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2PC+: A High Performance Protocol for
Distributed Transactions of Micro-service
Architecture

Pan Fan, Jing Liu, Wei Yin, Hui Wang, Xiaohong Chen, and Haiying Sun

6.1 Introduction

With the rapid development of the Internet field, the traditional single-service
architecture is facing huge challenges. Micro-service architecture [1] has become
extremely popular today. The core of the micro-service is to implement separate
deployment, operation and maintenance, and expansion according to the business
module. Unfortunately, there are many new problems in micro-services compared
to traditional single-service architectures. Among them, distributed transaction in
micro-services is one of the most common challenge [2].

In the traditional single-service architecture, whole the business modules are
concentrated on the same data source. Therefore, it is convenient to implement
the local transaction mechanism to ensure data consistency within the system,
such as 2PC [3], MVCC, etc. However, in the micro-service architecture, service
modules often straddle heterogeneous distributed system, and they are deployed
across services and resources [1]. With the rapid growth of the number of micro-
service nodes, 2PC and MVCC exist in their performance bottlenecks. So that 2PC
and MVCC are hard to reach the processing performance of micro-services. In the
evaluation experiment in Section 4, the latency of 2PC dropped below 35% of its
maximum as contention increased.
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In this paper, a distributed transaction concurrency control optimization protocol
2PC+ is proposed, which can extract more concurrency in the case of high compe-
tition than previous methods. 2PC+ is based on the traditional two-phase commit
protocol, combined with transaction thread synchronization blocking optimization
algorithm SAOLA.

We apply proposed 2PC+ protocol to the case of MSECP micro-service plat-
form. Through experimental result, 2PC+ has obvious improvement in RT and TPS
performance compared to 2PC for distributed transaction.

The rest of this paper is organized as follows. Section 2 elaborates the basic
concepts and knowledge background in distributed transactions. In Section 3, we
introduce the design details of the 2PC+ protocol and an optimization algorithms
SAOLA based on 2PC protocol. The TLA+ verification process of the SAOLA
is given in Section 4, and its feasibility is verified by running the results of TLC.
Section 5 gives a comparison experiment between 2PC+ and 2PC. Section 6
discusses some related work, and Section 7 summarizes this paper.

6.2 Preliminaries

2PC and OCC Low-Performance Approaches Developers prefer the strongest
isolation level serializability, in order to simplify the process of controlling
distributed transactions. To guarantee the rules in transaction, traditional distributed
systems (e.g. relational database) typically run standard concurrency control
schemes, such as two-phase commit (2PC) combined with optimistic concurrency
control (OCC) [11]. However, in many conflict transaction scenarios, 2PC combined
with OCC measures perform poorly under highly competitive workloads.

For example, Table 6.1 shows a snippet of a new order transaction that simulates
a customer purchasing two items from the same store. The transaction consists of
two threads working on fragments P1 and P2, each of which reduces the inventory
of different materials. Although each fragment can be executed automatically on
its own machine, distributed control is still required to prevent fragmentation of the
fragments between services. For example, suppose we keep the inventory of goods
a and b constants and always sell the two together. In the absence of distributed
transaction control, one customer can buy a but not b, while another customer can
buy b but not a. This is due to the presence of locks in 2PC, so transactions can be
aborted or even fail due to long thread blocks.

X/Open DTP X/Open [4] is the most widely used distributed transaction solution
model in the single architecture. The key point is to provide a distributed transaction
specification protocol: XA protocol. It uses the 2PC protocol to manage distributed
transactions. The XA protocol specifies a set of communication interfaces between
the resource manager (RM) and the transaction manager (TM). It is mainly
composed of three main modules, i.e., RM, TM, and application (AP). Among
them, RM is specifically responsible for the resource groups actually involved in
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Table 6.1 A fragment of new-order transaction containing two pieces

transaction new_order_fragment
#simplified new-order "buys" 1 of a, b
input: a and b
begin
...
P1: 

R(tab=" Inventory ", key= a) number
if (number > 1):

W(name=" Inventory ", key= a) number - 1 ...
P2:

R(name=" Inventory ", key= b) number
if (number > 1):
W(name=" Inventory ", key= b) number - 1 ...

end
...

the system, such as database resources and system operation platform resources. TM
controls the distributed transaction process globally within the system, including the
execution cycle of distributed transactions and coordination of RM resources.

