(s2 − (T + T )s + T T )−
n+1

2 , (5.35)

where the operator T is defined by

T = −T1e1 − · · · − Tnen

the constants γn are given above.
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Definition 5.10 (The F -Functional Calculus for Bounded Operators) Let n be
an odd number, let T ∈ BC0,1(Vn) be such that T = T1e1 + · · · + Tnen, assume
that the operators T� : V → V , � = 1, .., n have real spectrum and set dsI = ds/I ,
for I ∈ S. Let SHσS(T ) and U be as in Definition 5.7. We define

f̆ (T ) := 1

2π

∫
∂(U∩CI )

FL(s, T ) dsI f (s). (5.36)

The definition of the F -functional calculus is well posed since the integrals in (5.36)
depends neither on U and nor on the imaginary unit I ∈ S.
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Chapter 6
Regular Functions in the Cayley Algebra

This chapter contains the translation of the paper:

P. Dentoni, M. Sce, Funzioni regolari nell’algebra di Cayley, Rend. Sem. Mat. Univ.
Padova, 50 (1973), 251–267.

[Editors’Note: in the original text Definition 1, Theorem 1, Lemma 1, Proposition 1,
etc. are indicated as D1, T1, L1, P1, etc. Below we use the standard LaTeX
environments but putting the original labels into parenthesis, i.e., Definition (D1),
etc.]

1. Some considerations lead to think that a theory of regular functions having
the essential properties of the classical theory of one complex variable, can be
performed only in division algebras.1 It is known that, among the real alternative
algebras, the only division algebras are the algebra of real numbers R, of complex
numbers C, of the quaternions Q, of Cayley numbers C.2 [Editors’ Note: the
reader should pay attention to the difference between C used to denote the complex
numbers and C to denote the Cayley numbers]. G. C. Moisil, R. Fueter and other
Authors have developed since some time a theory over the quaternions based on a
generalization of the Cauchy-Riemann condition

∂f

∂x
+ i

∂f

∂y
= 0

1For example, according to a result by M. Sce [12], the division algebras are the only associative
algebras in which the components of the regular functions satisfy equations of elliptic type.
2See for example R. D. Schafer [14], p. 48. The algebras listed above are precisely the real algebras
with composition (Hurwitz’s Theorem). Any of them can be obtained from the preceding one in a
way analogous to the one that from the algebra R leads to C = R+Ri (Cayley-Dickson process).
See e.g. N. Jacobson [8].
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(regular functions). This theory, although lacking in the classical differential part
(derivatives, primitives) has obtained a remarkable success for the part related to
integral properties (Cauchy-type theorems) and the link with harmonic functions.
The goal of this paper is to extend to the Cayley algebra the results obtained by
G. C. Moisil and R. Fueter over the quaternions.

The definition of regular function (D1, n.3) and some results, like for example,
the link between regular functions and harmonic functions (P1, n.3) extends to the
Cayley algebra without relevant modifications. However, there are often difficulties
due to the lack of associativity. This fact leads in a natural way to introduce in C a
particular class of functions characterized by the property, trivial in the associative
case, that the function cf , (c ∈ C) is regular on the right (biregular functions)
(T1, n.3).

This class of functions appears to be strictly related to other important classes
considered in algebras (primary functions, intrinsic functions)3 which contain as a
particular case power series with scalar coefficients. In the first place we extend
to the algebra C a result of R. F. Rinehart related to quaternions; precisely, in
the Cayley algebra primary functions and intrinsic functions turn out to coincide
(T2 n.4). Then we obtain the extension to C of a theorem established by R. Fueter
for the quaternions Q; precisely it turns out that for any intrinsic, analytic function
f , the function Δ3f is biregular (T3, n.6. In particular, in the Cayley algebra for
any convergent series f (x) = ∑

anx
n (an ∈ C) the function Δ3f is right regular

(C1 n. 6).
The interest for biregular functions mainly reveals in connection with the integral

theorem. Despite what happens in the quaternionic case, in the Cayley algebra C

there is no integral theorem for a pair of functions f , g regular on the right and on
the left, respectively. For the validity of the theorem, it is needed that one of the
two functions is biregular (T4, n. 7). The integral theorem allows to get an integral
formula of Cauchy type for regular functions in the algebra C (T5, n. 8), assuming
as a kernel a suitable biregular function.

From the integral formula follow some classical consequences. In particular, the
components of regular functions are of class C ω.

2. The Cayley Algebra
As it is well known, the Cayley algebra on the field of real numbers R is the set of
ordered pairs of quaternions, with the multiplicative law

(q1, q
′
1) · (q2, q

′
2) = (q1q2 − q̄ ′2q ′1, q ′2q1 + q ′1q̄2) (6.1)

where q̄2, q̄ ′2 are quaternions conjugated of q2, q ′2.4

3For these functions see e.g. R. F. Rinehart [10].
4For the essential properties of the Cayley algebra, see e.g. N. Jacobson [8], R. D. Schafer [14].
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Denoting by i0 = 1, i1 i2, i3 the ordinary basis of the skew field Q of quaternions,
it is convenient to consider in C the basis formed by the elements

uh =
{

(ih, 0) for h = 0, . . . , 3,

(0, ih−4) for h = 4, . . . , 7.

