
Chapter 3
Formal Verification, Testing, and
Inspection for Intelligent Services

Min Xu and Lisong Wang

3.1 Introduction

From self-driving cars to AlphaGo, artificial intelligence (AI) is progressing rapidly.
Artificial intelligence makes our lives more convenient, but it also may bring us
dangers. Just like Russia’s president Vladimir Putin said: “Artificial intelligence
is the future, not only for Russia, but for all humankind. It comes with enormous
opportunities, but also threats that are difficult to predict. Whoever becomes the
leader in this sphere will become the ruler of the world.” So we should have a very
convincing argument for its safety before applying an advanced intelligent system.
How can we realize that argument is rigorously correct? Dijkstra said: “The only
effective way to raise the confidence level of a program significantly is to give
a convincing proof of its correctness” [8]. The answer is a mathematical proof.
This is the reason why we need formal methods in AI. Formal methods are used
to describe and analyze systems with a set of symbols and operations; depend on
some mathematical methods and theories, such as algebra, logical, graph theory, or
automata; and enhance the quality and safety of systems, so we call it formal. The
properties of systems described formally can eliminate misunderstandings, and a
system that satisfies its specification can be verified by formal techniques. Design
or coding errors can be found in formal methods before deploying it to reduce the
risk of damage of a system. This can help one to only care about the main properties
of the system and can easily manage the complexity of the system. Formal methods
include modeling, specification, verification and testing techniques. This chapter
will present the four parts and finally give an example to illustrate.

M. Xu (�) · L. Wang (�)
Department of Computer Science and Technology, NUAA, Nanjing, China
e-mail: xumin@nuaa.edu.cn; wangls@nuaa.edu.cn

© Springer Nature Switzerland AG 2021
H. Gao, Y. Yin (eds.), Intelligent Mobile Service Computing, EAI/Springer
Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-50184-6_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50184-6_3&domain=pdf
mailto:xumin@nuaa.edu.cn
mailto:wangls@nuaa.edu.cn
https://doi.org/10.1007/978-3-030-50184-6_3

34 M. Xu and L. Wang

3.2 Modeling

Modeling describes some properties of the system using mathematical methods. It
keeps a little original details of the system by the process of abstraction. Here, a
modeling formalism and a modeling language are distinct [3]. Formalisms belong
to the field of mathematics composed of abstract syntaxes and formal semantics.
Languages, such as NuXMV [22], are designed to implement formalisms. A
language, generally, includes a comxiler, simulator, etc.

We choose a good formalism and language for formal verification, or model
checking should depend on what type of system, what properties of system,
etc. For example, we can formalize discrete time systems by using push-down
automata [17] and finite state machines, concurrent processes by Petri nets [21]
and communicating sequential processes (CSP) [16], and compositional modeling
by reactive modules [2], process algebras [13], etc. The system model is verified by
a specification of the properties of the system to be verified. Different specification
languages deal with different properties. For example, specification languages, such
as regular expressions, state charts diagrams, computation tree logic, etc., are used
for reactive systems [19]. Here we will focus on behavior over time of reactive
systems because these kinds of behavior often appear in intelligent systems. We
will use a Kripke structure [18] to define reactive systems’ behavior.

3.2.1 Kripke Structure Modeling

A Kripke structure consists of a nonempty finite set W named state, a set of relations
T is a subset of W × W , and a function F , if each state with a set of propositions
of this state are true, then the value of F is 1 else is 0. A path in this model M from
a state w ∈ W is an infinite sequence of states p = w0w1w2 . . . wkwk+1 such
that w0 = w and R(wi,wi+1) holds for all k ≥ 0. Here, let AtomP be a set of
atomic propositions. So a Kripke structure M over AtomP can be represented as a
three-tuple M(W, T , F).

In this chapter, we only cover the first-order logic. So here we just use the
logical connectives such as not ¬, and ∧, or ∨, implies →, and quantifiers such
as a universal quantifier(∀) and an existential quantifier (∃).

Let V = {v1, . . . , vn} be a variable set in a system. The range of a variable in V

is a finite set D. A valuation for V is a mapxing (or function) from V to D. We can
assign each variable in V a value in D to represent a state w ∈ W of a concurrent
system. So a valuation w : V → D is a state w. Generally, we can use a logical
formula to represent a valuation w; in other words, the valuation makes the formula
true. For example, given a variable set {v1, v2, v3, v4} and a valuation{w(v1) =
10, w(v2) = 7, w(v3) = 9, w(v4) = 1}, the corresponding formula is (v1 = 10) ∧
(v2 = 7) ∧ (v3 = 9) ∧ (v4 = 1), so, here, we use w to denote the formula. Now we
know we can use a formula to represent a state in a system.

3 Formal Verification, Testing, and Inspection for Intelligent Services 35

For a transition in a system, we can use an ordered pair < w,w′ > to denote,
where w′ is next state in path p, then we can use T (w,w′) to represent.

Now we can use the first-order formula to explain a Kripke structure M =
(W, T , F) that represents the concurrent system.

1. W is a set of logic formulas.
2. Letting w and w′ be two states, then T (w,w′) ∈ T if w is T rue when each

v ∈ V is assigned the value w(v) and the same to w′.
3. The function F : W → 2AtomP is defined so that F(w) which is the subset of

all atomic propositions is T rue in w. If the range of v is {T rue, False}, then
v ∈ F(w) illustrates w(v) = T rue, and v
∈ L(s) means w(v) = False.