6.3 Design

Based on the defects in the distributed transaction solution under the 2PC protocol,
and optimizing the processing performance in the micro-service architecture for
its problem, we propose an optimized 2PC+ protocol. It highly reduces the time
cost of thread synchronization blocking when the service node processes distributed
transaction in the system.

In the process based on the 2PC protocol, the thread participating in the
transaction needs to be blocked after the two commits. When all the participants
have completed the commit transaction, the blocking lock can be released. Thread
synchronization blocking optimization in resource manager is the key to improving
the performance of the original solution. In this section, the algorithm SAOLA is
proposed and given the specific design and implementation.

Percolator Transaction Percolator is developed by Google to handle incremental
web indexing and provides a strong and consistent way to update indexing infor-
mation in a cluster of machines under distributed systems [5]. Two basic services
are provided in percolator transaction, namely, a timestamp identifying the order of
transactions and a distributed lock that detects the state of the process. It applies a
single-row atomicity mechanism in big table. The commit and rollback operations in
the original multi-row, multi-column distributed transaction are converted to simple
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single-line transactions [6]. Percolator uses lock, data, and write to execute the
process, lock to store data information, write to save the final write data, and data to
save the current timestamp version.

The Two-Level Asynchronous Lock Mechanism Converting synchronous block-
ing in a transaction commit process to asynchronous non-blocking is key in the
optimization process. We refined the fine-grained of the lock into a second-level
optimistic lock [7, 8] and proposed this optimization algorithm SAOLA (Secondary
Asynchronous Optimistic-Lock Algorithm). The specific implementation of the
SAOLA algorithm is shown below:

1. Initialize settings in the transaction properties. It includes value, which is the
current actual value of the transaction; beginVersion, which is the version serial
number of the transaction at beginning; commitVersion, which is the version
serial number of the transaction commit; and lock, which stores the uncommitted
transaction, and lock is divided into two different level locks, namely, firstLock
and secondLock. They represent the two phases of the lock, respectively. And
specify that the secondLock includes the firstLock information.

2. BeginTransaction. As shown in Table 6.2. At the beginning, transaction object T1
obtains the value of beginVersion as b_v and then determines whether there is a
lock in the transaction object. If it does not exist, try to obtain some latest version
directly from b_v. And the committed transaction obtains its current latest data
value through its beginVersion. Otherwise, if there is a lock, the following three
cases will occur:

• There is another transaction object T2 is committing, the data value of T2 is
locked, and then it is necessary to wait for T2 to complete the commit, finally
polling for retry (the number of polling can be configured).

• In the first case, if the T1 wait time has passed a certain threshold
WAIT_TIME, the value of T2 is still locked. It can be determined that T2
has network fluctuations or unforeseen exceptions such as service downtime,
and it is directly considered that T2 has been interrupted. In this condition, T1
can release the lock.

• The lock in T2 may be abnormally cleared without exception. T2’s firstLock
has completed committing and has been successfully released. However,
an exception occurred in secondLock that caused unsuccessful commit and
remains. At this condition, it can release the lock directly.

3. PreCommit. The algorithm is shown in Table 6.3. At this time, T1 has obtained
all the latest values and can start executing transaction precommit. The process
is divided into the following three branches:

• The first case is for all transaction objects (only T1 and T2 transaction objects
are assumed). The value of T1 and T2 is after the version sequence b_v, and it
is judged whether there is a write operation of other transaction objects Tx. If
it exists, then Tx has updated the latest data value, and the current T1 and T2

are directly rolled back, so the process can be ended.