The element u0 works as a neutral element in C, and in the sequel will be identified
with the neutral scalar element 1.

The algebra C turns out to be non associative. It is however alternative,5 that is,
the associator (x, y, z) = (xy)z − x(yz) is a trilinear, alternating function in the
variables x, y, z ∈ C. In particular, the alternative laws left and right

a(ax) = a2x, (xa)a = xa2 (6.2)

and the flexible law

a(xa) = (ax)a (6.3)

hold.
Considering the generic element x = ∑7

h=0 ξhuh in C, we then denote by x̄ =
ξ0u0 − ξ1u1 − · · · − ξ7u7, the conjugated element of x, by Tr(x) = x + x̄ the trace
of x, and by |x|2 = ∑7

h=0 ξ2
h = N(x) the norm of x.

The conjugation x � x̄, as in the case of quaternions, is intrinsically character-
ized by being the only involutorial antiautomorphism of C such that for any x ∈ C

one has x + x̄, xx̄ ∈ R · 1.6

We then have7

xx̄ = x̄x = |x|2, |xy| = |x| · |y| (6.4)

thus any element x ∈ C admits inverse x−1 = x̄/|x|2. 8

The norm N turns out to be a quadratic form positive definite on C. Its associated
bilinear form

(x, y) = 1

2
(xȳ + yx̄) (6.5)

5For the fundamental notions on non associative and in particular alternative algebras, see e.g.
R. D. Schafer [14].
6See e.g. R. D. Schafer [14], p. 45–49.
7See e.g. R. D. Schafer [14], p. 45–46.
8The uniqueness of the inverse can be proven as in the associative case, making use of the relations
a(āx) = (aā)x, (xa)ā = x(aā), equivalent to (6.2).
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is called scalar product of the elements x, y ∈ C, and gives to the algebra C the
structure of real Hilbert space. With respect to the scalar product (6.5), the chosen
basis u0, . . . , u7 in C turns out to be orthonormal.

From (6.4) and (6.5) it follows immediately that the notions of norm and scalar
product are independent of the choice of a basis in C.

3. Regular Functions
Let U be an open set in C, and let f : U → C be a function of class C 1 in U .
Denoting by

D = u0
∂

∂ξ0
+ · · · + u7

∂

∂ξ7
, (6.6)

we introduce the definition:

Definition 6.1 (D1) A function f of class C 1 in an open set U of C is said left,
right regular in U if9

Df =
7∑

h=0

uh
∂

∂ξh

= 0, f D =
7∑

h=0

∂

∂ξh

uh = 0. (6.7)

hold, respectively.

The definition D1 depends on the chosen basis u0, . . . , u7 in C. However, the set of
functions regular on the right, left remains the same if in (6.7) instead of {uh} one
chooses another arbitrary orthonormal basis {vh} of C (n. 2.) In fact, the matrix of
the change of basis from {uh} to {vh} is orthogonal. The assertion easily follows.10

Then, considering the conjugated operator of D

D̄ = u0
∂

∂ξ0
− · · · − u7

∂

∂ξ7
,

the relations

DD̄ = D̄D = Δ (6.8)

hold, with Δ the Laplacian in eight variables. It follows:

Proposition 6.1 (P1) Every function f right or left regular in an open set U of C

is harmonic, namely:

Δf = 0, in U.

9About regular functions in an associative algebra, see e.g. G. C. Moisil [9], R. Fueter [4, 6]. An
ample bibliography is in V. Iftimie [7].
10See M. Sce [11], p. 32, note (8). See also P. Dentoni [3].
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For the proof, it suffices to use (6.8), bearing in mind that, as we shall see at n. 8,
regular functions are of class C∞. A large class of functions regular on the right and
on the left can be constructed using the proposition:

Proposition 6.2 (P2) For every scalar valued function α harmonic in U , the
function f = D̄α = αD̄ is regular on the right and on the left in U .

The assertion follows immediately from (6.8).
Based on Proposition P2, regular functions obtained starting from a harmonic

scalar function α are called biregular. They are characterized by the following
properties:

Proposition 6.3 (P3) A function f = ϕ0u0+ · · ·+ϕ7u7 of class C 1 in an open set
U of C is biregular in U if and only if the following relations are satisfied

∂ϕ0

∂ξ0
= ∂ϕ1

∂ξ1
+ · · · + ∂ϕ7

∂ξ7
; ∂ϕ0

∂ξh

+ ∂ϕh

∂ξ0
= 0 (h = 1, . . . , 7), (6.9)

∂ϕh

∂ξk

= ∂ϕk

∂ξh

, (h, k = 1, . . . , 7). (6.10)

In fact, (6.9) and (6.10) are necessary and sufficient for the existence of a scalar
function α such that

Δα = 0; ∂α

∂ξ0
= ϕ0,

∂α

∂ξ1
= −ϕ1, . . .