3.2.2 An Example

To show how to use the notions in this section, we give a simple example.
This is a program to implement a summing procedure from 1 to 5, which means

we want to get the value of 1 + 2 + 3 + 4 + 5. sum variable denotes the sum of the
value, variable i denotes the value from 1 to 5, and pc denotes the program counter.

p1 : sum := 0;
p2 : i := 1;
p3 : while i <= 5 do

p4 : sum := sum + i;
p5 : i := i + 1
p6 : end

So for the variables {sum, i, pc}, the range of sum is an integer, denoted
by Z; the range of i is the naturals, denoted by N ; and the range of pc is
{p1, p2, p3, p4, p5, p6}, denoted by PC.

The Kripke structure M = (W, T , F) in the program can be represented by the
following:

1. W = Z × N × PC.
2. T = {((sum = 0) ∧ (PC = p1), (sum = 0) ∧ (i = 1) ∧ (PC = p2)), ((sum =

0) ∧ (i = 1) ∧ (PC = p2)), (sum = 0) ∧ (i = 1) ∧ (PC = p3)), ((sum =
0) ∧ (i = 1) ∧ (PC = p3)), (sum = 1) ∧ (i = 1) ∧ (PC = p4)) . . .}.

3. L((sum = 0) ∧ (PC = p1), (sum = 0)) = {sum = 0, PC = p1}, L(((sum =
0) ∧ (i = 1) ∧ (PC = p2))) = {sum = 0, i = 1, PC = p2}, L(((sum =
0) ∧ (i = 1) ∧ (PC = p3))) = {sum = 0, i = 1, PC = p3},

The path in the this program that starts in an initial state is ((sum = 0) ∧ (PC =
p1))((sum = 0) ∧ (i = 1) ∧ (PC = p2))((sum = 0) ∧ (i = 1) ∧ (PC =
p3))((sum = 1) ∧ (i = 1) ∧ (PC = p4))((sum = 1) ∧ (i = 2) ∧ (PC =
p5))((sum = 1)∧ (i = 2)∧ (PC = p3))((sum = 3)∧ (i = 2)∧ (PC = p4)) · · · .

36 M. Xu and L. Wang

3.3 Specification

Specification is usually described in some mathematical or logical methods. Gener-
ally, it uses temporal logic for hardware and software systems, which can assert what
behaviors of the system over time. Using these methods to specify the design of a
project can keep the consistency between the different modules of a project during
its development and maintenance. Only if we give the specification of a program,
we can say a program is correct or not. When a system has specification, verification
of a system is necessary. A contract between the developer and the customer can be
described by formal specifications.

Now we introduce briefly the classical temporal logic to describe formal
specification. In a reactive system, temporal logics describe formally sequences of
transitions between states. In the temporal logics, time is not mentioned explicitly.
Instead, we often say that eventually or possibly some designated states have
reached a formula or not and do not mention time explicitly. So eventually or
possibly, they are specified using special temporal operators. These operators can
be combined with logical connectives. Temporal logics provide the semantics of
those operators. Here, we will use a powerful temporal logics called CTL* [7, 11].

3.3.1 The Computation Tree Logic (CTL*)

The possibility of transition of a system can form a tree structure called computation
tree. Properties of computation trees can be described by CTL* formulas. The root
of the tree is the initial state in Kripke structure of the system and extends to be an
infinite tree. The possible executions starting from the initial state can be showed by
the computation tree.

In CTL* formulas are composed of propositional variables, logical constant,
connectives, temporal operators, and path quantifiers. The branching structure in
the computation tree is described by the path quantifiers. Path quantifiers are A
and E. A denotes for all computation paths which specifies all of the paths have
some property. E denotes for some computation path which specifies some of the
paths have some property. There are five basic temporal operators which describe
properties of a path through the tree:

1. � means “always” which specifies that each state on the path has the property.
2. � means “eventually” which some state on the path in the future will have the

property.
3. © means “next time” which specifies the next state on the path has the property.
4. ∪ means “until” which specifies the states all hold the first property until some

state holds the second property.
5. ∨ means “release” which specifies when the first property is released by the

states, the second property is held by all the states left.

3 Formal Verification, Testing, and Inspection for Intelligent Services 37

CTL* has two types of formulas. One is state formulas which are true in a specific
state. Another is path formulas which are true along a specific path. AtomP is the
set of atomic proposition. The following rules form the syntax of state formulas:

1. p is a state formula if p ∈ AtomP .
2. ¬p, p ∨ q, and p ∧ q are state formulas if p and q are also state formulas.
3. A p and E p are state formulas if p is a path formula.

Two additional rules are needed to specify the syntax of path formulas:

1. p is a path formula if p is a state formula.
2. ¬p, p ∨ q, p ∧ q, �p, �p, ©p, p ∪ q, and p ∨ q are path formulas if p and q

are also path formulas.

The set of state formulas of CTL* is generated by the above rules.
Now we use a Kripke structure to define the semantics of CTL*. A Kripke

structure M is (W, T , F), where W is the set of states; T is the relation which
is a subset of W × W , which satisfies refection, which means ∀w ∈ W ⇒
(w,w) ∈ T ; and F : W → 2AtomP is a function that illustrates a set of atomic
propositions is true in that state. A path p in M is an infinite sequence of states,
p = w0w1 · · · wiwi+1 · · · , ∀i i ≥ 0, (wi, wi+1) ∈ T .

The suffix of ξ starting at wi is denoted by ξ i . If p, s are state formulas, the
notation M, s � p means state s can imply state p in the Kripke structure M .
Similarly, M, ξ � f means that along path ξ can imply the path formula f in the
Kripke structure M if f is a path formula. We define inductively the relation � as
follows: (here, p is an atomic proposition, p1 and p2 are state formulas, and f1 and
f2 are path formulas):

1. M, s � p iff p ∈ F(s).
2. M, s � ¬p iff M, s � p.
3. M, s � p1 ∨ p2 iff M, s � p1 or M, s � p2.
4. M, s � p1 ∧ p2 iff M, s � p1 and M, s � p2.
5. M, s � Ef1 iff there exists a path ξ from s ⇒ M, s � f1.
6. M, s � Af1 iff for all path ξ starting from s ⇒ M, s � f1.
7. M, ξ � p1 iff s is the first state of ξ ⇒ M, s � f1.
8. M, ξ � ¬f1 iff M, ξ � f1.
9. M, ξ � f1 ∨ f2 iff M, ξ � f1 or M, ξ � f2.