6 2PC+: A High Performance Protocol for Distributed Transactions of Micro-. . . 97

Table 6.2 Algorithm of BeginTransaction

Algorithm 1 BeginTransaction
Input List<TransactionItem> txGroup
Output newestValue  
1: for Tstart and Telse to txGroup
2:  if Tstart.isLocked == TRUE then
3:    waiting for Telse update to commit 
4:      if poll until Tstart.isLocked == FALSE within WAIT_TIME
5:        break;
6:      end if
7: else 
8:   releaseLock(Tstart) 
9:   if !firstLock. isLocked && secondLock.isLocked then
10:       releaseLock(Tstart)  
11:  end if
12: end if
13: else // lock
14:  Long b_v = Tstart.beginVersion  
15:  newestValue = getByBeginVersion(b_v) 
16: return newestValue

Table 6.3 Algorithm implementation of PreCommit

Algorithm 2 PreCommit
# items represents the list of all transaction objects
1: for T to items
2: If T.hasWriteData() == true || T.isLocked() == true then
3:     group.doRollBack()  
4:     return
5: end if
6:  else
7:       T.isLocked = true
8:       write to newestItem.value to T
9:  group.doCommit ()
10: end else
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Table 6.4 Algorithm implementation of Second-Commit

Algorithm 3 Second-Commit
# items represents the list of all transaction objects
1: for T to items
2:  if T.firstLock.isLocked() == true then
3:    group.commit ()  
4:   end if
5:   else
6: group.rollBack() 
7: T.secondLock.ansyReleaseLock()  
8: end else

• The second case is to judge whether the locks in T1 and T2 are locked. If they
match, both T1 and T2 need to be rolled back.

• The third case is that there is no write of the new object Tx; T1 and T2 do not
exist lock. The firstLock of them is set to locked, and the latest data value is
written, so the transaction group can be committed.

4. Second-Commit. The algorithm is shown in Table 6.4. After completing the
precommit, all transaction objects (assuming that there are still only T1 and
T2) can perform the final two-phase commit step. First, T1 and T2 will judge
whether their firstLock is in the locked state. If they match, they can commit the
transaction. Otherwise, it represents that another has cleared the firstLock of T1
or T2 and then execute the rollback operation.

The transaction’s main process has been completed. For secondLock, it can be
completely separated from the main process, using thread asynchronous mode to
clear secondLock and commit the transaction. Thus, even if an exception occurs
in the operation step, Tnext for the next transaction object, it finds that firstLock
in T1 or T2 has been cleared, but secondLock still exists; Tnext will automatically
clear secondLock for T1 or T2 and commit the transaction.

6.4 Correctness

The formalized method TLA+ language is applied for verify the optimized scheme,
and the rigorous mathematical logic is used to detect the logical feasibility of the
optimized algorithm SAOLA. We give the TLA+ verification steps as follows:

1. Set the two invariants in the distributed transaction to constant: the current actual
value of all participating transaction and all participant transaction RMs. TLA+
can be expressed as:

CONSTANTS VALUE CONSTANTS RM
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2. Set variables in the process: transaction status of the occurrence of RM, repre-
sented by the variable rm_status, i.e., “beginning,” “preparing,” “precommit,”
“committed,” “cancel,” etc.; The variable rm_v represents RM’s current version
and the global version sequence ascend_v. For the two locks of the control
version in RM, i.e. firstLock and secondLock, represented by the variable
rm_lock, two versions of the sequence appearing successively in the transaction
flow beginVersion and commitVersion are represented by the variables begin_v
and commit_v; respectively, the variables first_val and second_val are used to
represent the RM values corresponding to the two versions; the variable rm_data
is used to save the current actual value in the RM. Finally, the committed_v is
used to save the committed transaction version.

VARIABLES rm_status VARIABLES rm_v
VARIABLES rm_lock VARIABLES begin_v
VARIABLES commit_v VARIABLES rm_value
VARIABLES ascend_v VARIABLES committed_v

3. Next, initializing the values of the individual variables. At the beginning, all
variables are staying at initial value.

Init ==
/\ rm_status = [r \in RM |-> “beginning”]
/\ rm_v = [r \in RM | -> [begin_v |-> 0, commit_v |-> 0]]
/\ rm_value = [r \in RM | -> [first_val|-> “”,]]
/\ second_val|->“”]]
/\ rm_lock = [v \in VALUE |->{}]
/\ rm_data = [v \in VALUE |-> {}]
/\ ascend_v = 0
/\ committed_value = [v \in VALUE |-> <<>>]

4. When the process begins, the variable transaction state rm_status is “beginning,”
and the next state of rm_status does not contain “preparing.” The ascend_v is
in an ascending state, as shown in line 3. And the next state of the constraint
rm_value cannot satisfy the getVal condition. In the next state of the current
version of the RM, the start versionbegin_v is not equal to the next state of the
version, as shown in the last line in TLA+.