∂α

∂ξ7
= −ϕ7.

Proposition 6.4 (P4) A function f regular on the left (right) in an open set U of C

is biregular in U if and only if (6.10) holds.

P4 follows immediately from the relation

Df =
7∑

i,j=0

∂ϕj

∂ξi

uiuj =
∑

1≤i<j≤7

⎛
⎝∂

∂ϕi

∂ξj
− ϕj

∂ξi

⎞
⎠uiuj+

+
7∑

h=1

(
∂ϕ0

∂ξh
+ ∂ϕh

∂ξ0

)
uh +

(
∂ϕ0

∂ξ0
− ∂ϕ1

∂ξ1
− · · · − ∂ϕ7

∂ξ7

)
u0.

Another characterization of biregular functions in the algebra C is given by the
theorem

Theorem 6.1 (T1) A condition necessary and sufficient for a function f , of class
C 1 in an open set U of C, to be biregular in U , is that for any element c ∈ C the
function f c is left regular in U .11

11The theorem can also be stated with reference to right regularity of the function cf .
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In fact, let f = ∑
h ϕhuh. Keeping in mind that the associator is alternative, one

can write

D(f c) =
∑
h

uh

(
∂f

∂ξh

c

)
= (Df )c −

∑
h

(
uh,

∂f

∂ξh

, c

)
= (6.11)

= (Df )c +
∑

1≤h<k≤7

(
∂ϕh

∂ξk

− ∂ϕk

∂ξh

)
(uh, uk, c).

Let now f be biregular in U . By Proposition P4, the right hand side of (6.11)
vanishes, so that f c is left regular. Conversely, if f c is left regular for all c (and
so also for c0 = u0) one has D(f c) = Df = 0 and (6.11) reduces to

∑
1≤h<k≤7

(
∂ϕh

∂ξk

− ∂ϕk

∂ξh

)
(uh, uk, c) = 0

for all c ∈ C. Taking into account Proposition P4, to obtain the statement it is
enough to prove the lemma

Lemma 6.1 (L1) In the algebra C the linear transformations

Lh,k(x) = (uh, uk, x) 1 ≤ h < k ≤ 7

are linear independent.

If in the relation

∑
1≤h<k≤7

λhk(uh, uk, x) = 0 (λhk ∈ R),

one sets x = u4, and subsequently x = u1, x = u5, one obtains

λ12 − λ56 = 0, λ56 − λ47 = 0, λ47 + λ12 = 0,

so that λ12 = 0. For the other coefficients λhk one goes back to the case just
considered, by doing a suitable permutation on the elements of a basis.12

A remarkable class of functions regular on the right and on the left, which is
included in that one of biregular functions, can be obtained starting from intrinsic
functions in the algebra C. To these functions is devoted n. 4.

12Let us consider in C an auxiliary basis of the form v0 = u0, v1 = uh, v2 = uk , v3 = uhuk ,
v4 = us , v5 = usuh, v6 = usuk , v7 = us(uhuk). One can easily see that the bases {ui}, {vi} have
the same multiplication tables.
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4. Intrinsic Functions in the Cayley Algebra
In an arbitrary algebra A, are called intrinsic the functions f which commute with
the algebra automorphisms, namely such that

f (ωx) = ωf (x)

for any automorphism ω of A.13 Examples of intrinsic functions are given by power
series

∑
αnx

n, with scalar coefficients.

The most important class of intrinsic functions, which comprises the example
just mentioned, is made by primary functions, which can be seen as obtained by
extending ordinary functions of a complex variable ζ = ξ + iη to the algebra. In the
Cayley algebra, the definition is the following.14

Let

ψ(ζ ) = ψ1(ξ, η)+ iψ2(ξ, η)

be a function defined in an open set of the complex field C, with values in C, with
the conditions

ψ1(ξ,−η) = ψ1(ξ, η), ψ2(ξ,−η) = −ψ2(ξ, η). (6.12)

Then, for any generic element x in C, let us consider the canonical decomposition

x = ξ0 · 1+ x̂ (6.13)

where ξ0 = 1
2 Tr x and Tr x̂ = 0. By setting

λ2 = N(x̂) = ξ2
1 + · · · + ξ2

7 ,

X =
(

1
λ

)
x̂, (6.13) rewrites as

x = ξ0 · 1+ λX. (6.14)

Given the above, the function

f (x) = ψ1(ξ0, λ) · 1+Xψ2(ξ0, λ) (6.15)

13For intrinsic functions in algebras, see R. F. Rinehart [10]. For the case of quaternions, see also
C. G. Cullen [2].
14In an arbitrary algebra A, the extension of the function ϕ(ζ) is usually defined by means of
the Hermite interpolation formula. It can be verified without difficulties, in a way analogous to the
case of quaternions (see R. F. Rinehart [10], Theorem 8.1), that in the Cayley algebra this definition
coincides with the one in the text.
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which, by (6.12), does not depend on the sign chosen for λ, is called the primary
function generated by the function of a complex variable ψ . Primary functions in
the algebra C turn out to be intrinsic.15 In fact, for any automorphism ω of C

ωx = ξ0 · 1+ λωX

and since |ωX| = |X| = 1, Tr ωX = Tr X = 0,16 the statement follows. In the
present case we have the following theorem, extension of a very well known result
in the algebra of quaternions:17

Theorem 6.2 (T2) In the Cayley algebra, intrinsic functions coincide with primary
functions.