10. M, ξ � f1 ∧ f2 iff M, ξ � f1 and M, ξ � f2.
11. M, ξ � ©f1 iff M, ξ1 � f1.
12. M, ξ � �f1 iff there exists a k ≥ 0 ⇒ M, ξk � f1.
13. M, ξ � �f1 iff ∀ i ≥ 0,M, ξ i � f1.
14. M, ξ � f1 ∪ f2 iff ∃k k ≥ 0, M, ξk � f2 and ∀ji ≤ j < k,M, ξj � f1.
15. M, ξ � f1 ∨ f2 iff ∀j, j ≥ 0,∀i, i < j,M, ξ i

� f1 ⇒ M, ξj � f2.

Note: any other CTL* formula can be expressed by the operators ∨,¬,©,∪, and �.

38 M. Xu and L. Wang

3.3.2 Fairness

In many cases, we want to keep not only correctness but also fair computation
paths. For example, we may want to consider some server protocols which can
provide reliable server which have the property that no client ever continuously
submits requests but never respondence. The semantics of the logic is named the
fair semantics. A set of states can describe a fairness constraint by a formula of the
logic. A fair path should include a state of each fairness constraint infinitely when
we use sets of states to represent fairness constraints.

A fair Kripke structure can be described by four-tuple M = (W, T , F, V), where
W , T , and F are the same as we defined before and V ⊆ 2AtomP is a set which
describe fairness constraints. Let ξ = w0w1, · · · , wiwi+1, · · · be a path in M . It
can be defined by inf (ξ) = {w|w = wi for infinitely many i}.

If the path ξ is a fair path, it should satisfy the following condition:

ξ is a fair ⇔ ∀P P ∈ F, inf (ξ) ∩ P
= ∅.

The semantics of an ordinary Kripke structure of CTL* can describe the semantics
of an ordinary Kripke structure of CTL*. In states of the fair Kripke structure M ,
we use M, s �V p to represent that the state formula p is true and M, s �V f to
represent that the path formula f is true along path ξ . The semantics of an ordinary
Kripke structure can change just only clauses 1, 5, and 6 in the original semantics.

1. M, s �V p iff ∃ a fair path ξ starting from w and p ∈ F(s).
5. M, s �V �f1 iff ∃ a fair path ξ from s s.t. M, s �V f1.
6. M, s �V �f1 iff ∀ fair path ξ starting from s s.t. M, s � g1.

We can use server protocols for reliable server to illustrate the use of fairness.
Here we use only one fairness constraint for each client that illustrates the
reliability of that server. The fairness constraint is ∀clienti(¬request (clienti) ∨
respondence(clienti)). So, a computation path ξ is fair ⇔ ∀clienti
(¬request (clienti) ∨ respondence(clienti)) ∩ inf (ξ)
= ∅.

The more details can be found in [14].

3.4 Verification

In the development phase, we can evaluate our work whether it satisfies the
specification of the requirements of that phase or not through verification. In other
words, verification can help us to determine if the work we have done meets the
requirements and specifications. At present, verification consists of two methods:
one is deductive verification and the other is model checking.

3 Formal Verification, Testing, and Inspection for Intelligent Services 39

3.4.1 Deductive Verification

Using axioms and rules to prove whether systems are correct or not is called
deductive verification. Most of computer scientists believe deductive verification
is very important. So we have used it in many fields of software development.
Deductive verification can be automated to prove infinite-state systems. However,
deductive verification needs much knowledge of mathematics; thus, only experts can
utilize it. Moreover, deductive verification is time-consuming to prove some little
scale problem. Finally, when we cannot prove the system is correct, we cannot also
prove that the system is wrong. So here we will only emphasize model checking.

3.4.2 Model Checking

We can use a technique of model checking for automation to verify finite state
systems. General approaches search exhaustively the state of system to check if
specification of the system has been met or not. This procedure always will stop and
give us an answer that the system is true of false if we have sufficient memory and
time.

We can easily describe the model checking problem with Kripke structure
and a temporal logic formula. Using temporal logic formula p to represent some
specification and Kripke structure M = (W, T , F) to describe the system, then we
can check M, s � p or not. There are initial states in the system, and model checking
will check whether the system satisfies these specifications according to the initial
states.

3.4.3 Symbolic Model Checking

In 1987, McMillan [4, 20] verified much larger systems through the state transition
graphs of symbolic representation. They utilized Bryant’s ordered binary decision
diagrams (OBDD) [5] to construct the new symbolic representation. OBDDs is a
very efficient algorithm which provides a canonical form for Boolean formulas.
Symbolic representation can describe the rules in the state space according to
the specifications, so it can verify systems whose scale is larger than algorithms
described by handled explicit state. By the new representation, the original CTL
model checking algorithm [7] can verify some systems whose states are more than
1020 states.

40 M. Xu and L. Wang

3.4.3.1 Fixed-Point Representations

A Kripke structure M(W, T , F) is finite, where W is a finite set and the power of
W is denoted by P(W). Let π : P(W) → P(W) be a transform or a function.

1. π is monotonic if R ⊆ S implies π(R) ⊆ π(S);
2. π is ∪ continuous if R1 ⊆ R2 ⊆ · · · ⊆ Ri ⊆ Ri+1 ⊆ · · · ⇒ π(∪i (Ri)) =

∪i (Ri);
3. π is ∩ continuous if P1 ⊇ P2 ⊇ · · · ⊇ Pi ⊇ Pi+1 ⊇ · · · ⇒ π(∩iPi) = ∩iπ(Pi);

πi(W) = π(· · · (π(π(W))))
︸ ︷︷ ︸

i

.