Begin(r) ==
/\ rm_status[r] = “beginning”
/\ rm_status’ = [rm_status EXCEPT ![r] = “preparing ”]
/\ ascend_v’ = ascend_v + 1
/\ rm_value’ = [rm_value EXCEPT ![r] = getVal]
/\ rm_v’ = [rm_v EXCEPT !. begin_v = ascend_v’]

5. The TLA+ below indicates that the transaction initially loads the process. At
this time, rm_status stays at the “preparing” state. If the preCommit can be
executed in the stage, and the next state of the rm_status cannot be “precommit”;
otherwise, it is judged whether the resettable lock isResetLock condition is
satisfied: if so, the reset lock can be executed.

Loading(r) ==
/\ rm_status[r] = “preparing”
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/\ IF isPreCommit(r) THEN
/\ rm_status ’ = [rm_status EXCEPT ![r] “]
/\ = ”precommit“]
ELSE IF isResetLock (r) THEN
/\ resetLock(r)

ELSE
/\ rm_status’ = [rm_status EXCEPT ![r]
/\ = ”cancel“]

6. TLA+ statement of the transaction precommit process. At this time, rm_status is
the “precommit” state. If the final commit process canCommit can be executed,
the global version ascend_v is incremented. The next state of rm_v is not allowed
to be ascend_v, and the next state of the constraint rm_status does not contain
“committing.” Then it determines whether the RM can lock all values, i.e.,
isAllLock: if it matches, lock it. Otherwise, the constraint rm_status next step
state does not contain “cancel” state. The TLA+ language in Commit is shown
below, representing the two-phase commit step of the algorithm.

PreCommit(r) ==
/\ rm_status[r] = ” precommit “
/\ IF canCommit(r) THEN

/\ ascend_v’ = ascend_v + 1
/\ rm_v’ = [rm_v EXCEPT !. commit_v
= ascend_v’]

/\ rm_status ’ = [rm_status EXCEPT ![r]
”committing“]

ELSE IF isAllLock(r) THEN
/\ allLock(r)

ELSE
/\ rm_status ’ = [rm_status EXCEPT ![r]

= ”cancel“]

Commit(r) ==
/\ rm_status[r] = ”committing“
/\ IF isCommitFirstVal(r) THEN
/\ commitFirstVal(r)
/\ rm_status ’=[rm_status EXCEPT ![r]=”committed“]

ELSE
/\ rm_status ’=[rm_status EXCEPT![r]= ”cancel“]

7. Finally, we define the Next operation in the process. Obviously, it must complete
four processes in sequence, as shown in the following TLA+:

Next ==
\E r \in RM:
Begin(r) \/ Loading(r) \/ preCommit(r) \/ commit(r)

We run the complete TLA+ program statement on TLC and get the result as
shown in the Fig. 6.1. This algorithm generates a total of 1296 states, 324 different
states have been found, and “no errors are found,” which can verify the correctness
of the algorithm SAOLA.
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Fig. 6.1 TLA+ result with running in TLC

6.5 Evaluation

6.5.1 Experimental Setup

Unless otherwise mentioned, all experiments are conducted on the Kodiak test bed.
Each machine has a single core 2.7 GHz Intel Core i5 with 8GB RAM and 500GB
SSD. Most experiments are bottlenecked on the server CPU. We have achieved
much higher throughput when running on a local testbed with faster CPUs.

6.5.2 Experimental Case

We evaluate 2PC+’s performance under the data consistency of the Ctrip e-
commerce platform (MSECP). As shown in the Fig. 6.2 below, the experimental
case of MSECP contains a total of three micro-service modules: COMS, CSMS,
and AMS. In the beginning, the customer initiates a request to create a new order.
As the initiator of COMS, RPC remotely calls the gateways in CSMS and AMS to
complete the order delivery and deduction. The CSMS and AMS then return the
results of the operations in the respective service units. Finally, COMS returns the
final response to the customer based on the returned results. If the operation is all
successful, the order is created successfully. Otherwise, the order creation fails and
the data is rolled back immediately. The MSECP is based on the spring cloud micro-
services framework [24]. Finally, we deploy three micro-service module clusters.