N. 5 is devoted to the proof of this result.
5. It is convenient to put beforehand some lemmas on automorphisms of C.

Lemma 6.2 (L2) For any pair of orthogonal elements a, b in C with |a| = |b| = 1,
Tr a = Tr b = 0, there exists an automorphism ω of the algebra C such that ωa = a,
ωb = −b.

In fact, let c be an element in C with |c| = 1, orthogonal to the subspace generated
by 1, a, b, ab. Denoting by Q̃ the subspace of C generated by the elements 1, a, c,
ac and taking into account (6.2), (6.4), and (6.5), one can verify without difficulty
that Q̃ is a subalgebra, isomorphic to the algebra Q of quaternions. The element b,
which by hypothesis is orthogonal to 1, a, c is also orthogonal to ac. In fact, by a
very well known property of the scalar product in C18

(ac, b) = (c, āb) = −(c, ab) = 0.

In conclusion, b is orthogonal to Q̃. This said, we consider as automorphism ω the
linear transformation given by the reflection of C into itself in which the elements
of Q̃ are fixed and those of the subspace Q̃⊥, orthogonal to Q̃, change their sign.19

Lemma 6.3 (L3) For any pair of independent elements x, y in C with |x| = |y| =1,
Tr x = Tr y = 0, there exists an automorphism ω of the algebra C such that ωx = x,
ωy �= y.

Let us set

a = x, b = y − (x, y)x

|y − (x, y)x|

15The result is well known in an arbitrary associative algebra. See R. F. Rinehart [10, Theorem 4.4.]
16See e.g. N. Jacobson [8], p. 65.
17See R. F. Rinehart [10], p. 15.
18See e.g. N. Jacobson [8], p. 57, (8).
19See N. Jacobson [8], p. 66.
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(by hypothesis, y − (x, y)x �= 0), so that |b| = 1, Tr b = 0, (a, b) = 0 and there
exists an automorphism ω of C such that ωx = x, ωb = −b from which it follows

ωy = 2(x, y)x − y �= y.

Lemma 6.4 (L4) For any pair of elements x, y in C with |x| = |y|, Tr x=Tr y = 0,
there exists an automorphism ω of C such that ωx = y.

Obviously, we can assume that x − y �= 0. First, we also suppose that x + y �= 0.
By setting a = (x + y)/|x+ y|, b = (x − y)/|x − y| it turns out that |a| = |b| = 1,
ωa = a, ωb = −b. The assertion follows. If x + y = 0, let a be any element in
C with |a| = 1 and orthogonal to 1, x. By setting b = x/|x|, the assertion follows
from Lemma L2.

Given the above, we turn to the proof of T2. Let f be any intrinsic function in the
algebra C; we have to prove that f is primary. To this end, in analogy with (6.14),
we write

f (x) = ϕ0 · 1+ μY (6.16)

with ϕ0, μ ∈ R, Tr Y = 0, |Y | = 1. Denoting by ω an automorphism of c such that
ωX = X (and so ωx = x) it turns out that

ϕ0 · 1+ μY = f (x) = f (ωx) = ωf (x) = ϕ0 · 1+ μωY. (6.17)

Let now μ �= 0. Then (6.17) gives ωY = Y ; from Lemma L3 it follows necessarily
the linear dependence of X and Y , from which Y = εX with ε = ±1. By setting

ψ1(ξ0, λ,X) = ϕ0; ψ2(ξ0, λ,X) = εμ

we can write in any case

f (x) = ψ1(ξ0, λ,X)+ Xψ2(ξ0, λ,X) (6.18)

and evidently it turns out

ψ1(ξ0,−λ,−X) = ψ1(ξ0, λ,X); ψ2(ξ0,−λ,−X) = −ψ2(ξ0, λ,X).

(6.19)

The functions ψ1, ψ2 are independent of X. In fact, let X′ be any element in C

with Tr X′ = 0, |X′| = 1. By L4 there exists an automorphism ω of C such that
ωX = X′ therefore the relations

f (ωx) = ψ1(ξ0, λ,X′) · 1+X′ψ2(ξ0, λ,X′)

ωf (x) = ψ1(ξ0, λ,X) · 1+X′ψ2(ξ0, λ,X).
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hold. Since, by hypothesis, f (ωx) = ωf (x), we obtain

ψ1(ξ0, λ,X′) = ψ1(ξ0, λ,X) = ψ1(ξ0, λ)

ψ2(ξ0, λ,X′) = ψ2(ξ0, λ,X) = ψ2(ξ0, λ)

namely the assertion. In particular, (6.18) and (6.19) are relations of the type (6.15),
(6.12), respectively; in other words, the intrinsic function f coincides with the
primary function generated by the function of a complex variable ψ(ξ + iη) =
ψ1(ξ, η)+ iψ2(ξ, η).