The recursive definition is the following:

⎧

⎨

⎩

π0(W) = W n = 0

πi+1(W) = π(πi(W)) n = i

There are least fixed point denoted by least (π(W)) and greatest fixed point denoted
bygreat (π(W)) on a monotonic function, just like the following:

⎧

⎨

⎩

least (π(W)) = ∩{W | π(W) ⊇ W }

great (π(W)) = ∪{W | π(W) ⊆ W }

When π is monotonic and cup or cap is continuous, the definition is as follows:

⎧

⎨

⎩

least (π(W)) = ∩iπ
i(T rue) ∩ continuous

great (π(W)) = ∪iπ
i(False) ∪ continuous

We can get some lemmas defined on finite Kripke structures [7, 12].

Lemma 1 π is ∪ continuous and ∩ is continuous if W is finite and π is monotonic.

Lemma 2 ∀ i πi(False) ⊆ πi+1(False) and πi(T rue) ⊇ πi+1(T rue) if π is
monotonic.

Lemma 3 ∃n0 ∈ Z, s.t. least (π(W)) = πn0(False). and ∃m0 ∈
Z, s.t. great (π(W)) = πm0(T ure) If W is finite and π is monotonic, where Z
is an integer set.

We can use a least or greatest fixed point to define CTL operators when we use
{w|M,w � p} in P(W) to present CTL formula g [10].
g1, g2 are CTL formulas.

• A�g1 = least (g1) ∨ A © W

• E�g1 = least (g1) ∨ E © W

3 Formal Verification, Testing, and Inspection for Intelligent Services 41

• A�g1 = great (g1) ∧ A © W

• E�g1 = great (g1) ∧ E © W

• A[g1 ∪ g2] = least (g2) ∨ (g1 ∧ A © W)

• E[g1 ∪ g2] = least (g2 ∨ (g1 ∧ E © W)

• A[g1 ∨ g2] = great (g2) ∧ (g1 ∨ A © W)

• E[g1 ∨ g2] = great (g2) ∧ (g1 ∨ E © W)

We can easy to know least fixed points correspond to final event and greatest fix
points correspond to hold properties forever. Thus, A� g1 has a least fixed point and
A� g1 has a greatest fixed point.

3.4.3.2 Symbolic Model Checking for CTL

We use OBDD to represent the Kripke structures and the logic of quantified Boolean
formulas (QBF) [1, 15] to denote operations on Boolean formulas.

The set of formulas QBF(V) can be defined as follows:
V = {v0, · · · , vn−1} is a set to represent propositional variables:

• v ∈ V is a formula;
• ¬f1, f1 ∧ f2, f1 ∨ f2 are formulas if f1 and f2 are also formulas,
• ∃vf and ∀vf are formulas, if f is a formula and v ∈ V .

We use a function π : V → {0, 1} to represent a truth assignment. Here we
introduce the notation π(a → v) to represent the truth assignment when a ∈ {0, 1} =
V . So it can be defined by the following:

π(a → v)(v
′) =

{

a if v = v′

π(v′) otherwise.

π � f denotes that f is true if π(f) = 1, where f is a formula and π is a truth
assignment. The definition of � is the following:
f, f1, f2 are formulas in QBF(V).

• π � v ⇔ π(v) = 1
• π � ¬f ⇔ π � f

• π � f1 ∨ f2 ⇔ π � f1 ∨ π � f2
• π � f1 ∧ f2 ⇔ π � f1 ∧ π � f2
• π � ∃vf ⇔ π(a → 0) � f ∨ π(a → 1) � f , and
• π � ∀vf ⇔ π(a → 0) � f ∧ π(a → 1) � f .

Relational product operations exist in which quantifiers can be represented by
∃x[f1(x, y) ∧ f2(x, y)] generally.

42 M. Xu and L. Wang

3.4.3.3 Algorithm of Model Checking

The algorithm of model checking can be implemented by a procedure or function
name module_checker . The input of module_checker is the CTL formula to be
checked, and the output of module_checker is an OBDD [9]. The definition is the
following: a is a proposition f, f1, f2 are formulas.

• module_checker(a) = {v ∈ V |π(v) = a},
• module_checker(f1 ∧ f2) = module_checker(module_checker(f1) ∧

module_checker(f2)),
• module_checker(¬f) = ¬module_checker(module_checker(f),
• module_checker(E © f) = module_checkerE © (module_checker(f)),
• module_checker(E[f1 ∪ f2]) = module_checkerE∪

(module_checker(f1),module_checker(f2)),
• module_checker(E�f) = module_checkerE�(module_checker(f)).

module_checkerE© means if the state has a successor in f which is true, the
formula E © f is true. In other words,

module_checkerE © (f (v)) = ∃v′[f (v′) ∧ T (v, v′)].

Where T (v, v′) is a relation in OBDD.
module_checkerE∪ can use the least fixed point to compute

E[f1 ∪ f2] = least (f2) ∨ (f1 ∧ (E © W)).

The other formula can be processed similarly.

3.4.4 Fairness in Model Inspecting

For fairness, we assume to use CTL formulas Con = {c1, c2, · · · , cn} to represent
fairness constraints. We can define procedure module_checkerFair to check
whether formulas f of specifications satisfy the Con or not.