6.5.3 RT Experiment

The SAOLA algorithm in 2PC+ needs to determine the performance improvement
after optimization based on the response time (RT) of the service. In this test
experiment, the createOrder interface was called concurrently with 10, 20, 50, 100,
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Fig. 6.2 A case of Ctrip MSECP

200, 300, and 500 sets of threads. A result of ten sets of comparison experiments
was performed to calculate the RT mean values. The experimental results are shown
in Fig. 6.2.

According to the analysis of the experimental results, when the number of threads
concurrency is between 10 and 50, 2PC+ does not show a significant advantage
on RT. However, when the thread concurrency reaches 100, it is shortened from
the original 241.7ms to 83.4ms, which is 34.5% of the original RT duration. As
thread concurrency continues to grow, the RT performance of the optimization
scheme becomes more apparent. When the number of thread concurrency reaches
300, the RT value of the original 2PC is 820.5ms, and the RT value of 2PC+ is
only 217.6ms, which is 26.5% of 2PC time. When the number of thread concurrent
requests reaches 500, the 2PC’s RT value is 1357.8ms, and 2PC+ is shortened to
473.6ms, which is 34.8% of the original time.

In summary, in the higher concurrent thread request scenario, the optimization
algorithm in 2PC+ performs well in RT performance. Compared with 2PC, the RT
performance is improved by 2.87 times to 3.77 times.

6.5.4 TPS Experiment

Similarly, transactions per second (TPS) is also one of the indicators for evaluating
performance. The experimental results are shown in Fig. 6.3 below.

Through the experimental results, it can be known that when the number of con-
current threads is less than 50, 2PC+ has no obvious advantage in TPS performance.
However, as the concurrency of threads increases, the TPS performance advantages
of the optimization scheme gradually emerge. When the number of concurrent
threads is between 100 and 200, 2PC+ can be maintained at TPS between 627.0 and
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Fig. 6.3 RT experiment comparison result

Fig. 6.4 TPS experiment comparison result

545.3, which is about 60.5% to 68.0% higher than that of 2PC’s 390.6 and 324.5.
When the number of concurrent threads reaches 300 to 500, the TPS of 2PC+ can
be maintained at 392.3 to 264.8, which is 323.7% to 514.4% higher than the TPS of
92.6 and 43.1 in 2PC (Fig. 6.4).
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As a summary, 2PC+ performs equally effective in TPS performance in higher
concurrent thread request scenarios. Especially when the number of concurrent
threads reaches 300 to 500, the TPS performance optimization is roughly 4.24 times
to 6.14 times that of 2PC.

6.5.5 Related Work

Transaction of distributed database In academia, Kallman R et al. implement
distributed transactions in H-Store memory data through serialization methods
[9]. Later, Bailis P et al. developed a high availability solution to solve common
faults such as network delays and partitions in distributed transactions [9]. In
2014, Mu S et al. developed a more concurrency control protocol ROCOCO [10]
based on 2PL protocol and OCC, which has higher performance in dealing with
distributed transaction conflicts. Guerraoui R et al. pointed out that the core rules
for distributed transaction commit [11], that is, atomicity, must meet the conditions
for the final agreement of all nodes in a distributed system. In the industry, Internet
companies including Google, eBay, Alibaba, and PingCAP have been developing
transaction solutions in distributed systems in recent years. In 2012, Google released
the Spanner distributed database [12] and then in 2017 released the world’s first
commercial cloud data support for distributed transactions Cloud Spanner. Since
then, Alibaba has developed the distributed database OceanBase [13] based on
Spanner’s design ideas, which solves the problem of data consistency and cross-
database table transactions in distributed systems. It has extremely high processing
performance. PingCAP [14] also released a distributed database VoltDB [15], which
supports horizontal elastic extension, ACID transaction, standard SQL, and MySQL
syntax and protocol, with high data consistency and high availability, and can
support distributed transactions.

6.6 Conclusion

This paper presented 2PC+, a novel concurrency control protocol for distributed
transactions in micro-service architecture. 2PC+ optimizes the synchronization
blocking situation of transaction threads and reduces the probability of conflict
between transactions due to high concurrency in micro-service architecture. And
through the specific experimental data verification, compared to 2PC, 2PC+ has
more efficient performance in RT and TPS.
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