Theorem T2 is then completely proved.
In the sequel, we consider mainly intrinsic functions generated by functions

ψ(ζ ) holomorphic. In this case, the functions f are called intrinsic analytic and
they include, in particular, functions defined by convergent series with positive or
negative powers of the variable x in C with scalar coefficients

f (x) =
+∞∑

n=−∞
αnx

n (αn ∈ R). (6.20)

In fact, it is not difficult to verify that (6.20) is the primary function generated by
the holomorphic function

ψ(ζ ) =
+∞∑

n=−∞
αnζ

n.

6. Analytic Intrinsic Functions and Biregular Functions
To consider analytic intrinsic functions allows to construct in the Cayley algebra C

an important class of functions right and left regular which is contained in the class
of biregular functions (n. 3).

Precisely, denoting by Δ the Laplacian in the variables ξ0, . . . , ξ7, it is valid the
following theorem, extension of a known result of R. Fueter over the quaternions:20

Theorem 6.3 (T3) For any intrinsic function f analytic in an open set U of C, the
function

g = Δ3f (6.21)

is biregular in U . The functions (6.21), with f analytic intrinsic, coincide precisely
with the biregular functions obtained from a harmonic function α(ξ0, ξ1, . . . , ξ7)

which depends only on the quantities ξ0 and ξ2
1 + · · · + ξ2

7 .

20See R. Fueter [4], p. 314.
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The first assertion contained in T3 follows immediately by a more general result by
M. Sce, related to quadratic modules.21

To show the second part of T3, we consider first any analytic intrinsic function
f . From (6.15) we get without difficulty22

DΔ2f = −48

(
1

λ3

∂2ψ2

∂λ2 − 3
1

λ4

∂ψ2

∂λ
+ 3

1

λ5 ψ2

)
. (6.22)

Thus the function α = DΔ2f is a scalar function. It depends only on the quantities
ξ0, λ2 = ξ2

1 + · · · + ξ2
7 since by (6.12) the right hand side of (6.22) is an even

function of λ. Moreover (6.8) gives

Dα = Δ3f = g, Δα = Dg = 0

so that the biregular function g = Δ3f is obtained by a harmonic function α of the
requested type.

Conversely, let now α be a harmonic function of the variables ξ0, ξ1, . . . , ξ7
depending only on the quantities ξ0, λ2 = ξ2

1 + · · · + ξ2
7 . First of all, note that α can

be seen as a function α(ξ0, λ) of the two real variables ξ0 and λ =
√

ξ2
1 + · · · + ξ2

7 ,
with the property α(ξ0,−λ) = α(ξ0, λ). This said, consider the function

ψ2(ξ0, λ) = 5

48

∫ ξ0

0

λ3(ξ0 − θ)− λ(ξ0 − θ)3

2
α(θ, 0)dθ− (6.23)

− 1

48

∫ λ

0

λ3ν − λν3

2
α(ξ0, ν)dν,

which, as it can be easily verified, is solution of the equation

1

λ3

∂2ψ2

∂λ2
− 3

1

λ4

∂ψ2

∂λ
+ 3

1

λ5
ψ20− 1

48
α. (6.24)

Taking into account that, by hypothesis, it holds

0 = ∂2α

∂ξ2
0

+ · · · + ∂2α

∂ξ2
7

= ∂2α

∂ξ2
0

+ ∂2α

∂λ2 +
6

λ

∂α

∂λ
,

21See M. Sce [13], p. 224, n. 6. One has to keep in mind also proposition P4 after observing that
f , and so also g, satisfies (6.10).
22The calculations can be abbreviated using relations (6.8), (6.9) by M. Sce [13].
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it is not difficult to verify that ψ2 is a harmonic function of the two variables ξ0, λ.
Let now

ψ1(ξ0, λ) =
∫ ξ0

0

∂ψ2

∂λ
(θ, 0)dθ −

∫ λ

0

∂ψ2

∂ξ0
(ξ0, ν)dν (6.25)

the harmonic function conjugated to ψ2 and let ψ(ζ ) be the holomorphic function

ψ(ξ0 + iλ) = ψ1(ξ0, λ)+ iψ2(ξ0, λ).

Since α(ξ0, λ) is even in the second argument, from (6.23) and (6.25) it follows that
ψ2 and ψ1 are odd and even in λ, respectively, so that (6.12) are satisfied. Then let
f be the analytic intrinsic function generated by ψ . Bearing in mind (6.24), from
(6.22) it follows that

DΔ2f = α

so, recalling (6.8), we can write

g = Dα = Δ3f.

Thus g comes from the analytic intrinsic function f through the operator Δ3.
Theorem T3 is then completely proved.