Fairness constraints E� c means there is a path which holds all c from the start
to infinity. And the state W makes c true which has the following properties:

1. ∀w ∈ W ⇒ f = T rue,
2. ∃ p(f = T rue ∀w ∈ p)

where p is a path in CTL.
By means of a fixed point, we can represent symbolic model checking as follows:

E� f = great (f) ∧
n

∧

k=1

E © E[f ∪ (W ∧ Pk)]

3 Formal Verification, Testing, and Inspection for Intelligent Services 43

So under fairness constraint, module_checkerFairE� can be computed as
follows:

module_checkerFairE�(f) = great (f) ∧
n

∨

i=1

E © (E ∪ (f,W ∧ pi))

module_checkerFairE©,module_checkerFairE∪ can be computed similarly.

3.5 Testing

Software testing describes a process used to facilitate the qualification, integrity,
security, and quality of software. In other words, software testing is a review or
comparison process between actual output and expected output according to the
specification. Testing methods can be applied on an actual system directly rather
than a model and can deal with infinite-state systems. But testing cannot cover all
the possible execution cases of a system, just depends on some criteria.

3.5.1 Software Testing Method

The testing methods mainly include white box testing, black box testing, and
gray box testing from the perspective of whether you care about the internal
structure or specific implementation of the software. White box testing methods
mainly include code inspection method, static quality measurement method, logical
coverage method, basic path test method, domain test, symbol test, path coverage,
etc. Black box testing methods mainly include equivalence class division method,
boundary value analysis method, error inference method, causality diagram method,
decision table drive method, orthogonal experiment design method, function dia-
gram method, etc.

The test methods can be divided into static tests and dynamic tests from the
perspective of whether to execute the program. Static tests include code inspection,
static structural analysis, code quality metrics, etc. Dynamic testing consists of
three parts: constructing test cases, executing programs, and analyzing the output
of programs.

Testing has different stages as follows:

• Unit (module) testing. The unit test is mainly to test the module of the software
and find out that the actual function of the module does not conform to the
specification and coding errors. Because the module is small in scale, single in
function, and simple in structure, the test methods adopted are static test method
and white box test.

44 M. Xu and L. Wang

• Integration testing. Integration testing is the second phase of software testing. At
this stage, modules that have been assembled in strict accordance with program
design requirements and standards are usually tested simultaneously to clarify
the correctness of the assembly of the program structure and to discover problems
related to the interface. At this stage, a combination of white box and black box
is generally used for testing to verify the rationality of the design at this stage and
the realization of required functions.

• System testing. System tests check whether the system meets the software
requirements. The main test content in this phase includes robustness test,
performance test, function test, installation or anti-installation test, user interface
test, stress test, reliability and safety test, etc. The system test mainly uses the
black box method for testing.

• Validation testing. Validation testing is the testing work to be performed before
the software product is put into actual execution. Compared with system test,
validation testing differs from testers only, and validation test is performed by
the user. The main goal of validation testing is to show users that the software
developed meets predetermined requirements and relevant standards and to verify
the effectiveness and reliability of the software’s actual work and to ensure
that users can successfully use the software to complete established tasks and
functions.

Now we just briefly introduce what are white box testing and black box testing
as end of the section.

Black box testing, as its name implies, simulates a software testing environment
as an invisible “black box.” Observe the data output through data input and check
whether the internal function of the software is normal. When the test is unfolded,
data is entered into the software and waits for data to be outputted. If the data output
is consistent with the expected data, it proves that the software passes the test. If the
data is different from the expected data, even if the difference is small, it also proves
that there is a problem in the software program, and it needs to be resolved as soon
as possible.

Compared with black box testing, white box testing has a certain degree of
transparency. The principle is to debug the internal working process of the product
according to the software’s internal applications and source code. During the testing
process, it is often analyzed in collaboration with the internal structure of the
software. The biggest advantage is that it can effectively solve the problems of the
internal applications of the software. It is often combined with the black box test
method during the test. The test method can also effectively debug such situations.
Among them, the judgment test is one of the most important test program structures
in the white box test method. Such a program structure, as an overall implementation
of the program logic structure, has a more important role for the program test. This
type of testing method covers all types of code in the program, and covers a wide
range, which is suitable for multi-type programs. In actual detection, the white box
test method is often used in combination with the black box test method. Take the
unknown error detected in the dynamic detection method as an example. First, use

3 Formal Verification, Testing, and Inspection for Intelligent Services 45

the black box test method. If the program input data is the same as the output data,
the internal data is not. If there is a problem, it should be analyzed from the code
side. If there is a problem, use the white box test method to analyze the internal
structure of the software until the problem is detected and amended in time.

3.6 Model Checking in Practice

3.6.1 The NuXMV Model Checker

NuSMV [6] is a classic model detection tool, which implements symbol model
detection technology efficiently. NuSMV uses BDD to alleviate and achieve the
state explosion problem, has a good software architecture, and is easy to customize
and extend. NuXMV inherits all the functionalities of NuSMV and extends to
specify the infinite-state systems.

In this part, we will introduce the NuXMV grammar and how to use it to check
an intelligent system which should satisfy some properties.

3.6.2 Grammar of NuXMV

NuSMV uses its language to describe Kripke’s structure and special verification
specifications. The Kripke structure is often called finite-state machine (FSM) in
NuXMV [22]. NuXMV has two useful expressions: init expression and next

expression. The init expression is used to describe the initial state, and the next

expression is used to describe the transition relationship. Programs written in
NuXMV are often called smv programs. The smv program consists of modules.
The types of state variables are very similar to other computer language, such as C,
Java, Python, etc. Here do not provide to describe detailed, these can be found in
the paper [22].

3.6.2.1 MODULE

A module consists of a module name and a module definition, and a module
definition consists of a parameter and a body. The main part of the module is divided
into three categories: Variables, Constraint, and Specification. The Variables section
is used to describe the state set of the Kripke model; the Constraint section is used to
describe the transition relationship of the Kripke model and some restrictions on the
model; and the Specification section is used to describe the specification of special
verification. The smv program must have at least one module called main, and the

46 M. Xu and L. Wang

main module cannot have formal parameters. Multiple module descriptions can be
used to describe the FSM and then combined into a whole FSM.