We point out the following corollary of T3:

Corollary 6.1 (C1) For any power series

f (x) =
∑

anx
n, (an ∈ C)23

converging in an open set U in C, the function

g = Δ3f

is right regular in U .

For the proof, one first proves as in the classical theorem of derivation term by term,
that we can write

(
∑
n

anx
n)D =

∑
n

(anx
n)D.

Since the function xn is analytic intrinsic, C1 follows immediately from T3, keeping
in mind Theorem T1 of n. 3.

23In alternative algebras, the notation axn is not ambigous, since the result does not depend on
how the single factors are associated. See e.g. R. D. Schafer [14], Theorem 3.1, p. 29.
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7. Integral Theorem
Let us now denote by dx∗ the adjoint form24 of the differential form dx =∑

h dξhuh, namely the 7-form

dx∗ =
∑
h

(−1)h+1dξ0 ∧ . . . d̂ξh ∧ . . . ∧ dξ7uh.

The integral theorem given by G. C. Moisil and R. Fueter for regular functions in the
algebra Q of quaternions,25 extends to the Cayley algebra in the following form:

Theorem 6.4 (T4) Let g be a function of class C1 in an open set U of C. A
necessary and sufficient condition to have

∫
Γ7

(f dx∗)g = 0 (6.26)

for any function f right regular in U and for any 7-cycle Γ7 of class C1 homologous
to zero in U , is that the function g is biregular in U .26

For the proof, let us observe first that, denoted by d the exterior differential, we have
in U

d((f dx∗)g) =
(∑

h

(
∂f

∂ξh

uh

)
g +

∑
h

(f uh)
∂g

∂ξh

)
dξ0 . . . dξ7.

By the Green–Stokes theorem,27 (6.26) is equivalent to the relation

∑
h

(f uh)
∂g

∂ξh

= 0 (6.27)

for any f right regular in U . For f = 1 we have in particular that Dg = 0, so that
we can write

∑
h

(f uh)
∂g

∂ξh

=
∑
h

(
f, uh,

∂g

∂ξh

)

=
∑
h

(
uh,

∂g

∂ξh

, f

)

= −
∑
h

uh

(
∂g

∂ξh

f

)
,

24See e.g. V. Choquel-Bruhat [1], p. 97.
25See G. C. Moisil [9], p. 169; R. Fueter [4], p. 312.
26A theorem analogous to T4 holds for the integral

∫
Γ7

g(dx∗f ), with f left regular.
27See e.g. B. Segre [15], Ch. II, n. 46.
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and so (6.27) is equivalent to D(gc) = 0 for every c ∈ C. Theorem T1 gives the
assertion.

8. Integral Formula
As shown by Theorem T4, to obtain in C an integral representation formula for
regular functions, analogous to the one of G. C. Moisil and R. Fueter in the
quaternions,28 it is necessary to assume as a kernel a biregular function. The
classical kernel 1/x is not biregular in the algebra C. However it is an analytic
intrinsic function in C \ {0} (n. 5), so that the function Δ3(1/x) is biregular
(Theorem T3). So we arrive at the theorem:

Theorem 6.5 (T5) If f is a right regular function in an open set U in C and Σ7 is
any 7-dimensional surface, closed, of class C1 contained in U , then

f (z) = 1

48π4

∫
σ7

(f (x)dx∗)Δ3 1

x − z
(6.28)

for any z in the interior of Σ7.29,30

For the proof, by means of Theorem T4, we reduce to the calculation of the right
hand side of (6.28) on a 7-sphere S7 with center z and a suitable radius r . Taking
into account that

Δ3(1/(x − z)) = −122 · 16((x − z)−1/|x − z|6)

and that on S7 we have dx∗ = −((x − z)/r)dσ , dσ being the area element on S7,
we can write 31

∫
S7

(f (x)dx∗)Δ3 1

x − z
= −122 · 16

r7

∫
S7

f (x)dσ.

By letting the radius r of S7 tend to zero and taking into account that the area of S7
is π4r7/3 we immediately arrive at (6.28).

In a way similar to the case of regular functions in the algebra of quaternions,32

from this obtained integral representation we deduce for regular functions in the
Cayley algebra the classical consequences. In particular, the components of regular
functions are of class Cω.

28See G. C. Moisil [9], p. 171; R. Fueter [4], p. 318.
29An analogous formula holds obviously for left regular functions.
30Here we mean that Σ7 has winding number 1. In the general case, we have the winding number
as a factor at the left hand side of (6.28).
31Take into account the relation in the note (8).
32See R. Fueter [4], p. 319–330; [5], p. 371–378.
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6.1 Comments and Historical Remarks

After this paper by Dentoni and Sce, octonions were studied by physicists but not
by mathematicians. The paper [12] by K. Nono considers the operator (6.7) to
study factorizations of the Laplacian in dimension eight. In [6] X. Li and L. Peng
prove, independently, some theorems already proved by Dentoni and Sce. At the
end of their paper they put a remark in which they acknowledge that J. Ryan and
M. Shapiro pointed out to them during a conference in Beijing that their results
were already known, and the paper [2]. And in fact, in the subsequent papers [7]
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and [8] they quote the results by Dentoni and Sce. One should note that the results
in octonionic function theory are somewhat discovered and re-discovered various
times, see for example the work [11]. For other developments of the theory see [9],
[10]. In our paper [14] we considered three cases of eight dimensional algebras:
biquaternions, i.e. H⊗ C, Clifford algebra over three units R3 and the octonions O
and the corresponding notions of holomorphicity, see also [1].

Specifically, in the case of biquaternions in which the imaginary units of H are
denoted by I , J , K = IJ ad the imaginary unit of C is i, we will say that a function
f : BH→ BH is Dq–regular if Dqf = 0 where

Dq = ∂

∂z0
+ i

(
I

∂

∂z1
+ J

∂

∂z2
−K

∂

∂z3

)
,

where z� = x� + iy�, � = 0, . . . , 3.
In the case of R3 the operator we consider is not the Dirac operator as in classical

Clifford analysis, but instead the operator considered by Rizza in [13]. Denoting by
e1, e2, e3 the imaginary units of R3 and by eA, where A = {i1, . . . , ir } is a subset
of the power set P{1, 2, 3} of {1, 2, 3}, the product ei1 . . . eir we say that a function
f : Ω ⊆ R3 → R3 is ∂x–regular if

∂xf =
∑

A∈P{1,2,3}
eA

∂f

∂xA

= 0.

To treat the case of the algebra of octonions O, it is convenient to consider O as the
real algebra generated by the basis {e0, e1, . . . , e7} whose units satisfy the relations:

eres = −δrse0 + εrstet

where δrs is the Kronecker delta, εrst are totally antisymmetric in r, s, t and

εrst = +1 for (rst) = (123), (145), (176), (572), (347), (365), (246).

An octonion will be denoted by X = ∑7
r=0 erxr , xr ∈ R. The operators giving the

notion of holomorphicity left and right in this setting are given in (6.7). As discussed
by Dentoni and Sce, the operator D appearing in (6.7) factorizes the Laplacian,
see (6.8), and a Cauchy formula is proven, see (6.28). In the case of BH and R3
the operator is not anymore elliptic, however it is still possible to prove a Cauchy
formula. In the case of BH let us introduce the notations

S3 = {q0 + q : q0 ∈ BH, q = x0 + Ix1 + Jx2 +Kx3 ∈ H : |q| = 1},

Br = {q0 + q : q0 ∈ BH, q = x0 + Ix1 + Jx2 +Kx3 ∈ H : |q| ≤ r}.
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Note that S3 is a sphere in H and that it is a basis for the homology H3(BH\Nq0),
where Nq0 is the null–cone with vertex q0 defined by Nq0 ={q ∈BH, | |q−q0| = 0}.
The Cauchy formula is given in the next result:

Theorem 6.6 Let f : BH → BH be a function satisfying Dqf = 0 in an open set
D ⊂ BH, q0 ∈ Br ⊂ D and let Σ be a cycle homological in BH\Nq0 to S3. Then

f (q0) = 1

2π2

∫
Σ

G(q, q0) Dq f (q)

where

G(q, q0) = q̄ − q̄0

|q − q0|2 ,

and

Dq =
3∑

h=0

ehdz1 ∧ . . . d̂zh ∧ . . . ∧ dz3.

In the case of R3, we note that X ∈ R3 can be written as X = ω1q1 + ω2q2 where
ω1 = (1+ e123)/2, ω1 = (1− e123)/2 and q1, q2 can be identified with quaternions.
We then introduce the functions

Gi(qi, pi) = q̄i − p̄i

|qi − pi |4 i = 1, 2

and

G(q, p) =
2∑

i=1

ωiGi(qi, pi).

We have that Gi(qi, pi) is the quaternionic Cauchy–Fueter kernel, so that it is
regular (both left and right) with respect to qi in R3\Zi,pi where

Zi,pi = {(q1 − p1, q2 − p2) : qj �= pj j �= i},

i = 1, 2 while G(q, p) is regular in R3\Zp where Zp = ∪2
i=1Zi,pi .

We have the following

Theorem 6.7 Let D ⊆ C3 be an open set and let Σ3 be a hypersurface boundary of
a 4–dimensional domain Δ4. Let f, g : R3 → R3 be left and right regular functions
respectively. Then

∫
Σ3

g(ω1Dq1 + ω2Dq2)f =
2∑

i=1

ωi

∫
Δ4

digi ∧Dqifi − giDqi ∧ difi
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where

difi =
3∑

h=0

∂fi

∂xjh

dxjh,

for i, j = 1, 2, j �= i.

In more recent times, the theory of slice regular functions was extended also to
octonions by Gentili and Struppa, see [3] and was then generalized to real alternative
algebras by Ghiloni and Perotti. This latter approach links with the theory of stem
and primary functions treated by Dentoni and Sce in their paper. The idea of slice
regularity over the octonions is based on the fact that also the algebra of octonions
can be seen as union of complex planes.