The following is an example 1:

1 MODULE main
2 VAR
3 s : boolean;
4 ASSIGN
5 init(s) := FALSE;
6 next(s) := TRUE;
7 CTLSPEC
8 EX s = TRUE

where “VAR i: boolean” denotes i is a variable and its type is boolean, “ASSIGN”
belongs to the constraint which describes how a system works, ‘init(i) := FALSE’
denotes i initial value is FALSE, “next(i) := TRUE” denotes its value in the next
state is TRUE, “CTLSPEC” introduces a formula in CTL to describe specification
of the system, and EX means the system exists in the next state whose value is
TRUE.

3.6.2.2 Types and Variables

NuXMV provides many data types, such as Boolean, integer, enumeration,
word, and arrays types. Variables in NuXMV are declared by VAR which
describe the states of a system. The definition of the variable of form is
< state_variable_name >:< data_type >;, where < state_variable_name >

denotes the name of the variable and < data_type >; denotes the type of data; in
general, we will add a semicolon at the end of the statement. The second and third
lines in example 1 show how to apply (V AR) to define variables.

Some data type are introduced by the following:

• Boolean Type: symbolic values FALSE and TRUE,
• Enumeration Types: full enumerations of all the values, for example,

{SUCCESS, 1, 5, PASS},
• Integer: positive or negative integer number,
• Real: the rational numbers,
• Array: for example, array 0.5 of integer: 0 is lower bound, 3 is upper bound for

the index, and integer is the type of the elements in the array,
• . . .

NuXMV assigns values to variables by the keyword ASSIGN. We can use init to
assign the initial values of the state in the system and next to assign the value of the
next state of the system. Lines 4, 5, and 6 in example 1 show how to apply ASSIGN
to assign values to variables.

There are two important expressions, Case Expression and If-Then-Else Expres-
sion, in NuXMV.

3 Formal Verification, Testing, and Inspection for Intelligent Services 47

The syntax of If-Then-Else Expression is < bool_expr >? < expr1 >:<
expr2 >, where < bool_expr > must be a Boolean expression and < expr1 >

and < expr2 > are any expressions; if < bool_expr > is true, then we can get the
value of < expr1 >; else get the value of < expr2 >.
The syntax of Case Expression is the following:

case
condition1 : expression1;
condition2 : expression2;
...
1 : expression N
esac

When the first value of condition k is true, the Case Expression returns the value
of the kth expressionK on the right-hand side of “ : ,” where “1” means other cases.

3.6.2.3 Specifications

NuXMV provides linear temporal logic (LTL), computation tree logic (CTL), and
property specification language (PSL) to check whether the system satisfies the
specification or not. NuXMV use CTLSPEC, LTLSPEC, and PSLSPEC to insert
formulas of specifications to check.
NuXMV represent differently five basic temporal operators in CTL in Sect. 3.3.1.
Refer to the paper [22] for details.

1. G denotes �,
2. F denotes �,
3. X denotes ©,
4. U denotes ∪.

Lines 7 and 8 in example 1 show how to apply CTLSPEC to check.

3.6.2.4 Module and Program

There must be a module named main in the program of NuXMV, which is just
the main function in C language program. The other modules, in the program of
NuXMV, are similar to general functions. Now we can run example 1. Because the
example satisfy the specification EXs = TRUE, means the system should exist a
next state is TRUE, obviously, it is correct. So we can obtain the result as following:

-- specification EX s = TRUE is true

If we change the specification to the EG s = TRUE that means there exist a path
holds s always true in the all states of the path, here, just a state s and the initial
value of s is FALSE. So it is impossible in the example; the NuXMV gives the
counterexample as follows:

48 M. Xu and L. Wang

Trace Type: Counterexample
-> State: 1.1 <-
s = FALSE

3.6.3 An Example

Now general intelligent services are very complex and concurrent and to know that
the system has properties that we need, formal methods are a good way to help us.
Here an example has been illustrated.

Now we consider that there are two Agents that can entertain in one place, but this
place can only be accessed by one Agent at any time. Now we design a program that
allows both Agent1 and Agent2 to have the opportunity to enjoy this place. Let each
Agent to have four states: sleeping, trying, enjoying, and exiting. The sleeping state
indicates that the Agent is idle, the trying state indicates that the Agent wants to enter
this place to entertain, the enjoying state indicates that the Agent is entertaining,
and the exiting state indicates that the Agent wants to leave this place. If only one
Agent wants to go to this place while trying, then it can go. When both Agents
are in the trying state and both want to go, then set a variable semaphore type to
Boolean. If the semaphore value is FALSE, Agent1 can go in and change the value
of semaphore to TRUE. If the semaphore value is TRUE, Agent2 can go in and
change the value of semaphore to FALSE. To describe the syntax of NuXMV in
more detail, consider the following program:

1 MODULE main
2 VAR
3 state_agent1: {sleeping, trying, enjoying,exiting};
4 state_agent2: {sleeping, trying, enjoying,exiting};
5 semaphore : boolean;
6 ag1: process agent(state_agent1, state_agent2, semaphore, FALSE);
7 ag2: process agent(state_agent2, state_agent1, semaphore, TRUE);
8
9 ASSIGN
10 init(semaphore) := FALSE;
11
12 CTLSPEC
13 EF((state_agent1 = enjoying) & (state_agent2 = enjoying))
14 CTLSPEC
15 AG((state_agent1 = trying) -> AF(state_agent1 = enjoying))
16 CTLSPEC
17 EX(state_agent1 = trying) & EX(state_agent2 = trying)
18
19 MODULE agent(state0, state1, semaphore, semaphore0)
20 ASSIGN
21 init(state0) := sleeping;
22 next(state0) :=
23 case
24 (state0 = sleeping) : {trying, sleeping};
25 (state0 = trying) & (state1 = sleeping) : enjoying;
26 (state0 = trying) & (state1 = trying) &

3 Formal Verification, Testing, and Inspection for Intelligent Services 49

27 (semaphore = semaphore0) : enjoying;
28 (state0 = enjoying) : {enjoying, exiting};
29 (state0 = exiting) : {sleeping};
30 TRUE : state0;
31 esac;
32
33 next(semaphore):=
34 case
35 (semaphore = semaphore0) & (state0 = enjoying): !semaphore;
36 TRUE : semaphore;
37 esac;
38
39 FAIRNESS
40 running

Here we define two modules: one is the main module main and the other is
the agent module. The main module calls the agent module to simulate the two
Agents. In the part of defining variables, lines 2 and 3 define the state space of
Agent1 and Agent2, {sleeping, trying, enjoying, exiting}, and the fourth line
defines the variable semaphore and initializes the value of the variable semaphore.
FALSE, as shown in lines 9 and 10, that is, when both Agents are in the trying
state at the beginning, let Agent1 enter first. The agent module is instantiated in
the VAR statement, as shown in lines 6 and 7, mainly to instantiate two Agents,
because to run concurrently, the keyword process is used. From lines 12 to line 17,
we define three specifications using CTL. Line 13 checks whether the model allows
both Agents to be in the enjoying state. Line 15 is to check whether Agent1 must
be able to enter the enjoying state. Line 17 is to check that both Agent1 and Agent2
are in the trying state.

When the Agent module is called, the four parameters are given such as state0,
state1, semaphore, and semaphore0. state0 indicates the current state of the
Agent. state1 indicates the state of another Agent at the moment. When the Agents
are in the trying state, in which Agents semaphore and semaphore0 are equal,
that Agent can be in the enjoying state. In the ASSIGN statement part, we give the
Agent the initial state of sleeping, as shown in line 21. The case statements in lines
22–30 give the value of the next state variable state0 of the Agent. For example,
when the status of the Agent is enjoying, the next status can be either enjoying or
exiting, as shown in line 27. The case statement in lines 32–36 gives the next value
of the variable semaphore. The last FAIRNESS statement running is to allow the
Agent process to run indefinitely.

When NuXMV is run on the program, the following output is produced:

1 specification EF (state_agent1 = enjoying & state_agent2
= enjoying) is false
2 -- as demonstrated by the following execution sequence
3 Trace Description: CTL Counterexample
4 Trace Type: Counterexample
5 -> State: 1.1 <-
6 state_agent1 = sleeping
7 state_agent2 = sleeping
8 semaphore = FALSE

50 M. Xu and L. Wang

9 specification AG (state_agent1 = trying -> AF state_agent1
= enjoying) is false

10 -- as demonstrated by the following execution sequence
11 Trace Description: CTL Counterexample
12 Trace Type: Counterexample
13 -> State: 2.1 <-
14 state_agent1 = sleeping
15 state_agent2 = sleeping
16 semaphore = FALSE
17 -> Input: 2.2 <-
18 _process_selector_ = ag2
19 running = FALSE
20 ag2.running = TRUE
21 ag1.running = FALSE
22 -> State: 2.2 <-
23 state_agent2 = trying
24 -> Input: 2.3 <-
25 -> State: 2.3 <-
26 state_agent2 = enjoying
27 -> Input: 2.4 <-
28 _process_selector_ = ag1
29 ag2.running = FALSE
30 ag1.running = TRUE
31 -- Loop starts here
32 -> State: 2.4 <-
33 state_agent1 = trying
34 -> Input: 2.5 <-
35 _process_selector_ = ag2
36 ag2.running = TRUE
37 ag1.running = FALSE
38 -- Loop starts here
39 -> State: 2.5 <-
40 -> Input: 2.6 <-
41 _process_selector_ = ag1
42 ag2.running = FALSE
43 ag1.running = TRUE
44 -- Loop starts here
45 -> State: 2.6 <-
46 -> Input: 2.7 <-
47 _process_selector_ = main
48 running = TRUE
49 ag1.running = FALSE
50 -> State: 2.7 <-
51 specification EX (state_agent1 = trying & EX state_agent2 =
trying) is true

We can note from the results of the above result of the program running. The
first line illustrates that both Agents are in the enjoying state which is false, which
means that there is only one in enjoying state at any time. This is what we expect.
Line 51 shows that both Agents are in the trying state. This is true, which indicates

3 Formal Verification, Testing, and Inspection for Intelligent Services 51

that two Agents can compete to enter enjoying at the same time. It is also allowed
by us, so it is also correct. From lines 9 to 51, there are counterexamples where
Agent1 cannot enter the enjoying state when Agent1 is in the trying state. The
reason is that on line 26, when Agent2 enters the enjoying state, it keeps this state
forever, so Agent1 cannot enter. So we add the FAIRNESS statement to the main
module, and the program is shown below.