In fact, S be the unit sphere of purely imaginary octonions, i.e.

S = {w =
7∑

k=1

xkek such that
7∑

k=1

x2
k = 1}.

Note that if I ∈ S, then I 2 = −1 so the elements of S behave as imaginary units.
Let us denote by CI the complex plane whose elements are the complex numbers
of the form x + Iy, I ∈ S. We have that

O =
⋃
I∈S

CI

With this observation at hand, we can give the following:

Definition 6.2 Let Ω be a domain in O. A real differentiable function f : Ω → O

is said to be (left) slice regular if, for every I ∈ S, its restriction fI to the complex
plane CI satisfies

∂I f (x + Iy) := 1

2
(

∂

∂x
+ I

∂

∂y
)fI (x + yI) = 0,

on Ω ∩ CI , for every I ∈ S.

As in the quaternionic and in the Clifford algebra case, also octonionic functions
slice regular in a neighborhood of the origin admits power series expansion, namely,
if w denotes the variable, a slice regular function is of the form f (w) = ∑

n≥0 wnan,
an ∈ O. In particular, when an ∈ R for all n ∈ N these functions are intrinsic in the
sense of no. 4 of this chapter.

As proven in [4], slice regular functions in a real alternative algebras and so also
over octonions, satisfy the so-called Representation Formula when they are defined
on suitable open sets (the axially symmetric s-domains). Thus slice regular functions
are in fact of the form

f (w) = f (x + Iy) = α(x, y)+ Iβ(x, y)
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where the O-valued functions α and β are, respectively, even and odd in the variable
y, and satisfy the Cauchy-Riemann system. In case α and β are real-valued the
function f is an example of primary function, in the sense of no. 4 of this chapter.

Remark 6.1 Observing that the Laplacian is a real operator, and applying Theorem
(T3) to a slice regular function f , we conclude that Δ3f is in the kernel of (6.6)
thus it is regular in the octonionic sense. This a version of the Fueter-Sce theorem
for slice regular functions of a octonionic variable.

It will be very interesting to prove that this theorem admits an inversion, which
conjecturally, should be that for functions F octonionic regular of axial type, i.e.,
of the form A(x, y) + IB(x, y) there exists a slice regular function f such that
Δ3f = F .

In recent times, it has been proved that there is another way to decompose the space
of octonions as union of quaternionic subspaces, see [5]. Taking a triple I, J,K

satisfying

I, J ∈ S, I ⊥ J, K = IJ

we can define the row vector I by

I := (1, I, J,K) ∈ O
4.

The set of all such row vectors I is denoted by N while HI denotes the algebra of
quaternions generated by I, i.e., as real vector space

HI = spanR{1, I, J,K}.

We can write the octonionic algebra as:

O =
⋃
I∈N

HI.

To give the definition of slice Dirac-regular function the idea is to define the stem
functions and then to impose a suitable condition of holomorphy. This is performed
in various steps, starting with the notion of intrinsic function:

Definition 6.3 Let F : Ω → O
4 be an octonion-valued vector function defined on

an open subset Ω of R4. If F is a O(3)−intrinsic function, i.e. for any x ∈ Ω and
for any g ∈ O(3) such that gx ∈ Ω , it satisfies

F(x) = g−1F(gx), (6.29)

then F is called an O−stem function on Ω .
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We then have, without giving too many details for which we refer the reader to [5]:

Definition 6.4 Let [Ω] be an axially symmetric domain in O and let f ∈ C1([Ω])
so that f (q) = IF(x)T , where q = IxT , F = [F0, F1, F2, F3]. If F satisfies

⎛
⎜⎜⎝

∂x0 −∂x1 −∂x2 −∂x3

∂x1 ∂x0 −∂x3 ∂x2

∂x2 ∂x3 ∂x0 −∂x1

∂x3 −∂x2 ∂x1 ∂x0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

F0

F1

F2

F3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ (6.30)

then f is called a (left) slice Dirac-regular function in [Ω].
It is interesting to note that:

Proposition 6.5 Let [Ω] be an axially symmetric domain inO and let f ∈ S([Ω])∩
C1([Ω]). Then f is (left) slice Dirac-regular if and only if

DIf (q) = 0, ∀ q ∈ [Ω] ∩HI =: ΩI (6.31)

and for all I ∈ N .

For this class of functions, we can prove various results like an integral representa-
tion formula.
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dual, 30
hyperbolic, 30

P
Power associative, 63
Primary

function, 105
Primitive algebra, 52

Q
Quaternions, 32

R
Radical, 27
Regular algebra, 27
Regular representation, 28
Representation formula, 83

S
Slice

domain, 82
function, 83

Slice regular
function, 82

S-resolvent set, 90
S-spectrum, 90

T
Ternions, 31
Theorem

Fueter mapping, 77
Sce mapping, 78

Totally derivable function, 28
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