1 MODULE main
2 VAR
3 state_agent1: {sleeping, trying, enjoying,

exiting};
4 state_agent2: {sleeping, trying, enjoying,

exiting};
5 semaphore : boolean;
6 ag1: process agent(state_agent1,

state_agent2, semaphore, FALSE);
7 ag2: process agent(state_agent2,

state_agent1, semaphore, TRUE);
8
9 ASSIGN
10 init(semaphore) := FALSE;
11
12 FAIRNESS
13 !(state_agent1 = enjoying)
14 FAIRNESS
15 !(state_agent2 = enjoying)
16
17 CTLSPEC
18 EF((state_agent1 = enjoying) &

(state_agent2 = enjoying))
19 CTLSPEC
20 AG((state_agent1 = trying) ->

AF(state_agent1 = enjoying))
21 CTLSPEC
22 EX(state_agent1 = trying) &

EX(state_agent2 = trying)
23
24
25 MODULE agent(state0, state1,

semaphore, semaphore0)
26 ASSIGN
27 init(state0) := sleeping;
28 next(state0) :=
29 case
30 (state0 = sleeping) :

52 M. Xu and L. Wang

{trying, sleeping};
31 (state0 = trying) &

(state1 = sleeping) : enjoying;
32 (state0 = trying) &

(state1 = trying) &
33 (semaphore = semaphore0)

: enjoying;
34 (state0 = enjoying) :

{enjoying, exiting};
35 (state0 = exiting) :

{sleeping};
36 TRUE : state0;
37 esac;
38
39 next(semaphore):=
40 case
41 (semaphore = semaphore0) & (state0

= enjoying): !semaphore;
42 TRUE : semaphore;
43 esac;
44
45 FAIRNESS
46 running

We added the fairness constraint given by the FAIRNESS statement in lines 12
and 15, so that no Agent can always be in the enjoying state. Let the NuXMV
program run again, and the result is as follows.

1 specification EF (state_agent1 = enjoying &
state_agent2 = enjoying) is false

2 -- as demonstrated by the following
execution sequence

3 Trace Description: CTL Counterexample
4 Trace Type: Counterexample
5 -> State: 1.1 <-
6 state_agent1 = sleeping
7 state_agent2 = sleeping
8 semaphore = FALSE
9 specification AG (state_agent1 = trying ->

AF state_agent1 = enjoying) is true
10 -- specification (EX state_agent1 =

trying & EX state_agent2 = trying) is true

From line 9, we can see thatAG((stateagent1 = trying)− > AF(stateagent1 =
enjoying)) is now satisfied.

3 Formal Verification, Testing, and Inspection for Intelligent Services 53

References

1. V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley Longman Publishing Co., Inc., Boston, 1974)

2. R. Alur, T. Henzinger, Reactive modules. Form. Methods Syst. Des. 15, 7–48 (1999)
3. D. Broman, E. Lee, S. Tripakis, M. Törngren, Viewpoints, formalisms, languages, and tools

for cyber-physical systems, in 6th International Workshop on Multi-paradigm Modeling
(MPM’12) (2012)

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

5. R.E. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput.
C-35(8), 677–691 (1986)

6. A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, NuSMV 2: an open source tool for symbolic model checking, in CAV, ed. by E.
Brinksma, K.G. Larsen. LNCS, vol. 2404 (Springer, 2002), pp. 359–364

7. E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branch-
ing time temporal logic, in Logic of Programs: Workshop, Yorktown Heights, NY, May 1981.
LNCS, vol. 131 (Springer, 1981)

8. E.W. Dijkstra, The humble programmer. Commun. ACM 15(10), 859–866 (1972)
9. E.M. Clarke Jr., Orna Grumberg, Lucent Technologies, Model Checking (MIT Press,

Cambridge, MA, 1999)
10. E.A. Emerson, E.M. Clarke, Characterizing correctness properties of parallel programs using

fixpoints, in Automata, Languages and Programming. LNCS, vol. 85 (Springer, 1980), pp.
169–181

11. E.A. Emerson, J.Y. Halpern, “Sometimes” and “Not Never” revisited: on branching time versus
linear time. J. ACM 33, 151–178 (1986)

12. E.A. Emerson, C.-L. Lei, Efficient model checking in fragments of the propositional mu-
calculus, in LlCS86 (1986), pp. 267–278

13. W. Fokkink, Introduction to Process Algebra (Springer, Heidelberg, 2000)
14. N. Francez, Fairness (Springer, 1986)
15. M.R. Garey, D.S. Jolmson, Computers and Intractability: A Guide to the Theory of

NP-Completeness (W. H. Freeman and Company, San Francisco, 1979)
16. C. Hoare, Communicating Sequential Processes (Prentice Hall, New York, 1985)
17. J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and

Computation, 3rd edn. (Addison-Wesley, Reading, 2006)
18. G.E. Hughes, M.J. Creswell, Introduction to Modal Logic (Methuen and Co. Ltd., London,

1968/1977)
19. Z. Manna, A. Pnueli, Temporal Verifications of Reactive Systems-Safety (US, Springer,

New York, 1995)
20. K.L. McMillan, Symbolic Model Checking (Kluwer Academic Publishers, Norwell, 1993)
21. W. Reisig, Petri Nets: An Introduction (Springer, Heidelberg, 1985)
22. https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

	3 Formal Verification, Testing, and Inspection for IntelligentServices
	3.1 Introduction
	3.2 Modeling
	3.2.1 Kripke Structure Modeling
	3.2.2 An Example

	3.3 Specification
	3.3.1 The Computation Tree Logic (CTL*)
	3.3.2 Fairness

	3.4 Verification
	3.4.1 Deductive Verification
	3.4.2 Model Checking
	3.4.3 Symbolic Model Checking
	3.4.3.1 Fixed-Point Representations
	3.4.3.2 Symbolic Model Checking for CTL
	3.4.3.3 Algorithm of Model Checking

	3.4.4 Fairness in Model Inspecting

	3.5 Testing
	3.5.1 Software Testing Method

	3.6 Model Checking in Practice
	3.6.1 The NuXMV Model Checker
	3.6.2 Grammar of NuXMV
	3.6.2.1 MODULE
	3.6.2.2 Types and Variables
	3.6.2.3 Specifications
	3.6.2.4 Module and Program

	3.6.3 An Example

	References

